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A B S T R A C T

This study explored the concept of a floating offshore wind farm (FOWF) that self-reconfigures wind turbine 
(WT) positions. The self-reconfiguration (SR) mechanism moves degraded turbines to different farm positions to 
delay failures occurring and reduce power loss. A 40-turbine agent-based simulation was created utilising wind 
and turbine performance data. For the first time, the SR mechanism was designed and optimised with principles 
of self-engineering complexity. The paper demonstrates the effectiveness of the SR mechanism through an agent- 
based simulation approach. The optimised SR was used in FOWF simulations of 50 years of operation; SR 
balanced fatigue across the FOWF and led to an increased income of £5–40M at years 27–33 of operation; 
however, outside of these years, there is no net positive income, and by year 50 SR has cost the FOWF £4–7M 
more in movement costs. Lastly, simulations with repair and maintenance restricted to 10 months or less were 
conducted. SR delayed turbine failures, so they occurred in months when repair could be conducted. The SR 
reduced power loss and increased net income by up to £20M, indicating that SR could be useful when repair and 
maintenance times are limited. In the absence of significant operational data, a qualitative validation with ex-
perts confirmed the approach and the validity of the simulation model for a range of FOWF scenarios.   

1. Introduction

Wind turbines (WTs) are a vital renewable energy source needed to
meet 2050 net-zero targets. The UK government aims for 40 GW of wind 
power by 2030 [1]; Floating offshore wind farms (FOWFs) will form a 
significant portion, with the Crown Estate recently announcing 4 GW of 
capacity planned by 2035 [2]. Similarly, Europe’s FOWF capacity is 
estimated to grow from 100 MW to 10 GW by 2030 [3]. Floating offshore 
wind turbines (FOWTs) are popular because they can benefit from 
higher wind speed, fewer constraints on location, flexible construction 
and installation, and lower demolition costs. However, FOWTs are often 
in areas of far offshore with adverse weather, making them costly to 
repair. 

Studies have investigated the levelized cost of energy (LCoE) for 
floating offshore wind farms (FOWF), of which operation and mainte-
nance (O&M) costs make up 11–38% [4–7]. The O&M costs depend on 
the FOWF distance from shore and a suitable port. Advances in sensing 
have led to new condition monitoring (CM) capabilities for key 

components such as gearboxes [8], generators [9] and bearings [10] 
which were previously a point of failure. Advanced artificial intelligence 
techniques can be used to automatically predict the WT health or its 
remaining useful life [11]. This can inform effective O&M strategies to 
reduce costs [12,13] such as preventative [14] or predictive 
maintenance. 

WT power de-rating (reducing blade pitch and power) and wake 
steering (changing the yaw of the nacelle) have both been investigated 
extensively to reduce fatigue and increase power loss from wakes during 
operation [15–18]. A control to de-rate turbines in a FOWF was suc-
cessfully designed to reduce fatigue on upwind turbines in Ref. [19]. 
Zhao et al. balanced the degradation of WTs in a fixed wind farm (WF) 
simulation [15,20]; upwind WTs coordinated with downwind WTs to 
de-rate themselves and balance fatigue and power production across the 
farm. Fatigue and loading reduction were achieved at the expense of 
power production. 

Rodrigues et al. performed initial simulations into automated repo-
sitioning of FOWTs held with three moorings. Turbines were moved 
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using an active system of winches to tighten and loosen mooring lines 
until a position with minimal wake loss was found [20]. Han et al. 
conducted similar investigations but utilised a passive movement driven 
by aerodynamic forces on WTs to drive repositioning [21]. Few changes 
to current semi-submersible FOWT designs would be needed to use this 
movement mechanism, except longer cables and new anchorage posi-
tions [22,23]. More recent research has investigated feed-forward con-
trollers [24] and neural network use [25] to improve this passive 
repositioning control. Efficiency improvements of 20%–53.5% for 
FOWFs are seen compared to non-optimised starting layouts. This 
benefit will be reduced compared to optimised FOWF layouts [26]. Extra 
cost of moving FOWTs and changing wind direction are also not fully 
considered and should be accounted for in future studies. 

Brooks and Roy proposed a self-engineering (SE) system, a built-in 
capability to automatically register degradation and respond to repair 
or delay degradation and failures [27]. Examples of SE systems include 
self-healing materials [28], self-repairing electronics [29] and 
self-reconfiguring manufacturing systems [30]. This study investigated 
the design and simulation of a SE self-reconfiguring (SR) mechanism for 
a FOWF. The mechanism responds to WT degradation registered by CM 
and alters the WT’s use to delay failures or degradation by moving 
degraded WTs to areas where less power is produced, extending WT life. 
The study investigated if SR repositioning can balance fatigue and 
impact power production and farm operation. 

Section 2 outlines the agent-based model and data used. Indicators of 
fatigue and turbulence are used throughout the farm life for each WT. In 
Section 3, the key aspects of redundancy, repeatability and self-control 
(from SE complexity studies) used in SR design are optimised. Section 
4 uses the optimised design in extended simulations of 50 years. Net 
income for WF with and without SR is calculated every year. Finally, 
section 5 shows the impact of using SR when restricting the number of 
available repair months. 

2. Method 

An agent-based model was constructed using AnyLogic to simulate 
the FOWF behaviour with and without SR. AnyLogic was used because it 

utilises packages on repair and maintenance and transport logistics, 
which can be applied to model SR movements; it also enables the inte-
gration of discrete events and stochastic features in the agent-based 
model. The Hywind farm in Scotland (Peterhead, Scotland) and 6 MW 
SWT-6.0-154 were modelled because it is a well-advanced FOWT trial 
with open access to site information and data [31]. Previous academic 
studies, available data and informal discussions with industry stake-
holders were used. All results reported were averages of ten simulation 
runs. Error bars correspond to one standard deviation in results. An 
overview of the WT model is shown in Fig. 1. 

2.1. Turbine layout 

Only five turbines are installed at Hywind Scotland currently. 
Therefore, an optimised offshore WF (OWF) layout designed to minimise 
wake losses was taken from Amaral and Castro [32] and used with 40 
FOWT. Turbines of diameter (DT) 156m were placed at 9DT towards the 
prevailing wind direction and 4.5DT perpendicular to the prevailing 
wind direction. The layout between turbines is shown in Fig. 2 with a 
compass showing the farm angle (240◦ from true north). The FOWF was 
set 50 km from shore, where a maintenance hub was located. Each 
turbine was assumed to have a wireless communication link to neigh-
bouring turbines, shown in blue Fig. 2. 

2.2. Power calculation and wake effect 

WT operation creates turbulence, impacting the downwind wind 
speed (the wake effect). An estimate for the wake effect on local wind 
speed (vi) for each turbine was found using Equation (1) (from the 
Jensen wake model [33]). The wake effect reduces wind speed directly 
behind a turbine; however, as distance x from the upstream WTs in-
creases, wind speed (v(x)) will approach freestream speed (Vo); Fig. 3 
shows two WTs and their wakes. CThrust represents the thrust coefficient 
[34]. The wake diameter at distance x (D(x)) is found from D(x) = DT +

2kx, where k is the wake decay coefficient (0.05 from Ref. [35]). 

Fig. 1. – Overview flow chart of model used for the WF and WT. See supplementary material for a detailed diagram.  
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Each model WT agent had a wake region which moves as the WT 
rotates. Wind speed was recalculated if a downwind WT fell into this 
wake region. When multiple wakes interact, the sum of squares method 
was used to find wind speed [35], shown in Equation (2). 
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(2)  

Where K is the number of upwind turbine wakes impacting WT i; vji 

denotes wind speed at turbine i due to the single wake from turbine j. 

Factors 1 −
vji
vj 

were found using Equation (1). As wind direction and 
speed changed, new wakes were created, and local wind speed was 
recalculated. This method only approximates the wake effect but is 
suitable for this model, where the focus is SR. 

2.3. Wind data and direction 

A year of hourly average wind speed and directions were taken from 
the UK Centre for Environmental Data Analysis [36] and their nearest 
monitoring site to Hywind Scotland. The data for 2021 is displayed in 
Fig. 4. 

The most common (mode) wind direction and mean wind speed for 
each day were used in simulations. The wind speed and direction of this 

Fig. 2. - Optimised WF layout used; turbine positions are green along with communication connections between turbines in blue. Top left shows a compass with a 
purple arrow showing the prevailing wind. 

Fig. 3. – Diagram of the wake effect caused by a turbine and the parameters used.  

S. Brooks et al.                                                                                                                                                                                                                                  



Renewable Energy 206 (2023) 1301–1314

1304

model were updated for the correct day of the year. 

2.4. Modelling fatigue degradation 

Turbine power production is assumed to relate to higher wear on 
components such as gearboxes, generators and bearings. Turbine use 
and failure rate are shown to be proportional to the wind speed expe-
rienced by a turbine [37]. This study utilised the concept of a Fatigue 
Coefficient (Cfatigue), adapted from previous studies [15,38]. Equation 
(3) shows Cfatigue calculated using power produced at the site’s average 
wind speed (Paverage) instead of the rated turbine power (as in Refs. [15, 
38]); therefore, Cfatigue = 1 will occur closer to the end of design life 
(Tlifetime) of 20 years (175200 h). 

Cfatigue =

∫t0

0

P(t) dt

PaverageTlifetime
(3) 

Cfatigue is dependent on power produced (P(t)) at each simulation 
hourly time step (t) based on the power curve [39], up to the current 
time step (to). 

Studies have identified failure rates (λ) for OWTs [40], but only es-
timates exist for FOWT [41,42]. Mean time to failure (MTTF) is related 
to λ by Equation (4). 

MTTF =
1
λ

(4)  

The value of Cfatigue was linked to MTTF to create a set Cfatigue value at 
which failure occurs. A fatigue coefficient threshold (CT) was used, as 
shown in Equation (5) for the first threshold value (CT(1)). 

(1) =
Paverage MTTF
PaverageTlifetime

=
MTTF
Tlifetime

(5) 

Table 1 shows the original average failure rates (λ0), MTTF and CT for 
each failure type. This failure data was used because it categorised 
failures in Minor, Major and Major replacement (MR) types [40], used 
later in SR design optimisation. However, the data does not include 
mooring line failures or floating foundation failures. 

The threshold was repeated across turbine life at intervals. Values of 
CT for each failure type (CT,type) is defined by Equation (6) where ntype 

was the number of failures that occurred of each type. A random nor-
mally distributed value Z (N ∼ (1,0.252)) was used to add a stochastic 
element to each CT. 

CT (n) = (n + 1 + Z)

1
λ0

Tlifetime
(6) 

A value R for remaining useful life before the next failure was 
calculated using Equation (7). 

R =
CT (n) − Cfatigue

CT (n) − CT (n − 1)
(7) 

It was assumed that a smart condition monitoring system [43] on 
board turbines could indicate when a component had degraded and was 
close to R = 0.3. This threshold is based on well-monitored and studied 
components such as bearings and gearboxes, which can be predicted 
twelve to six months in advance [44,45]. 

Values of λ will not be constant across WT life but follow a bathtub 
curve. No increase in failure rate was used at the start because there was 
assumed to be a commissioning phase before the WF was fully opera-
tional, where initial faults would be identified. However, the function in 
Equation (8) was used to represent changing failure rate towards WT 
end of life (EOL). 

λ
(
Cfatigue

)
=

⎧
⎨

⎩

λ0 Cfatigue < 0.5(
1 + β

(
Cfatigue − 0.5

)β−1
)

λ0 Cfatigue > 0.5
β = 2.5

(8) 

The relationship chosen was designed to reflect an increase in O&M 
costs from years 11–20 compared with years 1–10 seen previously [46]. 

2.5. Repairing turbines 

WT sent repair requests to the onshore maintenance hub (50 km 
away), which dispatches a repair boat for minor or major repairs or a 
barge for MR. The cost and length of each repair type were scaled from 
previous studies and summarised in Table 2. 

Three restrictions on when a repair or SR can take place were 
modelled.  

1. Wave heights were randomly generated from a Weibull distribution 
of the data from previous site studies [47]. Repairs and SR were 
paused for wave height above 1.5m, a value commonly used to limit 
ships’ usage [48].  

2. Repairs and SR movements were limited to daylight hours because 
operating at sea in the dark increases the risk of worker accidents or 
collisions between turbines and vessels, causing damage.  

3. Repairs and SR were paused if the wind speed was higher than 25 m/ 
s [41]. 

Fig. 4. - Wind rose for Peterhead Harbour over 2021.  

Table 1 
- Data of λ0, MTTF and CT for each failure type used in simulations. Adapted 
from data in Ref. [40].  

Failure type λ0 [turbine−1year−1] MTTF [h] CT(1)

Minor 6.2 1436 0.00656 
Major 1.1 7964 0.03640 
MR 0.3 29200 0.13330  

Table 2 
- Average cost and length of repair for failure types used in simulations. Data 
from Ref. [40].  

Failure Repair cost [£] Repair time [h] 

Minor 1500 6.67 
Major 69000 17.64 
Major replacement 50200 116.19  

S. Brooks et al.                                                                                                                                                                                                                                  



Renewable Energy 206 (2023) 1301–1314

1305

2.6. Modelling turbulent loading degradation 

Wake effects impact power produced by a turbine and the cyclic 
loading. Effective Turbulence Intensity (Ieff ) experienced by a WT in-
dicates fatigue loading experienced; see Equation (9). 

=
σeff

Vo
(9)  

Where σeff represents the effective turbulence standard deviation. Large 
variations in local wind speed create higher cyclic loading. This type of 
loading impacts load-bearing components such as towers, blades, or 
joints. 

Turbulence Loading Coefficient (CTurb) [38] experienced by the tur-
bine represents an estimate of the lifetime loading on a turbine, as shown 
in Equation (10). 

CTurb =

∫t0

0

Ieff dt

Tlifetime
(10)  

Turbulence intensity changed depending on the distances between tur-
bines creating wakes. Values of σeff were approximated using the 
ambient turbulence standard deviation (σv) and the difference in stan-
dard deviation induced by wakes (Δσv). Equation (11) or 12 (from Refs. 
[49,50]) were used depending on the minimum distance between 
turbines. 

σ2
eff = σ2

v +
∑K

i=1
Δσ2

v,i min(x) < 10D (11)  

Δσv =
1

1.5 +
(

0.8x
CTrustDT

)

σeff = σv min(x) > 10D (12) 

Values for σv was calculated using data on ambient wind conditions 
from Ref. [51] Δσv was calculated for each wake a turbine was in. 

2.7. Self-reconfiguration (SR) mechanism 

The SR mechanism used maned tugs to move FOWT (similar to 

FOWT installation), meaning SR was not automated as required for SE. A 
crewed tug would also probably be used initially as automated ships 
have not been developed. Future SR systems could utilise an autono-
mous boat to make a complete SE system. 

The SR mechanism implemented occurs when WTs enter major or 
MR degradation states, as displayed in Fig. 5. SR initially occurred at two 
set points shown in Fig. 5. 

No movement occurs for minor degradation because this would be 
too frequent and costly. The frequency of SR was investigated and 
optimised in Section 3. 

Previous studies moving FOWT constrained movement to a set re-
gion, such as between three anchors [21,23,52]. This study used a novel 
method; each turbine could be detached and swapped to another 
anchorage within the farm. When a turbine is degraded, it is moved to a 
location where less power is produced, slowing the increase in Cfatigue 
and degradation. A simple example is shown in Fig. 6 a) and b); turbine 5 
degrades and is swapped with one downwind. After a repair (Fig. 6 c), 

Fig. 5. Diagram of the different states for a major and MR failure. Blue boxes show all the points at which SR can occur.  

1) when a turbine was registered as degraded before a major or MR failure  
2) after a turbine was repaired. 

Fig. 6. – Purple arrows show wind direction; red arrows show swapping of 
turbines. Green circle turbines indicate ’normal operation’, orange shows 
degraded and red circles show failed. a) shows the starting positions and b) the 
swap between 5 and 2. c) shows 5 failing and being repaired. d) after repair of 5 
it is swapped with 4. 
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the controller looks for another turbine in a worse state to swap with; an 
example is shown in Fig. 6 d) where turbine 5 swaps with 4, which has 
degraded. 

The SR method and results of the study are applicable to other FOWF 
such as semi-submersible or barge foundations because these allow 
foundation movement and can be towed into position. However, current 
designs would need adaptions to allow anchor cables detached and 
attached when needed. Tension leg foundations FOWT would not work 
because they require a fixed tension in anchor cables and are attached 
well below the surface. 

2.8. Cost indicators for SR 

A set of cost indicators calculated if reconfiguration was potentially 
beneficial for the farm; this included three factors.  

a. CImovement(x1,y1,x2,y2) = Cost of swapping turbine at position 1 with 
position 2  

b. CIPowerLoss(x1,y1,x2,y2) = Indicator of difference in income lost from 
power loss in locations 1 and 2. 

c. CIrepairDiff = Indicator for the cost of repair or total turbine replace-
ment once it occurs. 

It is important to note that values are not real costs and are just 
calculated to compare the value of different actions. SR movement was 
beneficial when CImovement < CIrepairDiff + CIPowerLoss. The optimum SR was 
the swap of turbines that maximised X; see Equation (13). X must be 
positive for an SR to occur. 

X = CIrepairDiff + CIPowerLoss − CImovement (13)  

2.8.1. Cost indicators of movement 
Previous studies have not considered the cost of movement when 

using moving FOWTs. This study focused on the movement cost of SR, 
though there will also be increased design and manufacturing costs from 
SR; however, these are harder to predict without detailed designs. The 
cost of a tug moving FOWTs at sea was calculated using information 
from previous installation transportation studies [41]. Table 3 shows 
data used for cost calculations. 

Simulations recorded tug use and cost. Disconnection and recon-
nection of FOWT were assumed to be 4 h each. CImovement for individual 
movement is found with Equation (14). The cost of SR is found by 
summing the costs of all completed moves also from Equation (14). 

CIMovement = Cfuel

((
2 F1Dmove

1.852 ν

)

+

(
2 F0Dshore

1.852 ν

))

+ Ω2 + (Ω1 + Ω3) ∗ Mdays

(14) 

Distance between turbines is Dmove and the total number of days a 
boat operates is Mdays. 

2.8.2. Cost indicators for repairing 
The cost of repairing a turbine only occurs with a failure. Remaining 

useful life (R) was used to indicate the cost of replacing the par; the 
closer to the end of life, the higher the CI gets. Repair cost indicator 

(CIrep) was approximated using Equation (15), where Costr is the cost of 
repairing a failure type, taken from Table 2. 

CIrep = (1 − R)Costr (15) 

Equation (16) shows the difference in potential repair cost at R of 
two turbines. 

CIrD = (R2 − R1)Costr (16) 

CI for Major failure (CIrD,Major), MR failure (CIrD,MR) or complete tur-
bine replacement (CIrD,Turb) a was combined in Equation (17). 

CIrepairDiff =(R2,Major−R1,Major)Costr,Major
+

(
R2,MR − R1,MR

)
Costr,MR

+
(
R2,Turb − R1,Turb

)
Costr,Turb (17)  

2.8.3. Cost indicators for power lost (cost of lost opportunity) 
A failed turbine no longer produces power; the total loss depends on 

the time needed to repair the turbine and its WF position. A turbine in 
the WF centre produces less power than one towards the prevailing wind 
edge. This difference in power loss (CIPowerLoss) was quantified by the 
difference in average power produced at each position (P1,ave , P2,ave), 
electricity cost per kWh (ckWh) and the repair time (trepair), see Equation 
(18). 

CIPowerLoss = ckWhtrepair
(
P1,ave − P2,ave

)
(18) 

The wholesale price of electricity was taken as £0.15 per kWh; 
however, it should be noted that recent world events demonstrate this 
value could increase unpredictably. 

2.9. Cost calculations for a wind farm 

Net income in Equation (20) (NItotal) of the WF during the operation 
was found by summing net income every year (NIY). All costs were 
converted to a present value (PV) using a discount rate (r) of 0.03. 

CashFlowY = Incpower,Y −
(
Cos tSR,Y + Cos tOpp,Y + Cos tMain,Y + Cos tEOL

)

NIY =
Cashflow
(1 + r)

Y (19)  

NItotal =
∑n

Y=0

CashFlowY

(1 + r)
Y (20) 

Cash flow was based on income from the power produced (Incpower), 
cost of SR (Cos tSR,Y), operation cost (Cos tOpp), maintenance and repair 
costs (Cos tMain,Y), and cost at the EOL (Cos tEOL). These costs are 
explained further in each subsection. The difference between NItotal for a 
WF with (NItotal,SR) and without SR (NItotal,NoSR) is ΔNItotal shown in 
Equation (21). 

ΔNItotal = NItotal,SR − NItotal,NoSR (21) 

This value indicates if the use of SR increases or decreases WF’s 
income. 

2.9.1. Income from power 
Income from power (Incpower) was the total power produced over one 

year of operation. An assumed electrical efficiency (ω = 0.8) and a loss 
factor due to WT age (α) were used; see Equation (22). The loss factor is 
0 at the begging of life and reduced to 16% by EOL, as noted in previous 
studies of WT performance with age [54]. 

Incpower = ckWh ∗ ω ∗ (1 − α) ∗
∑8670

0
P(t) (22)  

α = 0.16 Cfatigue  

Table 3 
- Information from Refs. [41,53] used for the tug cost estimate.  

Variable Value used Nomenclature 

Fuel Consumption – no turbine [l/h] 1046 F0 

Fuel Consumption – one turbine [l/h] 1942 F1 

Movement speed [knots] 10 ν 
Day rate [£/day] 18735 Ω1 

Mobilisation cost [£] 3000 Ω2 

Crew cost [£/day] 220 Ω3 

Fuel cost as of May 2022 [£/l] 1.37 Cfuel 

Distance to shore [km] 50 Dshore  
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2.9.2. Operation cost(Cos tOpp) 
A fixed operation cost of £150,000 per turbine per year (from 

Ref. [55]) covered insurance, site inspections, training, worker wages 
and management costs. Costs were assumed to increase by 10% in the 
second half of WT life (0.5< Cfatigue < 1) [46]. This was extended to 
assume a 20% for operating a WT beyond the EOL(Cfatigue > 1). 

2.9.3. Maintenance and repair cost(Cos tMain,Y) 
Maintenance and repair costs were dependent on the number of 

failures each year (nMinor,Y , nMajor,Y and nMR,Y) and costs of repairing each 
failure that year (Costr,Minor ,Costr,Major and Costr,MR); see Equation (23). 

Cos tMain,Y = nMinor,Y Costr,Minor + nMajor,Y Costr,Major + nMR,Y Costr,MR (23)  

2.9.4. End-of-life extra cost(Cos tEOL) 
Many OWTs are only now coming to EOL, with few decommissioned. 

When a WF reaches EOL, strategies include extending the life of existing 
turbines, repowering turbines, or decommissioning turbines [56]. Three 
similar WT EOL scenarios were used in this study when Cfatigue = 1. 

Scenario 1 (S1) – A WT’s life was extended (beyond Cfatigue = 1) as 
modelled in other life extension studies [57,58]. Changes to O&M costs 
were broken down into three additional costs. Firstly, the failure rate 
increased, as outlined in Section 2.4. Secondly, extra inspections of 
blades and structural components were needed every three years, an 
additional annual inspection was required, and a remaining useful life 
survey was needed every five years [57,59]. Lastly, one of the main 
components which most frequently fails was assumed to need replacing 
to enable the WT to keep operating; Table 4 shows the four parts with 
the highest failure rates (from Ref. [41]) and replacement costs. 

Scenario 2 (S2) – WTs were removed at Cfatigue = 1, and decom-
missioned individually. A decommissioning cost of £867,000 was esti-
mated based on previous studies [5,60]. In practice, turbines would be 
removed in bulk to reduce cost. This would have little effect on the 
power production modelled but decommissioning costs would occur in 
stages rather than continuously as WTs fail. 

Scenario 3 (S3) – WTs were replaced by an identical turbine leading 
to downtime for removal, transportation and installation. The site could 
undergo repowering; however, the future size and WT efficiency are 
uncertain, and the WF would need a total restructuring. A new turbine 
cost (£1,240,830/MW), an installation cost (£206,417/MW), a decom-
missioning cost, and a stoppage of operation in neighbouring turbines 
was applied to the model. New turbines had no degradation in power 
loss, and α was reset to 0. Costs were adjusted from data in Refs. [5,60]. 

3. Self-engineering design optimisation 

3.1. Self-engineering complexity 

Previous studies investigated the complexity of self-engineering 
systems identifying three key factors [61].  

1. Repeatability – The number of times a response (SR) can occur  
2. Self-control – How the mechanism is controlled and managed  

3. Redundancy – The quantity of redundancy used in the system for SE 

Different complexity levels were tested during the design and 
development of previous self-engineering systems [62]. A similar 
investigation was conducted here using Taguchi’s design of experiment 
method to find the best system repeatability, redundancy, and 
self-control. Results with and without SR are compared using ΔNItotal. 

3.1.1. Repeatability level 
High, medium and low levels of repeatability were created by 

changing the frequency SR occurs. Fig. 5 illustrates different SR points.  

• High Complexity – SR occurred when a turbine reached a degraded 
state before an MR and major failure and after these failures were 
repaired.  

• Medium Complexity – SR occurred when a turbine reached a degraded 
state before all MR and major failures, but not after a repair.  

• Low complexity – SR occurred only when in a degraded state before an 
MR failure. 

3.1.2. Self-control 

• Low complexity - Central control: SR was managed by a central con-
trol station monitoring all WT conditions and deciding which turbine 
should be switched. The central control could choose any turbine in 
rows available to switch with, not just the closest ones, as with local 
control. Fig. 7 (b) presents the case of central control.  

• Medium Complexity - Local control: each turbine managed its SR, 
meaning it was limited to knowledge about WTs closest to itself. 
Controllers were on each turbine individually, meaning lots of in-
dividual controllers interacting.  

• High complexity - Local and central control: the local controller and 
central control station select optimum candidates to switch with. If 
the central controller’s choice was twice as good (Xcentral = 2Xlocal) as 
the local controller, it replaced the local control choice. 

3.1.3. Redundancy level 
The redundancy level focused on the number of turbines a set turbine 

can swap with. The local controller searched local connected WTs, while 
the central controller searched whole WF rows. Fig. 7 shows an example. 
With a low level of redundancy, only one row or one connection was 
searched. The number of rows or connections increased with redun-
dancy complexity (two connections or rows for medium and all for high 
complexity). The more possible turbines to swap with, the better the 
chance of a swap helping the WF. 

3.2. Improving income 

Nine simulation runs were designed using an L9 Taguchi orthogonal 
matrix. Settings for each simulation are shown in Table 5. The aim was 
to improve the NItotal, at 30 years of operation. From the data, signal-to- 
noise ratios (η) were calculated using the larger-is-better approach [63]. 
Values for η were averaged (ηmean) for each setting and plotted in Fig. 8; 
results with higher ηmean are the optimum complexity levels to maximise 
farm NI. 

In Fig. 8, a similar pattern of results is shown for all scenarios; the 
optimum design settings for SR were.  

1. Low repeatability – SR should only be triggered for a degraded state 
before an MR. More frequent triggers increased the overall move-
ment cost and lowered NItotal. Range and rank in Table 6 also show 
this was the most important factor with the largest influence on 
NItotal.  

2. High redundancy – When all turbines were available to swap with, 
the SR controller had more options to find an optimum swap. The 
increase in performance between one and two rows is greater than 

Table 4 
- Four systems with the highest failure rate and replacement costs, estimated in a 
previous FOWF study [41].  

System or 
component 

Cost to repair/ 
replace (£M) 

Failure rate 
(failures/turbine/ 
year) 

Probability of 
occurring 

Pitch Hydraulics 7.623 1.076 0.351 
Generator 1.015 0.999 0.326 
Blades 0.375 0.52 0.169 
Grease, oil, and 

cooling fluid 
change 

0.101 0.471 0.154  
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between two and all (see Fig. 8 b). This could be because using all 
rows causes longer movement distances and higher fuel costs. 
Alternatively, it could be because two rows of access are enough to 
connect the outer and middle turbines where the largest differences 
in fatigue are seen. Ranks in Table 6 show that for S1 and S2, 
redundancy was the least important factor.  

3. Low (central) self-control – The central controller performed better 
than the local one; because it gives access to whole rows of turbines, 
not just neighbouring ones. This was probably more noticeable at 
farm edges or corners because WTs had fewer WTs nearby. Behav-
iours appear non-linear in Fig. 8 c) because of the distinct local and 
central control difference. For high self-control, the mix of local and 
central performs better than local because it occasionally utilises the 
central controller but not entirely. With all WTs connected (high 
redundancy), there was unlikely much difference between the con-
trollers. In practice, a central controller will be easier to manage 
because having multiple local controllers on WTs could lead to 
complex, unpredictable interactions. 

3.3. Initial results 

Simulations were run for 30 years to test the effect of optimised SR on 
FOWF. The results are shown in Table 7. The success of the SR in 
balancing the fatigue was indicated by the term ΔCfatigue, found using 
Equation (24). 

Δ Cfatigue = Max
(
Cfatigue

)
− Min

(
Cfatigue

)
(24) 

The results in Table 7 show that using the optimised SR settings 
produces a gain in income for all scenarios at 30 years. The difference is 
significant enough to be higher than the deviation within simulations. 
The ΔCfatigue was reduced from 0.316 to 0.124 by using SR, showing 
Cfatigue is balanced. A similar reduction was seen for ΔCturb with SR. 

A second optimisation, shown in supplementary material, was per-
formed to reduce ΔCfatigue; however, optimisation required high 
repeatability with many SR movements, reducing NItotal. Therefore, it 
was not used in further experiments. 

The ΔCfatigue and ΔCTurb only show the difference between maximum 
and minimum values, a more in-depth look was needed to see individual 
turbines. Values of Cfatigue and CTurb for turbines after 30 years are shown 
in Figs. 9 and 10 for one simulation. Row and column numbers refer to 
the original positions in Fig. 2. When no SR was used, there was a clear 
peak in Cfatigue of turbines toward the prevailing wind (shown by purple 
arrows in Figs. 9 and 10) and higher CTurb results in the WF centre. Front 
turbines could suffer from quicker degradation of rotational compo-
nents, while middle WTs may have more damaged blades or structural 
components from repeated loading. The distribution of Cfatigue is similar 
to those presented by previous authors looking at failure rates in WT 
[64]. There are some high peaks with four WT nearly at Cfatigue > 1 in 
Fig. 9 b. Each simulation with SR took an average of 24.8 s, while 
without SR was faster at 23.8 s. 

3.4. Discussion 

Brooks and Roy [62] previously used Taguchi’s design of experi-
ments to optimise the complexity of a self-cleaning system. High 
redundancy was the only similar optimised setting; higher self-control 
and medium repeatability in Ref. [62] differed from settings in this 
study. This demonstrates that different self-control or repeatability 
levels will be seen for different SE systems. The optimised settings are 
likely to be heavily influenced by cost assumptions, especially move-
ment cost. Optimum ΔCfatigue and NItotal cannot both be achieved. Set-
tings from the optimisation were used in further simulations because 
they reduced ΔCfatigue and ΔCTurb compared to no SR and maximised 

Fig. 7. Different connections for different levels of redundancy. Diagram a) shows local self-control connections and b) shows central self-control connections for a 
set turbine in red. Blue shows low redundancy (1 connection), yellow medium redundancy (2 connections) and black high redundancy (all connected). 

Table 5 
– Conditions for each level of complexity for each experiment run.   

Redundancy Repeatability Self-control 

1 One connection/rows MR Local 
2 One connection/rows M and MR Central 
3 One connection/rows M, MR and after repaired Local and central 
4 Two connections/rows MR Central 
5 Two connections/rows M and MR Local and central 
6 Two connections/rows M, MR and after repaired Local 
7 All connections/rows MR Local and central 
8 All connections/rows M and MR Local 
9 All connections/rows M, MR and after repaired Central  
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NItotal. 
Fig. 9 a) shows that at 30 years, eight WT reached the EOL when no 

SR was used, while none have reached EOL with SR. This caused higher 
income with SR because extra costs were added at EOL. Longer simu-
lation runs will increase WTs reaching EOL in SR WF and the costs. A 
further investigation was performed in section 4 to look at NI across an 
extended period. 

4. Extended operation 

Simulations runs showed the NI every year and the differences in NI 
each year. Simulations were run for 50 years to show the impact of WTs 
reaching EOL at different rates and times. Results were plotted in three 
graphs for each EOL scenario from Section 2.9.4. The first graph gives NI 
for that set year of operation; this was found as described in Section 2.9. 

The second graph is the ΔNItotal; if farm operation was stopped at that set 
year, this graph shows NI gained or lost using SR. The final graph shows 
turbines that have reached Cfatigue ≥ 1. Due to the extended run time, 
simulation time increased to 44 s with SR and 38 without SR. 

4.1. S1 results 

Fig. 11 shows three graphs plotted for S1. Before year 28 of opera-
tion, there was a very similar NI for both farms; a small fall in ΔNItotal 
was then seen because of SR cost (see Fig. 11 b). Around year 28, WTs 
begin to reach the EOL in the WF without SR, resulting in extra main-
tenance and inspection costs, leading to a positive ΔNItotal for the next 
4–5 years up to £4–5M. However, Fig. 11 c) shows at years 32–35 that all 
WTs in SR farms reach the EOL together, creating a high cost and a 
negative NItotal from year 35. Overall, after 50 years, there was a small 
decrease to -£7M for ΔNItotal because of the extra cost of SR. 

4.2. S2 results 

Fig. 12 shows results for S2, where WTs were decommissioned. As in 
Fig. 11, there was a positive increase in ΔNItotal from year 28, but it was 
longer until year 37, peaking in year 33 at £20M. This higher peak was 
because of extra power production from turbines not decommissioned in 
WF with SR. However, by year 35, all WTs in with SR farm had reached 
EOL and been removed, while WF without SR still had WTs. At 50 years, 
ΔNItotal was also down to -£4M, less than S1 because SR costs stop when 
turbines are removed. 

4.3. S3 results 

Fig. 13 outlines results for S3, where WTs were replaced. Graphs 
follow a similar pattern to S1 (Fig. 11). From year 27–33, ΔNItotal was 
positive, showing that SR WF increased income. The peak ΔNItotal was 
higher because of the high cost of replacing the WTs in S3. After a tur-
bine was replaced, there was an increase in power because the WT’s α 
value was reset to 0. After 50 years, the ΔNItotal was at -£6.5M, close to 
that in S1. 

Fig. 8. Graphs showing the ηmean for a) repeatability, b) redundancy, and c) self-control for optimising the NItotal at 30 years of operation. A different line is plotted for 
each EOL scenario. 

Table 6 
– Table of range of ηmean values (highest minus lowest) and the rank of impor-
tance of each factor for each scenario.  

Scenario  Repeatability Redundancy Self-control 

S1 Range 0.197 0.002 0.006 
Rank 1 3 2 

S2 Range 0.193 0.004 0.005 
Rank 1 3 2 

S3 Range 0.174 0.019 0.005 
Rank 1 2 3  

Table 7 
– Results with and without SR: low repeatability, high redundancy, and low self- 
control.    

No SR With SR Difference +/- 

NItotal (£M) S1 2596.13 2607.28 11.16 8.65 
S2 2585.70 2605.37 19.67 7.49 
S3 2500.03 2607.66 107.63 1.85 

ΔCfatigue (¡) 0.316 0.124 −0.192 0.02 
ΔCturb (¡) 0.095 0.05 −0.045 0.005 
Number of SR movement 0 175 1751 17  
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Fig. 9. Values of Cfatigue for each turbine after 30 years. Row and column numbers are shown in Fig. 2. Graph a) is for a farm with no SR, b) is for a farm optimised for 
NItotal, and c) is optimised to reduce Δ Cfatigue. 

Fig. 10. Values of CTurb for each turbine after 30 years. Row and column numbers are shown in Fig. 2. Graph a) is for a farm with no SR, b) is for a farm optimised 
for NItotal. 

Fig. 11. Graph for S1 showing a) NI with and without SR, b) the difference in 
NItotal with and without SR, and c) the number of turbines beyond Cfatigue = 1.

Data is shown at every year of operation for 50 years. 

Fig. 12. Graph for S2 showing a) NI with and without SR, b) the difference in 
NItotal with and without SR, and c) the number of turbines beyond Cfatigue = 1.

Data is shown at every year of operation for 50 years. 
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4.4. Sensitivity analysis 

A sensitivity analysis was conducted on the repair cost, movement 
cost, operation cost, energy price, turbine spacing, failure rate, and 
turbines turned off during SR. Electricity price had the biggest impact on 
overall NItotal but impacted farms with and without SR equally. The 
number of WTs turned off during SR had the biggest impact on the Δ 
NItotal and should be investigated further in future studies. This research 
assumed only WTs moved need to be turned off, but if turbines in the 
local area 6.5 DT were turned off, SR becomes much more costly. 

4.5. Discussion 

Using SR has no clear benefit on total farm income for most years of 
operation. However, this depends on the WF EOL. A WF decom-
missioned between years 27 and 32 benefits financially from using SR, 
but not outside of this. Around year 32, 30–40% of WTs could have 
reached EOL in FOWFs without SR, while approximately only 10% have 
with SR. If decommissioning occurred when 20% of turbines reached 
EOL, using SR could extend farm life by 1–1.5 years. However, decom-
missioning when 40% or more WTs reached EOL would mean farms 
without SR would have a longer life. Increasing the power production or 
reducing design life would lead to a smaller difference in the time at 
which WTs with and without SR reach EOL and an even shorter period of 
positive ΔNItotal. 

In all scenarios, turbines reach the EOL between years 27 and 35, 
later than design life, because turbine operation was stopped for high 
wind, maintenance or repairs. 

Increased power production of WTs (with higher wind speed or ef-
ficiency) was not simulated here but would accelerate reaching Cfatigue =

1. This would move the peaks seen in Figs. 11–13 earlier and slightly 
higher. Although, little impact would be seen on ΔNItotal at 50 years. 

5. Constraints on when a repair can occur 

5.1. Method 

A WF maintenance strategy evaluated in previous studies is to 

charter vessels for repairs in set periods [65]. This could be because the 
farm needs a specialist in-demand vessel or because certain periods (e.g. 
summer months) provide more accessible days for repairs [66]. 

If repairs only happen in a set period (e.g. ten months of the year), 
failure in a non-repair month results in a wait time (tdelay) until the next 
repair window. tdelay(P) is dependent on the rate of fatigue and power 
produced at a set position. Future wind speeds and power produced are 
unknown by WTs but were estimated using historical power produced 
up to the time step in the simulation. This helped predict the optimum 
turbine location to delay a failure if needed. The difference in power 
income if the turbine stays at its current position one or a new position 
two was given in Equation (25) for CIpowerLoss. 

CIPowerLoss = ckWh(P1
(
tdelay(P1) + trepair

)
− P2

(
tdelay

(
P2

)
+ trepair

))
(25)  

Where P1 and P2 were the average powers produced by turbines at 1 and 
2, excluding times they were off. 

5.2. Results 

Simulations were run with 12 to eight months available for repairs 
with and without SR. Results are shown in Fig. 14 for the ΔNItotal over 25 
years of operation. 

Using SR for 25 years of farm operation led to a small decrease in NI,
as shown in the previous section and Fig. 14 by the line for 12 months. A 
similar loss of income was seen for 11 months, indicating one month lost 
was insufficient to make SR beneficial. However, when constraining 
repairs for ten, nine or eight months, there was a positive change in 
income. Without SR, WT failed in the month with no repair available, 
leading to lost production and income. SR delays failures until a period 
when repairs can be made, and less power is lost. 

The ΔNItotal does not increase with decreased number of months and 
instead peaks at nine months because of a limit on how long a failure can 
be delayed. For example, moving a degraded turbine may only delay 
failure by two months; this is good when nine months are available 
because a failure in months of no repair can be pushed to months of 
repair. However, this delay will not be enough for seven or eight months 
because a failure could be delayed but still occur in no repair months. 
Adjustments could be made by changing the R at which degradation and 
SR occur. 

A peak at 22 years is seen for nine months. This is caused by larger 
power production with SR WF, driving a higher Cfatigue and resulting in 
an increased failure rate (see section 2.4). At 22 years, this extra failure 
rate is beginning to reduce income for WF with SR and reduce ΔNItotal. 

Fig. 13. Graph for S3 showing a) NI with and without SR, b) the difference in 
NItotal with and without SR, and c) the number of turbines beyond Cfatigue = 1.

Data is shown at every year of operation for 50 years. 

Fig. 14. Graph of ΔNItotal over 25 years with different numbers of months 
available for repair. 
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5.3. Discussion 

The results of this section are promising, indicating SE SR could be 
beneficial to delay failures in set circumstances, such as supply chain 
disruption. If a part is unavailable or delayed, having the ability to delay 
the failure and maintain farm output would be useful. Another benefit 
could be to delay the degradation of components, so they reach EOL 
simultaneously, preventing multiple sperate callouts. These scenarios 
could be a part of future investigations into SR WFs. 

6. Study validation 

Lack of any significant FOWF operation data makes validation 
difficult. A qualitative validation approach is developed with the 
domain experts. The study approach, results and methods were pre-
sented to five experts in WT and FOWF with above five years of expe-
rience. Two were from academic institutions, one from a catapult, one 
from industry and one group of four academics (who have been classi-
fied as one respondent). Three were face-to-face semi-structured inter-
view with a presentation, and two respondents responded in writing 
after reading the slides. Three key questions were asked.  

1. Did the self-reconfiguration process used make sense? Are there any 
steps or parts missing?  

2. Is the data/information needed for self-reconfiguration and the 
simulation realistic and available? 

3. Has the data been interpreted and analysed correctly? Is there any-
thing missing? 

Experts understood the mechanism and thought the assumptions and 
approach were acceptable for the sector. Three of the experts were 
optimistic about the mechanism having a future use, and two were un-
sure; all Experts noted further studies would be needed when more 
FOWF data was available. All experts could not definitively answer 
question three, stating there are too many uncertainties and unknowns 
to say conclusively, but they commented on the validity of assumptions 
and methods used. Key comments made included.  

4. Three participants noted a control system approach (such as blade 
pitching) could produce a similar effect with lower risks and easier 
implementation. However, as noted previously, this has been 
investigated [15,38]. 

5. Two experts noted that designing cabling and mooring for detach-
ment and reattachment could be difficult. They also noted that 
mooring and floating foundation failure data should be included but 
acknowledged data is currently limited and based on estimates.  

6. Three experts noted that the modelling method used might alter the 
results. A stochastic model could also help validate results. The 
model used here does integrate some stochastic features but is pri-
marily a discrete event simulation.  

7. Three experts agreed with question two and felt sufficient sensing 
existed to predict remaining life. However, two experts said there 
was insufficient monitoring and data for accurate assessments, 
noting that many failures in FOWT trials have been unexpected. This 
difference makes it difficult to conclude if CM is advanced enough for 
SR.  

8. Two participants noted that wake modelling failed to consider the 
movement of the turbines induced by the waves. This would need 
detailed CFD simulations. Previous comparisons of fixed and floating 
foundations show only a small difference in wind speed at large 
separation distances (at 6D) [67]. One participant noted that SR 
could reduce foundation fatigue; however, there is insufficient data 
and studies on the long-term use of FOWF foundations to simulate 
this.  

9. Three participants noted that more tug boats would be needed (two 
and four were suggested) to move the turbine because one may be 

deemed unsafe and have an increased risk of collision. This would 
increase the cost of SR by three to four times the current value. 

7. Conclusion 

The following bullet points outline the key paper conclusions.  

• Turbines were swapped within a wind farm model to create a novel 
self-reconfiguration of the farm. This mechanism provides a useful 
way to balance the fatigue and loading across the turbines in a 
floating farm.  

• An optimisation study used the principles of self-engineering 
complexity to optimise self-configuration settings for the farm in-
come. Optimal settings included having all turbines connected, a 
central self-reconfiguration controller, and reconfiguring only for 
MR degradation.  

• Farm net income with and without self-reconfiguration was 
compared for three end-of-life (EOL) scenarios. Self-reconfiguration 
delays the EOL of some WT in a farm, but subsequently, all tur-
bines reach the EOL simultaneously rather than gradually over ten 
years. If a farm was decommissioned when the first turbines reach 
the EOL (around 27–32 years into operation), then self- 
reconfiguration increased net income. However, outside of this, the 
cost of self-reconfiguration was greater than any benefit.  

• Finally, self-reconfiguration was investigated when repairs were 
constrained to a few months. Using self-reconfiguration increased 
farm income when repairs were constrained to 10 or fewer months in 
a year. Self-reconfiguration could be used during supply chain or 
maintenance disruptions which might occur by helping to slow the 
degradation of certain turbines. This response should be studied 
further.  

• The study is limited by its use of only one modelling technique (agent 
based) and by the lack of long-term offshore failure data especially 
for mooring ad floating foundation components. 
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