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Abstract 

Linear friction welding (LFW) is a solid-state joining process which has been 

successfully implemented to manufacture bladed-disks, chains and near-net 

shape components. During welding, large residual stresses are created as a 

consequence of a non-uniform heating of the component which can severely 

affect the integrity of the structure. Experimental measurement of residual 

stresses and temperatures on linear friction welds is difficult, so researchers 

have used modelling to provide a better understanding of these important 

characteristics. Models developed in the literature, replicate the welding process 

by including the oscillation of the workpieces, resulting in long computational 

times. Therefore, numerical models are mostly confined to 2D geometry and 

complex geometry cases such as keystone or bladed-disk welds are rarely 

considered. This thesis focuses on the development and validation of 

computational models capable of predicting the residual stress field developed 

in Ti-6Al-4V LFW without modelling the complex mechanical mixing occurring at 

the weld interface. Using a sequentially coupled thermo-mechanical analysis on 

a 3D model defined in ABAQUS, the heat was applied at the weld interface 

using the average heat flux post-processed from the machine data obtained 

during welding trials, for all the phases. The material deformation was ignored 

and the material expulsion is accounted for by sequentially removing rows of 

elements. 

The models were validated against thermocouples, neutron diffraction and 

contour method measurements. The shearing occurring at the interface while 

welding was found to have little effect on the final residual stress field and 

therefore can be omitted. The residual stress field was found to be driven by the 

temperature profile obtained at the end of welding, prior to cooling and by the 

weld interface dimensions. A low weld interface temperature, shallow thermal 

gradient across the weld and small weld interface dimensions should be sought 

to minimise the residual stress magnitude. Therefore, a low burn-off rate 

obtained with reduced welding frequency, amplitude and applied force should 

be used; however the impact of using these parameters on the microstructure 
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and material properties may need to be considered. The modelling approach 

was successfully implemented on a blisk LFW and its peculiar geometry was 

found to have little effect on the residual stress field as the peak magnitude is 

driven by the overall length of the part and the thermal profile prior to cooling. 

Several cycles of post-weld heat treatment were also investigated for the blisk 

weld. The results showed that all post-weld heat treatments reduced the 

residual stresses, however the differences between the heat treatments on the 

resulting stress field was minimal. 

In conclusion, the thesis presents an innovative computationally efficient 

modelling approach capable of predicting the residual stresses within standard 

and complex geometry LFW. 
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Chapter 1: Introduction 

1.1 Background and motivation 

Linear friction welding (LFW) is a solid-state joining process which has been 

successfully implemented to manufacture titanium and nickel-based super alloy 

bladed-disks1. The process works by linearly rubbing one workpiece against 

another while applying a compressive force. Heat is generated first by friction 

then by plastic deformation. If appropriate parameters are used, the 

microstructure at the joint refines, resulting in higher hardness2 and tensile 

strength3 compared to the parent material. LFW is fast compared to other 

welding process (typically under 10 s)  and offers good repeatability4. 

Numerical modelling has been successfully used to gain knowledge on a wide 

range of outputs including temperature history5–9, flash morphology7,9, interface 

contaminants8 and effect of processing parameters10–12. Residual stresses can 

affect the structural integrity and are therefore an essential consideration for 

end users. Measurements of residual stress within LFW are difficult, particularly 

for the titanium alloys which are the main application of the process due to the 

steep stress gradients created and experimental limitations; therefore numerical 

simulations are seen as a practical alternative. Owing to computational 

constraints inherent to the modelling approaches available in the literature, 

where people have attempted to model the complex mechanical mixing of LFW 

at the weld interface between the two parts, very few publications on modelling 

the residual stress development within LFW structures are published13,14. More 

work on understanding the effect of the process parameters on the residual 

stress development is needed. 

In this context, Cranfield University and Honeywell International Inc. have 

identified the need to use numerical modelling to gain knowledge on the 

development of residual stress within LFW. This thesis describes a series of 

instrumented linear friction welds which aim to provide the thermal history and 

residual stress measurements for validating the finite element models. The 

uniqueness of this work is that it bypasses the need of modelling the 
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computationally expensive oscillations inherent in the process while still 

accounting for the axial shortening of the workpiece. This approach allowed 

residual stress modelling of large engineering structures such as bladed-disks 

with a reasonable computational time. This will have practical benefits and may 

aid further development and optimisation of the linear friction welding process. 

This thesis also demonstrates how finite element analysis can be used to 

predict the effect of parameters on residual stresses developed in rectangular 

coupons and bladed-disk welds.  The content of each chapter is described in 

the next section. 

1.2 Thesis structure 

In total, this thesis is composed of seven chapters and four appendices. 

Chapter 2 presents an extensive literature review focusing on the LFW process, 

the titanium alloy Ti-6Al-4V, the computational modelling techniques and the 

development of residual stress within LFW. The literature review allowed the 

author to identify the gaps in knowledge and define the objectives displayed in 

section 2.6, so that the thesis will present an original, significant and rigorous 

work to contribute to the development of LFW. 

Chapter 3 focuses on the development of a 3D thermal model able to predict 

thermal histories within LFW while bypassing the need of modelling the 

oscillations. Validation of the numerical predictions against thermocouple data is 

presented as well as the effects of process parameters on the thermal history. 

Chapter 4 extends the work from the previous chapter to a 3D mechanical 

model capable of predicting the residual stress field without modelling the 

oscillations. Validation against neutron diffraction and contour method 

measurements is provided and the effects of the process parameters studied in 

chapter 3 on the residual stress field are investigated. 

Chapter 5 uses the knowledge developed in chapters 3 and 4 to conduct an 

extensive parametric study to identify variables that have a significant effect on 



 25 

the residual stresses as well as providing guidelines to mitigate their 

development. 

Chapter 6 applies the methodology previously developed to a bladed-disk joint 

geometry. The distribution and magnitude of the residual stresses developed on 

such engineering component are analysed and several post-weld heat 

treatment cycles are simulated. 

Chapter 7 presents the thesis conclusion by summarising the outcomes of the 

research project and demonstrating that the objectives set have been reached. 

Finally, recommendations for further research are provided. 

Several chapters have been or are intended to be published in a research 

journal. A reference to the relevant article is given at the start of each chapter. 
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Chapter 2: Literature review 

2.1 Introduction and context 

This chapter presents a review of the state of the art of linear friction welding 

with a particular emphasis on computational modelling techniques, residual 

stresses and the titanium alloy Ti-6Al-4V. This chapter aims to reveal certain 

“gaps” in knowledge present in the literature which will constitute the 

fundamental problems investigated in this thesis. 

2.2 Friction welding processes 

Friction welding processes are usually solid-state, that is to say no melting of 

the workpiece occurs. Typically, one workpiece moves while the other is 

stationary. Heat is generated by sliding friction, plastic work within the material 

or a combination of the two, between the components facilitating their 

plasticisation. A force is applied during the process to displace the plasticised 

layer formed between the two materials and bind them together4,11,15,16. 

Solid-state welding processes possess the advantage of avoiding solidification 

related problems associated with fusion welding techniques. Therefore, there 

are usually no issues with oxidation, shrinkage cracks, porosity or hydrogen 

solubility17,18. Furthermore, no filler metal and no shielding gas are required19. 

Friction welding methods create high integrity joints with mechanical properties 

which usually surpass those of the parent material2,3,19. Moreover, the process 

is easily repeatable since it is fully automated. Since the fusion temperature of 

the materials is not reached during the process,  dissimilar materials can be 

welded more easily5,16,17,20,21. 

The main friction welding processes are: 

Friction stir welding 

Friction stir welding (FSW) process was invented at The Welding Institute 

(TWI), UK in 1991. The machine is made of a non-consumable tool composed 

of a pin, which penetrates the plates while welding, and a shoulder. The tool 
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generates heat by friction with the workpiece and its motion will produce the 

weld by mixing the layers of plasticised material22, as shown in Figure 2-1. 

Figure 2-1: Friction stir welding22

Friction stir spot welding 

Friction stir spot welding (FSSW) is a single point joining process which was 

created by Mazda Motor Corporation and Kawasaki Heavy Industries. This 

process is particularly suited to the creation of lap welds, see Figure 2-2. This 

welding process was inspired by friction stir welding and its main difference lies 

in the tool movement23–25. In friction stir spot welding, the rotating tool is 

plunged in the overlap sheets however no traversing motion occurs as opposed 

to friction stir welding. A variation of the process called refill friction stir spot 

welding exists  which eliminates the tool exit hole usually left by friction stir 

welding and friction stir spot welding. 

Figure 2-2: Friction stir spot welding23
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Rotary friction welding/ Inertia friction welding 

Rotary friction welding (RFW) is another solid-state joining process 

commercially used since the 1940s, involving two cylindrical workpieces. One is 

stationary while the other is rotating. Heating occurs once the two workpieces 

are in contact due to the normal force applied and the high rotation speed of the 

rotating workpiece, as shown in Figure 2-3. In contrast to rotary friction welding 

where the rotational speed is controlled during the whole process, in inertia 

friction welding (IFW) the rotational part is attached to a flywheel which is 

accelerated to a certain speed then disengaged while both parts are forced into 

contact26. During both processes, the heat is generated by friction and important 

plasticisation occurs at the interface of the workpieces. Due to the normal and 

centrifugal forces, material is expelled, creating a flash27,28, which contains the 

contaminants initially on the workpiece interfaces. 

Figure 2-3: Rotary friction welding19

Orbital friction welding 

Orbital friction welding (OFW) was developed in the 1970s as a combination 

between linear friction welding and rotary friction welding. In OFW, both parts to 

be joined are rotated in the same direction with the same constant angular 

speed while having their longitudinal axes parallel but offsetted by a small 

distanced d, as shown in Figure 2-4. Orbital friction welding overcomes two 

important limitations inherent to the rotary process. First of all, the workpieces 

are not limited to circular cross-sections19 and secondly, it allows the heat 

affected zone to have an uniform thickness by creating a uniform heat 

generation over the interface19,27. 
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Figure 2-4: Orbital friction welding

2.3 Linear friction welding process 

2.3.1 Background 

Linear friction welding (LFW) was first patented in 192929, however there was 

little detail recorded on its use. Later on, patents covering particular aspects of 

the process such as welding methods or tooling concepts, emerged21.  

LFW is also a solid-state joining process and possesses the advantages that 

come with it. The large deformations undergone by the material during the 

process usually result in a refined microstructure which can improve the 

properties of the weld relative to the parent material. Typically, less than 10 

seconds are required to complete a titanium alloy weld using LFW, making it a 

fast welding process which also offers a good repeatability4. While welding, 

parts do not require gas shielding to prevent oxidation5,17,18,21,30. The main 

disadvantage of the process lies in the important cost of the equipment and 

tooling19. Consequently, LFW applications are mostly confined to the 

aeroengine industry for titanium alloy bladed disk (blisk). Other applications 

have been found for LFW such as nickel-based super alloy assemblies and 

non-aeroengine metallic materials2,5,13,16,21,30, notably, the process is spreading 

in the chain manufacturing industry31. 
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2.3.2 Process phases 

During the process a stationary workpiece is rubbed against another workpiece 

with a linear cyclic motion, under a compressive force to generate frictional 

heat, see Figure 2-5 a). The process is commonly divided into four 

phases2,5,10,11,15, as displayed in Figure 2-5 b). 

Figure 2-5: Schematic illustration of the LFW process a) and its stages b)5

Initial phase: 

During the initial phase the two workpieces are forced together. The frictional 

heat is generated by the asperities at the interfaces of the workpieces, hence 

the material softens and the asperities wear down. At the end of this phase the 

true contact area will have considerably increased, as shown in Figure 2-6. 

During this phase only the asperities wear down, therefore negligible burn-off 

(axial shortening) occurs. 

Figure 2-6: Schematic illustration of the contact area at the beginning of the initial 

phase a) and at the end of the initial phase b)
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Transition phase: 

During the transition phase, the heat affected zone expands and the 

temperature is sufficient for the material to plasticise, creating a soft viscoplastic 

layer which increases the true contact area to 100%. At this point, the viscous 

material starts to be expelled from the interface creating flash. 

Equilibrium phase: 

Significant burn-off occurs and most of the flash is created during the 

equilibrium phase. A quasi-steady state is reached for the interface force, 

thermal profile and burn-off rate. 

Deceleration phase and forging: 

Finally, once the desired upset is achieved, the two parts are quickly and 

accurately aligned. The deceleration time is typically under 0.1 s. Then, a 

forging force with the same or higher magnitude than the applied force26 is 

applied to consolidate the joint for a duration of 5-15 s after the oscillation had 

ceased. 

2.3.3 Process inputs 

There are eight main input parameters that control the linear friction welding 

process. 

1. Frequency of the oscillations. 

2. Ramp-up time which is the time taken to reach the values defined for 

the different input variables. 

3. Amplitude of the oscillations which defines the maximum displacement 

from the equilibrium position of the workpiece. 

4. Applied force called also compressive force or normal force. This is the 

force applied during the first three phases of the process. 

5. Burn-off parameter which can be defined as a time, number of cycles or 

more commonly as a distance. This parameter is often used as the 

criterion to start the forging process. 

6. Decay time used to define the duration of the deceleration where the 

workpieces need to be accurately aligned before starting the forging 

process. 
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7. Forging force which is the force applied during the fourth phase of the 

process in order to consolidate the joint. 

8. Forging time is the duration that the forging force is applied. 

Beside these inputs other important parameters influence the process but 

cannot be easily and accurately defined through the main input parameters 

despite their dependency. 

1. Upset which is the total shortening of the workpiece once the welding 

has been completed. It is the sum of the burn-off plus the loss of length 

resulting from the forging process. 

2. Shear/ In-plane/ Interface force which is the force in the direction of the 

oscillatory motion.

3. Burn-off rate is the rate that the burn-off happens.

4. Welding time defines the total duration of the process.

2.3.4 Thermal aspect of the linear friction welding phases 

During a linear friction weld, the heat can be transferred either by conduction, 

convection or radiation10,27,32,33 with conduction being the primary transfer 

mechanism32,34. Convection phenomena may arise from heat transfer with the 

atmosphere or/and tooling. LFW, as also in RFW, exhibits a conditioning phase 

which includes the initial and transition phases, where the temperature at the 

interface rises until it reaches a maximum. This conditioning phase is followed 

by an equilibrium phase where the interface temperature remains constant due 

to a dynamic balance between heat input, heat conducted away and material 

expelled12,35. This trend is illustrated in Figure 2-7, where the temperature at the 

interface (z=0) increases only during the heating stage (i.e. conditioning phase), 

while back from the weld interface (z>0), the temperature keeps rising because 

of the burn-off occurring. Indeed, a point located further away from the interface 

will have a lower temperature than a point at the interface at a given time. As a 

consequence of having the material expelled (i.e. burn-off), this point will get 

closer to the interface and eventually reach it. 
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Figure 2-7: Schematic diagram showing the three main process stages in friction 

welding (��: ������� ����, ��: ������� ���� ���

����: ������� ����������� ������� �� � = �)35

Two examples of thermal histories recorded using thermocouples are shown in 

Figure 2-8. Temperature trends previously described can be retrieved from the 

experimental measurements. The equilibrium phase has been clearly captured 

by the thermocouples of Schroeder et al.9, see Figure 2-8 b). It is worth noting 

that Schroeder et al.9 did not disclose the distances, back from the weld 

interface, at which the thermocouples were positioned. The steady state of the 

temperature during the equilibrium phase is less obvious on the measurements 

made by McAndrew et al., see Figure 2-8 a) and is believed to be a 

consequence of the viscous material entering in the thermocouple hole and 

pushing back the thermocouple. This issue was also encountered by Vairis et 

al.33. 

Typically for titanium alloys welded with LFW, maxima of temperature were 

found between 900ºC and 1400ºC6,8–10,33,36–38. Temperatures are mainly 

predicted by numerical models due to the difficulty of measuring the 

temperature at the weld interface which changes continuously during the 

process because of the burn-off8,34. Consequently, thermocouples are often 

positioned further back from the interface8,10,33,34 which makes it difficult to 

predict the interface temperature owing to the steep thermal gradient. 



 34 

Alternatively, Maio et al.38 used infrared thermography for monitoring the heat 

generation in Ti-6Al-4V LFW where temperatures were found between 1050 ºC 

and 1200 ºC at the weld interface. However flash obstruction perhaps remains 

the main limitation of this technique making thermocouples a preferred 

technique in the literature. 

Figure 2-8: a) A comparison of thermal histories predicted numerically and measured 

using thermocouples by McAndrew et al.8 extracted at different distances, prior 

welding, back from the weld interface b) thermal histories measured using 

thermocouples by Schroeder et al.9 where their location on the weld interface is shown 

on the top right corner, with the oscillation direction indicated by the arrow 

2.3.5 Material used and industrial applications 

A large panel of materials from metals to plastic39,40 and even wood41–43 have 

been welded using LFW. Materials with good high-temperature properties 

including low thermal conductivity and compressive yield and shear strength are 

particularly suitable for the process21,44. Such properties will rapidly generate 

heat by plastic deformation while retaining the heat at the weld interface. 

Research on LFW has been mostly carried out on titanium alloy parts12,20,45–47

with an emphasis on the Ti-6Al-4V grade2,3,8–11,37,45,48–51. Nickel-based 

superalloys26 have also received a lot of attention since it is also used to 

manufacture blisks. Ti-6Al-4V blisks are used in moderate temperature 

environments like aero fans and compressors (up to 300ºC) while nickel-based 
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superalloy blisks can be used for the higher temperature regions such as the 

last stages of the high pressure compressor and turbines1. 

A blisk is an alternative to a mechanically attached blade-disk, see Figure 2-9. 

In a blisk, the blades and disk are made in a single piece, allowing a weight 

reduction usually between 20 – 30%1,52,53, improved aerodynamic efficiency 

with a reduction of the leakage flows1 and it eliminates potential fatigue cracks 

arising from mechanical joints1. The downsides of the blisk are its cost and its 

laborious manufacturing and repairing processes1. A blisk can either be 

manufactured from a single block of material or by linear friction welding the 

blades to the disk. Manufacturing a blisk from a single block is a slow and costly 

process with a significant amount of material wastage. 

More generally, LFW can be used to manufacture preforms (see Figure 2-10) 

by joining smaller structures together before machining, which reduces the buy-

to-fly ratio49 and therefore the manufacturing cost.  

Figure 2-9: a) Blade-disk with mechanical joint and b) linear friction welded blisk1

Figure 2-10: A Ti-6Al-4V LFW preform: on the left the as-welded structure and on the 

right the structure after machining49
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Several aluminium alloys16,54–57 and steel grades34,58 have been successfully 

used with linear friction welding. Mechanical properties were at least equal or 

superior to the parent material. Furthermore, dissimilar materials have also 

been linear friction welded, including pure copper to pure aluminium59, 

aluminium alloy to magnesium alloy60 and titanium alloy to steel61.   

2.3.6 Ti-6Al-4V microstructure 

Prior welding (parent material) 

Ti-6Al-4V is approximately composed of titanium containing 6% aluminium and 

4% vanadium. Ti-6Al-4V has an alpha-beta microstructure, where the alpha 

phase is stabilised by the aluminium while the beta phase is stabilised by the 

vanadium62.  

There are three typical types of microstructures encountered with alpha-beta 

titanium alloys: fully lamellar, fully equiaxed and bi-modal, which are shown 

Figure 2-1162,63.  The type of microstructure developed depends on the thermo-

mechanical treatments undergone by the material during the manufacturing 

process. Lamellar microstructures are obtained by simply cooling the material 

from a temperature above the beta-transus temperature which is the 

temperature upon which the original alpha-beta microstructure forms a single 

beta-phase microstructure. To obtain the equiaxed microstructure, the material 

needs to be highly deformed to force its recrystallization. Lamellar structures 

offer high fracture toughness and superior resistance to creep and fatigue crack 

growth while equiaxed structures have high ductility and fatigue strength62. 

Regarding linear friction welding, the bimodal microstructure is often 

used2,8,11,18,37,45,50 because it combines the advantages of both lamellar and 

equiaxed microstructures, i.e. it has a balanced property profile62. 
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Figure 2-11: alpha-beta titanium alloy microstructures: a) fully lamellar, b) fully 

equiaxed and c) bi-modal62

After welding 

During welding, the base material undergoes large deformations at high 

temperature which deeply affect its microstructure despite little or no melting 

occuring. The literature typically divides the microstructure of a linear friction 

weld into four areas2,20,21,37,50,64 which are presented Figure 2-12. 

Figure 2-12: Metallographic section of a titanium alloy LF weld20
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The combination of temperatures near or above the beta-transus temperature 

(~995ºC50 for Ti-6Al-4V), and the large deformations undergone by alpha-beta 

titanium alloy LFW, triggers dynamic recrystallization of the material at the 

central weld zone (CWZ) resulting either in a Widmanstatten or Martensitic 

microstructure depending on the cooling rate (see Figure 2-13). 

The CWZ exhibits a fine grain microstructure (grains typically under 10µm) with 

superior hardness properties in a 450-500 Hv range37 compared to the parent 

material (about 300 Hv2,6). The thermo-mechanically affected zone (TMAZ) 

displays a heavily deformed alpha-beta microstructure with grains elongated in 

the oscillation direction, and lower hardness values are found in this region 

compared to the CWZ (360-400 Hv). The presence of alpha grains from the 

parent material, in addition to the lack of recrystallization in this region, lead 

researchers to conclude that the beta-transus temperature was not reached 

during the process in the TMAZ2,37,48. Finally, the heat affected zone (HAZ) 

does not undergo plastic deformation however the high temperature in this area 

results in a coarsening of the microstructure and as a result the hardness is 

often found to be inferior to the parent base material’s hardness37,50 although 

there are examples of TMAZ with higher hardness than parent material65. 

Figure 2-13: Ti-6Al-4V LF weld microstructures: a) Martensite and b) Widmanstatten11
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2.4 Residual stresses 

2.4.1 Background 

Residual stresses are the stresses remaining within a component when no 

external force is applied66. They arise from misfits within the material caused by 

non-uniform plastic flow, steep thermal gradients and phase 

transformations16,30,66. Residual stresses can be beneficial, as in tempered 

glass, where they prevent crack propagation; or they can be critical, as in 

welding, where they may reduce significantly the fatigue life of a component.  

Residual stresses combined with external loading, poor microstructure and 

existing defects, may lead to dangerously lower stress at which failure happens. 

Therefore, it is crucial to account for the effect of residual stresses during a 

structural integrity assessment, which adds to the manufacturing cost. 

Note that within this thesis the analysis of residual stress is confined to type I 

macro stresses. Type II intergranular and type III atomistic residual stresses are 

not considered66. 

2.4.2 Residual stress formation in welding 

Residual stresses are difficult to predict owing to the multiple factors that cause 

them, from the manufacturing processes to the service life history. In fusion and 

solid-state welding processes, the heat distribution and the temperature 

dependant material properties have the most significant influence on the 

residual stress formation13,50,66,67. However, the residual stress formation is also 

driven by the geometry of the workpiece, its thermal history, phase 

transformations and mechanical boundary conditions66. 

Welding processes generally involve high heat inputs which generate a steep 

thermal gradient across the weld. Under such thermal gradients, the heat 

affected zone due to thermal expansion tries to expand, but is constrained by 

the cold parent material, and therefore compressive stresses are created in the 

joint. Once compressive stresses have reached the material yield stress, plastic 
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deformations happen. Finally, a non-uniform cool down of the workpiece occurs, 

therefore the material tries to contract resulting in tensile stresses in the joint. 

These tensile stresses may overtake the tensile yield stress creating more 

plastic deformations. Compressive residual stresses are located elsewhere in 

the workpiece to counterbalance the tensile residual stresses present in the 

weld.  

2.4.3 Effect of residual stress  

The modes of failure discussed below are the most common modes where type 

I residual stresses (i.e. macro-stresses) affect the integrity of a structure.  

Fracture and fatigue 

Residual stresses affect both the resistance to fracture and the fatigue life of a 

component and need to be considered in addition to external loads. For a 

fracture assessment, considering a linear elastic body, the stress intensity 

contribution of residual stresses simply needs to be added to the stress intensity 

factor66. However, for an elastic-plastic body a finite element code has to be 

used to calculate the Rice’s contour integral66 to determine the contribution of 

residual stresses on crack propagation. 

Fatigue has been divided in two categories68, low cycle fatigue (LCF) and high 

cycle fatigue (HCF). Residual stresses have little effect on LCF since the 

stresses applied as external loads during the fatigue test are usually above the 

yield stress triggering failure before 10000 cycles. As a consequence, residual 

stresses are significantly relaxed by the large amplitude oscillating plastic 

strains. However, HCF can be positively affected by compressive residual 

stress mean, if they bring into contact the crack faces during the fatigue cycle, 

preventing variation in the crack-tip stress intensity. Although, with high tensile 

residual stresses, the mean stress becomes more tensile and induced closure 

effects become less likely66. 
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Stress corrosion cracking 

Stress corrosion cracking is a mode of failure mainly considered by the energy, 

oil and gas companies. When the structure is exposed to a corrosive 

environment, despite low magnitude mechanical stresses applied, failure of the 

structure may happen. Residual stresses in combination  with a corrosive 

environment may initiate a crack in these environmental conditions30,69. 

Distortion 

As previously explained, tensile residual stresses are located at the bond line 

and are balanced by compressive residual stresses further away. The response 

of the material to the residual stress field is to minimize the strain energy by 

distortion70. Masubuchi71 distinguishes several types of distortion that can cause 

either bending, rotation and/or buckling, they are known as welding shrinkage 

distortion and are presented in Figure 2-14. Several methods exist to mitigate 

distortion by either reducing the plastic strained region during and after welding, 

elongating the region that contracts during welding or compensating the welding 

deformations by pre-welding deformations in the opposite direction before 

welding72.

Figure 2-14: Various types of weld distortion71
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2.4.4 Residual stress measurements 

Measuring residual stresses is difficult66, especially for titanium alloys. Residual 

stress measurement techniques can be separated in two categories: the 

destructive and non-destructive. 

Residual stress measurements on LFW are mostly performed using the 

destructive contour method18,45,64,73 or non-destructive neutron diffraction18,51,74

and synchrotron X-ray diffraction16,45,50 techniques.  

Contour method 

The contour method was first presented at a conference in Oxford in 2000 by 

Prime75 making it a relatively new technique for residual stress measurement. A 

schematic diagram showing how it works is presented in Figure 2-15. A 2D part 

containing residual stresses is shown in Figure 2-15 a); note that the principle 

applies equally in 3D. The part is cut, relaxing the normal stress ��� and the 

shear stress ��� and causing the new free surfaces to distort, as shown in 

Figure 2-15 b). Wire electro discharge machining (EDM) is typically used to 

make the cut. A coordinate measurement machine (CMM) records the 

displacement in the x direction on the new free surfaces. Finally, an FE model is 

created to represent the distorted parts which are then forced back to flat 

surfaces to retrieve the original residual stress state, see Figure 2-15 c). 

Unfortunately, only the stresses in the normal direction of the free surface can 

be retrieved since measurements provide only the displacement in the x 

direction, therefore the shear stress field cannot be deduced. A finite element 

model (FEM) is usually created to retrieve the residual stress field from the 

measured displacements. However, for convenience and since the problem is 

purely elastic, the model considers a flat surface where the negative values of 

the displacement previously measured are applied.  

Three assumptions need to be fulfilled to apply this principle. First of all, the 

residual stress relaxation after cutting is only elastic. Secondly, the cutting 

method does not introduce stresses and finally the cut must happen in a plane 
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that was flat in the uncut part. In reality, cutting artefacts, bulge errors and 

plastic deformations occur, leading to significant uncertainities45,76,77. While 

cutting artefacts can be avoided by the use of appropriate EDM parameters and 

clamping, bulge errors and plastic deformations are dependent on the initial 

residual stress field and are more difficult to control. Bulge error occurs when 

the third assumption previously mentioned is not respected and is a 

consequence of the stress relaxation at the tip of the cut, deforming the 

material. Therefore, when the cut surface is forced back to a flat surface, the 

material will not return to its original position78.  Bulge errors can be minimised 

by using thinner wire, improving clamping and conducting an iterative FE 

analysis79. Unlike bulge errors, cutting-induced plasticity cannot be corrected for 

after the part is cut76. Cutting-induced plasticity is a consequence of the stress 

concentration at the tip of the cut and generates plastic strains even when far-

field residual stresses are lower than the yield strength76. 

Figure 2-15: Schematic illustration of the different steps required in contour method: a) 

initial part containing residual stresses, b) cut of the part and c) distorted surfaces 

forced back flat 
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Neutron diffraction and synchrotron X-ray diffraction 

Neutron diffraction and synchrotron X-ray diffraction both rely on the same 

diffraction principle which happens when an incident wave gets scattered by the 

atoms contained in a crystal, given that the wavelength of the wave has the 

same order of magnitude as the distance between the atoms. Being scattered, 

the incident beam creates in-phase scattered waves leading to constructive 

interference and producing a strong outgoing wave80. This behaviour is 

described by Bragg’s law (see equation 2-1) and is illustrated Figure 2-16. As a 

consequence of Bragg’s law, the spacing of lattice planes in a crystal can be 

either deduced by varying the incident wavelength or by detecting the signal of 

the outgoing wave from different angles of �, using the relationship: 

�� = �����(�) 2-1

where � is the wavelength of the incoming wave, � an integer, � the distance 

between two planes of atoms and � the angle of incidence of the incident wave. 

Figure 2-16: Illustration of Bragg’s law81

Changes in lattice spacing are a consequence of elastic strains and can be 

linked with the diffraction angle66 � with equation 2-2: 
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� =
� − ��

��
= −���(�)��

2-2

where � is the elastic strain, �� the strain-free lattice spacing and Δ� the angular 

shifts. Finally, the residual stress value can be retrieve using the Hooke’s law. 

The difference between the neutron diffraction and synchrotron X-ray diffraction 

techniques lies in the type of radiation used to measure the atomic lattice 

spacing (i.e. the first uses a neutron beam while the second uses an X-ray 

photon beam). Neutron diffraction offers a better penetration into materials than 

X-ray, however it leads to noticeably higher counting times66 (typically two 

orders of magnitude81). Furthermore, smaller gauge volumes (in at least two 

directions) can be used with X-ray compared to neutron diffraction but X-ray is 

more affected by highly textured material and large grain sizes. 

Residual stress measurements in Ti-6Al-4V LFW 

The main works from the literature on residual stress measurement on Ti-6Al-

4V LFW parts are presented in Figure 2-17. Lengths of the longitudinal and 

transverse directions of the weld interface (i.e Lxx and Lzz, see Figure 2-18) are 

indicated in Figure 2-17. 

Results in Figure 2-17 clearly show that the highest peak of residual stress is 

reached in the longest direction of the weld interface. Interestingly, the work 

from Daymond et al.51 (Figure 2-17 a)) shows that if the two directions of the 

weld interface have a similar length it results in an equivalent residual stress 

profile in both directions. On the other hand, if a direction of the interface is 

noticeably smaller than the other (see Figure 2-17 b) from Dewald et al.18), low 

residual stress will develop in the shortest direction, as if a plane stress 

condition has been reached. Residual stresses developed in the direction of the 

applied pressure have a consistently a low magnitude. In the longest direction 

of the weld interface, peaks of magnitude range between 415 to 850 MPa and 

the band of tensile residual stress measured between 1.80 to 8 mm. These 

trends agree with the statement of Bhamji et al.21 who claims that residual 
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stresses in LFW are affected by the weld geometry; however the mechanism by 

which it occurs is not yet fully understood. 

Dewald (Figure 2-17 b)) and Frankel (Figure 2-17 c)) compared their 

measurements which were obtained with neutron diffraction and synchrotron X-

ray diffraction respectively with the contour method, in the longest direction of 

the weld interface. In both cases, the contour method under-predicted the value 

of the maximum residual stress peak (up to 200 MPa). Furthermore, the band of 

tensile residual stress was also predicted to be wider by the contour method 

process in Frankel’s work. High stress gradients are challenging to measure 

accurately for all measurement techniques. Dewald et al.18 explain that part of 

the difference between the two techniques is due to the contour method which 

tends to smooth out the surface features created by high stress gradients. 

Frankel et al.45 thought that the EDM cut could have introduced artefacts 

resulting in non-conservative results predicted by the contour method process. 

It is also worth mentioning that neutron and synchrotron X-ray diffraction 

measured values of residual strains are averaged over different gauge volumes 

(respectively 2 x 2 x 2 mm, Dewald et al.18, and 0.25 x 0.25 x 3 mm, Frankel et 

al.45) meaning that the actual residual stress peak magnitude could be 

potentially much higher. 

Romero et al.50 (see Figure 2-17 d)) measured residual stresses on two 

coupons welded with a respective applied pressure of P and 9P. The value of P 

is not disclosed by the authors. Romero claims from his results that increasing 

the applied pressure decreases the magnitude of tensile residual stresses 

located in the part, although it is not clear on the figure. 

It should be noted that Frankel and Romero do not display residual stress 

measurements at the weld centre line. Frankel encountered abnormal changes 

in the diffraction peaks recorded at the centre line because of the highly 

textured material. This is certainly a consequence of having used two separate 

instruments to measure the spacing of lattice planes (high energy synchrotron 

X-ray diffraction with a gauge volume of 0.25 x 0.25 x 3 mm) and the strain-free 

lattices (synchrotron X-ray diffraction with a beam size of 1 mm). Romero did 
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not record data at the weld centre line because the two joined block had 

originally two different microstructures which in combination with the size of the 

gauge volume would have led to inaccurate strain-free lattice measurements. 

To conclude, measuring residual stress in titanium alloy LFW is challenging 

because of the steep stress gradients encountered. Furthermore, despite 

neutron diffraction offering the deepest penetration, the maximum path length of 

neutron within titanium is approximately 18 mm82 resulting in only thin LFW 

having the ability to be measured. 

Figure 2-17: Residual Stress measured across the weld using different techniques (ND 

: neutron diffraction, SD: synchrotron X-ray diffraction, CM: contour method) on Ti-6Al-

4V LFW by several authors: a) Daymond et al.51, b) Dewald et a.18, c) Frankel et al.45

and d) Romero et al.50 (with P and 9P the magnitude of applied pressures used) 



 48 

Figure 2-18: Schematic illustration of a LFW  

2.4.5 Post-weld heat treatment 

Post-weld heat treatment (PWHT) is the main technique used to mitigate 

residual stresses contained in LFW parts3,45,47,48,73,83–86. During PWHT, the 

structure is uniformly heated until a target temperature is reached which will be 

held for several hours before cooling at a slow rate to avoid introduction of new 

residual stresses. Usually, the target temperature used is under the 

recrystallization temperature to avoid any modification in the material properties. 

However, the temperature must be high enough to lower the yield stress and 

allow the material to yield due to the internal residual stresses66,87. Creep 

mechanisms will also influence the relief of the residual stresses66,87. PWHT is 

not universally applicable, it may result in over-aging the material or in the case 

of dissimilar materials, introduce new mismatching elastic strains due to 

differences in thermal expansion coefficients30. 

The literature is scarce on the effect of PWHT on residual stresses for LFW 

joints. Frankel et al.45 performed two PWHT on Ti-6Al-4V LFW parts where the 

two target temperatures used are described as the conventional aging 

temperature of Ti-6Al-4V (about 550ºC according to the literature63,88) and 

100ºC above (about 650ºC), the duration of the PWHT is not displayed. 

Considering a Ti-5Al-2Sn-2Zr-4Mo-4Cr (Ti17) LFW part, Xie et al.73 used a 

target temperature of 630ºC, held for 3h to performed their PWHT. In Figure 
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2-19 a) and b), the longitudinal direction of the weld interface is indicated by its 

length. Results from Frankel et al. indicate that the target temperature of about 

650ºC offers a near-complete stress relief of the structure, as shown Figure 

2-19 a). Large discrepancies in the residual stresses were observed between 

the synchrotron X-ray diffraction and contour method results, for the PWHT at 

aging temperature. Indeed, the contour method seems to indicate an important 

stress relief after PWHT while the synchrotron method reveals a residual stress 

distribution almost unchanged compared to the as welded residual stresses. 

The reasons behind those discrepancies are the same as the ones described 

earlier in this thesis (see Residual stress measurements in Ti-6Al-4V LFW). 

Measurements of residual stresses conducted by Xie et al.73 indicate a 

complete stress relief of the Ti17 structure after PWHT when a temperature of 

630ºC is held for 3h (Figure 2-19 b)). 

Figure 2-19: Residual Stress as welded and after PWHT measured across the weld 

interface in the longitudinal direction, using different techniques (SD: synchrotron X-ray 

diffraction and CM: contour method) by: a) Frankel et al.45 on Ti-6Al-4V LFW and b) Xie 

et al.73 on Ti17 LFW 
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2.5 Modelling of the linear friction welding process 

Measuring residual stresses and temperatures on linear friction welds are 

difficult to achieve experimentally due to the high stress and temperature 

gradients created by the welding process, the technical limitations implied by 

the different measurement approaches and the accessibility of the equipment. 

Modelling is an alternative way to gain fundamental knowledge while by-passing 

the inherent difficulties linked with experiments. It can be achieved by 

establishing an equation predicting certain outputs of the process (analytical 

modelling) or one can use computational methods such as the finite element 

technique to predict the outputs. 

2.5.1 Analytical modelling 

Vairis and Frost are known as the first to have developed an analytical model 

capable of predicting the temperature evolution during the initial phase of the 

LFW process33. Inspired by the work of Carslaw and Jaeger89, they assimilated 

the LFW setup to a solid delimitated by two parallel planes. One of these planes 

represents the rubbing interface where a heat flux is applied as a boundary 

condition. Consequently, the temperature � is given as a function of time � at a 

position � from the interface and is expressed by the equation 2-3: 

� =
2�����√��

���
� Γ(1

2� � + 1)

�
� ���������

(2� + 1)�� − �

2√��

�

���

+ ��������
(2� + 1)�� + �

2√��
�

2-3

where � is a constant, �� the heat flux (power per unit area), � the thermal 

diffusivity, � the thermal conductivity, Γ the gamma function, ���� the 

complementary error function, �� the length of the specimen and �� = −1. 

However it is worth noting that if � ≠ 0, the equation 2-3 appears to be 

dimensionally inconsistent.  
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Several hypotheses have been assumed to estimate the heat input  ��, notably: 

the true-contact area increases linearly from zero to the cross section area of 

the workpiece, no heat losses are considered due to the short duration of the 

process and the coefficient of friction increases with the time from 0.25 to 0.55 

which affects the value of the heat flux. 

Vairis and Frost computed equation 2-3 for the two cases where the material 

properties of Ti-6Al-4V were kept constant and also for temperature dependent 

properties. The temperature predictions were compared with data acquired by a 

thermocouple located 1.6 mm back from the interface prior welding. Figure 2-20 

displays a reasonable agreement between the temperature history 

experimentally measured and the one predicted by the model with temperature 

dependent material properties. On the other hand, large discrepancies are 

exhibited by the model with constant material properties highlighting the need to 

account for temperature dependency. 

Figure 2-20: Comparison of the temperature history experimentally measured and 

analytically predicted33

Li et al.90 also established an analytical model, based on a 1D transient-heat-

conduction approach, able to predict the heating of a LFW part during the initial 

phase, see equation 2-4. The titanium alloy Ti17 was considered in the model, 
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the temperature predicted was shown to increase higher than 1000 °C in less 

than 0.3 s, capturing the fast heating process experienced by a LFW part. 

� = �� +
2���

α�
�

�
exp �−

��

4��
� −

��x

�
�1 − ��� �

�

2√��
�� 2-4 

where  �� is the initial temperature,  � is the thermal conductivity and ��� the 

error function. 

None of the models above are capable of predicting the quasi-steady state of 

the temperature characteristic of the equilibrium phase where a balance 

between heat input and heat losses gets established. However, Turner et al.10

developed an equation which estimates the thermal profile in the HAZ during 

the equilibrium phase:   

� = �� + (������ − ��) exp �−
��

�
�

2-5 

where  ������ is the temperature of the flash and � the burn-off rate. A good 

match was found between the predictions of the equation and Turner’s 

numerical model. It is worth mentioning that the analytical model is retrospective 

since the flash temperature and the burn-off rate need to be known before 

solving. 

Analytical modelling is a practical way to get an insight into the process. 

However it often requires significant simplifications limiting its predictive 

capability. When a problem becomes too complex to be accurately represented 

by an analytical equation, numerical modelling can be employed to get an 

improved prediction.  

2.5.2 Numerical modelling 

Finite element analysis 

Almost exclusively, the finite element analysis (FEA) method is used to 

numerically model the LFW process. FEA involves discretizing the space 
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domain into a finite number of elements with nodes at the corners of the 

elements. After defining the interpolation functions (e.g Gauss integration), 

computation is carried out on each element to determine their stiffness matrix 

(i.e. characteristic forces and displacements), mathematically defined by:  

[�]�{�}� = {�}�

2-6 

where  [�]� is the element stiffness matrix, {�}� is the nodal displacement vector 

of the element and {�}� its force vector. 

Finally, the element stiffness matrixes are assembled to form a global stiffness 

matrix91,92 of the structure, and the boundary conditions are imposed in order to 

solve the system equations and get the nodal unknowns such as stress and 

strain. 

Different FEA packages are used to model the LFW process, including: 

ABAQUS5,12,14,32,34,37,46,52,58,59,86, ANSYS36,93,94, DEFORM9,49,95,96, FORGE10,97

and ELFEN33. ABAQUS allows the user to have a fine control over the model, 

which has to be built “from scratch”. Users can configure specific material 

properties, meshing strategies, element types and high level details can be 

implemented within the models. ABAQUS is considered as a robust tool98

offering scripting capabilities (Fortran 90 and Python). 

Flow modelling approaches 

Using numerical modelling, authors in the literature have attempted to model 

the complex mechanical mixing of LFW at the weld interface between the two 

parts. Unlike most of the other friction welding processes99–104, models in the 

literature are fully-coupled models. For example, most of the models simulating 

inertia friction welding do not model the rotational motion of the process26. 

As detailed by McAndrew et al.7, three flow modelling approaches have been 

applied to LFW in the literature. The first approach developed by Vairis et al.33

used a deformable body oscillated against a rigid body, see Figure 2-21 a). 

Computational time is reduced with this approach however a temperature 
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dependant friction coefficient needs to be defined to account for the heat 

generation. Furthermore, the mechanical mixing occurring at the interface to 

form the joint cannot be modelled since only one body is deformable. Similar to 

the first approach, the second involves two deformable bodies rubbed against 

each other, as presented Figure 2-21 b). Despite the use of two deformable 

bodies rather than one, the mechanical mixing is still not representative of the 

real process since the two interfaces do not merge. Turner et al.10 solved the 

problem by considering a single body, conceptually representing the two 

original parts, where a thermal profile accounting for the initial phases has been 

mapped, allowing the material at the centre to deform during the oscillations 

(see Figure 2-21 c)). Using this approach Schroeder et al.9 and McAndrew et 

al.7 successfully modelled the flash morphology for several welding conditions. 

A comparison of flash morphologies for low, medium and high energy input 

rates obtained experimentally and numerically by Schroeder et al.9 is presented 

in Figure 2-22. The energy input rate was calculated using the equation defined 

by9: 

������ ����� ���� = 4 ∗ � ∗ � ∗ � ∗ �

2-7 

where � is the friction coefficient, � the frequency, � the applied force and � the 

amplitude. The exact values of frequency, amplitude and applied pressure are 

not disclosed by Schroeder et al.9. 

Figure 2-21: Flow modelling approaches: a) rigid body approach, b) two single bodies 

approach and c) single body approach7
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Figure 2-22: Experimental and numerically predicted flash morphologies for different 

welding conditions9, a) low, b) medium and c) high energy input rate 

Heat generation approaches 

The literature presents two different approaches to account for the heat 

generated during the welding phases.  

The first method uses a temperature dependent friction coefficient5,12,33,36,37,95

with a fully-coupled model to generate the heat during all the welding phases. 

As pointed out by Blau105, the number of factors which potentially influence the 

friction coefficient is large and includes among others: contact geometry, fluid 

and flow properties, relative motion, applied forces, temperature and stiffness 

and vibrations. As a consequence, one needs to apply extra care while using 

friction coefficient values. 

The second method7,8,11,49,106 post-processes the machine data recorded during 

welding to access the average heat flux over the conditioning phases. The heat 

flux is applied to a thermal model to predict the conditioning temperature 

distribution. Its retrospective nature offers a greater accuracy in terms of 

temperature prediction by being as close as possible to the experimental 

values; however it is also its main limitation. Once the conditioning phase 

temperature has been predicted, the single-body method previously defined 

(see Figure 2-21 c)) is used to model the equilibrium phase, where a plastic 

heat fraction is specified, typically in the range of 90 to 100%8,10.  
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It is worth mentioning that Turner et al.10 showed a certain insensitivity of the 

equilibrium temperature distribution regarding the conditioning temperature field 

used. To the best knowledge of the author, all the models presented in the 

literature which model the equilibrium phase include the burn-off and use a fully-

coupled thermal-stress analysis. A fully-coupled thermal-stress analysis is 

required by the two approaches, previously described, since the thermal 

analysis is dependent on the stress solution. For the first approach, the 

mechanical energy dissipated by friction is converted into heat. For the second 

approach, a fraction of mechanical energy used to plasticise the material is 

converted into heat while the remainder of the energy is associated with phase 

transformations, changes in grain boundary generation and migration and 

stored in the form of crystalline defects37,106. 

Meshing 

A fine mesh is used at the weld interface and its vicinity to capture the high 

deformations happening and it is coarsened further back where little 

deformation occurs. At the weld interface, mesh element lengths are found 

between 0.08 mm to 0.6 mm7–9,13,34,36,52,96. 

Triangular elements for 2D models10,13,32,33 or tetrahedrons in 3D are often used 

since automated meshing can be done more easily. However, quadrilateral 

elements in 2D (hexahedrons in 3D) tend to be used at the weld 

interface7,8,36,37,95 for more accuracy and for computational time reduction since 

more triangles are required than quadrilateral to cover the same mesh, at 

equivalent element length16. 

Properties of Ti-6Al-4V 

Material properties play a key role in the accuracy of the predictions made by a 

numerical model52 and since large temperature gradients are created during 

welding, it is important to consider them over an appropriate range of 

temperature. The material considered in this research is Ti-6Al-4V which is 

commonly considered  as isotropic37,88,107,108. During LFW, the fusion 

temperature of Ti-6Al-4V is not reached therefore no fusion/solidification phase 
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transformation needs to be considered. This section describes the main 

material properties necessary to compute a thermal and mechanical analysis 

aiming to model the LFW process. 

Thermal properties: 

Heat transfer occurs following one of these three mechanisms: conduction, 

convection or radiation. In welding heat losses from convection and radiation 

are usually negligible, making conduction the primary transfer mechanism109. 

However with LFW, important convective heat losses occur due to the flash 

formation.  

The thermal conductivity measures how easily heat flows within the material. 

Figure 2-23 displays thermal conductivity values from different sources where 

the thermal conductivity is shown to increase with the temperature. The thermal 

conductivity of Ti-6Al-4V is relatively low compared to other materials, making 

Ti-6Al-4V particularly suited to LFW since the heat will stay confined to the weld 

interface, allowing the interface temperature to rise rapidly5,8,11,12,21,50,56.  

The specific heat capacity is the amount of energy required to raise a unit mass 

of material by 1ºC. Specific heat capacity values from several sources are 

presented in Figure 2-24. Noticeable differences in specific heat capacity values 

arise above 800ºC. As stated by Boivineau et al.110, the specific heat capacity is 

strongly affected by the thermal history of the material measured and the 

accuracy of the measurement method used. Also differences between data 

from Li et al.5 and from Mills et al.111 compared to the other sources could be a 

consequence of not having included the phase change effects in the specific 

heat capacity. Indeed, one could account separately for phase changes by 

defining a latent heat. 

Overall, data from DEFORM’s standard library are believed to be the most 

representative since they are near the average of the values presented in the 

literature and the values are available over an acceptable range of temperature.  
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Figure 2-23: Comparison of Ti-6Al-4V thermal conductivity from different sources 

(DEFORM’s standard library, Li et al.5, Boivineau et al.110, Mills111, Shean et al.112 and 

Boyer et al.88) 

Figure 2-24: Comparison of Ti-6Al-4V specific heat capacity from different sources 

(DEFORM’s standard library, Li et al.5, Boivineau et al.110, Mills111, Shean et al.112, 

Boyer et al.88 and Basak et al.113) 

Mechanical properties: 

Similar to its thermal counterpart, a mechanical analysis requires multiple 

material properties to model the thermal, elastic and plastic deformations 

occurring during LFW. 

The linear thermal expansion coefficient describes the dimensional change of a 

material in one direction with rising or falling temperature. Little variations with 

the temperature are shown by the different sources of linear expansion 

coefficients of Ti-6Al-4V, see Figure 2-25.  
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Figure 2-25: Comparison of Ti-6Al-4V linear expansion coefficients from different 

sources (Calamaz al.97 and Boyer et al.88)  

Stresses are calculated by all models from elastic strains using Hooke’s law. 

The elastic properties required are the Young’s modulus and Poisson’s ratio, 

respectively E and ν, see Figure 2-26 for values from different sources. Young’s 

modulus data from Turner et al.13 and Boyer et al.88 exhibit a good agreement. 

Data recorded by Peters et al.62 show a steep drop in the magnitude of the 

Young’s modulus above the temperature 500ºC. As mentioned by Peters et 

al.62, mechanical properties are strongly influenced by the type of microstructure 

present in the material, i.e. fully lamellar, fully equiaxed or bi-modal.  

Figure 2-26: Comparison of Ti-6Al-4V Young’s modulus values from different sources 

(Turner et al.13, Boyer et al.88 and Peters et al.62) 

The last material property required is the flow stress which represents the 

evolution of the stress against the strain at different temperatures. Obtaining 
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experimental flow stress data over a large range of temperatures is a difficult 

task, therefore many sources available in the literature usually display data over 

a limited range of experimental conditions. Typically, two approaches in 

numerical modelling are used to account for the flow stress of a material, either 

using a flow stress model such as the Johnson-Cook law5,37,97 or using 

experimental tabular data7,10,12, with both approaches accounting for strain-rate 

hardening effects. Tabular data are usually recognised as the most accurate52. 

As previously explained; some numerical models convert into heat the 

mechanical energy used to plasticise the material, therefore flow stress data at 

high strains and at high strain-rates are necessary. However, in this thesis the 

generated heat during welding is calculated separately and the prediction of 

residual stresses is of interest. Although high strain-rate106 up to 2500 s�� are 

reached during welding, residual stresses are believed to be created during 

cooling as a consequence of having a steep thermal gradient across the weld 

and therefore, flow stress data at low strains and low strain-rates, capturing the 

hardening behaviour of the material, are required. For example, for a 1000 ºC

variation of the weld interface temperature during a 15 seconds cooling with a 

linear expansion coefficient of 1E-05 ºC��, a strain-rate of about 6E-04 s��  will 

be expected. Consequently, the thesis focuses on quasi-static flow stress data 

which are presented in Figure 2-27 a) and b).   

All the different sources on Figure 2-27 a) displays a decrease of the stress 

required to initiate the plasticisation of the material when the temperature 

increases. When the temperature increases, the material softens and as a 

result less mechanical energy is necessary to plasticise the material. Figure 

2-27 a) records differences in flow stress values between authors. Flow stress 

data is influenced by the initial microstructure of the Ti-6Al-4V alloy used (i.e. 

fully lamellar, fully equiaxed or bi-modal). The method used to gather the 

experimental data is also likely to affect the flow stress data. Turner obtained 

the flow stress curves using the software JMatPro, while Chen, Seshacharyulu 

and Wang obtained their data by conducting experiments. Guo does not 

disclose the origin of the experimental data used in his work. Finally, the 
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different strain-rates used by the sources will also participate to the 

discrepancies observed in Figure 2-27 a). 

A large drop in the stress value is recorded between 700ºC to 800ºC, see 

Figure 2-27 b). In this temperature range, the material begins to transform from 

an alpha-beta microstructure to single phase beta microstructure114. The beta 

microstructure is a body-centered cubic (BCC) which possesses 12 slip 

systems compared to 3 slip systems for the HCP structure of the alpha phase62. 

Although HCP has a higher packing density of atoms within its slip planes 

compared to the BCC lattice, which eases the gliding of the dislocations, HCP 

possesses a longer minimal slip path which increases the stress required to 

initiate plastic deformation62. As a consequence, the combination of high 

temperatures and increase in the volume fraction of beta phase results in the 

drop in the stress displayed on Figure 2-27 a) and b). It is worth noting that due 

to the lack of flow stress data available in the literature, between 700ºC and 

800ºC, part of the work-hardening behaviour of Ti-6Al-4V is lost, which might 

influence subsequent residual stress calculation.  

Figure 2-27: a) Comparison of Ti-6Al-4V flow stress data against temperature at first 

yield from different sources (Turner et al.13 (strain-rate of 0.001 ���), Chen et al.115

(strain-rate of 0.01 ���), Guo et al.116 (strain-rate of 3.33*�������), Wang et al.117

(strain-rate of 6.6*�������) and Seshacharyulu et al.114 (strain-rate of 3*�������)) and 

b) Ti-6Al-4V flow stress curves against strain, temperatures inferior and equal to 700ºC 

are taken from Chen et al.115 at a strain-rate of 0.01 ���. At 800ºC (strain-rate of 

3.33*���� ���) and 950 ºC (strain-rate of 0.001 ���), flow stress curves are from Guo 

et al.116. 
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2.5.3 Residual stress modelling in linear friction welding 

Three authors in the literature developed a numerical model able to predict 

residual stresses within Ti-6Al-4V LFW structures, Turner et al.13, Nikiforov et 

al.93 and Fu et al.14. 

Turner et al.13 conducted a fully coupled thermo-mechanical analysis using the 

single body modelling approach he developed (previously detailed in the section 

“Flow modelling approaches”) while applying a plane-strain condition to his 2D 

model. Oscillations of the equilibrium phase were simulated and plastic heat 

produced to predict equilibrium temperature and stress fields before cooling the 

structure to ambient temperature and predicting the residual stress field. A 3D 

model was not considered since it would have led to a prohibitively large 

computational time. Turner’s FEA model replicated numerically the welding 

conditions investigated by Romero et al.50  who conducted synchrotron X-ray 

diffraction experiments. Figure 2-28 a) shows that numerically, a larger band of 

residual stress is predicted compared to experiments. It is difficult to judge if the 

peak value is correctly predicted by the FEA model due to the lack of 

experimental data at the weld interface and its vicinity. Overall, there is a 

qualitative agreement between experiments and simulations. 

Nikiforov et al.93 developed a numerical approach focused on the forging stage 

of the welding process. Nikiforov started his analysis by applying a forging 

pressure onto the 3D numerical model which was maintained at the ambient 

temperature. Then a temperature field previously predicted using a 1D 

analytical model (constant thermal properties were used) was mapped onto the 

model. Finally, maintaining the temperature field, the forging pressure was 

removed before cooling down the part and predicting the residual stress field. 

Despite applying a forging pressure of about 100 MPa, Nikiforov’s model does 

not display any compressive stress above 23 MPa during the first phase of his 

analysis (i.e. when the ambient temperature is maintained). The reason for this 

discrepancy is unclear. Nikiforov experimentally calculated average values of 

residual stresses across the interface by measuring the interface dimensions 

before and after cutting the weld along its cross section. Estimations of the 
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internal forces as a function of elastic material properties and weld cross section 

dimensions are used to retrieve the residual stresses values. Overall, 

Nikiforov’s numerical model tends to under-predict the residual stresses 

compared to the experimental values. 

Fu et al.14 also omitted the friction phases and computed a coupled thermo-

mechanical analysis on a 3D model in three steps. An initial temperature field 

using a Gaussian distribution, representing the equilibrium temperature field is 

mapped onto the model, assuming a stress-free state. During the first step, the 

model is clamped and a forging pressure is applied for 10 s then released. The 

model cools for 100 s without forging pressure (second step) and finally during 

third step, the model is brought to room temperature before releasing the clamp 

to predict the final residual stress field. Fu et al.14 replicated numerically the 

LFW geometry used by Frankel et al.45 and compared his predictions against 

Frankel’s experimental measurements of residual stress. Results from his 

numerical model tend to under-predict the residual stress peak of magnitude as 

well as predicting noticeably larger bands of tensile residual stress compared to 

those recorded by Frankel et al.45. 

Turner et al.13 drew several important conclusions from his numerical analysis 

work. Firstly, he noticed that stresses created by the oscillations tend to 

disappear once the oscillations have ceased, implying that oscillations have a 

minimal impact on the stress field during welding. Secondly, the magnitude of 

the stresses developed during welding are significantly lower than those arising 

during cooling. Consequently, Turner concluded that the residual stress field is 

primarily driven by the cooling of the part after welding. Numerically a peak of 

residual stress is recorded by Nikiforov et al.93 at 330 MPa which is noticeably 

lower than the residual stresses predicted by Turner et al.13 which is above 900 

MPa while Fu et al.14 predicted a maximum of 500 MPa. The variance may be 

explained by the use of different welding conditions which are not disclosed by 

the authors and different material properties. Also the equilibrium temperature 

distributions used by Nikiforov and Fu were not validated experimentally unlike 

Turner who validated the temperature histories predicted by his model against 
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thermocouples10. Turner et al.13 varied the applied pressure and studied its 

effect on the residual stress field, results are displayed in Figure 2-28 b). Only a 

large variation of applied pressure resulted in a decrease of the residual stress 

magnitude, bringing Turner et al. 13 to the conclusion that the applied pressure 

has only a minimal influence on the residual stress field. Similarly, Nikiforov et 

al.93 and Fu et al.14 recorded a decrease of the residual stress magnitude with 

large variations of applied pressure. Fu et al14 conducted an interesting study 

where he varied the temperature distribution (see Figure 2-29 a)) while 

maintaining the peak temperature constant. As a result, increasing the 

temperature gradient of the profile increased the residual stresses, as shown 

Figure 2-29 b).  

Figure 2-28: a) Comparison of the residual stress profile developed in the longest 

direction of the weld interface, predicted numerically by Turner et al.13 and measured 

by Romero et al.50 using synchrotron X-ray diffraction and b) variation of numerically 

predicted residual stresses with the applied pressure from Turner et al.13

Figure 2-29: a) Gaussian distributions of the equilibrium temperature profile and b) the 

associated residual stress profiles predicted by Fu et al.14
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2.6 Conclusions 

The interest in LFW is increasing with industrial companies trying to extend the 

use of LFW outside the traditional application of blisk manufacturing. In order to 

increase the number of LFW applications, a more fundamental understanding of 

the process is necessary.  

Numerous LFW numerical models are available in the literature; however these 

models have been developed to replicate the welding process by including the 

oscillation of the workpieces. These models typically focus on the prediction of 

temperature histories, material deformation, flash formation and expulsion of 

interface contaminants and mostly do not investigate the stress field during or 

after welding. 

Because modelling the oscillations is seen as a requirement to obtain the 

temperature field during the equilibrium phase, most of the models have been 

confined to a 2D geometry to limit the computational time required. As a 

consequence, complex geometry cases such as keystone or bladed-disk welds 

are rarely considered.  

Residual stresses can affect the structural integrity and are therefore an 

essential consideration for end users. Measurements of residual stress are 

difficult particularly for the titanium alloys which are the main application; 

therefore numerical simulations are seen as a practical alternative. Owing to the 

computational constraints inherent to the modelling approaches available in the 

literature, very few publications on modelling residual stress development within 

LFW structures are published. More work on understanding the effect of the 

process parameters on the residual stress development is needed.  

To summarise, gaps in knowledge include: 

 A modelling approach non-computationally prohibitive able to predict 

residual stresses in real engineering structures. 

 An understanding of the fundamental features required in a model for the 

residual stress prediction. 
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 A clear understanding of how process parameters affect the residual 

stress. 

This thesis aims to develop a LFW computationally efficient numerical approach 

focus on the residual stress prediction in real engineering components. In order 

to address the gaps in knowledge, the objectives of this thesis have been 

defined as follows: 

 Develop a new computationally efficient modelling approach which will 

allow the modelling of 3D LFW structures by bypassing the modelling of 

the oscillations. Thermal and mechanical predictions will be validated 

against experimental data. 

 Provide better understanding of the residual stress development and how 

it is affected by parameters such as applied pressure, clamping pressure, 

rubbing velocity, oscillation direction, weld interface geometry and 

equilibrium temperature field. 

 Application of this methodology to real engineering components 
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Chapter 3: Development of a 3D LFW thermal model 

and effects of process parameters 

This chapter is an edited version of the following article: 

Bühr, C., Colegrove, P. A. & McAndrew, A. R. A computationally efficient 

thermal modelling approach of the linear friction welding process J. Mater. 

Process. Technol. (2017). doi:10.1016/j.jmatprotec.2017.09.013 

3.1 Background 

As shown in the literature review, getting an insight into LFW using 

experimental methods alone is difficult due to its rapid nature. Therefore many 

researchers developed numerical models to better understand the process 

6,7,36,117. Much of the modelling work to date involves modelling the oscillations 

to account for the heat generation as well as the flash formation 6,8,10,36. These 

fully-coupled models are computationally expensive due to the complex thermo-

mechanical behaviour happening at the weld interface. Turner et al. 13

suggested that the residual stresses arise primarily as a consequence of the 

cooling. As such, there is a need to develop a numerical model that avoids the 

dynamic oscillations while predicting realistic thermal and stress fields. This will 

dramatically reduce the computational time and facilitate further research on 

residual stress formation within LFW components. The aim of this chapter is to 

develop the thermal part of such a model for the LFW of Ti-6Al-4V. 

3.2 Methodology 

3.2.1 Experiments 

Ti-6Al-4V linear friction welds were made in collaboration with TWI Cambridge 

using the Thompson E20 machine, see Figure 3-1, for the five intended welding 

parameters listed in Table 3-1. The author prepared the samples and placed the 

thermocouples, however the machine was operated by a TWI engineer. As 

shown in Table 3-1, some of the welding parameters were replicated to account 
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for experimental variability. These welding parameters cover most of the 

operating window of frequency, amplitude and applied force of the LFW 

machine used. The experiments used workpieces measuring 20 x 40 x 60 mm, 

which is illustrated in Figure 3-2. The Ti-6Al-4V parent material had a bimodal 

alpha-beta microstructure. Experimentally the workpiece was oscillated in the x 

direction (along the interface dimension 40 mm), except for weld 5 where it was 

oscillated transverse to this. Thermal histories were recorded during the welding 

process using k-type thermocouples. EDM was used to produce the holes 

shown in Figure 3-3 a). The thermocouples were inserted by the author, at 

depths of 0.3 mm, 1.2 mm, 2.7 mm, 4.2 mm and 5.2 mm from the weld interface 

and an epoxy resin was used to fix them in place. To get the thermocouple 

wires out of the clamping tool, a groove was machined on one workpiece, as 

shown in Figure 3-3 b).  

The influence of the rubbing velocity was studied in the results section by 

comparing welds 1, 2 and 4. The average rubbing velocity, represents the 

average absolute velocity of the oscillating workpiece over a cycle, and is 

determined from the frequency, f and amplitude, A (Addison 44) with: 

�� = 4�� 3-1

The effect of the applied force is examined using welds 3 and 4, while the 

oscillation direction is studied using welds 4 and 5. 

Figure 3-1: a) Thompson E20 LFW machine used at TWI and b) zoom on a linear 

friction weld completed 
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Figure 3-2: Workpiece dimensions and axes 

Table 3-1: Welding parameters 

Weld Freq.  
(Hz) 

Amp. 
(mm) 

Applied 
Pressure 
(MPa) 

Burn-off 
(mm) 

Average 
Rubbing 
Velocity 
(mm/s) 

Interface Dimension in 
Oscillation Direction: 

1 

2;6 

3 

4;7;8 

5 

20 

30 

50 

50 

50 

1.5 

2 

2.7 

2.7 

2.7 

90 

90 

40 

90 

90 

3 

3 

3 

3 

3 

120 

240 

540 

540 

540 

40 mm 

40 mm 

40 mm 

40 mm 

20 mm 

Figure 3-3: a) Positioning of the thermocouples and b) experimental sample showing 

the hole where the thermocouples were fitted and the groove 
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During linear friction welding, several parameters were monitored with high-

speed data acquisition systems including the oscillator position �, the in-plane 

force ���, the axial position representing the burn-off and the applied force ��

applied on the non-oscillating workpiece, as shown in Figure 3-4.  

Figure 3-4: Schematic illustration of the linear friction machine 

To calculate a realistic heat flux, the sampling rate of the machine data needs to 

be sufficiently high to capture the waveform. Two in-plane force signals during 

phase 3 are displayed in Figure 3-5 with signals 1 and 2 having the same 

sampling rate of 500 Hz however different welding frequencies, 30 Hz for signal 

1 and 50 Hz for signal 2. Signals 1 and 2 exhibit periodic behaviours where 

maxima of the oscillations are perfectly recorded. Therefore, a sampling rate 10 

times greater than the frequency of the machine is found adequate to capture 

the waveform of the in-plane force signal. 

Figure 3-5: Two in-plane force signals for welds at two frequencies 
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A similar approach to that developed by Ofem et al. 4 and reemployed by 

McAndrew 8,11 was used for analysing the data. The machine data obtained 

during welding was post-processed and the average power (Watt) per phase 

(i.e during phase 1: initial phase or phase 2: transition phase or phase 3: 

equilibrium phase) was calculated with the following formula: 

�̇����� =
∫ �������

������

�

������

3-2 

where ������ is the duration of the phase being considered, ���� the force at the 

weld interface and � the instantaneous velocity of the oscillating workpiece. An 

example of calculated average power values per phase over the power history 

of a LFW is given in Figure 3-6 a). 

The velocity � can be calculated using a finite difference method such as the 

central difference scheme: 

�(�) =
�(� + ∆�) − �(� − ∆�)

2∆�

3-3

where � is the time and � the displacement. 

Since ���� cannot be directly recorded, it is necessary to express it as a 

combination of known parameters. Applying Newton’s second law, projected on 

the vertical axis (see Figure 3-4), ���� can be decomposed as follow: 

���� = ��� − �. � 3-4

where � is the combined mass of the oscillating chuck and workpiece 

(approximately 280 kg) and � its acceleration. A sinusoidal displacement of the 

oscillating workpiece is used in the experiments therefore the acceleration can 

be calculated as follow: 

� =
���

���
=

��(����(��))

���
= −�������(��)� = −���

3-5

where � is the angular frequency. 

An alternative method of calculating the acceleration is by numerically 

differentiating the displacement in a similar manner as for the velocity. However, 
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this method is subject to a large amount of noise, as shown by Ofem et al.4, 

which is why equation 3-5 was used. An example of ���� and ��� histories is 

presented in Figure 3-6 b). It can be noted that before contact between the two 

workpieces (i.e. prior phase 1), when the interface force is known to be nil, the 

���� signal approaches but does not equal zero. The non-zero values are 

believed to be a joint consequence of assuming a sinusoidal displacement and 

machine output accuracy. 

Using the machine data for the five different sets of welding parameters in Table 

3-1, five models were built. 

Figure 3-6: a) Power history of a LFW with average power values per phase and b) its 

in-plane and interface force histories
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3.2.2 Modelling approach 

To avoid modelling the oscillations an accurate heat flux must be applied to the 

weld region and elements iteratively removed from the interface to account for 

the burn-off. The following sections describe the four key areas of the transient 

heat transfer analysis conducted in this chapter. 

3.2.2.1 Mesh and material properties 

As shown in Figure 3-2 the real workpieces are 20x40x120 mm. Since the 

deformation and heat flow are approximately symmetric around the planes (P1), 

(P2) and (P3)7,8,33, see Figure 3-7 a), only an eighth of the geometry was 

included. Therefore, a workpiece measuring 10x20x60 mm was modelled using 

the FEA software ABAQUS, see Figure 3-7 b).  

The mesh is composed of eight-node linear heat transfer bricks. Fine elements 

are needed at the weld interface and its vicinity to ensure that steep thermal 

gradients are captured by the numerical model. To determine the level of 

discretisation needed, a mesh sensitivity study was conducted on weld 4 

(welding conditions presented in Table 3-1), see Table 3-2. The mesh element 

lengths displayed in Table 3-2 refer to a band of material located within 6.6mm 

back from the weld interface. Further away from this, the mesh is coarsened to 

1 mm. The predictions of the peak temperature in Table 3-2 indicate that a 

minimum size of 0.3 mm is required within the 6.6 mm band to capture an 

accurate thermal profile. Ti-6Al-4V temperature dependent specific heat and 

conductivity from the DEFORM’s software library are used in the model (See 

Appendix A).  
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Figure 3-7: a) Schematic diagram of the full LFW structure with its planes of symmetry, 

P1, P2 and P3 and b) geometry showing how only an eighth of the sample was 

modelled with the corresponding mesh 

Table 3-2: Mesh sensitivity results 

Mesh Element Length (mm) Total Number of Elements Interface Temperature Prior 
Cooling (ºC) 

0.7 
0.5 
0.3 
0.2 

31350 
43313 
98165 
234417 

983 
986 
994 
994 

3.2.2.2 Application of the heat flux and modelling of the burn-off 

Since the oscillations are not modelled, it is necessary to find an alternative way 

to account for the heat generation. To do so, the average power for each phase 

was estimated by post-processing the machine data obtained when making a 

linear friction weld, as previously described. Therefore, constant values of 

powers are used to calculate the heat fluxes applied on the model but in reality, 

the power varies with time, as shown in Figure 3-6 a). In accordance with the 

literature, 100 % of the mechanical energy is assumed to be transformed into 

heat10. A uniform surface heat flux (�. ���) was applied on the weld interface 

during phase 1 and 2. Indeed, during phase 1 only dry friction occurs while 

phase 2 is a much shorter phase in comparison with phases 1 and 3, where a 

transition between dry to sticking friction occurs. Therefore, application of the 
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heat flux to the surface is a reasonable assumption for the first two phases. 

However, the heat is generated by the plastic deformation within the material 

during phase 3 over the TMAZ (thermo-mechanically affected zone), implying a 

volumetric generation of heat. A study of the influence of the phase 3 volumetric 

heat distribution is performed on welds 1 and 4 from Table 3-1, by considering 

three different heat distributions, shown in Figure 3-8. As for phases 1 and 2, a 

surface heat flux was considered for phase 3, as well as two volumetric heat 

distributions, one is distributed over half the TMAZ and the second one was 

distributed over the whole TMAZ. TMAZ thicknesses were calculated using an 

equation from McAndrew et al.8 (see Appendix B). As will be proved in the 

results, a surface heat flux was shown to be adequate and was used for the 

subsequent modelling work. Heat losses by radiation, convection with air and 

conduction with tooling were ignored due to the short welding time and high 

thermal gradient encountered.  

Figure 3-8: Three types of heat distributions investigated for phase 3 

Modelling the burn-off during the process is important during phase 3 in 

particular, where it allows the temperature and the in-plane force distributions 

across the interface to reach a quasi-steady state. The burn-off is modelled in a 

step-wise approach where rows of elements are removed sequentially. Figure 

3-9 illustrates this approach with the heat flux applied during step 1 then a row 

of elements is removed during step 2 and the heat flux is reapplied. At the end 
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of phase 2, the corresponding amount of burn-off (Bo Phase 2, shown in Figure 

3-10) is removed from the model. However, during phase 3, the amount of burn-

off (Bo Phase 3, see Figure 3-10) is removed in 10 steps at a pace which 

matches the experimental burn-off rate. Therefore, the time interval between 

layer removals is the thickness of the row of elements divided by the burn-off 

rate. The burn-off rate is calculated from the burn-off rate history and represents 

the slope of the burn-off as a function of time during phase 3 (dash line in 

Figure 3-10), where it is linear. 

Note that the effect of the number of steps to remove the amount of burn-off 

happening during phase 3, on the thermal profile was investigated, where the 

material was removed in 1, 5, 10 and 20 steps. 

Figure 3-9: Step-wise removal approach 

Figure 3-10: Burn-off history of a LFW where the slope of the dash line represents the 

burn-off rate 
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3.2.2.3 Additional data  

The trend of the average phase 3 power and the weld interface temperature 

against the average phase 3 burn-off rate is analysed in the results section. In 

addition to the welds presented in Table 3-1, machine data from experimental 

trials conducted by McAndrew et al.11, presented in Table 3-3, were post-

processed and a simulation of each was created using the modelling approach 

presented in this chapter. The coupon dimensions used by McAndrew are the 

same as those used earlier, see Figure 3-2. Values of average phase 3 power 

and average phase 3 burn-off rate of the welds presented in Table 3-1 are given 

in Table 3-4. All the average phase 3 power, displayed in Table 3-3 and Table 

3-4, were calculated using equation 3-2. 

Table 3-3: Experimental conditions used by McAndrew et al.11

Weld Freq.  (Hz) Amp. (mm) Applied 
Pressure 
(MPa) 

Burn-off 
(mm) 

Average 
Phase 3 
Power 
(kW) 

Average 
Phase 3 
Burn-off 
Rate 
(mm/s) 

9 

10 

13 

16 

21 

25 

30 

50 

30 

31.6 

30 

30 

2 

2.7 

1 

2.3 

2 

1 

40 

40 

125 

85.3 

40 

125 

3 

3 

3 

2.5 

3 

3 

7.4 

12 

4.2 

9.6 

7.3 

4.2 

2.09 

4.1 

1.1 

3.16 

2 

1.15 

Table 3-4: Values of average phase 3 power and burn-off rate for the experimental 

conditions in Table 3-1 

Weld Average Phase 
3 Power 
(kW) 

Average Phase 3 
Burn-off Rate 
(mm/s) 

1 

2 

3 

4 

5 

6 

7 

8 

4.3 

8.8 

13 

13 

16 

8.6 

13 

13 

1.25 

2.72 

4.12 

4.97 

6.3 

2.63 

5.21 

5.23 
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3.3 Results and discussion 

3.3.1 Effects of the heat flux distribution and steps for element 

removal 

Temperature profiles predicted at the end of phase 3 using the three heat flux 

distributions for the low rubbing velocity condition, weld 1, and the high rubbing 

velocity condition, weld 4, are displayed in Figure 3-11. The temperatures 

predicted are shown to be largely independent of the heat distribution with the 

greatest difference occurring at the weld interface. The volumetric heat 

distribution over the whole TMAZ resulted in a lower peak temperature. 

Moreover, the equation used to calculate the TMAZ thickness8, which is based 

on results from FEA models, tends to over-predict their values compared to the 

experiments. Therefore having a larger predicted TMAZ, will enhance the small 

differences between thermal profiles predicted in Figure 3-11. Based on this 

study, a surface heat flux will be used for all subsequent modelling work since 

the size of the TMAZ is not required, simplifying the analysis. 

Figure 3-11: Comparison of the thermal profiles obtained at the end of phase 3 for 

different heat flux distributions: a) weld 1 (time elapsed: 8.14 s) and b) weld 4 (time 

elapsed: 1.36 s) 

The influence of removing the burn-off of phase 3 in 1, 5, 10 and 20 steps on 

the final thermal profile, for welds 1 and 4 is displayed in Figure 3-12. The 
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number of steps has a greater effect for the high rubbing velocity weld 4 due to 

the steep thermal gradients created for this welding condition. It can be seen 

that deleting the 1.5 mm of burn-off in 1 step will under predict the interface 

temperature for both welds. Beyond 5 steps, all the thermal profiles converge 

toward the same distribution, so using 10 steps will be sufficiently large to have 

no impact on the temperature distribution.  

Figure 3-12: Influence of the number of steps to model the burn-off on temperature 

profile obtained at the end of phase 3 for: a) weld 1 (time elapsed: 8.14 s) and b) weld 

4 (time elapsed: 1.36 s) 

3.3.2 Effects of the LFW processing conditions 

3.3.2.1 Influence of the rubbing velocity 

Thermal histories experimentally recorded and predicted by the numerical 

model for three welding conditions are displayed in Figure 3-13. Despite the 

groove present to facilitate the passage of the wires, some of the 

thermocouples broke during welding. Consequently, some temperature histories 

are missing (i.e. 0.3 mm for weld 1 and 1.2 mm for weld 4; see Figure 3-13). 

Furthermore, once the thermocouples initially positioned 0.3 mm and 1.2 mm 

away from the weld interface, reached the interface during welding, they were 

destroyed by the process and consequently the data from these thermocouples 

was not usable. An applied pressure of 90 MPa is maintained for all the welds, 

while rubbing velocities of 120  ��. ��� , 240 ��. ���  and 540 ��. ��� were 
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used for weld 1, weld 2 and weld 4. Figure 3-13 displays a reasonable 

agreement between experiments and simulations, demonstrating the ability of 

the modelling approach to capture actual thermal histories while bypassing the 

oscillating motion of the workpieces. Nevertheless, discrepancies in thermal 

gradients at the end of phase 3 between numerical predictions and experiments 

can be observed and is likely to affect subsequent residual stress calculation. 

Figure 3-14 displays the temperature profiles obtained numerically and 

experimentally after 0.3 mm of burn-off (i.e. when the thermocouple initially 

positioned 0.3 mm away, reached the weld interface) for weld 2 and weld 4. 

Results for weld 1 are not shown since the thermocouple signals were lost 

before the first thermocouple reached the weld interface. Slopes of the 

temperature profiles were approximated from the gradients predicted 

numerically and measured experimentally, between 0 mm and 2.4 mm (an 

example is given in Figure 3-14 with the black dash line) and are presented in 

Table 3-5, along with the relative error between experimental and numerical 

slope values. A higher error is found for weld 4 with 16% compared to weld 2 

with 7.6%. Discrepancies may have arisen from the positioning of the 

thermocouples since the thermal gradients generated during the LFW process 

are very high. In addition, uncertainties also arise from the measurement quality 

of the material properties used in the models. Finally, there is an oscillation in 

the temperature predicted 0.3 mm from the weld interface in the results 

presented in Figure 3-13. This is due to the approach used to account for the 

axial shortening with the step-wise removal of elements and is therefore a 

modelling artefact. However, it shows that this step-wise removal approach of 

material manages to capture the quasi-static state of the weld interface 

temperature. 

The numerical end of phase 3 interface temperature of welds 1, 2 and 4 are 

1022ºC, 1111ºC and 994ºC. Both, experiment and simulation demonstrate that 

increasing the rubbing velocity does not necessarily result in an increase of the 

interface temperature. This fact is in contrast with the results predicted by the 

numerical model of McAndrew et al.8, where an increase in the rubbing velocity 
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resulted in an increase of the weld interface temperature, see Figure 3-15. 

Schroeder et al.6 confirmed the effect of the rubbing velocity highlighted by 

McAndrew with his numerical model and thermocouple recordings. However, Li 

et al.5 developed a 2D model where increasing the rubbing velocity did not 

affect the weld interface temperature. These peak temperature predictions are 

compared in Figure 3-15, which shows an increase of the weld interface 

temperature when increasing the rubbing velocity, for the rubbing velocities 

under 480 ��. ���. However, Turner’s model predicted a similar weld interface 

temperature for the rubbing velocities above 480 ��. ���. Differences between 

the results may have arisen from the different modelling approaches used by 

the authors as well as the different workpiece geometries and material 

properties considered. 

These divergent results highlight that the trend of the interface temperature 

cannot be predicted by looking only at the rubbing velocity. The behaviour of the 

process during the equilibrium phase is crucial to understanding these 

temperature differences. The interface temperature is determined by the 

balance between the heat input during this phase and the speed at which the 

hot material is removed from the interface, i.e. the burn-off rate. 

In the case of weld 1, both the average power of phase 3 and the burn-off rate 

are low, as seen Table 3-4. This condition results in a slow heat up of the weld 

interface and more heat loss due to conduction into the surrounding cold 

material, creating a low thermal gradient, see Figure 3-16. Figure 3-16, shows 

that increasing the rubbing velocity at a constant applied pressure results in an 

increase of the thermal gradient. A similar trend can be observed in the works of 

McAndrew8 and Turner10. In contrast to weld 1, weld 4 phase 3 power and burn-

off rate are considerably higher. However, despite the high weld 4 power, the 

temperature cannot build-up at the weld interface since the hot material is 

removed at a high rate, creating a steep thermal gradient, see Figure 3-16. 

Weld 2 offers a compromise between weld 1 and 4 in terms of power and burn-

off rate, which produced a higher temperature at the weld interface. 
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Table 3-5: Slope temperature distributions obtained after 0.3 mm burn-off 

Weld 2 
(model) 

2 
(experiment) 

4 
(model) 

4 
(experiment) 

Slope (ºC/mm) -194 -210 -275 -327 

Error (%)             7.6              16 

Figure 3-13: Comparison of thermal histories obtained from experiments and FEA 

simulations for three sets of welding conditions: a) weld 1 (�� = ��� ��. ���), b) weld 

2 (�� = ��� ��. ���) and c) weld 4 (�� = ��� ��. ���). P1, P2 and P3 correspond 

respectively to phases 1, 2 and 3 and the distances at which the temperature is 

recorded refer to the initial distances from the interface, prior any burn-off 
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Figure 3-14: Comparison of temperature profiles obtained after 0.3 mm burn-off for 

weld 2 (time elapsed: 2.51 s) and weld 4 (time elapsed: 1 s) 

Figure 3-15: Evolution of the weld interface temperature during the equilibrium phase 

(i.e. phase 3 of the welding process) against the rubbing velocity predicted by: 

McAndrew et al.8, Turner et al.10 and Li et al.5
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Figure 3-16: Thermal profiles, during phase 3 for: a) weld 1 (�� = 120 ��. ���), b) weld 

2 (�� = 240 ��. ���) and c) weld 4 (�� = 540 ��. ���) 

3.3.2.2 A method to estimate the weld interface temperature 

To provide further evidence for the variation in peak temperature with rubbing 

velocity, models using the modelling approach developed in this chapter, were 

built for the experimental welding trials conducted by McAndrew et al.11

displayed in Table 3-3. The burn-off rate is considered rather than the rubbing 

velocity so data from welds with different applied pressure can be integrated 

into the study. 

The evolution of the average phase 3 power and the equilibrium phase 3 weld 

interface temperature against the burn-off rate are presented in Figure 3-17. For 

both plots, an equation of the trend with its R-squared (R�) value is provided. It 

can be seen that the equilibrium power increases when increasing the burn-off 

rate. An increase in the burn-off rate can be achieved in three ways. It can be 

due to either an increase in rubbing velocity or applied pressure or oscillating in 

the short rather than long direction. In the first case, the power is linearly 

dependent on the velocity of the moving workpiece so an increase in the 

rubbing velocity results in an increase in the power magnitude. However, when 

oscillating in the shortest direction or increasing the applied pressure, the 

rubbing velocity is unchanged. In these cases the power increases because 

more cold material is introduced to the weld interface, therefore the interface 

force and consequently the power will increase accordingly. 
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As stated previously, the peak temperature is determined by a balance between 

equilibrium phase 3 power and the phase 3 burn-off rate. The highest interface 

temperature is reached for a burn-off rate between 2 and 3 mm/s while 

increasing or decreasing the burn-off rate outside this, results in a drop in 

temperature. This trend in the temperature confirms the results obtained in the 

previous section on the influence of the rubbing velocity. Based on Figure 3-17, 

it is possible to estimate the magnitude of the weld interface temperature 

obtained at the end of the welding process, without using thermocouples or a 

numerical model, from the experimental burn-off rate or the equilibrium power. It 

is worth mentioning that Figure 3-17 is only valid for the workpiece geometry 

used in this study. 

To understand the contributions of heat lost by conduction and lost in the flash, 

a heat balance over a control volume around the weld interface can be 

developed: 

Q����� = ��� − ����������� − ������
3-6

where ������ is the total energy contained in the control volume, ��� is the 

energy brought in the control volume by sliding or plastic work, ����������� is the 

energy lost by conduction and ������ is the energy lost in the flash. 

When the process is in steady-state, this equation simplifies to the following 

after differentiating with respect to time: 

�̇���������� = �̇�� − �̇�����
3-7

Assuming that the temperature field reaches a quasi-steady state, with �̇����� =

0. Furthermore, �̇�� represents the average equilibrium power, previously 

calculated from the post-processing of the machine data, while �̇����� is given 

by: 

�̇����� = �. �. ��. ���. (������ − �����) 3-8

where � is the density, � the area of the weld cross-section, �� the specific heat 

capacity (an average value of 690 J/(Kg.K) is used) , ��� the burn-off rate, 
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������ the temperature of the flash (taken at 1000ºC) and ����� the temperature 

of the workpieces prior to welding. 

Figure 3-18 a) displays the evolution of the magnitudes of the powers acting in 

and out of the control volume against the burn-off rate. The power responsible 

for heat losses in the flash increases linearly with the burn-off rate, and 

dominates �̇��. However, the heat loss due to conduction is largely independent 

of the burn-off rate used. Figure 3-18 b) displays the magnitude of the powers 

lost in the flash and by conduction, expressed as a percentage of �̇��. The 

objective of Figure 3-18 b) is to quantify the contribution of the two mechanisms 

responsible for heat losses in the control volume. It can be observed that for 

burn-off rates less than about 3 mm/s, the power lost by conduction represents 

about 30% of the total required to make the weld. Above a 3 mm/s burn-off rate, 

the contribution of conduction decreases to a value of about 6%. Therefore 

conduction has a much greater impact on the temperature field at low burn-off 

rates. If conduction is ignored, the power to make a weld can be estimated from 

the energy required to produce the flash (Equation 3-8). 

As previously mentioned, an increase in the applied pressure is known to 

increase the burn-off rate (see Table 3-4 burn-off rate values, weld 3 versus 

weld 4 where the applied pressure increases from 40 MPa to 90 MPa). 

However it is possible to reduce the peak temperature by reducing the applied 

pressure and the burn-off rate according to the relationship in Figure 3-17. This 

would contradict findings in the literature8,13. McAndrew et al.8 established that a 

decrease in the applied pressure has a small impact on the experimental phase 

3 power. Furthermore, using McAndrew’s equation8 (see Appendix B) which 

predicts experimental burn-off rates, the evolution of the burn-off rate is plotted 

against the applied pressure for different rubbing velocity conditions in Figure 

3-19 (the amplitude is kept constant at 3 mm while the frequency varies from 10 

Hz to 50 Hz). This demonstrates that the burn-off rate is largely independent of 

the applied pressure for low rubbing velocities. Hence, low burn-off rates can 

only be achieved by reducing the rubbing velocity and not the applied pressure. 

Consequently, if the initial burn-off rate is 2 mm/s and the applied pressure is 
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decreased, it will not affect the burn-off rate or the phase 3 power; therefore the 

weld interface temperature will be unchanged. 

Figure 3-17: Evolution of the average phase 3 power and the equilibrium phase 3 weld 

interface temperature against the average phase 3 burn-off rate 

Figure 3-18: a) Evolution of the power magnitudes, acting in and out of a control 

volume, against the burn-off rate and b) contributions of the powers from the flash and 

conduction expressed as a percentage of the power in 
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Figure 3-19: Evolution of the burn-off rate against the applied pressure for different 

rubbing velocities (obtained from McAndrew et al.’s equation8, see Appendix B) 

3.3.2.3 Influence of the applied pressure 

Comparisons of thermal histories between experiments and simulations, for 

weld 3 and weld 4, are displayed in Figure 3-20. Both welds were made with a 

rubbing velocity of 540 ��. ��� while using an applied pressure of 40 MPa for 

weld 3 and 90 MPa for weld 4. Similar discrepancies to those previously 

observed in Figure 3-13 are present in Figure 3-20. Figure 3-21 displays the 

temperature profiles obtained numerically and experimentally after 0.3 mm of 

burn-off for weld 3 and weld 4. Slopes of the temperature profiles were 

approximated from the gradients predicted numerically and measured 

experimentally, between 0 mm and 2.4 mm, and are presented in Table 3-6, 

along with the relative error between experimental and numerical slope values. 

Differences in thermal gradients, at the end of phase 3, obtained numerically 

and experimentally are believed to be a result of sensitivity to the thermocouple 

locations in the experiments, combined with steep thermal gradients; the 

assumption of constant heat flux for each phase; uncertainty in power values 

when using machine data and the accuracy of the material properties used. A 

higher maximum temperature is reached for the lower applied pressure weld 3 

compared to weld 4 reaching numerically 1170ºC and 994ºC respectively. The 

same trend was observed by McAndrew et al.8 and Turner et al.13. Looking at 
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Table 3-4, the applied pressure of 40 MPa compared with 90 MPa had virtually 

no impact on the phase 3 power, with a variation of about 1 %, however it 

decreased the burn-off rate by about 17 %. Therefore, for an equivalent power, 

the hot material was left a longer time at the weld interface, allowing the 

temperature to build-up. It is worth noticing that even if the burn-off rate of weld 

3 is lower than weld 4, it is still substantially higher than the burn-off rate of weld 

1 (over three times higher) and the temperature at the interface does not have 

time to conduct back to the same extent. 

Figure 3-20: Thermal histories obtained from experiments and FEA for two sets of 

experimental conditions where only the applied pressure changes: a) weld 3 (P = 40 

MPa) and b) weld 4 (P = 90 MPa) 

Figure 3-21: Comparison of temperature profiles obtained after 0.3 mm burn-off for 

weld 3 (time elapsed: 1.27 s) and weld 4 (time elapsed: 1 s) 
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Table 3-6: Slope temperature distributions obtained after 0.3 mm burn-off 

Weld 3 
(model) 

3 
(experiment) 

4 
(model) 

4 
(experiment) 

Slope (ºC/mm) -291 -410 -275 -327 

Error (%)             29              16 

3.3.2.4 Influence of the oscillation direction 

Temperature histories of weld 4 and 5 are displayed Figure 3-22, where the 

oscillating workpiece was oscillated respectively in the 40 mm and 20 mm 

directions of the workpiece. Figure 3-23 displays the temperature profiles 

obtained numerically and experimentally after 0.3 mm of burn-off for weld 3 and 

weld 4. Slopes of the temperature profiles were approximated from the 

gradients predicted numerically and measured experimentally, between 0 mm 

and 2.4 mm, and are presented in Table 3-7, along with the relative error 

between experimental and numerical slope values. The potential causes of the 

discrepancies observed between numerical predictions and experiments are the 

same than those discussed in previous sections. As shown in Figure 3-22, a 

slightly cooler weld is produced when oscillating in the 20 mm direction. As 

shown in Table 3-4, the sample that was oscillated in the 20 mm direction (i.e. 

weld 5)  had a 27 % higher burn-off rate compared to weld 4 despite having the 

same rubbing velocity which is in agreement with McAndrew et al.49. Oscillating 

in the 20 mm direction facilitates the expulsion of the material since the material 

has less distance to travel to form the flash. In addition, the phase 3 power of 

weld 5 is 27 % higher compared to weld 4, which explains why weld 4 and weld 

5 have similar weld interface temperatures.  
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Figure 3-22: Thermal histories obtained from experiments and FEA for two sets of 

experimental conditions where only the oscillation direction changes: a) weld 4 (40 mm 

direction) and b) weld 5 (20 mm direction) 

Figure 3-23: Comparison of temperature profiles obtained after 0.3 mm burn-off for 

weld 4 (time elapsed: 1 s) and weld 5 (time elapsed: 0.78 s) 

Table 3-7: Slope temperature distributions obtained after 0.3 mm burn-off 

Weld 4 
(model) 

4 
(experiment) 

5 
(model) 

5 
(experiment) 

Slope (ºC/mm) -275 -327 -311 -324 

Error (%)             16              4 
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3.4 Conclusions 

The key findings from this work are: 

1. A novel LFW process model that bypasses the need to dynamically 

model the oscillations was developed. The advantage of this modelling 

approach is that thermal profiles can be obtained quickly for subsequent 

residual stress modelling. 

2. The overall trend of the thermal history measured by thermocouples is 

captured by the model. However, discrepancies in thermal gradients 

obtained at the end of phase 3 between numerical predictions and 

experiments were observed. Errors in thermal gradients obtained after 

0.3 mm of burn-off between experiments and simulations ranged from 

4% with weld 5 to 29% with weld 3. 

3. According to the model, the weld interface temperature does not 

necessarily increase with the rubbing velocity. Moreover, applying a high 

pressure or oscillating the workpiece along the shorter of the two 

interface dimensions produces a cooler interface temperature. Overall, 

the interface temperature can be explained by a balance between heat 

generation and the heat lost as a consequence of the flash generation. 

4. A maximum weld interface temperature is reached for burn-off rate 

values between 2 and 3 mm/s, for the workpiece geometry used in this 

study. 

In the next chapter, the modelling approach developed in this one will be 

expanded to investigate the residual stresses formed during the post-oscillatory 

motion cool-down phase. 
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Chapter 4: Development of a 3D mechanical model 

and effects of process parameters on residual stress 

This chapter is an edited version of the following articles: 

Bühr, C., Bilal, A., Colegrove, P. A., McAndrew, A. R., Guo, H. & Zhang, X. 

Prediction of residual stress within linear friction welds using a computationally 

efficient modelling approach Materials & Design (2018). 

doi:10.1016/j.matdes.2017.11.013 

4.1 Background 

The combined effects of residual stress, external loading, poor microstructure 

and existing defects may dangerously lower the stress at which failure happens; 

therefore it is important to understand how residual stresses are created. Most 

LFW models developed in the literature have been used to study the process 

during the welding phases, such as flash morphology6,7, expulsion of 

contaminants8 and prediction of thermal histories5,6,9,11. However, only few 

authors develop numerical models capable of predicting residual 

stresses13,14,16,93. Previous authors addressed the effect of the applied pressure 

on the residual stress formation; however no studies are available on the 

rubbing velocity and oscillation direction. Following the approach presented in 

the previous chapter, the author aims to develop a 3D mechanical model for 

predicting the residual stress while bypassing the modelling of the oscillations. 

Furthermore, the effect of various process parameters on residual stress 

development will be investigated. 
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4.2 Methodology 

4.2.1 Experiments 

4.2.1.1 Contour method for measurement of residual stress 

Four contour method measurements and the associated FE analysis were 

provided as an external service by Coventry University on selected welds made 

at TWI and described in the previous chapter, i.e. welds 1 – 4 in Table 4-1. An 

additional sacrificial sample was used to determine the appropriate EDM 

parameters to avoid rupture of the EDM wire during the cut. A weld is shown 

before being cut with the EDM in Figure 4-1 a) and after cutting in Figure 4-1 b). 

The same coordinate system used in chapter 3 is reused in this chapter to 

designate residual stresses. All the EDM cuts were conducted along the plane 

(�, �) at mid-width, however two cutting directions were used and are presented 

in Figure 4-2. Low power cutting parameters were used to conduct the cuts for 

the welds 1, 2 and 3. The settings were adjusted to get the best possible 

surface finish as well as to minimise cutting artefacts. A self-equilibrium cutting 

strategy was used for weld 4 where the cut simultaneously passed through the 

tensile and compressive stress regions118. The cut was possible with high 

power settings, however surface roughness increases with high power 

parameters, potentially resulting in an under-estimation of the tensile residual 

stress in the weld. The WEDM cut progressed smoothly with a little variation in 

the cutting speed and without wire breakage. Using a self-equilibrium cutting 

strategy, the author hoped to minimise cutting-induced plasticity. This was not 

the case for the other welds where the cut passed sequentially from a 

compressive to a tensile stress region and finally to a second tensile region. A 

coordinate measuring machine (CMM), shown in Figure 4-3 a), was used to 

measure the displacement profile81 by probing the cut face of the weld using a 

ruby sphere tip with a 3 mm diameter and a 0.5 mm spacing between 

measurement points. The length measurement error of the CMM is about 1.5 

µm. The surface displacement data of both cut halves of the sample was 

analysed for data aligning, cleaning, flattening and smoothing using a Matlab 
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analysis routine. The data smoothing was performed with cubic splines of knot 

spacing 5.5 mm in both y and z directions. An example of a displacement profile 

obtained with the CMM is given in Figure 4-3 b). Examples of spline fitting 

curves for different knot spacing (black spline curve: 5.5 mm knot spacing), at a 

fixed z position, are shown in Figure 4-4 a).The displacement from the splines is 

applied to a FEA linear elastic model, representing half of the welded sample 

(see Figure 4-5). The mesh of the FE model was composed of 8-node brick 

elements with a uniform length of 0.5 mm along the sample thickness. A fine 

element length of 0.1 mm was used at the weld interface, which then coarsen to 

2 mm. Additional boundary conditions were imposed to restrain rigid-body 

motion, as shown in Figure 4-5, before calculating the residual stress field. 

Finally, the solution of the FEA model gives the residual stress in the � direction 

across the plane of the cut (�, �)75, as presented in Figure 4-4 b) using a 

Young’s modulus of 117 GPa and Poisson’s ratio of 0.33. 

Table 4-1: Welding parameters for welds measured experimentally (1-4) and 

numerically modelled (1-5) 

Weld Freq.  
(Hz) 

Amp. 
(mm) 

Applied 
Pressure 
(MPa) 

Burn-off 
(mm) 

Rubbing 
Velocity 
(mm/s) 

Oscillation 
Direction 
Along the 
Interface 
Dimension 

Measurement Method: 
Neutron Diffraction (ND)
Contour Method (CM) 

1 

2 

3 

4 

5 

20 

30 

50 

50 

50 

1.5 

2 

2.7 

2.7 

2.7 

90 

90 

40 

90 

90 

3 

3 

3 

3 

3 

120 

240 

540 

540 

540 

40 mm 

40 mm 

40 mm 

40 mm 

20 mm 

ND & CM 

CM 

CM 

CM 

- 
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Figure 4-1: Ti-6Al-4V linear friction weld a) before EDM cut and b) after EDM cut 

Figure 4-2: EDM cut directions for the welds 1, 2, 3 and 4 
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Figure 4-3: a) CMM machine and b) Displacement profile of weld 1 measured by the 

CMM machine 

Figure 4-4: a) Spline fitting of the displacement profile of weld 1 and b) Residual stress 

predicted by the FEA model for weld 1 in the x direction 
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Figure 4-5: FEA model used in the contour method 

4.2.1.2 Neutron diffraction for measurement of residual stress 

Neutron diffraction experiments on weld 1 were conducted at the ISIS facility of 

the Rutherford Appleton Laboratory in the UK by the author. To reduce the path 

length of the neutrons within the material and improve the quality of the signal 

measured as well as reducing measurement times, the LFW was EDM cut 

through the thickness to achieve dimensions of 8 x 40 x 120 mm (originally 20 x 

40 x 120 mm). A specimen 5 x 6 x 120 mm was also EDM cut from the LFW 

weld to measure the stress-free lattice parameters. The dimensions 6 mm and 5 

mm assured a stress free state in the x and z directions while residual stresses 

in the y direction have to balance along the plane P2, see Figure 4-7, with the 

reduced area of 6 mm x 5 mm. Therefore, no stress is expected in the y 

direction. 

The neutron diffractometer ENGIN-X was used to measure the elastic strains 

located in the weld at several positions. ENGIN-X is a time of flight (TOF) 
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diffractometer using a neutron spallation source. Neutrons are produced as a 

result of periodic collisions of high energy protons with a target, previously 

accelerated in a synchrotron119. Neutrons with different wavelengths are 

produced allowing multiple crystallographic planes to be measured at once at a 

fixed angle. Since two measurements are made simultaneously using the two 

detector banks positioned at a Bragg’s angle of 90�
�  degrees (Figure 4-6), the 

LFW had to be repositioned once to measure the third direction. Consequently, 

the elastic strains in the z direction were measured twice allowing the 

repeatability of the measurements to be determined. Cuboid gauge volumes, 

defined by the slit dimensions and the position of the bank collimators, of 3 x 2 x 

3 mm were used for measuring the x and z directions and 4 x 2 x 3 mm for the y

and z directions. Five positions were measured in total with the first position 

being at the weld interface with the next three measurements being 1 mm apart 

and the final one 2 mm apart. Due to the limited time available at the ISIS 

facility, elastic strains on only one side of the weld interface were measured; 

however results from the literature have shown that residual stresses distributed 

within Ti-6Al-4V LFW are approximately symmetrical around the weld 

interface18,45,50,51. Stress-free lattice parameters were measured for each 

position from the stress-free specimen. Finally assuming isotropic elastic 

properties, Hooke’s law was used to calculate the residual stresses ��� from the 

elastic strains ��� as follows: 

��� =
�

(1 + �)(1 − 2�)
�(1 − �)��� + ����� + �����, �, �, � ∈ �, �, �

4-1 

where � is the Young’s modulus and � the Poisson’s ratio. 

Neutron diffraction spectra measured simultaneously in the direction x and z of 

the LFW are presented in Appendix C. The quality of the diffraction peaks was 

more consistent for the crystallographic plane {�����} and fitting errors were 

minimal. Consequently, lattice distances from this plane were used to calculate 

elastic strains and subsequently residual stresses using a Young’s modulus of 

98 GPa120 specific to this crystallographic plane {�����} and a Poisson’s ratio of 

0.33. This Young’s modulus value was only used for the neutron diffraction 
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measurements and a temperature dependent isotropic value was used for the 

numerical simulations. Calculated error bars display fitting errors for the 

measured diffraction peaks, correctly propagated through the calculations of 

residual stresses (see Appendix D for an example of calculus). 

A comparison between residual stress measured using neutron diffraction and 

those predicted numerically is provided in the results section. To numerically 

account for the EDM cut, an equivalent amount of material was removed from 

the model allowing the redistribution of the residual stress field. Apart from this 

comparison, the EDM cut was not considered within the numerical models. 

Figure 4-6: Experimental set-up used with ENGIN-X diffractometer 

4.2.2 Modelling approach 

The previous chapter details the modelling approach developed to bypass the 

modelling of the oscillations inherent to the LFW process. The approach has 

been successfully implemented to predict thermal histories and is now 

expanded to the prediction of the stress field during welding and the residual 

stress field after weld completion. Numerical models were created with 

ABAQUS for welds 1 – 5 in Table 4-1 (Average phase 3 power and average 
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phase 3 burn-off rate values for welds 1 – 5 are given in Table 3-4). This 

modelling approach reduces the calculation time for 3D models from weeks8 to 

15 hours. The following sections describe the sequentially coupled thermal-

stress analysis conducted in this chapter.  

4.2.2.1 Mesh and material properties 

As in section 3.2.2.1, a workpiece measuring 10 x20 x 60 mm was modelled, 

representing an eighth of the full structure, as shown in Figure 4-7. A mesh 

composed of eight-node linear brick elements with reduced integration and 

hourglass control of type C3D8R was used. A fine element length of 0.3 mm 

was used at the weld interface and its vicinity, which then coarsened to 1 mm. 

Temperature dependent Ti-6Al-4V material properties were used for the models 

(see Figure 2-27). Flow stress data for temperatures less than and equal to 

700ºC are taken from Chen et al.115 at a quasi-static strain rate. From 800ºC 

and beyond, flow stress data from Guo et al.116 are used; the material exhibits a 

drop in strength and a perfectly plastic behaviour10. Flow stress values between 

700ºC and 800ºC are interpolated linearly by ABAQUS and might not represent 

accurately the evolution of the work hardening of the material in this 

temperature range. An annealing temperature of 800ºC is defined in ABAQUS 

to simulate the relaxation of the accumulated stresses and strains above this 

temperature. Above 800ºC, Ti-6Al-4V has a reduced strength due to the high 

temperature experienced and becomes a single phase material when reaching 

the beta-transus temperature at approximately 1000ºC110,114 where its strength 

significantly reduces. Above 800ºC, Ti-6Al-4V also experiences dynamic 

recrystallization due to the deformation and high temperature114,121. Young’s 

modulus was taken from Turner et al.13 while thermal expansion coefficient 

values are from Boyer et al.88, see Appendix A for further details on the material 

properties. It is worth mentioning that the thermal expansion coefficient does not 

include the change in density of the material when the initial alpha-beta 

microstructure forms a single beta-phase microstructure, when the welding 

temperature reaches the beta-transus temperature.  
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Figure 4-7: a) Schematic diagram of the full LFW structure with the applied and 

clamping forces and its planes of symmetry, P1, P2 and P3 and b) eight of the full 

structure modelled 

4.2.2.2 Loading, boundary conditions and modelling of the burn-off 

To account for the effect of the heat on the stress field, the temperature history 

previously predicted in chapter 3, through phases 1 to 3 and cooling, using the 

thermal model is mapped on the mechanical model. Therefore, the effect of 

thermally-induced expansion and contraction of the material on the stress field 

is accounted for. At the end, an extra cooling step is added to bring the model to 

room temperature. The elastic-plastic mechanical model, neglects the 

oscillations and the expulsion of material due to the forging force. The forging 

force is taken equal to the applied force, as for the experiments, and will be 

referred as applied force (i.e. the forging force is the applied force during the 

cooling period). The applied force (expressed as a pressure in Table 4-1) and 

the clamping force are both applied as pressures on the model. The clamping 

force represents the force applied by the clamping tool on the sides of the 

workpiece (Figure 4-8) and is equal to the applied force, as for the experiments. 

The clamping force is not applied to a band 6.6 mm from the interface as is the 

case with the experiments. The applied force is applied on the top surface of the 

workpiece. Applied force and clamping force are applied during the welding 

phases and for the first 15 s of cooling before being released. Three symmetry 
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boundary conditions are applied to the model to account for the planes of 

symmetry P1, P2 and P3, see Figure 4-7 a). Finally, the burn-off is accounted in 

the same way as in the previous chapter, i.e. by removing iteratively a row of 

elements at a pace which matches the experimental burn-off rate. As a 

consequence of removing rows of elements, the load applied on those elements 

is discarded, along with the heat. Since the material contained in those rows is 

at high temperature, it has very low flow strength so the impact of the stress on 

the rest of the structure is minimal. 

Similar to the previous chapter, the influence of the rubbing velocity was studied 

in the result section by comparing welds 1, 2 and 4. The effect of the applied 

force, during welding and cooling (i.e. the forging and applied forces were the 

same), is examined using welds 3 and 4, while the oscillation direction is 

studied using welds 4 and 5. Although the oscillations are not simulated, the 

effects of the rubbing velocity and oscillation direction are accounted for in the 

average power values, durations of the phases and average phase 3 burn-off 

rates calculated from the machine data recorded during the welding trials.  

Stress and temperature profile plots were extracted at mid-thickness of the weld 

(i.e. along a line located along plane P1, see Figure 4-7, and going through the 

point O). 

Figure 4-8: Applied and clamping forces applied and referred as pressures on the 

model 
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4.3 Results and discussion 

4.3.1 Comparison of residual stresses predicted numerically against 

neutron diffraction and contour method measurements 

Since lattice parameters were measured using neutron diffraction, twice 

independently in the direction z, it provides valuable information on the 

repeatability of the measurements. Lattice and stress-free lattice parameters in 

the direction z for weld 1 are presented in Figure 4-9 for both orientations and 

demonstrates the good repeatability of the measurements made. 

Residual stresses in weld 1, in the three directions of space calculated from the 

lattice parameters along with those measured using the contour method and 

predicted numerically after accounting for the EDM cut, are displayed in Figure 

4-10. Residual stresses from the contour method were predicted for the full 

thickness LFW. The FEA model only recorded a small variation in the residual 

stress magnitudes (25 MPa at the weld interface) when accounting for the EDM 

cut. Therefore, contour method predictions from the full thickness weld can be 

compared with the neutron diffraction and FEA results. Residual stresses 

resulting from the model and contour method were averaged over similar gauge 

volumes to those used for neutron diffraction to facilitate the comparison. 

Tensile residual stresses are located in the directions x and y while the z

direction is virtually stress-free, as shown in Figure 4-10. According to the 

literature18,45,50,51, the residual stress in the z direction is not expected to be 

stress-free. However, as previously mentioned, the original LFW was EDM cut 

to reduce the neutron path length. As a consequence, the weld interface 

dimension in the z direction was reduced to 8 mm compared to the original 20 

mm. Figure 4-10 shows that a plane stress condition is reached in the z

direction with a sample thickness of 8 mm. In agreement with the 

literature18,45,50, lower tensile residual stresses are expected in the direction of 

the applied pressure (y axis) compared to the longest direction of the weld 

interface (x axis). Interestingly a decrease in the residual stress magnitude is 

recorded at the weld interface compared to the gauge volume positioned one 
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millimetre away. A similar pattern is shown by Dewald et al.’s18 neutron 

diffraction measurements. Positioning the gauge volume at the weld interface is 

a difficult task and combined with the effect of fitting errors are believed to be at 

the origin of the trend observed.  

Overall, discrepancies are found between residual stress values measured by 

neutron diffraction and contour method and modelling predictions. The 

discrepancies recorded between FEA and contour method values range from 

20 MPa (2 mm from the weld interface) to 114 MPa (3 mm from the weld 

interface). The discrepancies recorded between FEA and neutron diffraction 

values range from 57 MPa (2 mm from the weld interface) to 217 MPa (at the 

weld interface).The plane stress condition in the z direction as a result of the 

EDM cut, is captured by both neutron diffraction and model values. Modelling 

results tend to predict a higher peak of residual stress magnitude and a steeper 

distribution. This could be a result of the lack of flow stress values between 

700ºC and 800ºC, not representing accurately the evolution of the work 

hardening of the material in this temperature range. Furthermore, EDM cuts 

may have introduced inaccuracies in the contour method measurements, which 

is discussed in the following section. 
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Figure 4-9: Lattice and stress-free lattice parameters measured in the z direction for 

two different sample positions for the LFW weld 1 and stress-free samples 

Figure 4-10: Comparison of residual stresses in weld 1, measured by neutron 

diffraction (after EDM cut to reduce the neutron path length), contour method and 

predicted numerically  
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4.3.2 Influence of the rubbing velocity 

Numerically predicted residual stress distributions across the interface, in the 

three directions of space for three welding conditions, welds 1, 2 and 4 (see 

Table 4-1), are presented in Figure 4-11. In each case, a band of tensile 

residual stress can be observed at the weld interface which becomes 

compressive further away and then zero at the edge of the part. This stress 

distribution arises as a result of the thermal contraction of the band of hot 

material at the weld interface while being constrained by the surrounding cold 

material. It is worth noticing that the highest residual stress magnitude is always 

located in the x direction which represents both the oscillation direction and the 

longest direction of the weld interface. The second highest magnitude is usually 

found in the second direction of the weld interface z while the magnitude in the 

direction of the applied force y is lower. In the case of weld 1, similar residual 

stress peak magnitudes are obtained in the y and z directions and is believed to 

be a result of the combination of shallow thermal gradient and high applied 

pressure. The effect of the thermal gradient and applied pressure on residual 

stresses will be discussed in the result section. 

Figure 4-11: Predicted residual stress distributions in the three directions of space for: 

a) weld 1, b) weld 2 and c) weld 4 
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Contour plots of residual stress in the x direction obtained by numerical analysis 

and the contour method for the three welding conditions are displayed in Figure 

4-12. Residual stress distributions are reasonably consistent between numerical 

model and contour method. However, the contour plots clearly show that higher 

residual stress magnitudes and a smaller band of tensile residual stress are 

numerically predicted. Although the EDM cut performed for the purpose of the 

contour method is supposedly purely elastic, cutting-induced plasticity could 

have been created76,77 altering the original residual stress distribution and it is 

difficult to control. Plastic deformations are more likely to get created where 

residual stresses have high magnitudes, however owing to the localised stress 

concentration at the cutting front, plastic strains can also be induced in the far-

field residual stress76. As a result, the contour method tends to under-predict the 

peak of residual stress and creates a wider distribution45,77. The contour method 

is also known to smooth out features associated with high stress gradients as a 

result of the filtering process used to eliminate surface roughness effects18. 

Furthermore, as investigated by Johnson81, using variable knot spacing across 

the weld with the CMM, as opposed to the fixed 0.5 mm spacing used in this 

thesis, could improve significantly the prediction of the steep stress gradients 

present in LFW. As an additional way to assess the validity of the numerically 

predicted residual stress distributions, a comparison with experimental 

measurements from the literature18,45,50,51 performed on Ti-6Al-4V LFW is 

provided Figure 4-13. It is worth noting that the welding conditions used to make 

the LFW are not revealed by the authors and are likely to influence the final 

residual stress field. Those experimental measurements display a good match 

(residual stress magnitudes and distributions) with the numerical predictions, 

building confidence in this modelling approach. 

Figure 4-14 shows the same numerical results as Figure 4-12, however the 

scale was adjusted to visualise the positions of the residual stress peaks. 

Interestingly, both contour method and numerical model predict homogeneous 

residual stress over the weld interface for weld 1 condition while for weld 2 and 

weld 4 the areas of highest intensity are located closer the edges with a 

reduction at the centre. Similar residual stress distributions were reported by 
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Turner et al.13 but were not discussed. To understand these distributions, it is 

necessary to look at the respective stress fields reached during the equilibrium 

phase (i.e. phase 3), when the interface force, temperature profile across the 

weld, burn-off rate and therefore the stress field, reach a quasi-steady state. 

The equilibrium stress fields, defined as the stress fields reached during the 

equilibrium phase, are displayed in Figure 4-15 and can be divided into three 

areas: the centre with low magnitude stresses because of the loss of strength of 

Ti-6Al-4V at high temperature; further away there is an area of highly 

compressive stresses where reduced temperature occurs, this area expands 

but is constrained by the surrounding cold material which puts it into 

compression and finally in the far field, an area of tensile stresses to balance 

the stress field in the workpiece. Overall, magnitudes of stresses in the weld 

zone are close to the applied pressure while a condition close to plane stress 

can be observed at the edges of the weld zone. Owing to shallower temperature 

gradient (see Figure 4-16 c)) in weld 1, lower magnitude compressive stress 

developed further away from the interface compared to weld 2 and weld 4, see 

Figure 4-15 a), b) and c). As a consequence, the equilibrium stress field at the 

weld interface is homogeneous resulting in a homogenous residual stress field. 

However, in weld 2 and weld 4 highly compressive areas are located closer to 

the weld interface due to their steeper temperature gradients which affect the 

stress field at the interface and result in higher compressive stresses at the 

centre of the weld compared to the edges, explaining the residual stress 

distributions observed in Figure 4-14. 



 110 

Figure 4-12: Residual stress contour plots in the x direction predicted numerically and 

obtained by contour method: a) weld 1 (maximum value: 625 MPa), b) weld 2 

(maximum value: 804 MPa) and c) weld 4 (maximum value: 948 MPa) 

Figure 4-13: Comparison of numerically predicted residual stress in the x direction and 

data from Romero et al.50 , Daymond et al.51 , Frankel et al.45 and Dewald et al.18

measured in the longest direction of the weld interface (indicated by their respective 

length) within Ti-6Al-4V LFW with different techniques (ND: neutron diffraction, SD: 

synchrotron X-ray diffraction) 
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Figure 4-14: Contour plots of numerically predicted residual stress in the x direction: a) 

weld 1, b) weld 2 and c) weld 4 

Figure 4-15: Contour plots of numerically predicted stress fields at the end of the 

equilibrium phase 3 in the x direction: a) weld 1(time elapsed: 8.14s; maximum value: 

106 MPa; minimum value: -483 MPa), b) weld 2 (time elapsed: 3.15s; maximum value: 

118 MPa; minimum value: -613 MPa) and c) weld 4 (time elapsed: 1.36s; maximum 

value: 107 MPa; minimum value: -654 MPa) 
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Residual stress distributions in the x direction extracted at mid-thickness from 

numerical models (Figure 4-16 a)) and contour method (Figure 4-16 b)) are 

plotted for comparison. Numerically, an increase in the rubbing velocity resulted 

in an increase in the peak of residual stress magnitude and a decrease of the 

size of the band of tensile residual stress. Although the increase in magnitude is 

not captured by the contour method measurements, the trend of the width of the 

band of tensile residual stress is, as shown in Figure 4-16 b). Contour method 

predictions of the magnitude of residual stress also contradict the trends 

observed by Fu et al.14. 

The effect of the rubbing velocity can be correlated with the thermal profiles 

obtained during the equilibrium phase 3, defined as equilibrium thermal profiles. 

The slopes of the equilibrium temperature profiles (shown in Figure 4-16 c)) 

were approximated from the gradient predicted between 0 mm and 1 mm, and 

are presented in Table 4-2.  Weld 1 (�������� = 120 ��/�) and weld 4 

(�������� = 540 ��/�) have a similar weld interface temperature (see Figure 

4-16 c)) however weld 4 has a significantly steeper thermal gradient, as shown 

in Table 4-2. Due to the uneven heating of the structure, plastic strains are 

created in the weld and surrounding material. As a result of the misfit of the 

plastic strains, between the weld and surrounding material, elastic strains and 

therefore residual stresses are created66,122. Owing to the steep thermal 

gradient created with weld 4, the plastic strain misfit was enhanced and 

increased the peak of residual stress magnitude as well as creating a narrower 

band of tensile residual stress compared to a shallow thermal gradient. On the 

other hand, weld 4 displays a significantly cooler weld interface temperature 

with a steeper thermal gradient than weld 2 (�������� = 240 ��/�). Despite 

having a higher weld interface temperature, weld 2 developed a lower residual 

stress peak, implying that the residual stress peak magnitude is primarily driven 

by the thermal gradient. A larger band of tensile residual stress is observed for 

weld 2 since more heat has conducted into the workpieces due to the higher 

temperature and the shallower thermal gradient. As a result, more material 

experienced thermal contraction during the cooling.  
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Table 4-2: Slope of the equilibrium temperature distribution for different weld conditions 

Weld 1 2 4 

Slope (ºC/mm) -127 -231 -330 

Figure 4-16: Residual stresses in the x direction (40 mm length of the interface) 

obtained after cooling by a) FEA, b) contour method and c) equilibrium temperature 

distributions obtained at the end of phase 3 for weld 1 (time elapsed: 8.14s), weld 2 

(time elapsed: 3.15s) and weld 4 (time elapsed: 1.36s) 

4.3.3 Influence of the applied force 

Contour plots of residual stress in the x direction obtained numerically and by 

the contour method for the welding conditions in weld 3 and weld 4 are 

displayed in Figure 4-17. Figure 4-17 a) shows a similar pattern to the previous 

section: a higher residual stress magnitude and smaller band of tensile residual 

stress are numerically predicted compared to those measured using contour 

method. Figure 4-17 c) shows the same numerical results than Figure 4-17 a), 

however the original scale was kept to visualise the positions of the residual 

stress peaks. Figure 4-17 a) and Figure 4-17 c) display a good match when 

looking at the position of the peak of residual stress intensity between numerical 

model and contour method for weld 3. The reasons explaining the 
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discrepancies between numerical predictions and contour method are the same 

than those mentioned in the previous section.  

Using an applied pressure of 90 MPa instead of 40 MPa, left the peak of 

residual stress magnitude unchanged and created a smaller band of tensile 

residual stress, as presented in Figure 4-18 a). The reduction in the size of the 

band of tensile residual stress was also captured by the contour method, see 

Figure 4-18 b). These results are consistent with those observed by Turner et 

al.13 and Frankel et al.45. Using a higher applied pressure caused the peak 

temperature to reduce (see Figure 4-18 c)) for the reasons explained in the 

previous chapter and the thermal gradient was similar, as displayed in Table 

4-3. As a result of having a similar thermal gradient, a similar peak of residual 

stress is created for both welding conditions. Furthermore, due to weld 4’s lower 

interface temperature, less material experienced thermal contraction resulting in 

a smaller band of tensile residual stress. These findings show that similar 

results to the fully-coupled numerical model developed by Turner et al.13 are 

achieved using this sequentially-coupled modelling approach. 

Table 4-3: Slope of the equilibrium temperature distribution for different weld conditions

Weld 3 4 

Slope (ºC/mm) -329 -330 
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Figure 4-17: Residual stress contour plots in the x direction predicted numerically and 

obtained by contour method for: a ) weld 3 (maximum value: 929 MPa), b) weld 4 

(maximum value: 948 MPa) and c) numerically predicted contour plot of weld 3 with 

original scale 

Figure 4-18: Residual stresses in the x direction (40 mm length of the interface) 

obtained by a) FEA, b) contour method and c) equilibrium temperature distributions 

obtained at the end of phase 3 for weld 3 (time elapsed: 1.75s) and weld 4 (time 

elapsed: 1.36s)
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4.3.4 Influence of the oscillation direction 

The residual stress distributions in the three directions of space predicted 

numerically for weld 5 are presented in Figure 4-19. Despite oscillating in the 20 

mm weld interface direction (i.e. z direction) rather than the 40 mm (i.e. x

direction), the highest residual stresses are located in the x direction. It can be 

concluded that the highest residual stress are developed in the longest direction 

of the weld interface irrespective of the oscillation direction. 

The residual stress distributions in the x direction obtained for welds 4 and 5 

and their associated equilibrium temperature profiles are displayed in Figure 

4-20. Oscillating in the 40 mm weld interface direction with weld 4 rather than 

the 20 mm direction with weld 5 resulted in an equivalent peak temperature at 

the end of phase 3 (see Figure 4-20 b)) and a steeper thermal gradient for weld 

5, see Table 4-4. Despite a higher equilibrium temperature slope value, the 

residual stress profile created by weld 5 is similar to weld 4. Therefore, the peak 

of residual stress does not increase proportionally with the magnitude of the 

thermal gradient in this case; more work is necessary to fully understand the 

development of residual stresses and their interactions with their associated 

equilibrium temperature profile. 

Table 4-4: Slope of the equilibrium temperature distribution for different weld conditions

Weld 4 5 

Slope (ºC/mm) -330 -389 

Figure 4-19: Residual stress distributions in the three directions of space predicted 

numerically for weld 5 
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Figure 4-20: a) Residual stress in the x direction of welds 4 and 5 and b) equilibrium 

temperature distribution across the weld of welds 4 (time elapsed: 1.36s) and weld 5 

(time elapsed: 1.08s) obtained at the end of phase 3

4.4 Conclusions 

The key findings from this work are: 

1. A reasonnable agreement was found between residual stresses 

numerically predicted for weld 1 and those measured using neutron 

diffraction and the contour method. It is worth noting that weld 1 exhibited 

the lowest peak and the widest residual stress distribution, making it the 

easiest welding condition to be experimentally measured. 

2. Numerical models predicted higher peaks and narrower distributions of 

residual stress compared to the contour method for the other welding 

conditions. These discrepancies are believed to have been enhanced by 

cutting-induced plasticity and increased surface roughness owing to the 

EDM cut.  Magnitudes and distributions of numerically predicted residual 

stresses were found to be in the same range as experimental 

measurements of residual stress available in the literature. Numerically, 

the minimum and maximum values predicted at the weld interface, are 

552 MPa for weld 1 and 753 MPa for weld 4 compared to 414 MPa 

(Romero et al.50) and 794 MPa (Dewald et al.18), measured 

experimentally at the vicinity of the weld interface. 
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3. Numerically, increasing the rubbing velocity resulted in an increase of the 

peak of residual stress for the model and a narrower band of tensile 

residual stress. The trend of the effect of the rubbing velocity on the 

residual stress distribution was also captured by the contour method 

results. Numerically, an increase in the applied pressure did not change 

the peak of residual stress while narrowing the residual stress 

distribution; while oscillating in the 20 mm direction of the interface rather 

than the 40 mm direction was found to have no influence on the residual 

stress profile. 

4. A strong correlation between the thermal profiles obtained during the 

equilibrium phase 3 and the residual stress field has been established. 

The numerical residual stress distribution was shown to be dominated by 

the thermal gradient of the equilibrium phase 3 temperature field. Steep 

thermal gradients lead to high peak values of residual stress while 

narrowing the band of tensile residual stress. As a secondary influence, 

high weld interface temperature tends to enlarge the band of tensile 

residual stress as a result of conducting more heat from the weld 

interface. 

In the next chapter, an analysis of variance is conducted to determine which 

inputs and input interactions are statistically significant for modelling the 

development of residual stress.   
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Chapter 5: Modelling residual stress using response 

surface methodology  

5.1 Background 

Only a few authors have developed numerical models for predicting residual 

stresses13,14,16,93 from LFW due to the significant computational time required to 

simulate the mechanical mixing occurring at the interface. Using the 

computationally efficient modelling approach developed in the previous 

chapters, which bypasses the modelling of the oscillations to predict the 

residual stresses, the author uses an extensive parametric study to identify 

those variables having the most effect on the development of residual stresses. 

In addition, the model will enable the development of guidelines to mitigate 

residual stress development. 

5.2 Methodology 

5.2.1 Response surface methodology 

To mathematically model the relationship between the development of residual 

stress and different input variables, an analysis of variance (ANOVA) using 

response surface methodology123,124 (RSM) was conducted with a D-optimal 

design using Design Expert V.7. A D-optimal design is particularly suitable 

when the design region is irregular123. Statistically insignificant input variables 

were removed from the regression models based on the symmetry in the results 

expected in the x and z directions and the following statistical criteria: 

 R-Squared (R2): A measure of the amount of variation around the mean 

explained by the regression model. Values greater than 90% are 

desirable. 

 Adjusted R-Squared (Adj R2): A measure of the amount of variation 

around the mean explained by the regression model, adjusted for the 

number of terms in the model. The adjusted R-Squared decreases as the 
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number of terms in the model increases if those additional terms do not 

add value to the model. Values greater than 90% are desirable. 

 Predicted R-Squared (Prd R2): A measure of the amount of variation in 

new data explained by the regression model. Prd R2 and Adj R2 should 

be within 20% of each other. 

 Adequate Precision (Ad. Pr.): This is a signal to noise ratio comparing 

the range of the predicted values at the design points to the average 

prediction error. Values greater than 4 are desirable. This measure 

indicates if the regression model can be used to navigate the design 

space. 

 P-Values (P-V): Each input factor has an associated P-V value which 

helps the user to quantify its significance where the lower the value, the 

better. Values equal to or lower than 0.05 are considered statistically 

significant. 

The outputs of interest in this study are the magnitudes of the residual stresses 

in the three directions of space and the widths of the band of tensile residual 

stress in the directions of the weld interface. The author chose to define the 

width of the band of tensile residual stress as the distance between the points 

where the stress is half that predicted at the interface. The raw data used for the 

analysis of variance are provided in Appendix E. 

5.2.2 Modelling approach 

A sequentially-coupled modelling approach using the finite element code 

ABAQUS was used. A total of one hundred and one numerical models were 

created and run to complete the ANOVA conducted with Design Expert V.7. 

The D-optimal criteria selected a minimum number of forty one design points 

(i.e. forty one models), in a way that minimises the variance associated with the 

estimates of specified regression model coefficients. An additional sixty design 

points were added to the ANOVA to refine the regression models. The 

additional design points were also used to compare predictions made by the 

regression models against the FEA values, after including the FEA values to the 
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ANOVA. It is worth mentioning that having a large number of design points may 

result in over-fitting the regression models. This could have been controlled by 

using a subset of design points and comparing the predictions made by the 

regression models against the FEA predictions without including the FEA values 

to the ANOVA. A python script was used with ABAQUS to generate the input 

file for each model and a UNIX script was written to automate the computation 

of the one hundred and one analyses. The inputs and their range of values 

used to create the numerical models are given in Table 5-1 and a schematic 

illustration of a LFW is presented in Figure 5-1. Similar mesh and material 

properties to those presented in chapter 4 are used. 

In previous chapters, the heat flux was applied at the interface, the workpiece 

was allowed to heat while material was removed to simulate axial shortening. In 

this work a key assumption was made, which is justified in the results section, 

that the development of residual stresses is determined by the thermal profile at 

the end of phase 3, just prior to cooling. The parametric study assumed the 

thermal profile has the following form at the end of phase 3: 

T = α * exp(-β * d^(5/4)) + 21 5-1

where T (ºC) is the phase 3 temperature and d (m) the distance across the weld. 

This equation was determined by curve-fitting the temperature profiles, at the 

end of the equilibrium phase 3, predicted in welds 1,2 and 4 in chapter 3. 

Figure 5-2 a) demonstrates the fit between equation 5-1 and the phase 3 

temperature profiles previously predicted for these welds. Equation 5-1 was 

used to represent various temperature distributions by varying the peak 

temperature coefficient α and the slope temperature coefficient β from the row 

data (see Appendix E). Low value of β simulate a shallow temperature gradient 

while increasing β steepens it. The variations of α and β are limited to the 

operating window presented in Figure 5-2 b) to avoid unrealistic temperature 

distributions and deformations, notably when large pressures are applied. 

Similar to chapter 4, the hundred and one elastic-plastic mechanical models 

computed for the need of the ANOVA, neglect the oscillations and the expulsion 

of material due to the forging force. Unlike in chapter 4, the heating of the 
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sample from a stress free condition (at ambient temperature) was done in a 

single step by mapping the assumed temperature profile obtained at the end of 

phase 3, using equation 5-1, hence no heat flux is used. Therefore, the effect of 

thermally-induced expansion and contraction of the material on the stress field 

at the end of welding, prior to cooling, is accounted for. The sample was then 

allowed to cool for 100 s. After the heating step and 15 s of cooling, applied and 

clamping pressures were released. Finally, the model was brought to 

atmospheric temperature, subsequently creating the residual stress field. 

Hence, removal of material during processing is not modelled in this section. 

Table 5-1: Input parameters  

Inputs Range 

Peak Temperature Coefficient: α (ºC)  

Slope Temperature Coefficient: β (m0.8)  

Applied Pressure: P (Pa)  

Interface Dimension in x direction: Lxx (m)  

Interface Dimension in z direction: Lzz (m)  

Clamping Pressure in x direction: Clp_Px (Pa)  

Clamping Pressure in z direction: Clp_Pz (Pa) 

879 – 1379 

300 – 4000 

0 – 125 x 106

20 x 10-3– 200 x 10-3

20 x 10-3 – 200 x 10-3

0 – 125 x 106

0 – 125 x 106

Figure 5-1: Schematic illustration of a LFW 
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Figure 5-2: a) Comparison of phase 3 temperature profiles of welds 1, 2 and 4, 

predicted using the modelling approach developed in chapter 3 and their 

approximations with equation 5-1 with their associated coefficients and b) process input 

operating window 

5.2.3 Modelling of shearing  

The modelling approach presented in this chapter bypasses the modelling of 

the burn-off for the mechanical model and is a very efficient way to predict the 

stress field in large structures with reasonable computational times. Therefore, 

this approach is used to investigate the effect of shearing and assess its effect 

on the residual stress field. However, a small amount of movement at the end of 

welding, prior to cooling, is simulated to capture the effect of the shear stress on 

the stress field. Applied and clamping forces are included in the model. 

The three previously mentioned welding conditions, weld 1, weld 2 and weld 4 

are considered for the investigation. The full workpieces had to be modelled 

(unlike the standard model where only an eighth is considered) to simulate an 

oscillation. Two mechanical models were built per welding condition. For the 

first model, a complete oscillation using the amplitudes associated with the 

welding conditions (i.e. 1.5 mm for weld 1, 2 mm for weld 2 and 2.7 mm for weld 

4) was simulated. It will be shown in the results section for weld 1, which has 

the smallest amplitude, that completing a full amplitude oscillation is not 

necessary, and using a 0.55 mm amplitude is sufficient to capture the effect of 

shearing on the stress field. Consequently, a second model was computed 
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using a 0.55 mm amplitude oscillation. Reduced amplitudes limit the mesh 

distortion and avoid re-meshing. Apart from this study, shearing is not 

considered in the subsequent models. 

5.3 Results and discussion 

5.3.1 Validation of the residual stress fields  

Residual stress profiles in the x direction obtained using the modelling 

approaches presented in chapters 4 and 5 for welds 1, 2 and 4, are presented 

in Figure 5-3. Overall, there is a good match between the stress profiles 

predicted from the two modelling approaches, demonstrating that once the 

equilibrium temperature profile is known, modelling the burn-off on the 

mechanical model can be avoided, saving computational time. The small 

discrepancies are a result of the approximation made on the phase 3 

temperature profile using equation 5-1.

Figure 5-3: Comparison of residual stress in the x direction predicted using chapter 4 

modelling approach (plain curves) against those obtained using the approach 

developed in this chapter, using equation 5-1 (dash curves) 
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5.3.2 Effects of shearing on the residual stress field 

The maximum shear stress magnitude, normal to the z direction and along the x 

direction (Szx), predicted by the FEA model at mid-thickness of the weld is low 

(see Figure 5-4) compared to the stress in the x direction (Sxx). Therefore, the 

effect of shearing on the stress field is investigated in Sxx. The evolution of weld 

1 stress profile in the x direction when different amplitude values are reached 

during the oscillation is presented in Figure 5-5. Shearing the hot material at the 

weld interface relaxes the compressive stresses by a maximum of 100 MPa for 

weld 1. Above an amplitude of 0.1 mm, the stress profile is not affected by the 

shearing. Therefore, simulating an oscillation with a maximum amplitude of 0.55 

mm is sufficient to capture the effect of this on the stress field. 

Residual stress profiles in the x direction predicted when a 0.55 mm oscillation 

is simulated are presented in Figure 5-6 a) and those obtained using the 

modelling approach presented in this chapter with no oscillation is shown in 

Figure 5-6 b). Accounting for the shearing has no significant effect on the width 

of the band of tensile residual stress however it increases the peak magnitude 

of the tensile residual stress by 100 MPa to 150 MPa.  The increase in the peak 

magnitudes is due to the relaxation of the compressive stress state at the 

interface when shearing the hot material, as can be seen in Figure 5-7 which 

shows the stress profile prior to cooling for models where shearing is and is not 

included. Overall, the trends in the distribution and magnitude of the residual 

stress profiles is the same irrespective of whether the shearing is included or 

not. 



 126 

Figure 5-4: Contour plots at mid-thickness of the shear stress Szx at the end of welding 

(time elapsed: 8.14s), prior to cooling, after simulating an oscillation of: a) 0.55 mm and 

b) 1.5 mm amplitude 

Figure 5-5: Evolution of weld 1 stress profile, extracted in the middle of the weld, in the 

x direction when different amplitude oscillations are simulated (time elapsed: 8.14s). 

When the amplitude is equal to 0 mm, both workpieces are aligned and at 1.5 mm, the 

oscillating workpiece has reached its furthest position. The stress profile relates to 

where the oscillating workpiece is left at its maximum displacement 
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Figure 5-6: Residual stress predicted in the x direction for welds 1, 2 and 4 when a) a 

0.55 mm shearing oscillation is simulated and b) no shearing is modelled 

Figure 5-7: Stress profiles before cooling predicted in the x direction for welds 1, 2 and 

4 when a) a 0.55 mm shearing oscillation is simulated and b) no shearing is modelled 

5.3.3 Effects of the input parameters on the residual stress 

magnitude 

The results of the ANOVA on the magnitude of residual stresses are given in 

Table 5-2. The statistical criteria shown in Table 5-2, suggest that the equations 

of the regression models capture the process behaviour well with lower values 

reached for Syy, which is due to its relative insensitivity to the input parameters. 

The regression models can be used to navigate the design space since the 

statistical criterial, Ad. Pr., indicates an adequate signal; i.e. the models are also 

valid in areas where no design points are present for a particular set of input 

values. The equations of the regression models are provided in equations 5-2 to 
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5-4. It is worth noting, that the regression models of the residual stress 

magnitudes in the three directions were found independent of the clamping 

pressures in the x and z directions. Because of the symmetry between Sxx and 

Szz, only Sxx results are presented. 

Table 5-2: Statistical criteria of the ANOVA 

Regression Model Equation Equation 
Units 

R2

(%) 
Adj. R2

(%) 
Prd. R2

(%) 
Ad. Pr. P-V 

Residual stress in the x
direction (Sxx) 

[Pa] 97 96.6 95.9 57.7 <0.0001 

Residual stress in the y
direction (Syy) 

[Pa] 80.7 78.1 73.8 27.9 <0.0001 

Residual stress in the z
direction (Szz) 

[Pa] 96.8 96.4 95.7 58 <0.0001 

��� = −4.08 ∗ 10� + 3.29 ∗ 10� ∗ α + 4.22 ∗ 10� ∗ β − 1.56 ∗ P + 8.4 ∗ 10� ∗ ��� +

8.54 ∗ 10� ∗ ��� − 91.7 ∗ α ∗ β − 8.73 ∗ 10� ∗ α ∗ Lzz − 7.67 ∗ 10� ∗ β ∗ Lxx + 5.86 ∗

P ∗ Lxx − 36.5 ∗ β� − 2.05 ∗ 10�� ∗ ����

5-2

��� = −4.57 ∗ 10� + 6.55 ∗ 10� ∗ α + 25367 ∗ β − 0.218 ∗ P + 6.8 ∗ 10� ∗ ��� +

7.12 ∗ 10� ∗ ��� − 119 ∗ α ∗ β − 8.3 ∗ 10� ∗ α ∗ Lxx − 9.07 ∗ 10� ∗ α ∗ Lzz + 67125 ∗

β ∗ Lxx + 81933 ∗ β ∗ Lzz − 1.3 ∗ Lxx ∗ Lzz + 12.7 ∗ β�

5-3

��� = −4.25 ∗ 10� + 3.76 ∗ 10� ∗ α + 4.09 ∗ 10� ∗ β − 1.62 ∗ P + 1.11 ∗ 10� ∗ ��� +

8.28 ∗ 10� ∗ ��� − 99 ∗ α ∗ β − 1.14 ∗ 10� ∗ α ∗ Lxx − 7.43 ∗ 10� ∗ β ∗ Lzz + 5.78 ∗

P ∗ Lzz − 33.2 ∗ β� − 2.02 ∗ 10�� ∗ ����

5-4

Interaction between the equilibrium temperature slope and the peak 

temperature 

The influence of the peak and slope temperature coefficients on Sxx is 

presented in Figure 5-8 a) and suggests that the slope coefficient β has a 

dominant effect on Sxx compared to the peak coefficient α. For β less than 

3000 m0.8, an increase in β, increases Sxx, meaning  that steep phase 3 

temperature profiles create high magnitude residual stress by enhancing the 

non-uniformity of the plastic strain distribution across the weld. Above 3000 

m0.8, the residual stress magnitude becomes largely independent of β. 
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For β less than 2600 m0.8, an increase in α also increases Sxx magnitude 

slightly. However, when β is greater than 2600 m0.8, increasing α tends to 

decrease the residual stress magnitude by a maximum of 60 MPa (reached for 

β = 4000 m0.8). For very steep phase 3 temperature profiles (β > 2600), 

increasing the temperature will reduce the plastic strain misfit across the weld 

by conducting more temperature back from the weld interface and therefore 

reducing the magnitude of the residual stresses. To minimise the magnitude of 

the residual stress in the direction of the weld interface, a shallow equilibrium 

temperature profile is essential, while reaching low interface temperature will 

also help to a lesser extent. The regression model confirms the correlations 

between the equilibrium temperature distribution and the residual stress field 

observed in the previous chapter. 

The influence of the peak and slope temperature coefficients on Syy is 

presented in Figure 5-8 b). The maximum residual stress magnitude which can 

be created in the direction of the applied pressure y is significantly lower (294 

MPa) than in the direction of the weld interface (1080 MPa for Sxx). Increasing 

α tends to increase the magnitude of Syy while increasing the slope coefficient 

β results in a decrease of Syy. Unlike Sxx and Szz, steeper phase 3 

temperature profiles reduce the residual stress magnitude in the direction of the 

applied pressure. Having a steep temperature gradient localizes the plastic 

deformations at the weld interface. Although this localization increases the 

residual stress magnitude in the direction of the weld interface, it reduces the 

amount of plastic misfit in the y direction and therefore decreases the 

magnitude of Syy. When high temperature slope values are reached, Figure 5-8 

b) suggests that a stress-free state can be reached in the applied pressure 

direction. 
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Figure 5-8: Influence of the peak and slope temperature coefficients (with P = 65E06 

Pa and Lxx = Lzz = 100E-03 m) on a) Sxx and b) Syy 

Interaction between the equilibrium temperature slope and the lengths of 

the weld interface 

The interaction between the slope temperature coefficient β and the weld 

interface dimension Lxx on the residual stress Sxx is presented in Figure 5-9 a). 

Overall, an increase in Lxx results in an increase in Sxx as a consequence of 

having the hot material constrained by the cold material along the x direction. 

Therefore, larger values of Lxx produce a more restrained geometry, creating 

more plastic deformation misfit and producing higher residual stresses.  

An artefact from the regression model caused by its polynomial formulation 

trying to capture the relative insensitivity of Sxx above a certain value of Lxx is 

visible (see FEA and regression model predictions) on Figure 5-9 a) for high 

value of β. Despite this statistical artefact, it can be noticed that the relative 

error, defined in equation 5-5, is relatively low and that the general trend 

predicted by the ANOVA can be trusted. Furthermore, it is interesting to see in 

Figure 5-9 a) that a stress free state, in the directions of the weld interface can 

be achieved for small dimension welds when shallow phase 3 temperature 

gradient are reached. This stress free state, at the centre of the weld, was also 

predicted numerically; i.e. design points are located in this region of Figure 5-9 

a) but are not shown because different input fixed values were used for the 

need ot the ANOVA. It is worth noting that a long welding time would be 

necessary to achieve such shallow thermal gradient and LFW are often limited 
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to 10 s. Furthermore, long welding time are achieved with low frequency and 

amplitude values which increases the risk of producing a weld with defects and 

poor mechanical properties, according to Wanjara and Jahazi2. 

�������� ����� (%) =
(���������� ����� − ��� �����) ∗ 100

��� ����� 5-5 

The effects of β and the interface dimensions Lxx and Lzz on Syy are 

respectively presented in Figure 5-9 b) and Figure 5-9 c). Unlike the residual 

stresses in the direction of the weld interface, Syy is found largely independent 

of Lxx and Lzz since this stress is acting along the y direction. 

Figure 5-9: Influence of the interface dimension Lxx and slope temperature coefficients

β on a) Sxx, b) Syy and influence of Lzz and β on Syy (with α = 979, P = 0 Pa and 

when fixed Lxx = Lzz = 20E-03 m) 

Effect of the applied pressure 

The evolution of Sxx’s magnitude against the applied pressure for different 

values of Lxx is presented in Figure 5-10. Increasing the applied pressure 
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slightly decreases the magnitude of the residual stress. Small dimension 

workpieces are more affected by P with a maximum variation of Sxx of 180 MPa 

for Lxx equal 20 mm compared to 49 MPa for Lxx equal 200 mm. 

A large magnitude applied pressure is required to significantly reduce the peak 

of residual  stress which correlates well with Turner et al.’s13 conclusion. When 

the hot material located at the interface tries to expand, it is put under 

compression, constrained by the cold material. Using a high applied pressure 

will force more material to expand laterally, in the direction of the weld interface, 

because of the Poisson effect and therefore will act against the thermal 

contraction during cooling and result in a reduction of the residual stresses 

subsequently created. 

Figure 5-10: Effect of the applied pressure P (with α = 1179, β = 2000, Lzz = 100E-03 

m) on Sxx 

5.3.4 Effects of the input parameters on the residual stress 

distribution in the direction of the weld interface 

The results of the ANOVA on the width of the band of tensile residual stress in 

the x and z directions, respectively Bdxx and Bdzz, are given in Table 5-3. The 

statistical criteria shown in Table 5-3 suggest that the equations of the 

regression models capture the process behaviour well, the regression models 

can be used to navigate the design space, and the equations of the regression 

models are listed below. Bdxx and Bdzz regression models were found 
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independent of the clamping pressure acting in the transverse direction to 

residual stress direction considered. Because of the symmetry between Bdxx 

and Bdzz, only Bdxx results are presented. 

Table 5-3: Statistical criteria of the ANOVA 

Regression Model Equation Equation 
Units 

R2

(%) 
Adj. R2

(%) 
Prd. R2

(%) 
Ad. Pr. P-V 

Tensile residual stress band 
width in the x direction 

(Bdxx) 
[m] 97.1 96.7 96 54.7 <0.0001 

Tensile residual stress band 
width in the z direction 

(Bdzz) 
[m] 97.1 96.7 96.1 54.2 <0.0001 

���� = −2.37 ∗ 10�� + 5.69 ∗ 10�� ∗ α − 1.98 ∗ 10�� ∗ β − 2.32 ∗ 10��� ∗ P + 7.15 ∗

10�� ∗ ��� + 5.04 ∗ 10�� ∗ ��� + 1.36 ∗ 10��� ∗ ���_�� − 8.22 ∗ 10��� ∗ α ∗ β − 1.62 ∗

10�� ∗ β ∗ Lxx − 1.17 ∗ 10�� ∗ β ∗ Lzz + 4.4 ∗ 10��� ∗ β�

5-6

���� = −1.75 ∗ 10�� + 5.48 ∗ 10�� ∗ α − 1.92 ∗ 10�� ∗ β − 2.38 ∗ 10��� ∗ P + 3.99 ∗

10�� ∗ ��� + 8.43 ∗ 10�� ∗ ��� + 1.65 ∗ 10��� ∗ ���_�� − 7.56 ∗ 10��� ∗ α ∗ β − 8.75 ∗

10�� ∗ β ∗ Lxx − 2.02 ∗ 10�� ∗ β ∗ Lzz + 4.18 ∗ 10��� ∗ β�

5-7

Interaction between the equilibrium temperature slope and the peak 

temperature 

The influence of the peak and slope temperature coefficients on the width of the 

band of tensile residual stress developed in the x direction Bdxx, is presented in 

Figure 5-11. When increasing β, i.e. having a steeper phase 3 temperature 

profile, Bdxx can decrease under a millimetre wide while increasing α tends to 

increase Bdxx. Having a steep phase 3 thermal gradient constrains the heat 

and therefore the plastic deformation close to the weld interface, resulting in 

narrow band of tensile residual stress. On the other hand, high peak 

temperature conducts more heat back from the interface, therefore creating 

plastic strains further away from the weld interface and expanding Bdxx. When 

the coefficient β is under about 1800 m0.8, it has a dominant influence on Bdxx, 

however above 2800 m0.8, very little change is recorded in Bdxx value when 

increasing β and α plays a more significant role on Bdxx value. 
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Figure 5-11: Influence of the peak and slope temperature coefficients on Bdxx (with P = 

65E06 Pa and Lxx = Lzz = 100E-03 m) 

Interaction between the equilibrium temperature slope and the lengths of 

the weld interface 

The effects of the weld interface dimensions Lxx and Lzz on Bdxx are 

presented in Figure 5-12 a) and b) respectively. Unlike the residual stress 

magnitude Sxx, the interface dimensions have a small influence on Bdxx 

compared to β. Increasing either Lxx or Lzz results in an increase in Bdxx 

because larger values of interface dimensions produce a more restrained 

geometry, creating more plastic deformationmisfit. It is worth noticing that even 

for a large structure, a narrow band of tensile residual stress can be achieved 

with the appropriate phase 3 temperature distribution. Above β values of 2800 

m0.8, the model suggests that Bdxx becomes insensitive to β and the weld 

interface dimensions. 



 135 

Figure 5-12: Influence of the slope temperature coefficient and interface dimension a) 

Lxx and b) Lzz on Bdxx (with P = 65E06 Pa and Lxx = Lzz = 100E-03 m) 

Effect of the applied pressure and clamping pressure 

The evolution of the band of tensile residual stress Bdxx against the applied 

pressure and the clamping pressure is presented in Figure 5-13. An increase in 

the applied pressure results in a decrease of Bdxx while increasing the 

clamping pressure has the opposite effect. Overall, applied and clamping 

pressures have a small influence on Bdxx with a respective maximum variation 

of 0.29 mm and 0.17 mm. As previously explained, the applied pressure acts 

against the thermal contraction occurring during the cooling phase. In contrast, 

the clamping pressure will act along with the thermal contraction in the direction 

of the weld interface, enhancing the plastic deformation misfit between the hot 

and cold material and therefore increasing the distribution of residual stresses. 

Therefore, to minimize the residual stress, it is preferable to use a high 

magnitude applied pressure with a minimal clamping pressure. However, it is 

worth noting that the clamping pressure needs to be adequate to hold the 

workpieces in position while welding to prevent them from wobbling inside the 

chucks. 



 136 

Figure 5-13: Effect of the applied pressure P and clamping pressure Clp_Px (with α = 

1179, β = 2000, Lxx = Lzz = 100E-03 m and when fixed P = Clp_Px = 65E06 Pa) on 

Bdxx 

5.4 Conclusions 

The key findings from this work are: 

1. Models based on the peak temperature provide an accurate prediction of 

the calculated as-welded residual stress without modelling the removal of 

material; with a maximum discrepancy of 33 MPa found for weld 4, at the 

weld interface, between the two modelling methods. Furthermore, 

ignoring the shearing that occurred during processing resulted in a small 

under prediction of the as-welded residual stress. 

2. The clamping pressure was found to have no significant effect on the 

residual stress magnitude or on the width of the band of tensile residual 

stress. On the other hand, the applied pressure slightly reduced the 

magnitude of the residual stresses and narrowed its distribution. 

3. The thermal gradient of the phase 3 temperature profile and the length of 

the weld interface were the most influential parameters that affected the 

residual stress magnitude in the direction of the weld interface. The 

phase 3 interface peak temperature played a minor role. Finally, the 

width of the band of tensile residual stress was mainly affected by the 

thermal gradient.   
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4. To minimise the residual stress magnitude developed in the weld 

interface direction, the phase 3 temperature distribution should have a 

low interface peak temperature with a shallow gradient and small weld 

interface dimensions. A shallow thermal gradient is associated with long, 

slow welds and will create a large band of tensile residual stress. If the 

appropriate conditions are used, the regression model suggests that is 

possible to create a stress-free LFW.  

5. The residual stress magnitude developed in the direction of the applied 

pressure is strongly influenced by the peak and slope of the phase 3 

temperature profile while it was found largely independent of the weld 

interface dimensions. Unlike the residual stress developed in the 

direction of the weld interface, having a steep thermal gradient reduced 

the magnitude of the residual stress in the direction of the applied 

pressure. Therefore, trying to reduce the magnitude of the residual stress 

Sxx and Szz by having a shallower thermal gradient will increase Syy. 

However, the maximum magnitude of Syy was significantly lower than 

either Sxx or Szz.  

In the next chapter, the modelling approach developed in this thesis is applied 

to a linear friction weld with a bladed-disk joint geometry. The distribution and 

magnitude of the residual stress developed are analysed.     
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Chapter 6: Modelling of a blisk like linear friction 

weld and experiments 

6.1 Background  

The current main industrial application of LFW is the bladed-disk. To the best 

knowledge of the author, only Sorina-Müller et al.36 modelled a titanium alloy 

blisk LFW, using a friction coefficient to account for the heat generation. 

Numerically, temperatures as low as 200ºC were calculated at the weld 

interface once the desired upset was reached (prior to cooling) and no residual 

stresses were predicted. These results are not consistent with most numerical 

models and experimental measurements that predict temperature history on 

rectangular LFW5,9,13,106. Consequently, more research is needed to understand 

the development of residual stresses in real engineering structures. Using the 

computationally efficient modelling approach developed in the previous 

chapters, which bypasses the modelling of the oscillations, the author aims to 

investigate the development of residual stress within a blisk LFW and its 

mitigation by post-weld heat treatment. 

6.2 Methodology 

6.2.1 Experiments 

Ti-6Al-4V linear friction welds were made in collaboration with KUKA Systems 

Birmingham using the E130 machine for the two sets of welding parameters 

listed in Table 6-1. The welding trial was conducted by a KUKA Systems 

engineer; under the guidance of the author. Each set of parameters were 

replicated twice to account for experimental variability. Photos of the workpiece 

held in the tooling of the LFW machine, before and after welding are presented 

in Figure 6-1. The geometry and the position of the weld interface of the 

workpiece used for the experiments are illustrated in Figure 6-2 a). The Ti-6Al-

4V parent material had a bimodal alpha-beta microstructure. Experimentally the 

workpiece was oscillated in the x direction. Finally, contour measurements were 
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provided as an external service by HILL Engineering on welds 1 and 3 to 

measure the residual stress in the x direction at the middle of the weld and to 

investigate the effect of both sets of welding parameters. 

Figure 6-1: Workpiece inside the tooling of the LFW machine a) before and b) after 

welding 

Table 6-1: Welding parameters

Weld Freq.  
(Hz) 

Amp. 
(mm) 

Applied 
Pressure 
(MPa) 

Burn-off 
(mm) 

Rubbing 
Velocity 
(mm/s) 

1;2 

3;4 

35 

20 

2.5 

2.5 

106 

106 

3.6 

3.6 

350 

200 
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Figure 6-2: Isometric views of a) the blisk like geometry and rectangular geometries 

simulated in this chapter b) rectangular 1 and c) rectangular 2 

6.2.2 Modelling approach 

The sequentially-coupled modelling approach developed in chapter 3 (thermal 

modelling) and chapter 4 (mechanical modelling) was used with the same 

material properties. A fine element length of 0.3 mm was used across the weld 

interface and its vicinity which then coarsened to 3 mm, as shown in Figure 6-3. 

The elements are predominantly hexahedral, particularly near the weld interface 

with some tetrahedral elements being used further away to allow coarsening of 

the mesh. 
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Using the approach presented in chapter 3 to post-process the machine data 

obtained from the welding trials, the average power of phase 3 and burn-off rate 

for each weld were extracted, see Table 6-2. The repeatability of the 

experiments was reasonable, with misalignments of the weld interfaces of the 

workpieces being responsible for the discrepancies in the results, notably 

between weld 1 and 2 power.  Numerical models were created for welds 1 and 

3 and were compared with the contour method measurements. 

Additional models were computed using the two rectangular geometries 

presented in Figure 6-2 a) and b). To calculate the residual stress profiles, the 

equilibrium temperature profiles obtained from the blisk welds 1 and 3 thermal 

models were mapped on the rectangular models, following the modelling 

approach developed in chapter 5. This study aimed to analyse the effect of the 

blisk like geometry compared to a rectangular block. 

Figure 6-3: Blisk like mesh 

Table 6-2: Equilibrium power and burn-off rate from the experimental conditions in 

Table 6-1 

Weld Average Phase 3 
Power 
(kW) 

Average Phase 3 
Burn-off Rate 
(mm/s) 

1 

2 

3 

4 

14.89 

12.66 

5.45 

5.61 

2.50 

2.59 

1.65 

1.70 



 142 

6.2.3 Post-weld heat treatment modelling 

Three post-weld heat treatment (PWHT) cycles are simulated for welds 1 and 3, 

from Table 6-1. The sample was heated to a holding temperature in one hour 

and then held for a certain duration before cooling down to ambient temperature 

in one hour. The holding temperatures and times for the different PWHT cycles 

are presented in Table 6-3. Creep data were added to the previous set of 

material properties. A strain-hardening version of the power-law creep model 

proposed in ABAQUS, see equation 6-1, was used to fit the experimental data 

from Badea et al.125. This power-law is suitable under a fluctuating stress-

state126 as is the case with these specimens. 

� ̅̇�� = (A ∗ ��� ∗ [(� + 1) ∗ � ̅��]�)
�

���
6-1

where �̅̇�� is the uniaxial creep strain rate, �̅�� is the equivalent creep strain, ��

the Mises equivalent stress for isotropic material, � the time, A, n and m are 

functions of the temperature and are determined by experiments. 

Figure 6-4 displays the experimental data measured by Badea et al.125 fitted 

with a power-law and the values of A and n for different temperatures. The 

coefficient m was chosen equal to zero because only the secondary creep 

strain was modelled. Experimental measurements from Badea et al.125 showed 

that the primary creep strain was limited compared to the secondary and 

tertiary, and the tertiary creep strain only occurred close to the rupture of the 

material.  

Table 6-3: Holding temperature and holding time for the three PWHT cycles simulated 

Cycle Holding 
Temperature (ºC) 

Holding Time (h) 

1 

2 

3 

565 

565 

665 

3 

6 

3 
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Figure 6-4: Creep data from Badea et al.125 (plain lines) fitted with a power-law (dash 

lines) with its associated coefficients A and n 

6.3 Results and discussion 

6.3.1 Comparison of residual stresses predicted numerically against 

contour method measurements 

Contour plots of residual stress in the x direction, at the middle of the weld, 

numerically predicted and measured by the contour method are displayed for 

weld 1 and weld 3 respectively in Figure 6-5 a) and b). Overall, numerical 

predictions and contour method measurements are in a reasonable agreement. 

Strong tensile residual stress developed at the weld interface and its vicinity. 

Higher magnitudes and smaller distributions of residual stress are numerically 

predicted compared to those measured with the contour method for the reasons 

detailed in chapter 4. Minimal differences in the residual stress profiles are 

exhibited between both contour method results.  Furthermore unlike the contour 

method, numerical results display a reduction in the magnitude of the residual 

stress close to the edges of the weld interface. This a consequence of the 

physical presence of the flash on the blisk like welds used for contour method. 

Indeed, in chapter 4, the flash was removed prior to experimental measurement 
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on the rectangular welds and a clear reduction of the residual stress 

magnitudes is recorded close to the edges measured by the contour method 

technique.  

Figure 6-5: Residual stress contour plots in the x direction predicted numerically and 

measured by contour method for a) weld 1 and b) weld 3

6.3.2 Residual stress prediction within blisk like geometry joints 

The residual stress distributions in the three directions of space across the 

weld, extracted at the middle of the weld, for both blisk like geometry welds are 

presented in Figure 6-6. Similar to the rectangular coupons in the previous 

chapters, the highest residual stress magnitudes developed in the longest 

direction of the weld interface x, the second highest in the second direction of 

the weld interface z and negligible residual stresses in the direction of the 

applied pressure y. Interestingly, an increase in the residual stress magnitude 

further away from the weld interface is recorded for weld 1, see Figure 6-6 a), 
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before decreasing. This is believed to be a combined effect of the weld interface 

geometry and equilibrium temperature profile slowing down the conduction of 

the heat back to the cold material and stress relieving the residual stresses at 

the weld joint.  

Overall, there are small differences between the numerically predicted residual 

stress profiles of welds 1 and 3, as shown in Figure 6-7 a) which matches well 

with the trend previously observed in the contour method results. Numerically, 

higher magnitude residual stresses were obtained for weld 1 condition 

compared to weld 3, as shown in Figure 6-7 a). Having a reduced input welding 

frequency for weld 3 decreased the burn-off rate as shown in Table 6-2 

resulting in a shallower temperature gradient for the equilibrium temperature 

profile, see Figure 6-7 b). Like the rectangular coupons, a shallow temperature 

profile reduced the plastic strain misfit across the weld, lowering the magnitude 

of the residual stresses created. Furthermore, it is worth noting that reducing 

the input welding frequency from 35 Hz to 20 Hz resulted in a large reduction of 

the weld interface temperature, as shown in Figure 6-7 b), due to the decrease 

in the equilibrium phase 3 power magnitude and the longer welding time 

involved, generating more heat losses by conduction.

Figure 6-6: Residual stresses predicted in the three directions of space for the blisk like 

geometry joints a) weld 1 and b) weld 3 
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Figure 6-7: a) Residual stress profiles in the x direction for both welding conditions and 

b) their associated equilibrium temperature profiles 

6.3.3 Effect of the blisk like geometry on residual stresses 

Section views of the residual stress distribution in the x direction for the blisk 

model and rectangular models 1 and 2 using the sets of welding parameters 

welds 1 and 3 (see Table 6-1), are respectively presented in Figure 6-8 a) and 

b). The highest magnitudes are located close to the edges with reduced 

residual stress magnitudes at the centre of the welds. During heating, the edges 

can expand more freely unlike the centre of the weld, resulting in significantly 

lower compressive stresses which will subsequently counteract the 

development of tensile residual stress to a lesser extent. Interestingly, 

distributions on the blisk like geometry coupon and on the rectangular models 

display similar features. However, higher peak residual stress magnitudes 

developed for the rectangular models due to their larger weld interface areas. 

Residual stress profiles in the three directions of space extracted at mid 

thickness from the blisk like model and rectangular models 1 and 2 for the 

welding conditions weld 1 and weld 3 are respectively presented in Figure 6-9 

a) and Figure 6-9 b). Residual stress profiles in the x direction are similar 

between the blisk and rectangular models; however differences arise in the z

direction as a consequence of the reduced dimension of the blisk interface 

along that axis and the curvature of its geometry. Owing to its reduced weld 

interface dimension in the z direction, the model rectangular 2 model developed 
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lower magnitude residual stress compared to the model rectangular 1 in that 

direction. The residual stress peaks developed by the blisk models in the z 

direction are positioned approximately half way between those predicted for the 

models rectangular 1 and 2. To conclude, using a rectangular coupon with the 

modelling approach developed in chapter 5 offers a good insight into the 

magnitude and distribution of residual stress profiles created by the welding 

process. 

Figure 6-8: Section views of the residual stress in the x direction for the blisk and 

rectangular 1 and 2 models, using the welding conditions of a) weld 1 and b) weld 3 
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Figure 6-9: Comparison of residual stresses predicted within the blisk like geometry 

model and rectangular models 1 and 2 in the x direction, using the welding conditions 

of a) weld 1 and b) weld 3 

6.3.4 Post-weld heat treatment 

Numerical predictions of as-welded and post-weld heat treated samples with the 

cycle 1 heat treatment (see Table 6-3) produced the residual stress profiles 

shown in Figure 6-10 for welds 1 and 3. The combined effect of lowering the 

yield stress, allowing the material to yield due to the internal residual stresses 

and creep mechanism, reduced the peak magnitude of residual stresses to 

about 100 MPa for weld 1 and 70 MPa for weld 3. Therefore, the post-weld heat 

treatment shows a significant relief in the residual stress magnitudes but did not 

affect the widths of their distribution which is dictated by the width of the original 

residual stress profile. These results are comparable with the measurements 

done by Frankel et al.45 using synchrotron X-ray diffraction on LFW post-weld 

heat treated samples with a holding temperature of about 650 ºC; however the 

holding time was not provided by the authors. 

Residual stresses predicted in the x direction for welds 1 and 3, after simulating 

the different PWHT cycles presented in Table 6-3 are shown in Figure 6-11. 

Little variation is recorded in the stress profile when increasing the holding 

temperature by 100 ºC. Furthermore, after 3h most of the stress relief had 

already occurred and the numerical predictions show that no benefit arises from 

holding the same temperature for 6h. Finally, owing to the small differences in 
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the residual stress profiles obtained with the different PWHT cycles, cycle 1 

seems to be adequate to relieve the majority of the residual stresses. 

Figure 6-10: Comparison of the residual stress profiles obtained as welded and after 

PWHT cycle 1 for a) weld  1 and b) weld 3 

Figure 6-11: Residual stress in the x direction for different PWHT cycles with the 

holding temperature and holding time displayed for each curves for a) weld 1 and b) 

weld 3 

6.4 Conclusions 

The key findings from this work are: 

1. The method for predicting residual stresses in this thesis can 

successfully predict residual stresses in a complex geometry such as a 

blisk. A reasonable agreement was found between residual stresses 

numerically predicted for the two welding conditions and those measured 

using contour method. Experiments and numerical predictions showed 
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only small differences in the results between both welding conditions. 

2. The flash was found to extend the large magnitude residual stresses to 

the edges of the weld interface in the contour measurements.  

3. The residual stress distribution created on a rectangular coupon showed 

many similarities with the blisk like geometry weld. Notably, residual 

stresses extracted in the longest direction of the weld interface, which 

typically have the highest magnitudes, were almost identical. This result 

demonstrates that the peculiar shape of the blisk like geometry weld 

does not affect significantly the residual stress field, as the peak 

magnitude is driven by the overall length of the part and the thermal 

profile prior to cooling.  

4. A significant stress relief was achieved after a PWHT cycle. Among the 

cycles investigated, a holding temperature of 565 ºC and a holding time 

of 3h were found to be adequate to remove most of the residual stresses. 



 151 

Chapter 7: Thesis conclusions 

Numerical prediction of residual stresses within LFW 

The main objective of this project was to develop a computationally efficient 

modelling approach capable of predicting the residual stress field created after 

welding and provide a deep understanding of its development. The 

computational constraints inherent to the modelling approaches available in the 

literature have been explained. Authors from the literature tend to model the 

mechanical mixing occurring at the interface of a linear friction weld which is 

complex, making it difficult to study the development of residual stresses within 

real engineering workpieces. To address this, a sequentially-coupled numerical 

model of a Ti-6Al-4V LFW was developed, bypassing the modelling of the 

oscillations by applying a heat flux at the weld interface and sequentially 

removing rows of elements to account for the burn-off. Prior to the computation 

of the model, the machine data obtained during welding was post-processed 

and the average heat flux per phase was calculated and used as an input to the 

model. 

The thermal and mechanical predictions for several sets of welding condition 

were validated. Thermal histories numerically predicted on rectangular welds, 

exhibited a reasonable match against the thermocouple recordings with errors 

in thermal gradients obtained after 0.3 mm of burn-off, between experiments 

and simulations, ranging from 4% with weld 5 to 29% with weld 3. A comparison 

of residual stresses numerically predicted and measured using contour method 

and neutron diffraction on rectangular welds displayed a good agreement for 

the welding condition with the lowest rubbing velocity. Contour method 

measurements for other welding conditions were also conducted and exhibited 

more differences against the numerical results. Similar discrepancies were 

recorded between the contour method and synchrotron X-ray diffraction 

measurements conducted by Frankel et al.45. These discrepancies are believed 

to have been enhanced by cutting-induced plasticity and increased surface 

roughness owing to the EDM cut because of the significantly higher stress 
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gradients developed by these welding conditions. This may indicate that further 

research should be conducted on implementing the contour method technique 

specifically for LFW to improve its accuracy.  

Experimental measurements found in the literature on rectangular welds were 

found to be in good agreement, both in terms of magnitude and distribution, with 

the residual stress numerically predicted in this thesis. The modelling approach 

was also successfully implemented on a real engineering workpiece. In chapter 

6, a blisk LFW was modelled with numerical predictions showing reasonable 

agreement with the contour method measurements. The outcomes from chapter 

6 are significant because to the best knowledge of the author, it is the first time 

that an accurate residual stress prediction was made on a blisk geometry LFW. 

This demonstrates how the modelling approach developed in this thesis can be 

applied to real engineering components. 

Effects of process parameters on residual stress development 

A limited number of publications on the effect of process parameters on the 

residual stress field developed within LFW can be found and often focus on the 

effect of the applied pressure13,14,50,93. Various effects of the process 

parameters on the residual stress development in rectangular welds have been 

studied in this thesis and one of them is the rubbing velocity in chapter 4. 

Increasing the rubbing velocity resulted in an increase of the peak of residual 

stress for the model and a narrower band of tensile residual stress. 

Furthermore, this study highlighted a strong correlation between the phase 3 

temperature profile developed during welding and the residual stress field 

subsequently created, which is consistent with the conclusion made by Turner 

et al.13. For this reason, coefficients which relate directly to the thermal gradient 

and peak temperature values of the phase 3 temperature profile were used as 

inputs in the ANOVA conducted in chapter 5. The ANOVA demonstrated that 

the temperature gradient has a dominant effect on the residual stress 

magnitude and distribution in the direction of the weld interface which is 

consistent with the results from a numerical model developed by Fu et al.14. A 

practical outcome of the results found in chapter 5 is that to minimise the 
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magnitude of the residual stresses, a low phase 3 thermal gradient is 

necessary, which is created with a low burn-off rate welding condition 

(achievable with low values of frequency and amplitude11). However, this will 

result in a wide distribution of the residual stress and the effect on the 

microstructure and mechanical properties will need further investigation. Low 

weld interface temperature should be sought since it was found to reduce both 

the magnitude and the size of the distribution of the tensile residual stresses 

and it can also be achieved with the low burn-off rate value as detailed in 

chapter 3. 

Other parameters studied on rectangular welds include the weld interface length 

dimensions which were found to have an important effect on the residual stress 

magnitude but little effect on the width of the distribution. The combination of a 

low thermal gradient and small interface dimensions can result in a stress-free 

LFW which is of interest to end users of the process. Moreover, it was found 

that a large magnitude applied pressure was necessary to observe a reduction 

in the residual stress magnitude which is in agreement with  the experimental 

results from Romero et al.50 and the numerical results from Turner et al.13. The 

clamping pressure was found to have little effect on the residual stresses and 

should therefore be set to prevent the wobbling of the workpieces during 

welding. 

Almost exclusively, authors in the literature focus their study on rectangular 

coupons because of its convenient shape, it is cheaper to manufacture and 

easier to model numerically. However, in chapter 6 the peculiar blisk like 

geometry was shown to have little effect on the final residual stress field as the 

peak magnitude is driven by the overall length of the part and the thermal profile 

prior to cooling. As a result, approximating the blisk geometry by a rectangular 

coupon offers good insight into the magnitude and distribution of residual stress 

profiles created. 

No simulation of PWHT on LFW is available in the literature; however this is one 

of the techniques used to mitigate the residual stress with LFW. Several PWHT 

cycles were simulated to investigate the effect of the holding temperature and 
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time on the final residual stress field of a blisk weld. Among the different cycles 

investigated, a holding temperature of 565 ºC and a holding time of 3h were 

found optimal with a peak of residual stress magnitude reduced to 70 MPa after 

post-weld heat treatment. The stress relief achieved in this thesis is comparable 

with some of Frankel et al.’s measurements45; however the holding temperature 

is not explicitly given in this study. Further experiments would be necessary to 

validate the numerical predictions reached with the PWHT simulations. 

Prospect for future research 

This thesis addresses the gaps in knowledge presented in Chapter 2; however 

more work can be done to aid further development and optimisation of the linear 

friction welding process. 

Recommended areas for further work are: 

 Extend the modelling approach developed in this thesis to other 

materials, including dissimilar material welds. 

 Include microstructural modelling capability to improve the accuracy of 

the numerical predictions. 

 Conduct a similar ANOVA to the one presented in this thesis for the 

blisk-like geometry LFW. 

 Conduct residual stress measurements on post-weld heat treated welds 

to confirm the numerical results. 

 Improve the accuracy of contour method measurements on LFW. 
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Appendix A : Ti-6Al-4V material properties used in the 

modelling work 

Thermal and mechanical material properties used in the modelling work of this 

thesis are displayed in this appendix. 

Thermal properties of Ti-6Al-4V used in the modelling work. These data are part 

of DEFORM software’s standard library. 

Young’s modulus (source Turner et al.13) and linear thermal expansion 

coefficients (source Boyer et al.88) of Ti-6Al-4V used in the modelling work. 
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Appendix B: Equation from McAndrew et al. used in 

the thesis  

Equation from McAndrew et al.8 used to calculate the TMAZ thicknesses: 

���� ��������� = 3.06495 + 1.17408 ∗ A − 0.040652 ∗ F� − 0.29568 ∗ A� + 2.20636 ∗

10�� ∗ F�
�

where A is the amplitude and F� is the applied force. 

Equation from McAndrew et al.8 used to calculate the experimental phase 3 

burn-off rate: 

���� − ��� ���� = 0.69581 − 0.042711 ∗ f + 0.039751 ∗ A − 6.79114 ∗ 10�� ∗ F� +

0.036051 ∗ f ∗ A + 4.66901 ∗ 10�� ∗ f ∗ F�

where f is the frequency.
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Appendix C: Neutron diffraction spectrums  

Neutron diffraction spectrums in the directions x and z measured 

simultaneously in a LFW using the ENGIN-X diffractometer at the ISIS facility 

are presented below. Similarly, spectrums in the third direction of space and in 

the stress-free sample were also measured.
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Appendix D: Example of propagation of fitting errors 

to calculate residual stress in the x direction  

For a given position, the lattice dimensions ��, �� and �� and their fitting errors 

���, ��� and ��� (respectively ���, ���, ��� and ����, ����, ���� for the stress-

free lattice dimensions) are obtained from the post-processing of the diffraction 

peaks presented in 0. Consequently, the following strains can be calculated: 

��,��
=

������

���
; ��,�� �����

=
(������)����

���
 and ��,��� �����

=
���(��������)

(��������)

Separated contributions of fitting errors ��� and  ���� on the strain are 

respectively: 

���,��
= ��,�� �����

− ��,��
 and ���,���

= ��,��� �����
− ��,��

Therefore, the error made on the strain �� after propagation of fitting errors is: 

��� = ����,��

� + ���,���

�

Similarly, ��� and ��� can be calculated. 

According to the Hooke’s law: 

�� =
��

(1 + �)(1 − 2�)
��� + �� + ��� +

�

1 + �
��

Therefore, 

��,� ����� =
��

(1 + �)(1 − 2�)
�(�� + ���) + �� + ��� +

�

1 + �
(�� + ���)

��,� ����� =
��

(1 + �)(1 − 2�)
�(�� + (�� + ���) + ��� +

�

1 + �
��)

��,� ����� =
��

(1 + �)(1 − 2�)
�(�� + �� + (�� + ���)� +

�

1 + �
��)

Separated contributions of fitting errors ���, ��� and  ��� on the stress are: 



 171 

���,� ����� = ��,� ����� − ��, ���,� ����� = ��,� ����� − �� and ���,� ����� =

��,� ����� − ��

Therefore, the error made on the stress �� after propagation of fitting errors is: 

��� = ����,� �����
� + ���,� �����

� + ���,� �����
�

Similarly, ��� and ��� can be calculated. 
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Appendix E: Response surface methodology 

The raw data used to build the numerical models in the analysis of variance 

using response surface methodology are listed below: 

Model 
Number 

α 
(ºC) 

β 
(m0.8) 

P 
(Pa) 

Lxx 
(m) 

Lzz 
(m) 

Clp_Px 
(Pa) 

Clp_Pz 
(Pa) 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

879 

1379 

879 

879 

1129 

1379 

879 

879 

879 

1379 

879 

879 

879 

1129 

1379 

879 

1004 

879 

879 

1129 

879 

4000 

1700 

300 

2150 

4000 

4000 

4000 

300 

2150 

1700 

4000 

4000 

300 

1000 

4000 

4000 

3250 

300 

4000 

4000 

300 

1.25E+08 

6.25E+07 

0.00E+00 

1.25E+08 

0.00E+00 

0.00E+00 

0.00E+00 

1.25E+08 

1.25E+08 

0.00E+00 

1.25E+08 

0.00E+00 

0.00E+00 

0.00E+00 

1.25E+08 

1.25E+08 

3.13E+07 

0.00E+00 

0.00E+00 

0.00E+00 

1.25E+08 

0.02 

0.2 

0.2 

0.02 

0.02 

0.11 

0.02 

0.2 

0.2 

0.02 

0.2 

0.02 

0.11 

0.02 

0.02 

0.02 

0.15 

0.02 

0.2 

0.2 

0.2 

0.2 

0.2 

0.11 

0.02 

0.02 

0.2 

0.2 

0.2 

0.2 

0.02 

0.02 

0.02 

0.2 

0.2 

0.02 

0.2 

0.15 

0.11 

0.02 

0.2 

0.02 

1.25E+08 

0.00E+00 

0.00E+00 

1.25E+08 

1.25E+08 

0.00E+00 

6.25E+07 

1.25E+08 

0.00E+00 

6.25E+07 

1.25E+08 

1.25E+08 

0.00E+00 

0.00E+00 

1.25E+08 

0.00E+00 

9.38E+07 

1.25E+08 

0.00E+00 

0.00E+00 

1.25E+08 

0.00E+00 

1.25E+08 

0.00E+00 

0.00E+00 

0.00E+00 

0.00E+00 

0.00E+00 

0.00E+00 

0.00E+00 

1.25E+08 
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