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Uncovering the reward function of optimal controllers is crucial to determine the desired
performance that an expert wants to inject to a certain dynamical system. In this paper, a reward
inference algorithm of discrete-time expert’s controllers is proposed. The approach is inspired by
the complementary mechanisms of the striatum, neocortex, and hippocampus for decision making
and experience transference. These systems work together to infer the reward function associated
to expert’s controller using the complementary merits of data-driven and online learning methods.
The proposed approach models the neocortex system as two independent learning algorithms
given by a Q-learning algorithm and a gradient identification rule. The hippocampus is modelled
by a least-squares update rule that extracts the relation from the states and control inputs of
the expert’s data. The striatum is modelled by an inverse optimal control algorithm which
iteratively finds the hidden reward function. Lyapunov stability theory is used to show the
stability and convergence of the proposed approach. Simulation studies are given to demonstrate
the effectiveness of the proposed complementary learning algorithm.

Introduction

Optimal and adaptive control [1] are established control philosophies that serve as the basis for the design of modern adaptive 
namic programming (ADP) [2,3] and reinforcement learning (RL) algorithms [1,4]. The main aim of these algorithms is to find the 
timal control policy that minimizes a scalar reward function (also known as utility function) in an infinite or discounted horizon. 
e linear quadratic regulator (LQR) is the most popular optimal control approach that serves as the basis for the design of ADP/RL 
gorithms [5]. In the sequel of the paper, LQR controllers and optimal controllers are used interchangeably.
There exists an extensive literature [6–8] that studies the design of model-based and model-free optimal adaptive controllers with 
pressive results, e.g., Lyapunov recursions of an algebraic Riccati equation [6,9], partially model-based ADP algorithms [10,11]
ith critic or actor-critic structures [7,12–14] and model-free RL algorithms such as Q-learning [15] and their variants [16–18]. The 
mmon term of these different learning architectures is the reward function which defines the task that the system aims to achieve.
In a control perspective [1], the reward function is a predefined function that is designed by an expert to guarantee a desired 
rformance [19] in terms of the control input, constraints, output response, time, etc.; and hence, it is difficult or impossible 
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Fig. 1. Complementary learning scheme for reward inference of discrete-time linear systems.

 design the same reward function by different users. Furthermore, there exists a large amount of experts’ data1 [4] (with 
dden reward function) that model a desired performance which can be exploited by complex machine learning algorithms for 
perience transference and imitation learning. However, the generalization of this kind of approaches is poor for different systems, 
vironments, and tasks.
In view of the above, the main objective of this paper is to infer the hidden reward function associated to the expert’s controller 
at ensures the same expert’s desired performance.2 Reward extraction has been addressed by inverse optimal control (IOC) and 
verse reinforcement learning (IRL) algorithms [20]. Whilst the IOC algorithm is strongly dependent on dynamic knowledge [21], 
e IRL requires assumptions of the reward structure, e.g., a binary function [22,23]. Furthermore, constraints must be added in the 
C/IRL algorithms to avoid multiple reward solutions.
Multiple knowledge representation has been adopted to model a specific problem using different learning mechanisms, e.g., 
rbal, perception, and deep neural models that enable complementary learning for better learning outcomes [24,25]. A similar 
proach known as human-behaviour learning [26], which is inspired by the complementary learning of the hippocampus, neocortex, 
d striatum, has been adopted for complex decision making and experience transference. Data driven and online learning methods 
e used to model these complementary mechanisms [27,28].
The hippocampus is modelled as a fast learning system which is directly related to memory and experience [29–33], e.g., 
ploration techniques, eligibility traces [34], experience replay [4,26], and expert’s data. The neocortex is a slow online learning 
stem that have good pattern association, adaptability, and generalization [28]. In view of the above, the interplay between the 
ppocampus and the neocortex can be modelled by any ADP/RL algorithm [35,36] due to their high capabilities for pattern 
sociation and experience exploitation. The striatum is a learning mechanism that has complementary properties [37,38] to connect 
st (hippocampus) and slow (neocortex) learning mechanisms to achieve complex behaviours and experience transference [39].
In this paper, the reward inference of expert’s data is discussed. Fig. 1 shows the general scheme of the proposed approach. The 
heme is based on an experience transference algorithm inspired by the complementary properties of the striatum, neocortex and 
ppocampus learning systems. The hippocampus is modelled as expert’s data with hidden reward function and a least-squares rule 
at extracts the relation between the states and control inputs. The neocortex is designed as a Q-learning algorithm and a gradient 
entification rule. On the one hand, the Q-learning algorithm learns an optimal control policy relatively to an iterative reward 
nction. On the other hand, the gradient identification rule estimates the parameters of the system. The striatum is designed as an 
C algorithm [23,40] that computes new improved reward functions in each iteration. These rewards feed the Q-learning algorithm 
 obtain an improved policy which is closer to the hippocampus policy.
The main contributions of this paper with respect to previous developments in experience transference are:

) A model-free experience transference algorithm that merges, in a complementary mechanism, expert’s data and online data for 
policy generalization.

) The complementary algorithm combines the merits of data-driven and online learning methods to infer the reward function from 
expert’s data using well-defined and interconnected algorithms (Gradient and least-squares identification rules, Q-learning and 
IOC).

) The reward function has a quadratic structure that avoids the binary reward function constraint of standard IRL algorithms.
) Rigorous stability and parameter convergence results related to the experience transference algorithm using Lyapunov stability 
theory are given.

 Preliminaries

Consider the following discrete-time system

𝑥𝑘+1 =𝐴𝑥𝑘 +𝐵𝑢𝑘, (1)

here 𝑥𝑘 ∈ℝ𝑛 defines the state vector, 𝑢𝑘 ∈ℝ𝑚 stands to the control input, 𝐴 ∈ℝ𝑛×𝑛 and 𝐵 ∈ℝ𝑛×𝑚 are the dynamics of the system, 
ℕ denotes a time index. Assume that the pair (𝐴, 𝐵) is stabilizable.

Experts’ data are a fixed dataset composed of the states and control inputs trajectories of a controlled system.
397

The expert’s desired performance defines a trajectory that fulfils a desired behaviour.
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Classical optimal control approaches [1] seek an optimal control policy 𝑢∗
𝑘
= −𝐾𝑥𝑘, where 𝐾 ∈ ℝ𝑚×𝑛 is a stabilizing gain that 

inimizes a pre-defined reward/utility function. There exist several approaches that solve the optimal control problem using either 
-line or on-line algorithms [8,41].
Whilst ADP and RL algorithms combine the advantages of optimal and adaptive control theories, the reward design is still 
ndcrafted and, most of the time, it is designed to fulfil some expert’s constraints [19]. Furthermore, the data science field has 
ovided a wide amount of experts’ data with hidden reward functions that show how the system must behave. Imitation learning 
d fuzzy systems are generally used for this kind of approaches in experience transference [42,43]. However, the system learns to 
itate and improve the expert’s trajectory but cannot be generalized to different trajectories or other systems and environments. In 
e next sections we clearly define each element of the proposed approach (see Fig. 1).

 Hippocampus learning system

The following matrices are constructed with 𝑙 data points of states 𝑥𝑒
𝑖
∈ ℝ𝑛 and control inputs 𝑢𝑒

𝑖
∈ ℝ𝑚 collected from the 

osed-loop trajectories of an expert performance: �̄� = [𝑥𝑒
0, ⋯ , 𝑥𝑒

𝑙−1] ∈ ℝ𝑛×𝑙 and �̄� = [𝑢𝑒0, ⋯ , 𝑢𝑒
𝑙−1] ∈ ℝ𝑚×𝑙 , with 𝑖 = 0, ..., 𝑙. The collected 

ta fulfils the following discrete-time dynamics

𝑥𝑒
𝑘+1 =𝐴𝑥𝑒

𝑘
+𝐵𝑢𝑒

𝑘
. (2)

It is assumed that the collected data are obtained from the optimization of the following value function 𝑉𝑒(𝑥𝑒
𝑘
) [6]

𝑉𝑒(𝑥𝑒
𝑘
) =

∞∑
𝑖=𝑘

((𝑥𝑒
𝑖 )

⊤𝑆𝑒𝑥
𝑒
𝑖 + (𝑢𝑒𝑖 )

⊤𝑅𝑒𝑢
𝑒
𝑖 ) (3)

here 𝑆𝑒 = 𝑆⊤
𝑒 ≥ 0 ∈ℝ𝑛×𝑛 and 𝑅𝑒 =𝑅⊤

𝑒 > 0 ∈ℝ𝑚×𝑚 are the unknown weight matrices of the reward function associated to the expert’s 
jectories.

mark 1. The use of quadratic reward functions allows obtaining optimal solutions in the sense of the 𝐻2 control [19]. Quadratic 
ward functions are convex functions and ensure that the optimum exists for the class of stabilizable discrete-time linear systems 
at we discuss in this paper. In addition, discontinuous control policies are avoided which prevents chattering problems or unstable 
osed-loop performances.

The value function (3) can be written as the following Bellman equation

𝑉𝑒(𝑥𝑒
𝑘
) = (𝑥𝑒

𝑘
)⊤𝑆𝑒𝑥

𝑒
𝑘
+ (𝑢𝑒

𝑘
)⊤𝑅𝑒𝑢

𝑒
𝑘
+ 𝑉𝑒(𝑥𝑒

𝑘+1). (4)

Assume that the optimal control exists, then it is possible to write the optimal value function 𝑉 ∗
𝑒 (𝑥𝑘) in a convex form as

𝑉 ∗
𝑒 (𝑥

𝑒
𝑘
) = (𝑥𝑒

𝑘
)⊤𝑃𝑒𝑥

𝑒
𝑘
, (5)

r some kernel matrix 𝑃𝑒 = 𝑃⊤
𝑒 > 0 ∈ℝ𝑛×𝑛 which is solution of the following discrete algebraic Riccati equation (DARE)

𝑃𝑒 =𝐴⊤𝑃𝑒𝐴+ 𝑆𝑒 −𝐴⊤𝑃𝑒𝐵(𝑅𝑒 +𝐵⊤𝑃𝑒𝐵)−1𝐵⊤𝑃𝑒𝐴. (6)

The Hamiltonian associated to (2) and (4) is

𝐻𝑒(𝑥𝑒
𝑘
, 𝑢𝑒

𝑘
) = (𝑥𝑒

𝑘
)⊤𝑆𝑒𝑥

𝑒
𝑘
+ (𝑢𝑒

𝑘
)⊤𝑅𝑒𝑢

𝑒
𝑘
− (𝑥𝑒

𝑘
)⊤𝑃𝑒𝑥

𝑒
𝑘

+ (𝐴𝑥𝑒
𝑘
+𝐵𝑢𝑒

𝑘
)⊤𝑃𝑒(𝐴𝑥𝑒

𝑘
+𝐵𝑢𝑒

𝑘
).

(7)

The optimal control policy (𝑢𝑒
𝑘
)∗ is obtained by differentiating the Hamiltonian with respect to 𝑢𝑒

𝑘
as

(𝑢𝑒
𝑘
)∗ = −𝐾𝑒𝑥

𝑒
𝑘
= −(𝑅𝑒 +𝐵⊤𝑃𝑒𝐵)−1𝐵⊤𝑃𝑒𝐴𝑥𝑒

𝑘
, (8)

here 𝐾𝑒 = (𝑅𝑒 +𝐵⊤𝑃𝑒𝐵)−1𝐵⊤𝑃𝑒𝐴. Hence, each data point on �̄� and �̄� satisfy (8).
The optimal control policy (8) can be written in terms of the collected data �̄� and �̄� to compute an estimate of the control gain 

𝑒 ∈ℝ𝑚×𝑛 as

�̄� = −𝐾𝑒�̄�

𝐾𝑒 = −�̄��̄�⊤(�̄��̄�⊤)−1. (9)

The LS solution (9) gives an approximation of the control gain 𝐾𝑒 since the vectors �̄� and �̄� may contain noise. However, since 
e expert’s data do not provide any constraint for the reward function then multiple and unstable solutions can be obtained [44]. 
 avoid this issue, the weight matrix 𝑅𝑒 is assumed to be known.
398

One important technique to get experience is to satisfy a persistence of excitation (PE) condition [45] given by the next lemma.
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Fig. 2. Neocortex learning scheme.

mma 1. [46] A vector Φ𝑘 ∈ℝ𝑡 is said to be PE in 𝑘 steps if there exist constants 𝛽1, 𝛽2 ∈ℝ+, such that

𝛽1𝐼 ≤

𝑘−1∑
𝑖=0

Φ𝑖Φ⊤
𝑖 ≤ 𝛽2𝐼. (10)

The above Lemma will be used by the neocortex learning system to ensure parameter estimates convergence.

 Neocortex learning system

The block diagram of the neocortex learning system is illustrated in Fig. 2. This system is composed of two parallel algorithms 
at are computed simultaneously: a Q-learning update rule and a gradient identification algorithm. The Q-learning algorithm [17]
mainly used to obtain an optimal/near optimal control policy of the control problem using the reward function extracted by 
e striatum. The outputs of the Q-learning algorithm are a new control gain 𝐾𝑖

𝑘
∈ ℝ𝑚×𝑛 and the kernel matrix 𝑃 𝑖

𝑘
∈ ℝ𝑛×𝑛. The 

entification algorithm is used to estimate online the matrices 𝐴 and 𝐵 of (1) to feed the striatum learning system. Only the states 
d control measurements are used to feed the identification rule.

1. Q-learning

Define the next value function

𝑉 (𝑥𝑘) =
∞∑
𝑗=𝑘

(𝑥⊤
𝑗 𝑆

𝑖𝑥𝑗 + 𝑢𝑖𝑗
⊤
𝑅𝑢𝑖𝑗 ), (11)

here 𝑆𝑖 = 𝑆𝑖⊤ ≥ 0 ∈ℝ𝑛×𝑛 and 𝑅 =𝑅⊤ =𝑅𝑒 > 0 ∈ℝ𝑚×𝑚 are the weight matrices of the reward function and 𝑢𝑖
𝑘
∈ℝ𝑚 is the neocortex 

ntrol policy of iteration 𝑖. Since the optimal control exists, then the optimal value function for the weights 𝑆𝑖 and 𝑅 verifies

𝑉 ∗(𝑥𝑘) = 𝑥⊤
𝑘
𝑃 𝑖𝑥𝑘, (12)

r some kernel matrix 𝑃 𝑖 = 𝑃 𝑖⊤ > 0 ∈ℝ𝑛×𝑛. The Hamiltonian associated to (1) and (11) is

𝐻(𝑥𝑘, 𝑢
𝑖
𝑘
) = 𝑥⊤

𝑘
𝑆𝑖𝑥𝑘 + 𝑢𝑖

𝑘

⊤
𝑅𝑢𝑖

𝑘
− 𝑥⊤

𝑘
𝑃 𝑖𝑥𝑘

+ (𝐴𝑥𝑘 +𝐵𝑢𝑖
𝑘
)⊤𝑃 𝑖(𝐴𝑥𝑘 +𝐵𝑢𝑖

𝑘
).

(13)

The action value function 𝑄(𝑥, 𝑢) is used to compute the Q-learning algorithm since 𝐴 and 𝐵 are assumed to be unknown. The 
function verifies
399

𝑄(𝑥𝑘, 𝑢
𝑖
𝑘
) = 𝑉 ∗(𝑥𝑘) +𝐻(𝑥𝑘, 𝑢

𝑖
𝑘
). (14)
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In addition, we have that 𝑄∗(𝑥𝑘, 𝑢∗𝑘) = 𝑉 ∗(𝑥𝑘). The Q-function (14) can be expressed in matrix form as [16]

𝑄(𝑥𝑘, 𝑢
𝑖
𝑘
) =

[
𝑥𝑘

𝑢𝑖
𝑘

]⊤ [
𝐴⊤𝑃 𝑖𝐴+𝑆𝑖 𝐵⊤𝑃 𝑖𝐴

𝐴⊤𝑃 𝑖𝐵 𝐵⊤𝑃 𝑖𝐵 +𝑅

][
𝑥𝑘

𝑢𝑖
𝑘

]
= 𝑧⊤

𝑘

[
𝑄𝑥𝑥 𝑄𝑥𝑢

𝑄⊤
𝑥𝑢 𝑄𝑢𝑢

]
𝑧𝑘 = 𝑧⊤

𝑘
𝑀𝑖𝑧𝑘,

(15)

here 𝑧𝑘 = [𝑥⊤
𝑘
, 𝑢𝑖

𝑘

⊤]⊤ ∈ℝ𝑞 and 𝑀𝑖 ∈ℝ𝑞×𝑞 , with 𝑞 = 𝑛 +𝑚. Then it follows that

𝑄(𝑥𝑘, 𝑢
𝑖
𝑘
) = 𝜃𝑖⊤(𝑧𝑘 ⊗ 𝑧𝑘), (16)

here 𝜃𝑖 = vech(𝑀𝑖) ∈ℝ
1
2 𝑞(𝑞+1), vech(𝑀𝑖) denotes the half vectorization operator and ⊗ defines the symmetric Kronecker product.

The optimal neocortex control policy is obtained by computing the stationary condition 𝑢𝑖∗
𝑘
=

𝜕𝑄(𝑥𝑘,𝑢𝑖𝑘)
𝜕𝑢𝑖

𝑘

= 0, which yields

𝑢𝑖∗
𝑘
= −𝐾𝑖𝑥𝑘 = −𝑄−1

𝑢𝑢 𝑄
⊤
𝑥𝑢𝑥𝑘, (17)

here 𝐾𝑖 ≡𝑄−1
𝑢𝑢 𝑄

⊤
𝑥𝑢 ∈ℝ𝑚×𝑛. The Bellman equation [35] written in terms of the Q-function is given by

𝑄(𝑥𝑘, 𝑢
𝑖∗
𝑘
) = 𝑥⊤

𝑘
𝑆𝑖𝑥𝑘 + (𝑢𝑖∗

𝑘
)⊤𝑅𝑢𝑖∗

𝑘
+𝑄(𝑥𝑘+1, 𝑢

𝑖∗
𝑘+1). (18)

The Bellman equation can be expressed as

0 = 𝑥⊤
𝑘
𝑆𝑖𝑥𝑘 + 𝑢𝑖

⊤

𝑘
𝑅𝑢𝑖

𝑘
+ 𝜃𝑖⊤Φ𝑘 (19)

here Φ𝑘 = (𝑧𝑘+1 ⊗ 𝑧𝑘+1 − 𝑧𝑘 ⊗ 𝑧𝑘). The optimal parameters 𝜃𝑖 are unknown because the parameters associated to the dynamics of 
e system (1) and the optimal kernel matrix 𝑃 𝑖 of (12) are unknown. Hence, an approximation is used to estimate 𝜃𝑖 and 𝑃 𝑖. For 
is purpose, consider the following estimate of (16)

�̂�(𝑥𝑘, 𝑢
𝑖
𝑘
) = 𝜃𝑖⊤

𝑘
(𝑧𝑘 ⊗ 𝑧𝑘), (20)

here 𝜃𝑖
𝑘
∈ℝ

1
2 𝑞(𝑞+1) is an estimate of 𝜃𝑖. The temporal difference (TD) error associated to the approximator (20) is

𝛿𝑘 = 𝑥⊤
𝑘
𝑆𝑖𝑥𝑘 + 𝑢𝑖

⊤

𝑘
𝑅𝑢𝑖

𝑘
+ 𝜃𝑖⊤

𝑘
Φ𝑘. (21)

The Q-learning algorithm is designed to minimize the TD error, i.e., 𝛿𝑘 → 0 as 𝑘 →∞. The following cost index is defined [41]

𝐸 = 1
2
𝛿2
𝑘
. (22)

A standard gradient-descent technique is used to compute the parameter estimates vector 𝜃𝑖 that minimizes the cost index (22). 
e update rule is [3]

𝜃𝑖
𝑘+1 = 𝜃𝑖

𝑘
− 𝛼1𝛿𝑘Φ𝑘, (23)

here 𝛼1 ∈ (0, 1] ∈ℝ+ is the learning rate. The TD-error can also be written as

𝛿𝑘 = 𝜃𝑖⊤
𝑘
Φ𝑘, (24)

here 𝜃𝑖
𝑘
= 𝜃𝑖

𝑘
− 𝜃𝑖 ∈ ℝ

1
2 𝑞(𝑞+1) is the parametric error. Since a complete set of basis functions is used in Φ𝑘, then there is no residual 

ror in the approximation. So, the update rule (23) can be rewritten in terms of the parametric error 𝜃𝑖
𝑘
as

𝜃𝑖
𝑘+1 = 𝜃𝑖

𝑘
− 𝛼1Φ𝑘Φ⊤

𝑘
𝜃𝑖
𝑘
. (25)

The following theorem establishes the parameter estimates convergence, that is, 𝜃𝑖
𝑘
→ 𝜃𝑖 as 𝑘 →∞ which implies that 𝑀𝑖

𝑘
→𝑀𝑖, 

here 𝑀𝑖
𝑘
∈ℝ(𝑛+𝑚)×(𝑛+𝑚) is an estimate of matrix 𝑀𝑖.

eorem 1. Consider the parametric error dynamics (25) of the neocortex learning system. Let the regressor fulfils the PE condition of the 
ppocampus learning system (10). If the learning rate 𝛼1 satisfies

𝛼1 = 𝛼0
1‖Φ𝑘‖2 + 1

(26)

r some 𝛼0 ∈ (0, 1], then the parametric error 𝜃𝑖
𝑘
converges exponentially to zero as 𝑘 →∞ and hence the TD error converges to zero 𝛿𝑘 → 0
400

d the parameter estimates converge to their real values 𝜃𝑖
𝑘
→ 𝜃𝑖.
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oof. Let write 𝜃𝑖
𝑘
as 𝜃𝑘. Consider the Lyapunov function

𝑊𝑘 = 𝛼−11 𝜃⊤
𝑘
𝜃𝑘. (27)

The time difference of the Lyapunov equation Δ𝑊𝑘 =𝑊𝑘+1 −𝑊𝑘 along the TD error trajectories (25) is

Δ𝑊𝑘 = 𝜃⊤
𝑘
𝛼−11 𝜃𝑘 − 2𝜃⊤

𝑘
Φ𝑘Φ⊤

𝑘
𝜃𝑘

+ 𝛼1𝜃
⊤
𝑘
Φ𝑘Φ⊤

𝑘
Φ𝑘Φ⊤

𝑘
𝜃𝑘 − 𝜃⊤

𝑘
𝛼−11 𝜃𝑘

= −𝜃⊤
𝑘
(2Φ𝑘Φ⊤

𝑘
− 𝛼1Φ𝑘Φ⊤

𝑘
Φ𝑘Φ⊤

𝑘
)𝜃𝑘

≤ −𝜆min(Υ𝑘)‖𝜃𝑘‖2,
here Υ𝑘 = 2Φ𝑘Φ⊤

𝑘
− 𝛼1Φ𝑘Φ⊤

𝑘
Φ𝑘Φ⊤

𝑘
. If the learning rate 𝛼1 satisfies (26), then Υ𝑘 > 0 which guarantees the negativeness of Δ𝑊𝑘 and 

e estimation error converges asymptotically to zero, that is, 𝜃𝑘 → 0 and hence 𝜃𝑘 → 𝜃. From (25) we have that

𝜃1 = (𝐼 − 𝛼1Φ0Φ⊤
0 )𝜃0

𝜃2 = (𝐼 − 𝛼1Φ1Φ⊤
1 )𝜃1 = (𝐼 − 𝛼1Φ1Φ⊤

1 )(𝐼 − 𝛼1Φ0Φ⊤
0 )𝜃0

⋮ = ⋮

𝜃𝑘 =

[
𝑘−1∏
𝑖=0

(𝐼 − 𝛼1Φ𝑘−1−𝑖Φ⊤
𝑘−1−𝑖)

]
𝜃0.

Substituting the learning rate (26) in the above equality gives

𝜃𝑘 =

[
𝑘−1∏
𝑖=0

(
𝐼 − 𝛼0

Φ𝑘−1−𝑖Φ⊤
𝑘−1−𝑖

Φ⊤
𝑘−1−𝑖Φ𝑘−1−𝑖 + 1

)]
𝜃0.

Notice that the term in parenthesis is always less than 1, such that we can define 𝛾𝑖 = 𝐼 − 𝛼0
Φ𝑘−1−𝑖Φ⊤

𝑘−1−𝑖
Φ⊤
𝑘−1−𝑖Φ𝑘−1−𝑖+1

≤ 𝛾 for some 𝛾 ∈ (0, 1]
d hence

𝜃𝑘 ≤

𝑘−1∏
𝑖=0

𝛾𝑖𝜃0 ≤ 𝛾𝑘𝜃0.

The above inequality shows that the estimation error exponentially converges to zero as 𝑘 →∞. A simpler notation is given by

𝜃𝑘 = exp−𝜆𝑘 𝜃0,

here 𝜆 = − ln(𝛾). This completes the proof. □

Recall that 𝜃𝑖 is a vectorization of matrix 𝑀 and thus, 𝜃𝑖
𝑘
is a vectorization of the matrix 𝑀𝑖

𝑘
. Then, the near optimal neocortex 

ntrol policy is computed with the stationary condition �̂�𝑖∗
𝑘
=

𝜕�̂�(𝑥𝑘,𝑢𝑖𝑘)
𝜕𝑢𝑖

𝑘

= 0, that is,

�̂�𝑖∗
𝑘
= −𝐾𝑖

𝑘
𝑥𝑘 = −�̂�−1

𝑢𝑢 �̂�
⊤
𝑥𝑢𝑥𝑘, (28)

here 𝐾𝑖
𝑘
∈ℝ𝑚×𝑛 is an estimate of the control gain 𝐾𝑖 . The connection between 𝑀𝑖

𝑘
and 𝐾𝑖

𝑘
is given by [47]

𝑃 𝑖
𝑘
=
[

𝐼

−𝐾𝑖
𝑘

]⊤
𝑀𝑖

𝑘

[
𝐼

−𝐾𝑖
𝑘

]
, (29)

here 𝑃 𝑖
𝑘
∈ℝ𝑛×𝑛 is an estimate of 𝑃 𝑖.

2. Gradient identification rule

The control gains computed in (8) and (17) show a nonlinear relation. So, it is mandatory to estimate the matrices of system (1). 
is issue is solved by using a simple gradient identification technique as

𝑥𝑘+1 =𝐴𝑘𝑥𝑘 +𝐵𝑘𝑢
𝑖
𝑘
= 𝜑⊤

𝑘
𝜗𝑘, (30)

here 𝜑𝑘 = 𝜑(𝑥𝑘, 𝑢𝑖𝑘) ∈ ℝ𝑝×𝑛 is a matrix whose elements are function of 𝑥𝑘 and 𝑢𝑖𝑘, and 𝜗𝑘 ∈ ℝ𝑝 is vector of parameter estimates 
nstructed with the estimates 𝐴𝑘 ∈ℝ𝑛×𝑛 and 𝐵𝑘 ∈ℝ𝑛×𝑚 of 𝐴 and 𝐵, respectively. The state approximation error is given by
401

𝑥𝑘 = 𝑥𝑘+1 − 𝑥𝑘+1. (31)
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Fig. 3. Striatum learning scheme.

Here, we want to minimize the following index

𝐽1 =
1
2
𝑥⊤
𝑘
𝑥𝑘. (32)

The following rule is used to estimate 𝜗𝑘 as

𝜗𝑘+1 = 𝜗𝑘 − 𝛼2𝜑𝑘𝑥𝑘 (33)

here 𝛼2 ∈ (0, 1] is a learning rate. The convergence of the rule (33) is similar to the presented in Theorem 1.

 Striatum learning system

Fig. 3 depicts the striatum block scheme. The scheme is composed of two main systems: a gradient rule that estimates a new 
rnel matrix  𝑖 and an inverse optimal control algorithm to estimate the weight matrix 𝑆𝑖+1 of the reward function.

1. Gradient update rule for the kernel matrix

Define the control gain error 𝐾𝑖
𝑘
∈ℝ𝑚×𝑛 which measures the difference between the hippocampus and neocortex gains as

𝐾𝑖
𝑘
=𝐾𝑒 −𝐾𝑖

𝑘

= −
(
�̄��̄�⊤(�̄��̄�⊤)−1 +𝐿−1𝐵⊤

𝑘
𝑃 𝑖
𝑘
𝐴𝑘

)
,

(34)

here 𝐿 =𝐿(𝑃 𝑖
𝑘
) =𝑅 +𝐵⊤

𝑘
𝑃 𝑖
𝑘
𝐵𝑘. Here, we want to minimize the gain error to ensure that both the hippocampus and neocortex gains 

e approximately the same. To achieve this, define the cost index

𝐸𝑖 = tr{𝐾𝑖⊤
𝑘
𝐾𝑖

𝑘
}. (35)

The following gradient descent rule

 𝑖 = 𝑃 𝑖
𝑘
− 𝛼3∇𝑃𝐸

𝑖 (36)

used to derive an improved kernel matrix  𝑖 ∈ℝ𝑛×𝑛, where 𝛼3 ∈ℝ+ is a learning rate and ∇𝑃 = 𝜕

𝜕𝑃 𝑖
𝑘

defines the gradient respect to 

atrix 𝑃 𝑖
𝑘
. We can observe that

∇𝑃

{
𝐿𝐿−1 = 𝐼

}
𝐵⊤

𝑘
𝐵𝑘𝐿

−1 +𝐿∇𝑃 𝐿
−1 = 0

∇𝑃 𝐿
−1 = −𝐿−1𝐵⊤

𝑘
𝐵𝑘𝐿

−1.

The final update rule for the kernel matrix  𝑖 is

 𝑖 = 𝑃 𝑖
𝑘
+ 𝛼3

(
𝐾𝑖⊤

𝑘
𝐿−1𝐵⊤

𝑘
(𝐴𝑘 −𝐵𝑘𝐾

𝑖
𝑘
)

+ (𝐴𝑘 −𝐵𝑘𝐾
𝑖
𝑘
)⊤𝐵𝑘𝐿

−1𝐾𝑖
𝑘

)
.

(37)

Here the importance of the gradient identification rule (33) is observed since (37) requires prior information of matrices 𝐴 and 
402

(in this case 𝐴𝑘 and 𝐵𝑘).
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2. Inverse optimal control

The new kernel matrix  𝑖 is used with the estimates 𝐴𝑘 and 𝐵𝑘 to compute a new weight matrix 𝑆𝑖+1 using a DARE [6] as

𝑆𝑖+1 =  𝑖 −𝐴⊤
𝑘
 𝑖𝐴𝑘

+𝐴⊤
𝑘
 𝑖𝐵𝑘(𝑅+𝐵⊤

𝑘
 𝑖𝐵𝑘)−1𝐵⊤

𝑘
 𝑖𝐴𝑘

(38)

Theorem 2 provides the weight matrix 𝑆𝑖 and gain error 𝐾𝑖
𝑘
convergence using the proposed striatum scheme.

eorem 2. The weight matrix 𝑆𝑖 converges as the number of iterations 𝑖 increases with a small enough learning rate 𝛼3. Here, convergence 
eans that ‖𝑆𝑖+1 − 𝑆𝑖‖ ≤ 𝜀𝑆 for a small threshold 𝜀𝑆 ∈ℝ+. Then, the control gain error 𝐾𝑖

𝑘
converges to zero in the limit.

oof. The DARE (38) of the striatum’s IOC algorithm is

𝑆𝑖+1 =  𝑖 −𝐴⊤
𝑘
 𝑖𝐴𝑘

+𝐴⊤
𝑘
 𝑖𝐵𝑘(𝑅+𝐵⊤

𝑘
 𝑖𝐵𝑘)−1𝐵⊤

𝑘
 𝑖𝐴𝑘. (39)

Let  = 𝛼3∇𝑃𝐸
𝑖. Substituting (36) in (39) gives

𝑆𝑖+1 = (𝑃 𝑖
𝑘
−) −𝐴⊤

𝑘
(𝑃 𝑖

𝑘
−)𝐴𝑘

+𝐴⊤
𝑘
(𝑃 𝑖

𝑘
−)𝐵𝑘(𝑅+𝐵⊤

𝑘
(𝑃 𝑖

𝑘
−)𝐵𝑘)−1

×𝐵⊤
𝑘
(𝑃 𝑖

𝑘
−)𝐴𝑘. (40)

The neocortex learning system fulfils the next DARE

𝑆𝑖+1 = 𝑃 𝑖+1
𝑘

−𝐴⊤
𝑘
𝑃 𝑖+1
𝑘

𝐴𝑘

+𝐴⊤
𝑘
𝑃 𝑖+1
𝑘

𝐵𝑘(𝑅+𝐵⊤
𝑘
𝑃 𝑖+1
𝑘

𝐵𝑘)−1𝐵⊤
𝑘
𝑃 𝑖+1
𝑘

𝐴𝑘. (41)

Matching (40) and (41) gives

𝑃 𝑖+1
𝑘

−𝐴⊤
𝑘
𝑃 𝑖+1
𝑘

𝐴𝑘

+𝐴⊤
𝑘
𝑃 𝑖+1
𝑘

𝐵𝑘(𝑅+𝐵⊤
𝑘
𝑃 𝑖+1
𝑘

𝐵𝑘)−1𝐵⊤
𝑘
𝑃 𝑖+1
𝑘

𝐴𝑘

=𝑃 𝑖
𝑘
−𝐴⊤

𝑘
𝑃 𝑖
𝑘
𝐴𝑘

+𝐴⊤
𝑘
𝑃 𝑖
𝑘
𝐵𝑘(𝑅+𝐵⊤

𝑘
(𝑃 𝑖

𝑘
−)𝐵𝑘)−1𝐵⊤

𝑘
𝑃 𝑖
𝑘
𝐴𝑘

−
(
𝐴⊤

𝑘
𝐵𝑘(𝑅+𝐵⊤

𝑘
(𝑃 𝑖

𝑘
−)𝐵𝑘)−1𝐵⊤

𝑘
𝐴𝑘

+𝐴⊤
𝑘
𝐵𝑘(𝑅+𝐵⊤

𝑘
(𝑃 𝑖

𝑘
−)𝐵𝑘)−⊤𝐵⊤

𝑘
𝐴𝑘

)
+ 𝛼3𝐴

⊤
𝑘
(𝑅+𝐵⊤

𝑘
(𝑃 𝑖

𝑘
−)𝐵𝑘)−1𝐵⊤

𝑘
𝐴𝑘. (42)

The gradient rule (36) improves in each iteration 𝑖 the matrix  𝑖 in order to minimize the control gain error 𝐾𝑖. That is, 
𝑖→∞∇𝑃 𝐸

𝑖 = 0 or equivalently lim𝑖→∞  𝑖 = 𝑃 𝑖
𝑘
. Hence, (42) is reduced to

lim
𝑖→∞

(
𝑃 𝑖+1
𝑘

−𝐴⊤
𝑘
𝑃 𝑖+1
𝑘

𝐴𝑘

+𝐴⊤
𝑘
𝑃 𝑖+1
𝑘

𝐵𝑘(𝑅+𝐵⊤
𝑘
𝑃 𝑖+1
𝑘

𝐵𝑘)−1𝐵⊤
𝑘
𝑃 𝑖+1
𝑘

𝐴𝑘

)
= lim

𝑖→∞

(
𝑃 𝑖
𝑘
−𝐴⊤

𝑘
𝑃 𝑖
𝑘
𝐴𝑘

+𝐴⊤
𝑘
𝑃 𝑖
𝑘
𝐵𝑘(𝑅+𝐵⊤

𝑘
𝑃 𝑖
𝑘
𝐵𝑘)−1𝐵⊤

𝑘
𝑃 𝑖
𝑘
𝐴𝑘

)
. (43)

The following can be concluded from the above results

lim
𝑖→∞

𝑆𝑖+1 = lim
𝑖→∞

𝑆𝑖 ⇒ 𝑆𝑖+1 = 𝑆𝑖, (44)

d hence lim
𝑖→∞

𝑃 𝑖+1
𝑘

= 𝑃 𝑖
𝑘
. This completes the proof. □

In addition, the following theorem establishes the existence of multiple solutions for 𝑆𝑖+1 and 𝑃 𝑖 that satisfy the same 
403

ppocampus performance 𝐾𝑖 =𝐾𝑒.
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eorem 3. Let the hippocampus gain 𝐾𝑒 matches with the expert’s gain 𝐾𝑒. Assume that 𝑆𝑖 and 𝑃 𝑖 converge to some matrices 𝑆∗ and 𝑃 ∗

d verify the DARE

𝑆𝑖 − 𝑃 𝑖 +𝐴⊤𝑃 𝑖𝐴−𝐴⊤𝑃 𝑖𝐵𝐾𝑒 = 0 (45)

en, any 𝑆∗ = 𝑆𝑒 +𝑆𝑖 and 𝑃 ∗ = 𝑃𝑒 + 𝑃 𝑖 satisfy the DARE (6) and consequently obtains the same control gain 𝐾𝑒.

oof. The DARE (6) is written in terms of 𝑆∗ and 𝑃 ∗ as

𝑆𝑒 − 𝑃𝑒 +𝐴⊤𝑃𝑒𝐴−𝐴⊤𝑃𝑒𝐵(𝑅+𝐵⊤𝑃𝑒𝐵)−1𝐵⊤𝑃𝑒𝐴

= 𝑆∗ − 𝑃 ∗ +𝐴⊤𝑃 ∗𝐴−𝐴⊤𝑃 ∗𝐵𝐾𝑒

− 𝑆𝑖 + 𝑖 −𝐴⊤ 𝑖𝐴+𝐴⊤ 𝑖𝐵𝐾𝑒 = 0. (46)

call that in this paper 𝑅 =𝑅𝑒. Since 𝑆𝑖 and  𝑖 satisfy the DARE (45) implies that

𝑆∗ − 𝑃 ∗ +𝐴⊤𝑃 ∗𝐴−𝐴⊤𝑃 ∗𝐵𝐾𝑒 = 0 (47)

e equality (47) is valid when

𝐴⊤𝑃 ∗𝐵 =𝐾⊤
𝑒 (𝑅+𝐵⊤𝑃 ∗𝐵)

𝐵⊤𝑃 ∗𝐴 = (𝑅+𝐵⊤𝑃 ∗𝐵)𝐾𝑒

hich means that 𝐾𝑒 can be obtained as

𝐾𝑒 = (𝑅+𝐵⊤𝑃 ∗𝐵)−1𝐵⊤𝑃 ∗𝐴 =𝐾∗ (48)

here 𝑃 ∗ ≠ 𝑃𝑒 when  𝑖 ≠ 0 and 𝐾∗ ∈ℝ𝑚×𝑛 is the control gain obtained from matrices 𝑆∗ and 𝑃 ∗. Hence, there exist multiple kernel 
atrices 𝑃 ∗ which yields the same gain matrix 𝐾𝑒 and in consequence 𝑆∗ is not unique.
From the above results, we have that

(𝑅+𝐵⊤𝑃 ∗𝐵)𝐾𝑒 = 𝐵⊤𝑃 ∗𝐴 (49)

(𝑅+𝐵⊤𝑃𝑒𝐵)𝐾𝑒 = 𝐵⊤(𝑃 ∗ − 𝑖)𝐴 (50)

e difference between (49) and (50) gives

𝐵⊤(𝑃 ∗ − 𝑃𝑒)𝐵𝐾𝑒 = 𝐵⊤ 𝑖𝐴

𝐵⊤ 𝑖𝐵𝐾𝑒 = 𝐵⊤ 𝑖𝐴
(51)

hich means that we are able to compute 𝐾𝑒 without 𝑅, that is,

𝐾𝑒 = (𝐵⊤ 𝑖𝐵)−1𝐵⊤ 𝑖𝐴. (52)

, the DARE (46) can be written as

𝑆𝑖 = 𝑆∗ − 𝑆𝑒

= (𝑃 ∗ − 𝑃𝑒) −𝐴⊤(𝑃 ∗ − 𝑃𝑒)𝐴+𝐴⊤𝑃 ∗𝐵𝐾𝑒

−𝐴⊤𝑃𝑒𝐵𝐾𝑒

=  𝑖 −𝐴⊤ 𝑖𝐴+𝐴⊤𝑃 ∗𝐵(𝑅+𝐵⊤𝑃 ∗𝐵)−1𝐵⊤𝑃 ∗𝐴

−𝐴⊤𝑃𝑒𝐵(𝑅+𝐵⊤𝑃𝑒𝐵)−1𝐵⊤𝑃𝑒𝐴.

(53)

erefore, from (53) and (51) allows to conclude that 𝑆𝑖 has multiple solutions which are not necessarily positive definite due to 
e cancellation of matrix 𝑅. In consequence, the positivity of the kernel matrix  𝑖 can be violated which can produce unstable 
osed-loop trajectories. To solve this issue, a constraint that relates the values of the weight matrices 𝑆𝑖 and 𝑅 has to be added to 
arantee positive definite and unique solutions. Furthermore, this proof assumes exact knowledge of matrix 𝐴 and 𝐵 to compute 
. However, the estimates 𝐴𝑘 and 𝐵𝑘 may introduce a small modelling error to matrix 𝑆𝑖 if the regressor matrix 𝜑(𝑥, 𝑢) is not PE. 
is completes the proof. □

 Simulation studies
404

Two systems, an unstable system and a power system, proposed in [17] are used to test the proposed approach.
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Fig. 4. Neocortex results.

1. Unstable linear system

Consider a linear system (1) with the following matrices

𝐴 =
[
1.8 −0.77
1 0

]
, 𝐵 =

[
1
0

]
.

The above system is unstable since the eigenvalues of matrix 𝐴 are 𝜆(𝐴) = {1.1, 0.7}. However, the system is controllable. Consider 
at an expert user designs an optimal controller using the following weight matrices

𝑆𝑒 =
[

1 −0.5
−0.5 0.25

]
, 𝑅𝑒 = 1.

The DARE (6) is used to compute 𝑃𝑒 and 𝐾𝑒 as

𝑃𝑒 =
[
2.0467 −1.1424
−1.1424 0.6483

]
,

𝐾𝑒 =
[
0.8342 −0.5173

]
.

The states and input trajectories under the expert’s policy are collected in the vectors �̄� and �̄�. These data are corrupted by a small 
iformly distributed random number 𝜂 ∈ (0, 0.1) to simulate sensor noise. These vectors have 1000 data points in each dimension. 
e LS rule (9) is used to estimate the expert’s control gain from the stored data. The gain estimate 𝐾𝑒 is

𝐾𝑒 =
[
0.8248 −0.5202

]
.

The estimation error 𝐾𝑒 = ‖𝐾𝑒 −𝐾𝑒‖ between the expert’s control gain 𝐾𝑒 and the hippocampus gain 𝐾𝑒 is 𝐾𝑒 = 0.0098 which is 
uivalently to a 0.98% of estimation error. This error is practically negligible but can be reduced by means of a low pass filter or a 
atrix approximation based on a singular-value decomposition algorithm. Here it is clear that the hippocampus control gain 𝐾𝑒 can 
ffer from the real expert’s gain 𝐾𝑒 in presence of measurement noise which may produce different control performances.
The Q-learning and the identification algorithms of the neocortex learning system are trained with the following learning rates: 
= 0.01 and 𝛼2 = 0.003. These learning rates exhibit the best performance in the training phase. The weights of the reward function 
e initialized as 𝑆0 = 𝐼2 and 𝑅 = 1. The following PE dithering noise [48] is added to the control input 𝑢𝑘 in the first 100 steps: 
𝑘 = 34(sin2(100𝑘) cos(100𝑘) + sin2(2𝑘) cos(0.1𝑘) + sin2(−1.2𝑘) cos(0.5𝑘) + sin5(𝑘) + sin2(1.12𝑘) + cos(2.4𝑘) sin3(2.4𝑘)). The amplitude and 
quencies of the PE signal were manually tuned until the best estimation performance was achieved.
The obtained results of the neocortex learning system are shown in Fig. 4. The results exhibit the stabilization of all the states of 
e proposed unstable system. In addition, both the parameters of the Q-learning and identification algorithms converge to their real 
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lues in accordance to the kernel matrix 𝑃 𝑖
𝑘
. Here, the estimates of the identification algorithm are
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Fig. 5. Striatum learning results of Case 1.

𝐴𝑘 =
[
1.799 −0.7696
1.0002 −0.0001

]
, 𝐵𝑘 =

[
0.999
0.0002

]
.

The norm of the identification error is used to evaluate the obtained estimates. The results are ‖𝜗𝑘‖ = 0.0015 which is equivalently 
 the 0.15% of identification error.
The striatum learning system uses a learning rate of 𝛼3 = 0.9 to obtain the new kernel matrix  𝑖. The complementary results are 
own in Fig. 5.
The obtained matrices are

𝑃 𝑖 =
[
2.0825 −1.2060
−1.2060 1.8346

]
,

𝐾𝑖 =
[
0.8248 −0.5202

]
,

𝑆𝑖 =
[
−0.0607 −0.5709
−0.5709 1.4341

]
.

Notice that a negative definite matrix 𝑆𝑖 is obtained which violates its initial definition (positive semi-definite matrix). The main 
ason of this weird result is because the initial weight matrix 𝑆0 is greater than the expert’s weight matrix 𝑆𝑒, that is, the one-step 
adient rule updates  𝑖 in the direction where the control gain error 𝐾𝑖 decreases; however, there is a point where the gradient 
date rule cannot decrease the gain error (due to the dynamics of the system and the proposed learning rate 𝛼3) to guarantee 
positive definite kernel matrix  𝑖. Hence, the update rule modifies the direction of the gradient such that the weight matrix 𝑆𝑖

btained from the IOC algorithm) can take negative values to guarantee convergence of 𝐾𝑖 to zero. This fact can be seen in iteration 
 of Fig. 5.
To notice more this fact, we use another expert’s weight matrix denoted by 𝑆2

𝑒 that is bigger than the initial weight matrix 𝑆20 = 𝐼2

𝑆2
𝑒 =

[
2 −1
−1 2

]
.

The new expert’s kernel matrix and control gain under the new kernel matrix 𝑆2
𝑒 are

𝑃 2
𝑒 =

[
5.619 −1.9498

−1.9498 2.5033

]
,

𝐾2
𝑒 =

[
1.2335 −0.6537

]
.

Assume that the hippocampus gain 𝐾2
𝑒 was equal to 𝐾2

𝑒 . The same learning rates are used in this example. The complementary 
sults for the control gain 𝐾2𝑖 , 𝑃 2𝑖 , and 𝑆2𝑖 are shown in Fig. 6.
The matrices converge to the following values

𝑃 2𝑖 =
[
5.6208 −1.9507
−1.9507 1.8751

]
,

𝐾2𝑖 =
[
1.2335 −0.6537

]
,

𝑆2𝑖 =
[
2.6305 −1.0009
−1.0009 1.3718

]
.

The above results show that the weight matrix 𝑆𝑖 is positive definite since the initial weight matrix 𝑆0 was less than the expert’s 
eight matrix 𝑆𝑒. Notice that for a small gain error 𝐾𝑖 the updates of the gradient descent algorithm are small and hence it requires 
ore iterations to converge.
It is important to observe that the final weight matrix 𝑆𝑖 is completely different to matrix 𝑆2

𝑒 . However, both matrices exhibit 
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e same control gain 𝐾2
𝑒 = 𝐾𝑖. This is because there are different weight matrices 𝑆𝑖 that yields to the same gain 𝐾𝑒. Additional 
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Fig. 6. Striatum learning results of Case 2.

Fig. 7. Optimal value function trajectories.

nstraints can be added to the IOC algorithm to reduce the number of possible solutions or an unique solution, that is, the real 
pert’s weight matrix. One simple constraint is to incorporate the values of the reward function as an additional expert’s feature.
Two different interpretations can be distinguished as a result of using different matrices 𝑆𝑖. The first one lies in the use of negative 
finite weight matrix which can achieve the same hippocampus control policy but the performance of optimal value function is 
graded. Conversely, the second interpretation lies in an enhancement of the optimal value function. Fig. 7 exhibits these two 
terpretations.
The performance of the optimal value function is degraded when a negative definite weight matrix is used. Conversely, the second 
se shows an enhancement in the convergence rate of the optimal value function. Numerically, we have that ‖𝑉 ∗

𝑒 ‖ = 506.2935, 
∗‖ = 695.1129, ‖𝑉 2∗

𝑒 ‖ = 1230.2, and ‖𝑉 2∗‖ = 1155.8.

2. Power system

We further test the proposed approach in a high order power system for the load frequency control of an electric system [17]. 
e discrete-time plant is

𝐴 =

⎡⎢⎢⎢⎢⎣
0.9616 1.0047 0.0867 −0.0450
−0.0739 0.7490 0.1154 −0.1038
−0.5354 −0.3401 0.2303 −0.7378
0.0593 0.0316 0.002 0.9993

⎤⎥⎥⎥⎥⎦
,

𝐵 =
[
0.0450 0.1038 0.7378 0.0007

]⊤
.

The expert’s weight matrices are set to 𝑆𝑒 = 2𝐼4 and 𝑅𝑒 = 1. The expert’s kernel matrix and control gain are

𝑃𝑒 =

⎡⎢⎢⎢⎢⎣
9.7697 13.2744 1.2163 8.4652
13.2744 35.3318 3.7143 11.4238
1.2163 3.7143 2.4953 0.8941
8.4652 11.4238 0.8941 43.4822

⎤⎥⎥⎥⎥⎦
,

𝐾𝑒 =
[
0.2857 2.0596 0.4455 −0.0789

]
.

Sensor noise in the states measurements is modelled as a small random noise 𝜂 ∈ (0, 0.1). The estimated hippocampus gain is

𝐾𝑒 =
[
0.2857 2.0596 0.4455 −0.0789

]
.
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Fig. 8. Complementary learning results.

The learning rates are manually tuned to ensure stability and fast convergence results. The learning rates are set to: 𝛼1 = 0.01, 
= 0.02, and 𝛼3 = 0.9. A duffing system proposed in [49] is used as PE signal to ensure convergence of the parameter estimates. The 
itial weight matrix is set to 𝑆0 = 𝐼4. Fig. 8 exhibits the results of each learning system. The estimation results are

𝐴𝑘 =

⎡⎢⎢⎢⎢⎣
0.9619 1.0027 0.0869 −0.0448
−0.0737 0.7473 0.1156 −0.1036
−0.5355 −0.3390 0.2302 −0.7379
0.0594 0.0307 0.0021 0.9994

⎤⎥⎥⎥⎥⎦
,

𝐵𝑘 =
[
0.0449 0.1037 0.7379 0.0006

]⊤
,

𝑃 𝑖 =

⎡⎢⎢⎢⎢⎣
3.9844 3.6951 2.9187 3.0055
3.6951 10.6332 7.7769 1.4440
2.9187 7.7769 1.8147 2.6496
3.0055 1.4440 2.6496 20.4464

⎤⎥⎥⎥⎥⎦
,

𝐾𝑖 =
[
0.2857 2.0596 0.4455 −0.0789

]
,

𝑆𝑖 =

⎡⎢⎢⎢⎢⎣
2.6917 4.9724 2.9996 1.3580
4.9724 15.5964 7.5602 4.3006
2.9996 7.5602 1.6399 3.0211
1.3580 4.3006 3.0211 1.9976

⎤⎥⎥⎥⎥⎦
.

The obtained matrices show similar results to the previous example. However, both the kernel matrix 𝑃 𝑖 and 𝑆𝑖 are negative 
finite matrices. Fig. 9 shows the optimal value function trajectories under the expert’s and complementary learning kernel matrices.

3. Discussion

Recent works in reward inference are mainly applied for continuous-time linear systems with a quadratic reward structure [23]. 
r discrete-time systems, the approaches that are adopted in the literature consist in model-based IOC or reinforcement learning 
chitectures based on binary reward functions. We do not provide comparisons with those approaches because: i) binary reward 
nctions [22] do not exhibit an optimal performance and, in most cases, the control policy is discontinuous which can destabilize 
e closed-loop trajectories, and ii) IOC algorithms [21] do not show difference with the results provided in this manuscript since the 
entification algorithm estimates accurately the parameters of both the unstable and power systems. Here, the proposed approach 
408

ms to fill the current gap in inferring the reward function of discrete-time linear systems with unknown dynamics.
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Fig. 9. Optimal value function trajectories.

In view of the results of previous sections we can identify the main advantages and areas of opportunity of the proposed 
proach. The main advantages of the proposed algorithm are: 1) it can infer a family of reward functions associated to the 
me hippocampus expert’s performance, 2) the persistence of excitation ensures convergence of the Q-learning and identification 
gorithms simultaneously, and 3) the weight matrices of the reward function can be negative definite and open a gap to investigate 
e effect of this kind of matrices that can produce stable control policies. The main disadvantages and areas of opportunity lie in: a) 
ree hyperparameters (learning rates) are required to tune for the Q-learning, identification, and gradient algorithms, b) convergence 
 the neocortex algorithms require the fulfilment of a PE condition, and c) biased estimates of the identification algorithm may lead 
 solutions that can destabilize the closed-loop trajectories. Further work will work on these disadvantages to increase the impact 
 the proposed technique.

 Conclusions

In this paper, the design of a reward function inference algorithm of expert’s data is discussed. The proposed approach is modelled 
 a complementary learning algorithm that relates three main co-dependent learning systems: the striatum, neocortex, and the 
ppocampus. Whilst the hippocampus is modelled by expert’s knowledge and a PE signal for fast learning, the neocortex is designed 
 a Q-learning and identification algorithms which exhibit good pattern association. The striatum is designed as an IOC algorithm 
 infer the weight matrix of the expert’s reward function. Simulation studies verify the proposed approach with informative results.
Future research includes the incorporation of constraints in the IOC problem and seeks for alternative solutions to relate the 
ocortex and hippocampus to infer effectively the expert’s reward function.
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