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Presence of uncertainties caused by unforeseen malfunctions in actuation or measurement systems or
changes in aircraft behaviour could lead to aircraft loss-of-control during flight. This paper considers
sparse online Gaussian Processes (GP) adaptive augmentation for Incremental Backstepping (IBKS) flight
control. IBKS uses angular accelerations and control deflections to reduce the dependency on the aircraft
model. However, it requires knowledge of the relationship between inner and outer loops and control
effectiveness. Proposed indirect adaptation significantly reduces model dependency. Global uniform
ultimate boundness is proved for the resultant GP adaptive IBKS. Conducted research shows that if
the input-affine property is violated, e.g., in severe conditions with a combination of multiple failures,
the IBKS can lose stability. Meanwhile, the proposed sparse GP-based estimator provides fast online
identification and the resultant controller demonstrates improved stability and tracking performance.

© 2023 The Authors. Published by Elsevier Masson SAS. This is an open access article under the CC BY
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1. Introduction

During the last decades, aircraft safety has significantly in-
creased. Nevertheless, flight safety in abnormal conditions, such 
as those caused by equipment failures and/or adverse environ-
mental factors, is still a challenging problem. Analysis of accident 
and incidence reports revealed that the main contribution to fatal 
accidents in passenger aviation was due to aircraft loss of control in-
flight and controlled flight into terrain [1]. The main reasons caused 
these accidents are pilot mistakes, technical malfunctions, or their 
combination.

Recently, significant efforts have been undertaken to develop 
aircraft control design tools to improve flight safety [2–8]. The idea 
that non-conventional control strategies can prevent possible ac-
cidents and recover aircraft from dangerous situations stimulates 
research toward fault-tolerant and adaptive flight control [9–12].

Gain-scheduling of linear feedback controllers is widely applied 
in commercial applications to achieve stabilization and satisfactory 
tracking performance of aircraft over a wide range of flight con-
ditions [13], [14]. In case of severe and unpredicted changes in 
aircraft behaviour, such controllers cannot be used or can be used 
only with restricted functionality.
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Nonlinear Dynamics Inversion (NDI) and Backstepping (BS) 
techniques have become popular control strategies for adaptation 
since they can be used for global linearization of the system dy-
namics and control decoupling [15–20]. Later, an incremental-type 
sensor-based form was proposed to make NDI and BS controls 
more robust and fault-tolerant [21–23].

However, even in this formulation, the controller still requires 
accurate knowledge of the functional relationship between inner 
and outer loops and control effectiveness. For example, if the sys-
tem is not affine in control inputs because of non-linearity in 
actuators or large transport delays, it may cause significant con-
trol degradation [24–26]. Adaptation strategies augmenting the 
incremental-type controllers were applied for a high-performance 
aircraft model in [25], [27] to reduce dependency on an aircraft 
model. Regardless of the fact that IBKS demonstrates robustness 
to some failures [28], [29] estimation of the control effectiveness 
improves the fault-tolerant abilities of the system [24], [30–33].

The most well-known and popular approach for on-line iden-
tification and implementation of in-direct adaptation is Recursive 
Least Squares (RLS) method [24], [27], [34], [35]. However, even 
with the conventional Exponential Forgetting factor (EF), RLS is not 
designed for tracking time-varying systems. Its convergence might 
be slow if the EF is close to one, whereas the error is large if the 
EF is small. The Tuning Functions (TF) approach was proposed as 
a natural expansion of the adaptive capabilities provided by the 
backstepping paradigm into the identification of control efficiency 
ss article under the CC BY license (http://creativecommons .org /licenses /by /4 .0/).
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Nomenclature

B0 control effectiveness matrix
T ξ matrix representing kinematic relationship between 

angular rates and kinematic variables
gy y-axis component of the gravitational acceleration cal-

culated in the wind reference frame
p, q, r roll, pitch, and yaw rates
u vector of control effectors
Vt true airspeed
α,β angles of attack and sideslip
δ aircraft control surface deflection
ξ attitude state vector

φ, θ roll and pitch angles
ω rotational rate vector

Aerodynamic derivative

Cmδ
∂Cm
∂δ

Subscripts

d desired value
y variable related to dynamics
ξ variable related to kinematics
ω variable related to angular rates
[16], [24], [27]. This approach takes advantage of the Lyapunov 
function design, which allows theoretical proof of stability. How-
ever, these methods can be sensitive to measurement noise. It 
should be also noted that the indirect adaptation methods require 
Persistency of Excitation (PE). Without PE, the parameter estimates 
might be incorrect, leading to incorrect control actions, sensitivi-
ties and system instabilities [36].

Neural networks, including Radial Basis Functions (RBF), are 
quite popular for online identification and adaptive control since 
they are universal approximators and can match any uncertainty 
(for example, see [37–39]). RBFs have the advantage, namely, they 
are linear-in-the-parameters, as opposed to multilayer perceptron 
neural networks. However, the performance of the former ap-
proach is significantly determined by a selection of the RBF cen-
tres. Normally, researchers preallocate a fixed quantity of Gaus-
sian RBF centres over the presumed domain [37], [40]. The sys-
tem states must stay close to the location of the preallocated RBF 
centres because a Gaussian RBF output decays exponentially away 
from its centre; otherwise, the system would not be able to cap-
ture the uncertainty.

To tackle the issues mentioned above, we propose to use a 
sparse Gaussian Process (GP) online identification framework to 
estimate control derivatives as well as the functional relationships 
between inner and outer control loops. In such a way, an in-direct 
adaptive control loop augmenting the baseline IBKS controller is 
implemented. GP brings promising Bayesian paradigm to online 
identification and adaptive control by considering the estimation 
as a statistical problem [41], [42]. Within the proposed approach 
GPs utilize a Bayesian framework to represent uncertainties as a 
distribution over functions. It is assumed that the uncertainty and 
the model follow Gaussian distributions, with the uncertainty be-
ing estimated using its mean and covariance function. One of the 
advantages of the proposed method is that it does not require 
prior assumptions about an operating domain. From the provided 
flight data, GP can dynamically choose new kernel locations to 
guarantee domain coverage. Furthermore, measurement noise is 
explicitly handled, and parameters such as the centres of RBFs do 
not require pre-allocation. GP approach allows Bayesian inference 
to overcome shortcomings of the standard gradient-based param-
eter update laws, e.g., lack of convergence guarantees and possible 
instabilities under noise presence [43], [44]. This method was ap-
plied for the design of direct adaptive control GP-MRAC in [45], 
[46], where GP was used to match an uncertainty to produce com-
pensating control commands.

In the current paper, we developed a GP-based estimator of 
control efficiency and kinematic relationship to be fed into the 
baseline IBKS aircraft flight control system. The paper proposes 
a budgeted sparse GP algorithm suitable for on-line identifica-
tion and adaptation. The framework proposes a model free control 
strategy guaranteeing stability even in case of actuator failures, 
2

imprecise measurement and other uncertainties. The GP-based es-
timator provides fast convergence and long-term memory capa-
bilities. Global uniform ultimate boundness for the resultant GP 
adaptive IBKS is also considered in the paper. The performance of 
the method is demonstrated via simulations in three different sce-
narios, when uncertainties are introduced in the control efficiency. 
Comparative analysis manifests that the developed approach over-
performs EF RLS and TF adaptations.

The present paper demonstrates results from the European 
project INCEPTION, which was seeking the development of a fault-
tolerant Automatic Flight Control System for fixed-wing aircraft 
allying incremental control strategies, adaptive augmentation and 
envelope protection [47]. The proposed augmentation improves the 
stability and tracking performance of the IBKS baseline controller 
by providing actual information about control effectiveness in case 
of uncertainty or failure. According to the conventional approach 
for the validation of flight-critical systems [48], the performance of 
the augmented control system is evaluated through several worst-
case scenarios.

The paper is organized in the following way. A very brief 
overview of the flight dynamics and IBKS control strategy are given 
in Sections 2 and 3 correspondingly. Section 4 describes the iden-
tification framework in general. The budgeted sparse GP algorithm 
is considered in Section 5. EF RLS and TF estimation algorithms 
are presented in Section 6. Section 7 provides and analyzes the 

simulation results of the proposed framework. Finally, concluding 
remarks are summarized in Section 8.

2. Flight dynamics model

Equations of angular motions of the aircraft can be represented 
with kinematics and dynamics models from [49]. The kinematics of 
the aircraft is described by the attitude state vector ξ = [φ θ β]T .

ξ̇ = f ξ + T ξω, (1)

where

f ξ =
[
0 0 − Ax

V t
cosα sinβ+ Ay

V t
cosβ − Az

V t
sinα sinβ+ gy

V t

]T

,

T ξ =
⎡
⎣ 1 sinφ tan θ cosφ tan θ

0 cosφ − sinφ

sinα 0 − cosα

⎤
⎦ .

Specific forces Ax, Ay and Az can be directly measured by the ac-
celerometers.

The aircraft dynamics is represented with the state-space form 
for the state vector y = [V t p q r]T composed of airspeed V t , roll 
rate p, pitch rate q and yaw rate r.
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Fig. 1. Controller structure with control efficiency adaptation.
ẏ = f y(y,u), (2)

where u is the control input vector.
Typically, the aircraft flight dynamics equations are typically as-

sumed to have input-affine property, however, in this research, this 
assumption is relaxed, and the flight dynamics is considered in 
the generalised form of Eq. (2). In the further sections, Eq. (2) is 
simplified using the incremental dynamics approach for the incre-
mental controller design in such a way that only control efficiency 
matrix is used. That is why the full aircraft nonlinear dynamics 
model f y(y, u) is not provided here, however, it can be found in 
the literature (e.g. [35]).

3. Incremental backstepping

A sensor-based technique utilizing Incremental Dynamics (ID) 
applied to obtain an IBKS controller, which is less dependent on 
the system model, is discussed in [49], [50]. Below, we will just fol-
low a brief description of this controller. The details could be found 
in the original papers. IBKS computes incremental commands em-
ploying acceleration feedback estimations to extract unmodeled 
flight dynamics. In the present study, we are using this controller 
as a baseline controller, which is augmented with the proposed 
budgeted sparse GP parameter estimator.

3.1. Incremental dynamics model

It is assumed here that the system dynamics is described by 
the following nonlinear equations:

ẋ = f x (x,u) (3)

where f x : Rn × 0,∞) → Rn is Lipschitz continuous function, x
and u are the state and the control input vectors. To obtain an 
incremental form of system dynamics, we consider a first-order 
Taylor series expansion not in the geometric sense but with re-
spect to a sufficiently small time delay [51]. Expanding (3) into the 
Taylor series around (x0,u0) corresponding to the previous time 
moment t0 the dynamics (3) can be expressed in the following 
form

ẋ ∼= ẋ0 + ∂ f x (x,u)

∂x
(x − x0) + ∂ f x (x,u)

∂u
(u − u0) (4)

The vectors 
x = x − x0 and 
u = u − u0 are known as respec-
tively the incremental state vector and the incremental control 
input [27]. Due to the time separation principle [22], [27], [51], we 
can assume that the increment in the state 
x is much smaller 
3

than the increment in both the state derivative 
ẋ = ẋ − ẋ0 and 
the input 
u, and the dynamics (4) can be further simplified


ẋ ∼= B0
u (5)

where B0 = ∂ f x(x,u)

∂u is a control effectiveness matrix.
The dynamics equation (5) states that the ID of the system is 

produced by the control input increment. For the implementation 
of such a concept, it is assumed that the sampling time is small. 
In this case, the assumption that 
x � 
ẋ and 
x � 
u becomes 
possible for a real aircraft because the control surface deflections 
directly affect the angular accelerations, whereas the angular rates 
are only changed by integrating these angular accelerations. Actu-
ators are assumed to be very fast, namely, the demanded input 
increment can be achieved within the small sampling time. In ad-
dition, it is assumed that the sensors are ideal, i.e. providing state 
derivative without errors.

3.2. Attitude controller

The ID idea combined with the backstepping paradigm was 
utilized to design the aircraft baseline controller [49], [50]. Both 
angle and rate controllers were formulated using ID to increase 
the control robustness and simplify implementation. Fig. 1 shows 
the general structure of the baseline controller with the revealed 
interaction between attitude and rate controllers.

Eqs. (1) and (2) constitute the system dynamics. Introducing the 
kinematics tracking error variable zξ = ξd − ξ , where ξd is the 
desired kinematics state vector, the sub-system (1) can be refor-
mulated in terms of zξ :

żξ = ξ̇d − f ξ − T ξω (6)

The general idea behind the backstepping is to consider the state 
vector ω = [p q r]T from (2) as a control input for zξ subsystem 
(6). Since ω is just a state variable and not the real control input, 
it is called a virtual control input.

For the zξ subsystem a Candidate Lyapunov Function (CLF) V ξ

is selected:

V ξ = 1

2
zTξ zξ , (7)

which is positive for the whole domain, excluding the origin, 
where it equals to zero.

For the asymptotic convergence of the error, the CLF derivative 
must be strictly negative along the solutions of (6). Considering a 
positive definite matrix Wξ ∈R3×3, the CLF is strictly negative if:



D.I. Ignatyev, H.-S. Shin and A. Tsourdos Aerospace Science and Technology 136 (2023) 108157
V̇ ξ = zTξ żξ = −zTξ W ξ zξ . (8)

The kinematics tracking error dynamics can be represented in the 
incremental form

żξ = ξ̇d − ξ̇0 − T ξ (ω − ω0) . (9)

Substituting the expression żξ = −W ξ zξ derived from (8), the fol-
lowing tracking error dynamics is obtained

ξ̇d − ξ̇0 − T ξ (ω − ω0) + W ξ zξ = 0. (10)

The virtual control law να = ω can be obtained by inversion of 
(10) with respect to ω

να = ω0 + T−1
ξ

(
Wξ zξ + ξ̇d − ξ̇0

)
, (11)

since T ξ is invertible for the aircraft within the flight envelope. 
The control law (11) is used as a desired value for the virtual con-
trol input ω.

3.3. Rate controller

The difference between the dynamics of the state variable y =[
V t ωT

]T
and its desired value yd = [

V td ωT
d

]T
is defined as the 

dynamics tracking error variable zy = yd − y. It should be noted 
that the airspeed is introduced as a state to the dynamics state 
vector in order to design the controller that simultaneously tracks 
the airspeed and angular rates of the aircraft. To design a control 
law u that ensures that zy converges to zero, the following CLF for 
the complete 

(
zξ , zy

)
-system is formed:

Vy = V ξ + 1

2a
zTy zy, (12)

where a is the design scale factor. Similar to design of the CLF for 
the zξ subsystem in (8), here the matrix W y ∈ R4×4 is assumed 
to be a positive definite matrix such that

V̇y = V̇ ξ + 1

a
zTy ży = −zTξ W ξ zξ − 1

a
zTy W yzy. (13)

Thus, the error zy converges asymptotically to zero since the 
derivative of the CLF Vy is strictly negative for non-zero errors. 
The tracking error dynamics in the incremental representation has 
the following form:

ży = ẏd − ẏ0 − B0 (u − u0) . (14)

The selection matrix Cyω = [
03 I3

]
, which performs the map-

ping ω = Cyω y, is introduced. Combining the incremental dynam-
ics of zξ (9) and zy (14), one can obtain

zTξ
(
ξ̇d − ξ̇0 − T ξ

(
να − Cyωzy − ω0

) + W ξ zξ

)
+1

a
zTy

(
ẏd − ẏ0 − B0 (u − u0) + W yzy

) = 0. (15)

Eventually, for non-zero errors, substituting (11) into (15) and solv-
ing it with respect to u, the resultant control law is designed

uc = u0 + B−1
0 �

(
aC T

yωT T
ξ zξ + W y(yd − y) + ẏd − ẏ0

)
. (16)

To attenuate the measurement noise and increase the control ro-
bustness, B0 is multiplied by a diagonal matrix � > 0 with ele-
ments λii ∈ [0, 1].

The control law in the form (16) requires inversion of the ma-
trix B0, which is not square for the overactuated modern transport 
aircraft. To tackle this issue, Moore-Penrose Pseudo-inverse (MPP) 
is applied [50], and
4

B†
0 = BT

0

(
B0B

T
0

)−1
(17)

is used in (16) instead of B0. MPP has satisfactory results if no 
singularities are expected in the system to be inverted [52].

The developed controller demonstrated excellent tracking per-
formance, disturbance rejection, significant phase and gain margins 
[49], [50].

3.4. Command filter

To avoid infeasible commands provided by the controller, a 
Command Filter (CF) is added to the controller output. For the 
incremental controllers, the CF is used to constrain the input to 
respect the actuators dynamics and saturation.

Taking into account the influence of the CF χ ∈ R3 on the 
tracking error zy (14) the dynamics of the modified tracking er-
ror z̄y is introduced [27]

˙̄zy = ẏd − ẏ0 − B0 (u − u0) − χ̇ (18)

Effect of the CF on the tracking error can be estimated by the sta-
ble linear filter [27]:

χ̇ = −W yχ + B0 (uCF − uc) , (19)

where uCF is the controller output after CF.

4. On-line estimation of the model parameters

Finally, the cascaded baseline controller consists of attitude and 
rate controllers (11) and (16). Both attitude and rate controllers 
have a similar control structure, namely, the control signals com-
pensating the difference between the reference and measured (or 
estimated) state variables are added to the current value of the 
control. Such a structure is very simple and robust to possible 
uncertainties. However, the precise knowledge of the relationship 
between the inner and outer loops T ξ and the control efficiency 
B0 is required for the stable performance of the algorithm. Under 
normal circumstances, the precise value of T ξ within the flight 
envelope can be easily determined because it represents the kine-
matic relationship, however, failures in the measurement system 
can cause variations of this relationship. The matrix B0 specifies 
the control effectiveness, which might change during flight because 
of changes in environmental conditions, structural deformations, 
failures etc. Hence, unmodeled actuator dynamics is a source of 
uncertainty.

The primary goal of the adaptive augmentation for the IBKS 
is to compensate for these uncertainties’ effects and to improve 
the performance and stability of the IBKS controller. This paper in-
troduces a general approach for indirect adaptation, compensating 
errors in T ξ and B0.

Let us first analyse the error in the system. In the considered 
case, the kinematics error is given with the following equation:

żξ = �ξ̇ − T ξ

(
wξ

)
�ω, (20)

where zξ ∈ Rnξ , �ω ∈ X
ω⊆ Rnω , �ξ̇ ∈ X
ξ̇⊆ Rnξ , the nonlin-
ear function T ξ : wξ �→ Rnξ ×nω represents unknown kinematic 
relationship between angular rates and kinematic variables. Here 

wξ =
[
�ξ̇

T
,�ωT

]T
is the concatenation introduced for the nota-

tion purposes. In a general case, T ξ is a function of increments 
of both angular rates and kinematic state derivatives. In a similar 
manner, notation Wξ = X
ω ×X
ξ̇ is used to denote concatena-
tions of subspaces of the state spaces.

The dynamics error is determined with the following equation

żω = �ω̇ − B0 (wω)�u, (21)
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where zω ∈ Rnω , �u ∈ X
u⊆ Rnu , the nonlinear function B0 :
wω �→ Rnω×nu , where wω =

[
�ξ̇

T
,�ωT,�ω̇T,�uT

]T
, represents 

unknown kinematic relationship between the control inputs and 
the dynamics states. Wω = X
ξ̇ × X
ω × X
ω̇ × X
u is used to 
denote concatenations of subspaces of the state spaces.

Assumption 1: Increments of angular rates and control inputs are 
bounded 
ug = [


ωT, 
uT
]T ≤ 
ug.

Such an assumption is natural from a practical point of view.
To minimize tracking errors (20) and (21), the nonlinear func-

tions T ξ , B0 should be identified. The identification problem is 
formulated as estimation of GP posterior means and covariances 
describing individual coefficient of T ξ and B0

T̂ξi,j ∼ GP
(〈
Tξi,j

〉
K Tξi,j

)
i = 1 . . .nξ , j = 1 . . .nω,

B̂0i,j ∼ GP
(〈
B0i,j

〉
K B0i,j

)
i = 1 . . .nω, j = 1 . . .nu. (22)

5. Gaussian processes on-line identification and adaptive 
augmentation

GP utilizes the Bayesian paradigm for on-line identification of 
the model parameters and adaptive control by considering the 
identification as a statistical problem [41]. GP is non-parametric 
because the “parameters” to be identified are functions fx of an 
input variable x ∈ Rd . Function fx is characterised by its statis-
tics, namely, by the mean 〈 fx〉 and the covariance, which is also 
called the kernel K 0

(
x, x′) = Cov(ς, ς ′) [53]. The a priori as-

sumption is that fx is a Gaussian process. Indeed, according to 
the Central Limit Theorem, any sufficiently large set of random 
samples f i is considered to have a normal distribution. Within 
the Bayesian framework, given a set of input-output observations 
(xn, ςn) (n = 1, . . . , N) the posterior distribution of the process 
fx is computed using prior and the likelihood.

Csató and Opper [41] proposed a representation of posterior 
means 〈 fx〉t = 〈 f (xt)〉t and the posterior covariance K t

(
x, x′), 

where t denotes the number of data points, with a finite linear 
combination of kernels K 0 (x, xi) evaluated at the training inputs 
xi . Using sequential projections of the posterior process on the 
manifold of Gaussian processes, approximate estimations of the 
representation effective parameters are obtained via recursions. To 
avoid enormous growth of the size of representations an elegant 
algorithm for extraction of a smaller subset of input data is pro-
posed. Such a subset allows an on-line sparse representation of 
the posterior process, which is used to predict the GP model.

The posterior expectations within the Bayesian approach are 
conventionally expressed by high-dimensional integrals. This is not 
applicable for on-line identification. However, it was shown in [41]
that the posterior mean and the posterior covariance of the pro-
cess at arbitrary inputs can be expressed as a combination of a 
finite set of parameters which depend on the training data only. To 
make Bayesian interference trackable on-line the posterior is pro-
jected to the closest Gaussian process by a single sequential sweep 
through the examples.

The posterior GP approximation with its posterior means and 
the posterior covariance is estimated using the initial kernel 
K0

(
x, x′) and the likelihoods:

〈 fx〉t = αT
t kx

K t
(
x,x′) = K 0

(
x,x′) + kT

xC tkx′
(23)

where kx = [K0 (x1, x) , . . . , K0 (xt, x)]T is the kernel functions, αt =
[αt (1) , . . . ,αt (t)]

T is the coefficient, C t = {Ct(i j)}i, j=1...t is the co-
efficient matrix. It should be noted that coefficients αt(i) and Ct(ij)
do not depend on x and x′ [41]. For the regression problems, Radial 
Basis Functions (RBF) are quite popular choice for kernel functions
5

K
(
x, x′) = exp(

∥∥x− x′∥∥2

2σ 2
x

). (24)

5.1. On-line learning

The recursive update of the GP parameters in Eq. (23) can be 
performed via the following equations:

αt+1 = Tt+1 (αt) + q(t+1)st+1,

C t+1 = Ut+1 (C t) + r(t+1)st+1sTt+1,

st+1 = Tt+1 (C tkt+1) + et+1,

(25)

where kt+1 = kxt+1 and et+1 is the (t + 1)-th unit vector, and 
st+1 is introduced for clarity. Operators Tt+1 and Ut+1 extend a 
t-dimensional vector and matrix to (t + 1)-dimensional ones by 
appending zeros at the end of the vector and to the last row and 
column of the matrix respectively.

For the RBF kernel functions, the q(t+1) and r(t+1) are defined 
as follows

q(t+1) = (ς − αT
t kx)/σ

2
x ,

r(t+1) = −1/σ 2
x ,

(26)

where σ 2
x = σ 2

0 + kT
x C tkx + k∗

x, k∗
x = K0 (x,x). One can conclude 

that the dimension of the vector α and the size of matrix C in-
creases with each data point added since et+1 is the (t +1)-th unit 
vector.

The updates in the form of Eqs. (25) has a drawback since the 
number of parameters increases quadratically with the number of 
training examples. An effective way of controlling the number of 
parameters was proposed in [41], namely, sparseness within the 
GP framework was introduced. According to this approach, the up-
date of the GP parameters is implemented without increase in the 
number of parameters α and C when, according a certain criterion, 
the error due to the approximation is not too large.

If the new input xt+1 is such that

K 0 (x,xt+1) =
t∑

i=1

êt+1(i)K0 (x, xi) (27)

is true for all x, then the update can be achieved exactly. In this 
case, the updated process in the form of Eq. (23) is represented by 
only the first t inputs, but with “renormalised” parameters α̂ and 
Ĉ and update (25) is implemented without extending the size of 
the parameters α and C and st+1 as follows:

α̂t+1 = αt + q(t+1) ŝt+1,

Ĉ t = C t + r(t+1) ŝt+1 ŝ
T
t+1,

ŝt+1 = C tkt+1 + êt+1,

(28)

where α̂t+1, Ĉ t and ŝt+1 are t-th unit vectors.
Obviously, for most kernels and inputs xt+1 relationship (27)

does not hold for all input x. However, the updates in the form 
of (28) might be used for approximations if êt+1 is determined by 
minimising the error measure∥∥∥∥∥K0 (·,xt+1) −

t∑
i=1

êt+1(i)K0 (·, xi)
∥∥∥∥∥
2

(29)

where ‖·‖ is a norm in a space of functions of inputs x. If the norm 
is defined via the inner product of the reproducing kernel Hilbert 
space (RKHS) generated by the kernel K0, then minimising (29), 
one can obtain the following expression

êt+1 = K−1
t kt+1, (30)
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where K t = {
K0(xi, xj)

}
i,j=1,t is the Gram matrix. In this case, the 

equation

K̂0 (x, xt+1) =
t∑

i=1

êt+1 (i) K0 (·, xi) , (31)

gives the orthogonal projection of the function K0 (x, xt+1) on the 
linear span of the functions K0 (x, xi).

The update rule (28) is performed when a measure of the ap-
proximation error

γt+1 = k∗
t+1 − kT

t+1K
−1
t kt+1 (32)

does not exceed some tolerance level εtol > 0. Here, k∗
t+1 =

K0 (xt+1, xt+1). Eq. (32) has a geometrical interpretation, namely, 
it is a square norm of the “residual vector” from the projection in 
the RKHS. Alternatively, it measures the “novelty” of the current 
input. If γt+1 is higher than a threshold value, then the current in-
put holds additional information as compared to the existing set of 
inputs, which is called a “basis vector set” or BV set, and thus it 
should be added to this set. Proceeding sequentially, some of the 
inputs are left out and others are included in the BV set. How-
ever, because of the projection (31), the inputs left out from the 
BV set will still contribute to the final GP configuration – the one 
used for prediction and for measurement of the posterior uncer-
tainties. But the latter inputs will not be stored and do not lead to 
an increase of the size in the parameter set [41].

To avoid computationally expensive inversion of the Gram ma-
trix the recursive calculation of the inverse Gram matrix can be 
employed [41]:

Q t+1 = Q t + γ −1 (
êt+1 − et+1

) (
êt+1 − et+1

)T
, (33)

where et+1 is the (t + 1)-th unit vector. All matrix inversion is ex-
cluded using this recursion relationship. The Gram matrix is guar-
anteed to be non-singular since only inputs with novel information 
about Gaussian process are included in the BV set and γt+1 > 0
guarantees non-singularity of the extended Gram matrix.

5.2. Deleting a basis vector

Recursive update of the GP parameters (25) is implemented 
while the BV set does not exceed the budget, namely, the max-
imum number of elements in BV . Thus, a pruning procedure is 
required. When a new example is estimated as novel, this proce-
dure should get rid of one of the basis vectors and replace it by the 
new input vector. Two different strategies can be applied for selec-
tion of the vector from the BV set. The first strategy supposed to 
add a novel input vector instead of the oldest basis vector [46]. 
The second strategy [41] proposes to replace the basis vector with 
the smallest error. The former might be preferred for a fast-varying 
process. However, here we will follow the later approach since it 
provides enhanced richness of the BV set and an improved long-
term memory.

The removal procedure assumes that the respective BV was 
added and the previous update step (28) was implemented. In 
this case, αt+1 has (t + 1) elements, and C t+1 and Q t+1 are the 
(t+1) × (t+1) matrices. If we assume that the last added element 
should be deleted the decomposition of the αt+1, C t+1 and Q t+1
could be represented as follows:

αt+1 =
[

αl
t

αr

]
, C t+1 =

[
C l
t cr

crT cr

]
, Q t+1 =

[
Q l

t qr

qrT qr

]
, (34)

where C l
t and Q l

t are t × t sub-matrices extracted from the (t +
1) × (t + 1) matrices C t+1 and Q t+1. For the sake of simplicity, 
this representation is shown for the case when the last element 
6

should be removed, however, similar partitioning could be done for 
a general case. Updating equations for the element deleting case 
are the following:

α̂ = αl
t − αr qr

qr ,

Ĉ = C l
t + cr q

rqrT

qr2

Q̂ = Q l
t − qrqrT

qr ,

− 1

qr
[
qrcrT + crqrT

]
, (35)

where α̂, Ĉ and Q̂ are the parameters after the deletion of the 
last basis vector and αl

t, C l
t, Q l

t , αr, cr, qr, cr and qr are taken 
from GP parameters before deletion.

To decide the element of the BV set to be deleted a measure 
of change on the sample averaged posterior mean of the GP due to 
the sparse approximation is used [41]. This leads to the following 
score measure for each element i:

εi = |αt+1(i)|
Q t+1(i, i)

. (36)

The basis vector with minimal score (36) is deleted.
This method provides deleting of a basis vector from the BV

set with minimal loss of information.
Finally, the budgeted sparse GP algorithm is summarized by Al-

gorithm 1.

Algorithm 1 Budgeted sparse GP algorithm.
0: Initialize the BV set with an empty set, maximum number of the set 
elements with d, a tolerance with εtol, α, C , Q with empty values.
For each new measurement (xt+1, ςt+1) iterate

1. Compute qt+1, rt+1, k∗
t+1, kt+1, êt+1 and γt+1.

2. If γt+1 <εtol then
Perform a reduced update using (28).

3. else
Perform an update using (25). Add the current input to the BV
set, and compute the inversed Gram matrix using (33).

4. If |BV|>d then
Compute scores for the BV elements via (36) find the vector 
corresponding to the lowest score, and delete it using (35).

5.3. Convergence analysis

In this section, the convergence of the GP adaptive IBKS closed-
loop system is analysed.

After N measurements for each coefficient of matrices T ξ and 
B0, the maximum information gain is introduced with the follow-
ing equation [54]

γ N
i,j = max

w̃(1)
i,j ,...,w̃(N)

i,j ∈Wi,j

1

2
log

∣∣∣I+ σ−2
i,j K̃ i,j

∣∣∣ , (37)

where 
[
K̃

]
ab

= k 
(
x̃(a)
ij , x̃(b)

ij

)
and | ·| is the determinant operator. 

γ N
i,j can be interpreted as a measure of reduction of uncertainty 

achievable in a setting where the measurements are taken in the 
best possible fashion [54]. On a compact set Wij, γ N

i,j has a sublin-
ear dependence on N for a multitude of kernels and can efficiently 
be approximated up to a small constant by utilizing the approach 
given in [55]. The following theorem from [56] gives estimates of 
the bound for the model error obtained when using a GP trained 
with noisy measurements.

Theorem 1. Let f : Wij →R be a nonlinear function, Bf ∈ R be a bound 
for the corresponding RKHS norm w.r.t. kij, i.e., ‖ f ‖kij ≤ Bf , and let δ ∈
(0,1). For all N ∈ N , define βN = Bf + 4σ

√
γ N
ij + 1+ ln ( 1

δ
), where 

γ N
ij is determined by (37). Then, for all N ≥ 1 and xij ∈ Wij , the following 

holds with probability of at least 1 − δ
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∣∣ f (xij) − 〈
f (xij)

〉∣∣ ≤ βNσN−1
(
xij

)
, (38)

where N is a number of system measurements.

If Bf is not available a priori, a guess-and-doubling strategy 
can be employed to obtain an estimate, σ can be estimated by 
sampling the same data point multiple times [54], [55]. Since γ N

ij
grows sub-linearly with N on a compact set, the term βN grows 
slowly with N on a compact set. The covariance term σN−1

(
xij

)
typically is very small next to training data points [57]. Hence, the 
variance term σN−1

(
xij

)
can be decreased if the region of interest 

is sampled densely enough. This is achieved on a compact set [54], 
[55] by selecting training data points xij corresponding to highest 
model uncertainty, i.e.,

x(N+1)
ij = arg max

x̃ij∈Xij

σN(x̃ij). (39)

Following approach proposed in [45], we can state the next 
Lemma, showing that Algorithm 1, which utilizes a sparse GP 
representation, keeps error ε f = f (xi) −〈 f (xi)〉 induced by the pro-
jection bounded.

Lemma 1. Let the unknown function f be representable by a GP, 〈 fx〉t
be an on-line estimated GP representation of the function via a sparse 
subset BV of the data selected by deleting either the oldest basis vector 
or the basis vector with minimal score (36), then error εf= f (xi) −〈 f (xi)〉
is bounded with the probability of at least 1 − δ.

Proof. According to [41] and the nonparametric Representer the-
orem [58] the sample averaged posterior mean of the GP has the 
following error due to the sparse approximation:

|εt+1| = | f (xi) − 〈 f (xi)〉|
σ 2
x

∣∣∣k∗
t+1 − kT

t+1K
−1
t kt+1

∣∣∣ . (40)

According to Algorithm 1 γt+1 = k∗
t+1 − kT

t+1K
−1
t kt+1< εtol. 

Using Lemma 1 it could be derived that | f (xi) − 〈 f (xi)〉| ≤
βNσN−1 (xi) due to (38). Thus, it can be concluded that |εt+1| <

εtolβNσN−1 (xi) /σ 2
x with probability of at least 1 − δ. �

Now the boundedness of the tracking error can now be proven.

Lemma 2. Consider the tracking error given by (37) and the control law 

given with (16). The system tracking error zg =
[
zTξ zTy

]T
is globally uni-

formly ultimately bounded. With probability, of at least 1 − δ, the system 
ultimate error is given with

lim
t→∞

∣∣zg∣∣ =

√√√√√∑
i,j

([
W−1

g

]
ij
βT
ijσN−1ijεtolij
ugij

σ 2
xij

)2

. (41)

The Lyapunov function of the system given with Eq. (12) can be 
rewritten with the following

V � 1

2
zTg zg, (42)

where zg = [zTξ , zTω/a]T . For the brevity, let us designate Bg =[
T ξ 0
0 B0

]
, the estimation error is as follows B̃g = Bg − B̂g. In 

this case the derivative (13) can be rewritten

V̇ = −1

2
zTgWgzg + zTg B̃g
ug. (43)

The derivative is negative if
7

∣∣zg∣∣ > 2
∣∣∣W−1

g B̃g
ug

∣∣∣ . (44)

Due to the assumption 
∣∣
ug

∣∣ is bounded. Therefore, the inequality 
holds true for 

∣∣zg∣∣ large enough, which means that 
∣∣zg∣∣ is globally 

uniformly ultimately bounded. Taking into account Lemma 1, we 
get the desired result. �

It should be noted that σN−1ij and σxij are different; the former 
is due to approximation after N measurements, however, the latter 
is because of the on-line approximation.

The proof shows that the ultimate error bound of the controlled 
system with GP adaptation can be made arbitrarily small with a 
high probability by increasing the control gains W g, by reducing 
the tolerance level εtolij , which leads to less “residual vector” from 
the projection in the RKHS, or by selecting data points such that 
the terms βT

ijσN−1ij are reduced. The latter can be achieved by col-
lecting new measurements at points of high uncertainty. This is 
particularly interesting in a case where the control input 

∣∣
ug
∣∣ is 

constrained and high gains W g are not possible. At the same time, 
estimation error bound benefits from baseline control law, which 
is used to enforce compactness of the portion of the state space 
explored by the state trajectory. This in turn can be employed to 
guarantee sub-linear dependence of γ N

i,j on N, which enables the 
ultimate bound of 

∣∣zg∣∣ to be efficiently reduced with new training 
data. Furthermore, in [59], it was shown that the linear indepen-
dence of BV ensures that persistency of excitation in the state 
space is visible in RKHS. Since the proposed algorithm aims to en-
force this independence subject to the tolerance εtolij , PE is never 
lost (ensuring K t is invertible).

6. Control effectiveness estimation and IBKS adaptation loop

Due to the limited capacity of a journal paper, GP online identi-
fication framework is validated with the estimation of the aircraft 
control derivatives contained in matrix B0. Interaction of the adap-
tive augmentation with the baseline controller is demonstrated in 
Fig. 1. The adaptive augmentation block performs in-direct adapta-
tion by online estimation and adjustment of the control effective-
ness matrix B0.

Within the proposed framework the control efficiency is ap-
proximated via GP, which is characterized with its mean 

〈
f x

〉
and 

covariance K
(
x, x

′)
. For smooth identification process the compo-

nents of the input vector are normalized. The output observations 
are the instantaneous control efficiency values ς estimated from 
(5) by dividing the increment of state derivate �ẋ, by increment 
of control input �u

ςi = 
ẋ


u
. (45)

To avoid singularity of the estimation due to division in (45), we 
added additional check of the input data, namely,


u > εutol . (46)

Further, the estimated value of the control efficiency is supplied to 
the IBKS controller as a new value of a corresponding coefficient 
in B0.

Another issue of the in-flight control effectiveness estimation is 
that an aircraft flight control system sends the same signals for all 
individual control surfaces, making the individual signals propor-
tional to each other and causing a high correlation between the 
individual signals. If all the input signal forms look the same, then 
any algorithm trying to assign values for the control effectiveness 
of individual control will fail, because it is impossible to deter-
mine which of the multiple inputs, moved in the same manner, 
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Table 1
Considered failure scenarios.
No Scenario description Elevator

Inner Left Inner Right Outer Left Outer Right

1 50% reduction of the 
control efficiency Cmδ

50% of Cmδ
Working Failed before t=0 Failed before t=0

2 1st order nonlinear 
dynamics

F (s) = (2s + 1)−1 Working Failed before t=0 Failed before t=0

3 2nd order nonlinear 
dynamics

F (s) = (
2s2 + s + 1

)−1
Working Failed before t=0 Failed before t=0
was responsible for changes in the aerodynamic forces and mo-
ments. Input forms that are completely decorrelated will give the 
most accurate control effectiveness estimates. Unfortunately, when 
a feedback control system is operating, desired input forms be-
come distorted by the feedback control. To tackle this issue, we 
use a priori information through fixing the effectiveness of all but 
one of the correlated control surfaces to a priori values similar to 
[35].

Furthermore, while identifying the effectiveness of a certain 
control surface, the aircraft is demanded to perform manoeuvres 
with reduced coefficients in the allocation matrix W sDu for all 
control effectors responsible for this motion, except the coefficient 
relating to the control surface under study. In such a case, the con-
trol signal is split into two signals, the first one is for the control 
surface of which effectiveness is treated, while the second signal 
is for all other surfaces from the pool. Thus, the first signal is re-
sponsible for generating the required information for identification 
and the second one is used for guaranteeing the aircraft stability. 
Here we follow the approach from [24]

To estimate effectiveness of individual control effectors, individ-
ual contribution from each of the effector is taken in identification 
scheme (45). So, instead of 
ẋ, we used


ẋind = 
ẋ− W sDu B̂0
usup,

where 
ẋ is the derivative increment, Du is the allocation ma-
trix, W s is the amplification matrix required to produce the sup-
porting control signal usup. Elements of W s specify how the in-
dividual actuator signals differ from the generic one. The terms 
−W sDu B̂0
usup, which are responsible for the subtraction of con-
tribution from the supporting signal to the flight dynamics, are 
introduced in order to obtain the pure dynamics produced by the 
treated control surface. The predictor variable 
u in (45) is based 
on the incremental signal for the control surface under study.

We compared the proposed GP augmentation for IBKS with 
other adaptive strategies based on Recursive Least Square with 
Exponential Forgetting and Tuning functions (both techniques are 
provided in the Appendix for reference).

7. Simulation results

In this section, a simulation study of the ability of the discussed 
algorithm to tackle the failures is considered.

A nonlinear model of the Boeing 747 aircraft, courteously pro-
vided by the consortium partner TU Munich, is used to validate 
the designed approach. This model is a variant of the GARTEUR RE-
COVER benchmark simulator [6]. The Boeing 747 is a large, trans-
port aircraft with four wing-mounted engines. It has a length of 
approximately 70 meters, wingspan of 60 meters, and the max-
imum take-off weight is greater than 300 tons. The actuation of 
the Boeing 747 simulator corresponds to four ailerons, four eleva-
tors, two rudders, and four engines.

The nominal condition from which the simulation starts is a 
straight flight towards North with 340 knot of True Airspeed (TAS) 
and at an altitude of 5000 ft. The flight is developed under a low 
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turbulence condition defined by a 20-feet wind of 15 m/s in North 
direction and a turbulence intensity exceedance probability of 0.01.

The algorithm is validated in the longitudinal motion of the air-
craft. It is assumed that uncertainties are in the effectiveness of 
the elevator to control pitch. Three different scenarios were con-
sidered. In the first scenario, a control efficiency of the one of the 
elevators was reduced by half. In the second and third scenarios, a 
nonlinear dynamics of the first or the second order in one of the 
actuators was added. The summary of the considered cases is pro-
vided in Table 1. Additional explanation is provided below in the 
corresponding subsections.

For the GP identification, we had xi = V i
Vnorm

, where the normal-
izing constant Vnorm = 345 knot guarantees that the corresponding 
RBF centres are close to the unity. To have a proper compari-
son with EF RLS, we had the similar selection of the output data, 
namely, ςi = 
 ẏindi − W sDu B̂0
usup. The maximum number d of 
the BV set was 3, εtol = 1e − 4, εutol = 1e − 4, σ 2

0 = 5e − 9. To ob-
tain the appropriate overlapping between neighbouring kernels the 
RBF width is specified as follows

σ = 0.2

4(
√
d− 1)2

. (47)

Forgetting function of EF RLS was F = 0.9999. Adaptation gain for 
the TF update law was � = 150.

7.1. Two failures and loss of effectiveness

In the current section an ability of the developed controller is 
evaluated in a case of simultaneous failure of two elevators (stuck-
in-position) and 50% loss of effectiveness of the third elevator.

The results are presented in Fig. 2. Here it is assumed that two 
elevator failures (stuck-in-position) happened before t = 0 s. For 
the adaptive algorithms, it is considered that these two failures 
detected and isolated also before t = 0 s, which means that the 
corresponding coefficients equal to zero in the B̂0. The loss of ef-
fectiveness of one the two rest elevators, namely, Inner Left (IL), 
simulated at t = 5 s.

On the top left subplot, estimation of the failed elevator effec-
tiveness obtained with GP is demonstrated. One can see that the 
identification is finished within 230 s after the failure. At the same 
subplot, estimations provided by EF RLS and TF are also added 
for comparison purposes. One can see that the GP performance 
is pretty similar to EF RLS, however, TF is much slower. It should 
be mentioned, that the slow estimation rate exhibited by TF is due 
to the low adaptation gain and relatively small identification steps. 
They might be increased to improve the estimation rate, however, 
further increase of the rate/amplitude caused losses of the algo-
rithm stability for other test cases. On the left bottom subplot, the 
pitch angle θ is presented, while in the bottom right figure the 
pitch rate q is provided. On the right-top subplot the real effective-
ness of two working elevators, namely, inner and outer elevators, 
are demonstrated. One can see that at t=5 s the effectiveness of 
the inner elevator degraded (as assumed by the scenario). Effec-
tiveness of the elevators failed before t=0 s is zero.
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Fig. 2. First simulation scenario.
From the obtained results, one can conclude that the pure IBKS 
is quite robust to such types of failures, especially when actua-
tion redundancy is available. When the mismatch between the real 
and model control efficiency is constant, i.e. when the system in-
put affine property is conserved, the IBKS is able to cancel the 
produced uncertainty, which was also reported in [24], [29], [50]. 
Nevertheless, the online estimations of control effectiveness could 
improve the control quality. This example shows that the proposed 
online GP identification provides fast and precise tracking of the 
control effectiveness variation.

7.2. First order dynamics

Following the methodology proposed in [24], we also tested the 
ability of the algorithms to counteract the uncertainties when the 
system input affine property was broken. This section considers the 
appearance of the first-order unmodeled actuator dynamics.

A high level of redundancy (four elevators) allows for conserv-
ing the input affine property for Boeing 747, even in the case of the 
arising of unmodeled dynamics in one of the actuators. To simu-
late the conditions where the input affine property is not valid 
anymore, we assume here that two elevators failed before t = 0 s. 
For the adaptive algorithms, similar to the previous scenario, it is 
considered that two elevator failures were detected and isolated 
before t = 0 s and those corresponding coefficients equal to zero 
in B̂0. Meanwhile, for the pure IBKS, it is considered, that the 
algorithm does not have access to new information about the con-
trol effectiveness and, thus, uses initial matrix B̂0. At t = 150 s, 
the nonlinear unmodeled dynamics originate at one of the two 
working actuators as a failure. It was reported that many known 
actuator failures could be simulated with the first or second order 
actuator dynamics [60], [61]. For the current scenario, we assumed 
the first order dynamics, represented with the following equation

F (s) = (2s + 1)−1 . (48)

Comparison of behaviours of the GP-adaptive IBKS with other IBKS 
modification is presented in Fig. 3.
9

The top-level subplot demonstrates identification of the con-
trol effectiveness implemented with GP, EF RLS and TF techniques. 
The middle and bottom subplots show the parameters of the state 
vector θ and q. The first-order actuator dynamics arose at t = 5 s
has a significant effect on the performance of the IBKS algo-
rithm, namely, weakly damped oscillations are observed. Before 
t = 150 s, the IBKS demonstrates robustness to the failures for 
small-amplitude steps; even with two failed elevators, it follows 
the reference signal. At the same time, for the moderate ampli-
tude steps, one can observe weakly damped oscillations in θ and 
q. These oscillations are heavily dumped when any of the adapta-
tion augmentations is applied.

The figure demonstrates that GP identification is significantly 
faster than other methods and converges within 20 s. Such a fast 
adaptation leads to reduced overshoots in pitch and precise follow-
ing the demanded signal. GP is capable of relatively fast adaptation 
as compared to the considered algorithms, even in the case of a 
small noise-to-signal ratio at t < 150 s.

7.3. Second order dynamics

The IBKS performance degradation due to a loss of the input-
affine property is shown in the previous section. In this simulation 
experiment, the condition is examined further, namely, the non-
linear dynamics of the second order in one of the actuators is 
injected. Similar to the previous test case, we also assume that 
two elevators failed before t = 0 s; for the adaptive controller, it is 
considered that these two failures were detected and isolated be-
fore t = 0 s, and those corresponding coefficients equal zero in B̂0. 
At t = 150 s at one of the rest actuators, the 2-nd order unmodeled 
dynamics arise as a result of the failure:

F (s) =
(
2s2 + s + 1

)−1
. (49)

Shown in Fig. 4 is comparison between behaviour of IBKS and 
Adaptive IBKS in considered scenario.
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Fig. 3. 1st order nonlinear dynamics.

Fig. 4. 2nd order nonlinear dynamics.
Similar to the previous figures, the transition processes of state 
vector θ and q are demonstrated. One can see that the IBKS control 
suffers from instability in the form of high-amplitude limit-cycle 
oscillations. Such a nonlinear dynamics is caused by interaction 
between the failed and the non-failed elevators. Meantime, IBKS 
with the adaptive augmentations manifests the system stability 
and good tracking performance.

Three different adaptive strategies are scrutinized in Fig. 5. All 
three algorithms provide stability. Similar to the previous sce-
10
nario, GP demonstrates the fastest adaptation rate and thus the 
best tracking performance among considered methods because it 
“switches off” harmful interaction of the failed and non-failed ele-
vator.

Remark 1. The estimation convergence time is an important pa-
rameter of an adaptive system. The simulation results show that 
GP is doing better than other tested methods or the same in terms 
of convergence time. However, it might be noted that the time 
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Fig. 5. Comparison of different estimators: 2nd order nonlinear dynamics.
is still large. Such large estimation times observed for all meth-
ods are because the estimations are performed for the closed-loop 
system, where the estimation algorithm interacts with the control 
system. Even though the convergence time varied from 20 sec-
onds to 200 seconds, the augmented system remains stable, and 
the short-period dynamics is controlled even when the estimation 
is not converged.

Remark 2. Incremental Backstepping is a recently developed tech-
nique with a reduced dependency on the onboard aircraft model. 
This approach uses estimates of the state derivatives and the cur-
rent actuator states to linearize the flight dynamics with respect 
to the current state. Our results and the results of the other re-
searchers revealed the robustness of the IBKS to actuator failures 
when the system remains input affine, even in the case of multi-
ple failures. However, we have shown in the current study that a 
combination of multiple failures and unmodelled actuator dynam-
ics might cause a loss of input affine property. This property can 
also be lost in many other scenarios, for example, in the case of 
a combination of partial loss of effectiveness and transport delays. 
Furthermore, inaccurate measurements could introduce uncertain-
ties in the matrix representing the relationship between the inner 
and outer loops. As a result, the system stability cannot be guaran-
teed anymore, and an adaptive augmentation is required to com-
pensate the unmodelled dynamics.

Remark 3. Performance of the GP-adapted IBKS was studied in 
simulations of three different failure scenarios developed for Boe-
ing 747 involving multiple failures with partial loss of effective-
ness, and unmodelled actuator dynamics of the first and the sec-
ond orders. The IBKS controller with model parameter estimator 
demonstrates improved stability and tracking performance charac-
teristics. More precise information fed to the baseline controller by 
the estimator improved tracking performance for loss of effective-
ness, cancelled undesired oscillations observed for the IBKS in case 
of unknown first-order actuator dynamics and prevented the loss 
of stability in case of unknown second-order actuator dynamics. 
The performance of the GP-adaptive IBKS is evaluated by compar-
ison with EF RLS and TF. For the partial loss of efficiency, GP and 
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EF RLS demonstrated similar results. For the cases of unknown 
nonlinear actuator dynamics, GP showed faster adaptation lead-
ing to improved tracking performance. It is well known, that EF 
RLS works well, however, it shows less efficiency for time-varying 
processes. TF algorithm demonstrated slower adaptation because 
of the small adaptation gain; higher adaptation gains led to the 
loss of stability. Additional top-level algorithms, switching-on and 
switching-off TF-adaptation might be applied to make higher adap-
tation gains possible. However, such additional structures might 
make the overall control algorithm more complex. We could con-
clude that GP-based adaptation loop augmenting IBKS provides the 
best overall result among the considered methods.

8. Conclusions

In this research, we proposed a GP-based adaptive augmenta-
tion to IBKS, which uses the budgeted sparse GP algorithm for the 
online identification of the model parameters. The resulting track-
ing error is globally uniformly ultimately bounded, and its ultimate 
bound is decreased by increasing the control gains, reducing the 
tolerance to the error from the projection in the RKHS, or using 
additional training data.

Our results showed that IBKS with the model parameter esti-
mator has improved stability and tracking performance character-
istics and can guarantee the system stability under severe failures, 
even if the input-affine property is violated. GP-based adaptation 
overperforms other state-of-the-art methods, providing faster con-
vergence and long-term memory. The resultant GP-adaptive IBKS 
control algorithm is almost model-free fault-tolerant control.
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Appendix A. Adaptive augmentation for IBKS

We compared the proposed GP augmentation for IBKS with 
other adaptive strategies based on Recursive Least Square with ex-
ponential forgetting and Tuning functions.

A.1. Recursive least square with exponential forgetting

The effectiveness is estimated online using the Recursive Least 
Square (RLS) with exponential forgetting (EF), which is commonly 
used for the real-time system identification. The technique enables 
recursive computations of estimates to be carried out. The typical 
algorithm for EF RLS is

θ̂(t) = θ̂(t − 1) + P (t)ϕ(t)
[
y(t) − ϕT (t)θ̂(t − 1)

]
,

R(t) = F (t)R(t − 1) + ϕ(t)ϕT (t),

F = μI

where θ̂(t) ∈ Rn is the estimates of the parameter vector at time 
step t , ϕ(t) ∈ Rn is the observer data vector, y(t) ∈ R is the system 
output vector, P (t) ∈ Rn×n is the covariance matrix, R(t) ∈ Rn×n

is the information matrix that is inverse of the covariance matrix, 
F (t) ∈ Rn×n is the forgetting matrix, μ ∈ (0, 1) is the scalar forget-
ting factor.

The identification problem is stated as follows:

ς ∼= A θ̂ ,

where the response variable vector is the following

ς =
[

 ẏindm (1) − W sDu B̂0
usup . . .
 ẏindm (N)− W sDu B̂0
usup

]

 ẏindm (1) . . .
 ẏindm (N) is the record of derivative increment for m
component of the dynamic state vector y, the predictor variable 
vector is based on the incremental signal for the control surface 
under study

A =
[

uind (1) 
uind (2) ... 
uind (N)

]T
.

A.2. Tuning functions

In the current section, we would like to present an adaptive 
augmentation to the baseline IBKS controller via the tuning func-
tion (TF) approach [16].

Here, we assume that actuator failure causes degradation of the 
actuation effectiveness. The dynamics of the general tracking error 

dynamics zg =
[
zTξ zTy

]T ∈ R7, which is measurable system state, is 
introduced with the following equations

żξ = ξ̇d (t) − ξ̇0
(
zg, t

) − T ξ

(
ω

(
zg, t

) − ω0
(
zg, t

))
,

˙̄zy = ẏd (ω0, t) − ẏ
(
zg, t

) − B0 (t)
(
u

(
zg, t

) − u0
(
zg, t

))
−χ̇ (u, t) ,
12
where ξ̇d, ̇ξ0, ẏ, ẏd are essentially locally bounded, uniformly in t
functions, B0 (t) is the effectiveness matrix, an unknown, linear-
parameterizable, essentially locally bounded function, χ̇ is the in-
fluence of the CF, essentially locally bounded function, u is the 
baseline control input. B̂0 : R4×14 × 0,∞) → R4×14 is the esti-
mate of B0. We assume that there exists an unknown parameter 
vector θ̂ ∈ Rk to be estimated such that j-column b̂ j ∈ Rk of B̂

T
0

can be represented as

b̂ j = �T
j (ξ0, y0,u0, t)θ̂ ,

where �T
j (ξ0, y0, u0, t) :R3×4×14× 0,∞) →R4×k is the regressor 

function.
The estimation error is

B̃0 = B0 − B̂0.

In this case, the parameter estimation errors and its derivative are 
the following

θ̃ = θ − θ̂,
˙̃θ = −˙̂

θ .

For such a system, Lyapunov-based estimation algorithm can be 
designed

˙̂
θ = −��T

j (x0,u0)z̄y
uj,

where � ∈ R+ are positive adaptation gains, 
u j is jth element 
of 
u. Proof of stability could be found in [24], [27].
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