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Abstract: A community integrated energy system (CIES) is an important carrier of the energy 
internet and smart city in geographical and functional terms. Its emergence provides a new 
solution to the problems of energy utilization and environmental pollution. To coordinate the 
integrated demand response and uncertainty of renewable energy generation (RGs), a data-driven 
two-stage distributionally robust optimization (DRO) model is constructed. A comprehensive 
norm consisting of the 1-norm and ∞-norm is used as the uncertainty probability distribution 
information set, thereby avoiding complex probability density information. To address multiple 
uncertainties of RGs, a generative adversarial network based on the Wasserstein distance with 
gradient penalty is proposed to generate RG scenarios, which has wide applicability. To further tap 
the potential of the demand response, we take into account the ambiguity of human thermal 
comfort and the thermal inertia of buildings. Thus, an integrated demand response mechanism is 
developed that effectively promotes the consumption of renewable energy. The proposed method 
is simulated in an actual CIES in North China. In comparison with traditional stochastic 
programming and robust optimization, it is verified that the proposed DRO model properly 
balances the relationship between economical operation and robustness while exhibiting stronger 
adaptability. Furthermore, our approach outperforms other commonly used DRO methods with 
better operational economy, lower renewable power curtailment rate, and higher computational 
efficiency. 

Key Words: Community integrated energy system; Distributionally robust optimization; 
Uncertainty modeling; Integrated demand response; Renewable energy; Scenario generation. 

1 Introduction 

In recent years, fossil fuel depletion and environmental pollution have become two major 
problems that are being faced by the entire human society. The emergence and development of 
renewable generations (RGs) provide an opportunity to address such problems [1]. A community 
integrated energy system (CIES) is a typical example and important support for the development 
of energy internet [2]. A CIES mainly establishes the power system as the basic framework, 
realizes the stepped utilization of energy by coupling various energy forms such as electricity, gas, 
and heat, and gives full play to the complementary characteristics of various heterogeneous energy 
sources [3,4]. However, with the increasing penetration rate of renewable energy in CIESs, its 
inherent uncertainty will inevitably impact the stable operation of the CIESs and decrease the 
consumption rate of renewable energy [5]. Therefore, managing the uncertainty of RGs has 
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become a hot research topic in CIES optimization operation. Currently, stochastic programming 
and robust optimization are two common approaches to dealing with uncertainties in CIESs [6]. In 
[7], a robust method was adopted to deal with the uncertainty of energy market prices and predict 
confidence intervals of uncertain parameters by a Gaussian process method. In [8], an IES 
stochastic optimization model was proposed; this model incorporates network dynamic 
characteristics and psychological preferences to handle the uncertainty and spatiotemporal 
correlation between multiple wind farms. Ref. [9] proposed a day-ahead stochastic optimization 
model for to manage the uncertainty of forecasting distributed generations and loads by using 
Latin hypercube sampling and the K-means method for scenario generation and clustering, 
respectively. Unfortunately, in practical applications, the above methods have certain limitations. 
Stochastic programming usually assumes that random variables must obey a certain deterministic 
distribution, but often probability distribution models cannot accurately describe the real 
distribution of actual RGs, and the large scale of discrete scenarios leads to long computation 
times [10]. Robust optimization utilizes an uncertainty set to describe the fluctuation range of 
uncertain parameters, but it often leads to conservative optimal solutions as a result of too much 
emphasis put on the worst scenarios [11]. The emerging distributionally robust optimization (DRO) 
combines the characteristics of both methods. It does not need to set the type and parameters of 
the probability distribution; it can establish an uncertain set of probability distributions based on 
data and target the worst probability distribution to make decisions. The general distributionally 
robust method usually adopts the probability distribution ambiguity set based on distance [12] and 
moment information [13], but the resulting NP-hard problem is difficult to solve. In [14], the 
authors established the probability distribution ambiguity set of RGs based on the Wasserstein 
distance, and addressed the DRO problem of optimal power flow in transmission and distribution 
networks. Given that there may be a deviation between the statistical moment of the probability 
distribution of random variables and the set value, the probability distribution ambiguity set of 
RGs in [15] was based on the moment information, which was adjusted according to the risk 
preference of decision makers. The larger the risk parameter value, the more conservative the 
scheduling scheme.  

In recent years, artificial intelligence technology has been gradually applied to optimal 
scheduling of power systems [16-18]. The traditional method for probability model scenario 
generation lacks wide applicability in complex practical application environments. However, 
leveraging on the deep-learning framework, deeply hidden statistical patterns in the data can be 
mined to generate unsupervised scenarios. In [19], generative adversarial networks (GANs) were 
used to generate diversified contingency scenarios to train a deep learning classifier. Compared 
with other types of scenario generation methods, the deep-learning-based generation method 
provides stronger generalization and data expression abilities. It is also advantageous for 
unsupervised and autonomous learning and can better reflect the spatiotemporal characteristics of 
random variables, which can improve the ability of systems to manage future uncertainties [20].  

To motivate users to actively participate in system scheduling, the demand response 
optimizes flexible loads on the demand side, thereby achieving the goal of promoting renewable 
energy consumption and optimal economical operation [21]. In [22], a load management strategy 
based on the type of load composition was proposed along with an IES multi-objective operation 
optimization model including an electricity and heat demand response mechanism. In [23], the 
authors proposed an optimal operation method considering multiple uncertainties and price-based 
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demand response for CIESs; however, incentive-based demand response was not taken into 
account. 

The traditional demand response does not fully exploit the complementary coupling 
relationship between different energy sources, and previous studies considering the heat demand 
response often simply treated the controllable heat load as a function of the proportion of the total 
heat load or outdoor temperature, and did not exploit the ambiguity of user’s thermal comfort [24, 
25]. 

Aiming to address these problems, this paper proposes a data-driven two-stage 
distributionally robust CIES optimal scheduling model. Compared to existing research, the main 
innovations and contributions of this study are as follows: 

(1) To coordinate the integrated demand response (IDR) and uncertainty of RGs, a 
data-driven two-stage distributionally robust CIES scheduling model was constructed. The 
traditional DRO method based on the moment information and the probability density is generally 
solved by constructing a convex optimization model through the deflected linear decision rule and 
the duality theorem, which increases the difficulty of model transformation and the corresponding 
NP hard problem is complex. The DRO method proposed in this paper has strong practical values 
because it only needs a simple linearization and avoids complex mathematical conversions and 
calculation processes. 

(2) The original GAN is more inclined to guide the generator for generating a single RG 
power distribution with the highest probability. In order to overcome this shortcoming, a scenario 
generation method based on WGAN-GP is proposed, where WGAN-GP has a better performance 
in improving the worst case probability distribution estimation according to the sampled data. It 
can also reflect the space-time characteristics of random variables better and provide a better 
adaptability in actual system operations. 

(3) To further tap the potential of demand response, we comprehensively analyzed the 
ambiguity of human thermal comfort and thermal inertia of buildings. As a result, an integrated 
demand response mechanism was developed that effectively promotes the consumption of 
renewable energy. 

(4) A simulation test was carried out on an actual CIES in North China. In comparison with 
traditional stochastic programming and robust optimization methods, it was verified that the 
proposed DRO model better balances the relationship between economical system operation and 
conservatism, and exhibits better performance and stronger adaptability. Furthermore, 
comparisons have been made between our proposed solution and other commonly used DRO 
methods to examine the superiority of our proposed DRO.  
2 RGs scenario generation and reduction 
2.1 RGs scenario generation based on WGAN-GP 

The generative adversarial network (GAN) is an unsupervised machine learning method 
which was proposed by Goodfellow et al. in 2014. It consists of generator G and discriminator D 
[26]. G is a sample generator. When a group of noise vectors z is input, G generates new data 
samples G(z) by learning the inherent distribution laws and characteristics of real data x; D is a 
two classifier, and its input is the data generated by G and the real data x. The purpose of generator 
G is to generate samples that are as distributed as the real data to maximize the interference with 
the discriminator. Discriminator D is designed to distinguish between the generated sample G(z) 
and the real data x. This is the dynamic game process of G and D, where both can improve their 
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performances continuously through the iterative confrontation training, until D can no longer 
distinguish between the real data x and the generated sample G(z); then they reach the Nash 
equilibrium. 

The basic structure of a GAN is shown in Fig. 1. 
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Fig. 1. Basic structure of a GAN 

For simplicity, assuming that the real historical data of RGs in a CIES is x, and its probability 
distribution is Pd. There exists a set of random noise vectors z whose probability distribution 
satisfies Pz. A GAN can establish a mapping relationship between Pd and Pz, and the generated 
samples that satisfy the distribution relationship of the real data by training the generator and 
discriminator are obtained with probability distribution Pg. The training process is completed by 
two deep neural networks, namely generator G(z;θG) and discriminator D(x;θD), where θG and θD 
are the weights of the corresponding neural networks. Therefore, the loss functions for both 
networks can be defined as follows: 

[ ( ( ))]
zG z PL E D G z                        (1) 

z
[ ( ( ))] [ ( )]

dD z P x PL E D G z E D x                  (2) 

where LG and LD represent the loss functions of the generator and discriminator, respectively; E(·) 
is the expectation function; G(·) is the generator function; and D(·) is the discriminator function. 
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The smaller the value of LG, the closer the samples generated by the generator to the actual data, 
and the stronger the ability of the discriminator to distinguish the authenticity of the data. The 
objective function of the game process is expressed as follows: 

minmax ( , ) [ ( )] [ ( ( ))]
d zx P z PG D

V G D E D x E D G z             (3) 

WGAN use the Wasserstein distance instead of the Jensen-Shannon distance to measure the 
distance between real data and generated samples based on the original GAN. This effectively 
solves the problems of GAN gradient disappearance and training instability [27]. WGAN-GP 
solve the problem that WGAN cannot constrain the discriminator within the 1-Lopschitz 
constraint by penalizing the gradient norm of the WGAN discriminator. The objective function of 
the overall training of a WGAN-GP is expressed as follows: 

ˆ

2
2ˆ

minmax ( , ) [ ( )]

[ ( ˆ( ))] [ ( )ˆ 1]
x

d

z

x PG D

z P x P

V G D E D x

E D G z E xD x 



 

 

 
               (4) 

where 2  represents the 2-norm,   is the penalty coefficient, and  )= 1 (x x G z


  , 

where   is a random number that satisfies the uniform distribution on the interval [0,1]. 

2.2 RGs scenario reduction based on K-means++ 

The K-means++ clustering algorithm is widely used in the reduction of RG scenarios in 
power systems because of its simplicity and efficiency and its better performance than the original 
K-means algorithm in selecting initial cluster centers [28]. In this study, the K-means++ algorithm 
was used to cluster a large number of RG scenarios generated by a WGAN-GP. Given that the 
number of clusters has a great influence on the clustering effect, scheduling model construction, 
and computational efficiency, it is necessary to determine the optimal number of clusters. 

To this end, typical internal validity indexes such as the Davies Bouldin index (DBI) and 
silhouette coefficient (SC) are introduced for quantitative analysis, both of which are widely used 
in the study of multi-wind farm correlation, classification of load curves, etc. [29]. 

Assuming that the samples k in the dataset are clustered into three categories, DBI is 
expressed as follows: 

 1

1( ) max
,

i j

i i j

N S S
DB i

CN
I

d C

 
  
 
 

                  (5) 

where Ci is the center of the 𝑖-th cluster; Si is the average distance from all samples in cluster 𝑖 to 
cluster center Ci, also known as intra-cluster distance; and d(Ci, Cj) is the distance between cluster 
centers Ci and Cj, also known as inter-cluster distance. 

SC is expressed as follows: 

( ) ( )( )
max{ ( ), ( )}

b k a ks k
a k b k


                      (6) 

where s(k) is the silhouette coefficient of the kth sample, b(k) is the average distance between the 
kth sample and other samples outside the cluster, and a(k) is the average distance between the kth 
sample and all samples in the cluster. 

3 Physical model of CIES 
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3.1 Overall structure of CIES 
The proposed CIES consists of two energy subsystems. Electric energy comes from the 

micro-turbine generator (MTG), WTs, photovoltaic (PV), and the main grid, while thermal energy 
comes from the MTG and electric boilers (EBs). Electricity and heat loads are residential 
electricity load and building heat load, respectively. To ensure the safe, flexible, and economical 
operation of the system, buffer equipment such as an energy storage system (ESS) and a heat 
storage device (HSD) are also configured. The overall structure of the CIES is shown in Fig. 2. 
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Fig. 2. Schematic diagram of the proposed CIES 

3.2 Flexible load model 
3.2.1 Electric load model 

According to the response characteristics of the electric load, it is categorized into 
time-shiftable load (TSL) and electrical interruptible load (EIL). 
(1) Time-shiftable load 

Under the condition that the total power demand is guaranteed to be fulfilled, the TSL can 
flexibly adjust the power consumption periods through price guidance to achieve peak shaving 
and valley filling. It can be described as follows: 

,min ,max
TSL TSL TSL

t t tP P P                           (7) 

1
=0

T
TSL

t
i

P


                             (8) 

where TSL
tP  is the TSL in period t, and ,max

TSL
tP  and ,min

TSL
tP  represent the upper and lower limits of 

the TSL that can be adjusted in period t, respectively. 
(2) Electrical interruptible load 

During the periods of high electricity demand, users would stop power consumption 
according to the power agreement to ease the power supply pressure during these periods and 
reduce their own energy consumption cost. The relevant constraints for interruptible loads can be 
described as follows: 

,max0 EIL EIL
t tP P                            (9) 

where EIL
tP  and ,max

EIL
tP  are the amount of electrical load interrupted and the maximum allowable 

interruption load in period t, respectively. In this study, ,max
EIL

tP  is assumed to be 10% of the 
electrical load demand in each period. All in all, the following expression can be derived: 

0
, ,

TSE IE
t t tLD LD tP P P P                           (10) 
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where 0
,LD tP  and ,LD tP  represent the electrical load before and after implementing demand 

response programs.  
3.2.2 Thermal flexible load 
(1) Predicted mean vote 

To quantify the user's acceptable thermal comfort range more accurately, a predicted mean 
vote (PMV) is introduced as follows: 

3.76( ( ))2.43
( 0.1)

s in

cl

T T tPMV
Q I


 


                      (11) 

where Q is the metabolic rate of the human body; clI  is the thermal resistance of clothing; ( )inT t  
is the room temperature; and sT  is the average temperature when the human skin feels 
comfortable.  

The human body is active during the day and has high requirements for thermal comfort. 
However, when users are sleeping at night, their comfort requirements can be appropriately 
relaxed. Therefore, different PMV values are set at different periods [30]; in this study, the indoor 
temperature values for the whole day were set as shown in Fig. 3. The range of PMV variation is 
expressed as follows: 

0.9,    [1:00-7:00] [20:00-24:00]

0.5,    [8:00-19:00]

PMV t

PMV t

   


 

                (12) 
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Fig. 3. The range of indoor temperature variation 

(2) Thermal inertia of buildings 
The transient heat balance equation of a building is used to describe the effect of heat change 

exerted by the heating system on the building temperature; this yields the relationship between the 
building heat and temperature. The transient heat balance equation for a building can be described 
through the following first-order differential equation [31]: 

( )in L in out
t t t t

air air

dT H T T K F
dt c V

   


 
                     (13) 

where in
tT  and out

tT  are the indoor and outdoor temperatures in period t, respectively; L
tH  is 

the heating power in period t; F and V are the surface area and volume of the building, 
respectively; K is the comprehensive heat transfer coefficient of the building; and air  and airC  
are the density and specific heat capacity of the indoor air, respectively. 

Based on the reasonable assumption that the outdoor temperature remains unchanged for a 
short time, Eq. (13) can be linearized to obtain the following expression: 
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1
1 1( ) ( ) ( )in in out L out L

t t t t t t
air air

K FT t T T H T H
c V K F K F




         

   
     (14) 

The building heating load is obtained as follows: 

1[ ] [ ]

1 1

in out in out
t t t t

L air air
t

air air

K FT T t T T
c VH

t
K F c V




    

 


 
  





            (15) 

(3) Interruptible heat load 
The PMV is used to measure the ambiguity of human body's perception concerning indoor 

temperature changes, and the range of interruptible heat load can be obtained through the transient 
heat balance equation. Therefore, the heat supply reduction load can be described as follows: 

,max0 IE IE
t tH H                        (16) 

,
0

,
IE

LD t LD t tH H H                     (17) 

where E
t
IH  and ,max

E
t
IH  are the interrupted heating power and its maximum value in period t, 

respectively; and 0
,LD tH  and ,LD tH  represent the heat load demand before and after the reduction, 

respectively. 

4 Two-stage DRO model 

4.1 Two-stage objective function 
4.1.1 First-stage objective function 

The objective function of the first stage considers the gas turbine startup and shutdown costs: 

 , ,
1 1

min
G

i i

N

i t i tK
t

T
i

T
S y S z

 

                            (18) 

where T is the total number of periods in a scheduling cycle, which is set to 24 h; GN  is the 

number of MTGs; iKS  and iTS  are the startup and shutdown costs of the MTG, respectively; and 

,i ty  and ,i tz  are the MTG startup and shutdown variables, respectively; when their values are 1, 

it means that the micro-gas turbine is on/off; otherwise, they are 0. 
4.1.2 Second-stage objective function 

The objective function of the second stage includes the MTG operation cost, main network 
power purchase cost, ESS operation cost, HSD operation cost, wind and solar curtailment cost, 
CO2 emission penalty cost, and demand response cost. This objective function is described as 
follows: 

 2
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where MTGC  is the MTG operating cost; buy
gridC  is the power purchase cost from the main grid; 

ESSC  and HSDC  are the operating costs of the ESS and HSD, respectively; LossC  is the cost of 
curtailing wind and solar power; 2COC  is the CO2 emission penalty cost; sell

gridC  is the grid 
electricity sales profit; IDRC  is the cost of the demand response; ia  and ib  represent the 

primary term and constant term coefficients of the MTG operation cost, respectively; buy
gridc  and 

l
grid
selc  are the unit price of electricity purchased and sold by the CIES from the grid, respectively; 

ESSc  and HSDc  are the unit price of ESS and HSD charging and discharging operation, 

respectively; Lossc  is the unit penalty cost for curtailing WT and PV; 
2coc  is the CO2 emission 

unit penalty price; TSE  is the TSL compensation price; EIE  and HIE  are the electric and 
heating compensation prices for interruption loads, respectively; , ,

MTG
EL i tP  is the output power of the 

MTG in period t; ,i t  is the MTG running status flag: if ,i t =1 means the MTG is running, 

otherwise ,i t =0 means the MTG is not running; ,
buy
grid tP  and ,

sell
grid tP  are the power purchased 

and sold by the CIES from the grid in period t, respectively; ,
ESS

CH tP  and ,
ESS

DC tP  are the charging 
and discharging power of the ESS, respectively; ,

HSD
CH tP  and ,

HSD
DC tP  are the heat storage and 

discharge power of the HSD, respectively; ˆ V
t
PP  and V

t
PP  are the predicted output and actual 

output values of PV in period t, respectively; ˆ T
t
WP  and WT

tP  are the predicted and actual output 
values of WT in period t, respectively; and MTGk  and gridk  are the CO2 emissions per unit of 

MTG and the grid, respectively. 

4.2 Constraints 

4.2.1 MTG operating constraints 
(1) MTG output constraint 

The MTG output follows the following constraint [32]: 
MTG max MTG

, , , MTG,EL

, ,

0 Ω
1

EL i t i t

i t i t

P P i
y z
   

 

,                     (20) 

where max
MTG,ELP  is the maximum value of the power supplied by the MTG in period t and MTGΩ  

is the set of all MTGs. 
(2) MTG ramping constraints 

The MTG ramping constraints are given as follows: 
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MTG MTG MTG MTG
, , , 1 , 1 , , ,max

MTG MTG MTG MTG
, , , 1 , 1 , , ,max

Ω

Ω
i t EL i t i t EL i t U

i t EL i t i t EL i t D

P P P i

P P P i

  

  

 

 

   

   

,

,
               (21) 

where ,
MTG

i tP  and , 1
MTG

i tP   are the output power of the MTG in period t and the next period, 

respectively; and max
UP  and max

DP  are the maximum allowable rates of the MTG climbing 
and landslide rates, respectively. 

(3) MTG thermoelectric ratio constraints 
Engineering practice shows that MTG efficiency is only approximately 30% when it is purely 

used as a generator, but in the cogeneration mode, the efficiency can reach 75%. Its constraints are 
defined as follows:  

, , , ,
MTG MTG

HL i t HE EL i tP P                          (22) 
MTG max MTG

, , MTG,HL0 ΩHL i tP P i  ，                      (23) 

where , ,
MTG

EL i tP  and , ,
MTG

HL i tP  are the electrical power output by the MTG and the corresponding heat 
power, respectively; max

MTG,HLP  is the maximum value of the MTG heating power; and HE  is the 

MTG thermoelectric ratio, set as 1.2 in this study, which means that 1 kW of electrical power 
generated by the MTG will generate 1.2 kW of thermal power. 
4.2.2 ESS operational constraints 
(1) ESS output constraints 
 The ESS outputs should obey the flowing constraints [33]: 

, ,max

, ,max

0

0

ESS ESS
CH t CH

ESS ESS
DC t

t

D
c

C

ch

d
t

P B P

P B P

 

 
                           (24) 

1ch dis
t tB B                                 (25) 

where ,
ESS

CH tP  and ,max
ESS

CHP  are the charging power of the ESS and its maximum chargeable power, 
respectively; ,

ESS
DC tP  and ,max

ESS
DCP  are the discharge power of the ESS and its maximum 

dischargeable power, respectively. Finally, ch
tB  and dc

tB  are Boolean variables that represent the 
running state of the ESS; when their value is 1, the ESS is in a state of charge or discharge, 
respectively; when their value is 0, the ESS is neither charged nor discharged. 
(2) Energy storage capacity constraints 

To prolong the lifetime of the ESS and prevent its overcharging and discharging, the 
following constraints need to be satisfied: 

    x
1 1

min 0 , , ma
1Δ Δ

T T
ESS ESS ESS ESS ESS

CH t DC tch
t tdc

PC t P tC C
 

               (26) 

where min
ESSC  is the minimum capacity of the ESS; ch and dc  are the charging and 

discharging efficiency of the ESS; and min
ESSC  and max

ESSC  are the minimum and maximum 
remaining capacity allowed by the ESS in a scheduling cycle, respectively. 
(3) ESS remaining capacity constraints 

To ensure a fixed remaining capacity of the ESS after each scheduling period for the 
scheduling scheme of each period to start from the same state, the following constraints should be 
satisfied [34,35]: 

0 =
end

ESS ESS
TC C                                 (27) 
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where 0
ESSC  is the initial capacity of the ESS and 

end

ESS
TC  is the ESS capacity at the end of a 

scheduling period.  
4.2.3 Power balance constraints 

To maintain the balance of the CIES power supply and demand, the constraints are as 
follows: 

T
,

G
, , , , ,

M
, ,+ = ,     E

sell
EL i

buy WT PV ESS ESS EB
grid t t t DC t LD t CH t grid t L ttP P tP P P P P P P      

   
(28) 

where , ,
MTG

EL i tP  is the power consumption of the EB. 

4.2.4 Main-grid interactive power constraints 
When the output of the power supply equipment in the CIES is insufficient, the CIES must 

purchase electricity from the main grid to meet user’s needs; conversely, the CIES can sell excess 
electricity to the grid for profit. The interactive power between the main grid and CIES must 
satisfy the following constraints: 

, ,max0 sell sell
grid t gridP P                          (29) 

, ,max0 buy buy
grid t gridP P                         (30) 

where ,max
sell

gridP  and ,max
buy
gridP  are the upper limit of the interactive power between the main grid 

and CIES, respectively. 
4.2.5 Electric-heat power balance constraints 

The heat demand of the CIES is supplied by MTGs and EBs, which is formulated by  

, , , , , ,
MTG EB HSD HSD

LD t HL i t HL t CH t DC tH PP PP                     (31) 

where HL
tP  is the total heat demand of the CIES and ,

EB
HL tP  is the heating power of the EB.  

4.2.6 EB constraints 

, ,
EB EB

HL t EB EL tP P                              (32) 
,0 EB EB

HL t HLP P                               (33) 

where EB
HLP  is the rated value of the heating power of the EB and EB  is the performance 

coefficient of the EB, which represents the ratio of heating power to power consumption. 

4.2.7 HSD operating constraints 

(1) HSD output constraints 

 The HSD output constraints are given as follows: 

, ,max

, ,max

0

0

HSD HSD
CH t CH

HSD HSD
DC t

t

DC

ch

dc
t

P P

P P





 

 
                         (34) 

1ch dis
t t                                  (35) 

where ,
HSD

CH tP  and ,max
HSD

CHP  are the HSD heat storage power and its maximum rechargeable power, 
respectively; ,

HSD
DC tP  and ,max

HSD
DCP are the HSD heat release power and its maximum dischargeable 

power, respectively. Finally, ch
t  and dc

t  are Boolean variables that represent the HSD 
operating state; when their value is 1, the HSD is in the state of storing and releasing heat, 
respectively; when their value is 0, the HSD neither stores nor releases heat.  
(2) HSD capacity constraints 

Similar to the ESS, the HSD capacity needs to satisfy the following constraints: 

1 , ,( / ) ,HSD HSD HSD HSD HSD HSD
t t ch CH t DC t dcC C P P t t                   (36) 
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min max
HSD HSD HSD

tC C C                             (37) 

where HSD
tC  is the ESS capacity; HSD

ch and HSD
dc  are the ESS charge-discharge efficiency, 

respectively; and min
HSDC and max

HSDC are the HSD allowable minimum and maximum remaining 
capacity, respectively.  

4.3 Data-driven distributed robust framework 

The first stage consists in formulating the plans for the MTG startup and shutdown, ESS 
charge and discharge, and HSD heat storage and release. The second stage consists in formulating 
a corresponding dispatch plan after the RGs uncertainty is revealed, including the MTG and EB 
outputs, purchase of electricity from the main grid, and sale of electricity. The discrete decision 
variables that determine the MTG startup-shutdown sign, ESS charge and discharge state variables, 
and HSD heat storage and release state variables constitute the first-stage variables. Continuous 
variables such as the MTG output, actual output of WTs and PV, power purchased from the main 
grid, and output of EBs constitute the second-stage variables. The above decision variables are 
expressed as follows: 

     T
, ,

G
,

,

, ,

M
,

, ,

,

,

= , , ,

, , , , , ,

, , , , ,

, ,

,

EB buy sell WT PV
EL t grid t t tg

D

ch dc ch dc
i t i t t

S

rid t

ESS ESS HS H D IE
CH t tDC t C

t t t

EL i t

TSE I
tCH t D t

E
t

U y z B B

P

P P P P P P

P P P

H

P P
V

  
 

 
 
 
 

             (38) 

where U and V represent the sets of decision variables in the first and second stages, respectively. 
The two-stage distributionally robust optimization model defined above and described by Eqs. 

(18)-(37) can be summarized as follows: 

Ω 1
min max min

s

p
ss

N

s su U Vp s v
Au p Bv

  
                            (39) 

s.t.   
Cu c
Du d





                               (40) 

s

s

Ev e
s

Fv f






                               (41) 

sGu Hv g s                               (42) 

where sP  is the probability of scenario s after clustering; p  is the set interval of the scenario 
probability distribution, that is, the confidence interval of the comprehensive norm; sN  is the 
total number of scenarios after clustering; ~A H  and ~c g  are constant coefficient matrices.  

Eq. (40) expresses the equality and inequality constraints of the first-stage decision variables: 
Eqs. (25) and (35) describe the ESS/HSD operating state constraints; Eq. (41) expresses the 
equality and inequality constraints of the decision variables in the second stage, specifically those 
corresponding to Eqs. (20)-(23) , (27), (29)-(33), etc., which include constraints of the MTG, ESS 
capacity, MTG thermoelectric ratio, EB, grid power purchase, and electric-thermal power balance; 
Eq. (42) expresses the coupling constraint of the decision variables in the first and second stages, 
which corresponds to the power supply and demand balance constraints described by Eq. (28), and 
the ESS/HSD charge-discharge/storage-discharge constraints described by Eqs. (24) and (34). 

The scenario probability distribution obtained by scenario clustering has a certain error. To 
make the probability distribution closer to the real data, the uncertainty confidence set presented in 
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this section is centered on the initial probability distribution, and the scenario probability 
distribution is restricted by the comprehensive norm to obtain the worst probability distribution of 
each discrete scenario.  

The composite-norm probability confidence interval consisting of the 1-norm the ∞-norm is 
expressed as follows [36]: 

12

0 1
1

Pr 1 2 e
s

s

MN
N

s s s
s

p p N







 
     

 
                    (43) 

2
01

Pr max 1 2 e
s

M
s s ss N

p p N 




 

 
    

 
                  (44) 

where Pr  is the probability operator; M is the number of historical data; 0sP  is the initial 
probability value of the discrete scenario s; and 1  and   are the probability allowable 

deviation limits under the corresponding constraints of the 1-norm and ∞-norm, respectively. 
For convenience of representation, the right sides in Eqs. (43) and (44) are set equal to 1  

and  , respectively; then, 1  and   represent the uncertainty confidences that the 

probability distribution needs to satisfy; the transformation becomes as follows: 

1
1

2ln
2 1

s sN N
M







                              (45) 

21 ln
2 1

sN
M









                             (46) 

From Eqs. (43)-(46), it can be concluded that the confidence set satisfied by the probability 
distribution is expressed as follows: 
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Note that from Eq. (47), the comprehensive-norm confidence interval contains absolute value 
constraints, so it needs to be linearized and equivalently transformed by introducing 0-1 auxiliary 
variables. The 1-norm is converted as follows: 
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where sp  and sp  are the positive and negative offsets of the probability distribution sp , 

respectively, compared with the original probability distribution; and s
 and s

  are 0-1 flags 

for positive and negative offsets, respectively. 
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Similarly, the ∞-norm can be linearized with Boolean variables s
 and s
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0s s s sp p p p                           (50) 

Finally, sp  is the actual scenario probability distribution. 

5 Model solution 

5.1 WGAN-GP model training process 
The training process of the WGAN-GP is as follows: 
Step 1: Random noise z is fed into the generator. According to the distribution of historical 

samples x, the generator is trained to generate random samples; 
Step 2: The generated samples and historical samples x are sent to the discriminator 

simultaneously, and then the discriminator outputs the probability that the generated samples are 
real samples; 

Step 3: After calculating the loss functions of the generator and discriminator, the weights of 
the generator and discriminator networks are respectively updated; 

Step 4: The generator and discriminator are iteratively optimized until the end of training. 
5.2 DRO-model solving steps 

To solve the proposed DRO model, the column and constraint generation (CCG) algorithm 
has the advantages of few iterations and high accuracy [37]. 

Eq. (39) must be decomposed into the main problem (master problem, MP) and sub-problem 
(sub-problem, SP) and iterations must be completed until the targeted iteration accuracy is 
satisfied. The MP is expressed as follows: 

, Ω ,
min     

p
s svu U p V

MP Au 
  

：                         (51) 

1
 ,    w=1,2, ,W

sN
w w
s s

s
p Bv



                       (52) 

where w represents the number of iterations and   is the auxiliary variable introduced.  
MP finds the optimal solution of the first-stage objective function according to the known 

worst probability distribution value, and the lower bound value of the model is updated. SP is 
expressed as follows: 

 *

Ω 1
         w=1,2, ,W max min ,

s

p
ss

N
w w
s sp s v

S p Bu vP F
 

 ：
V

             (53) 

SP is solved under the variable *
wu  given by MP to obtain the worst probability distribution 

of the current iteration, which is fed back to MP for the next iteration, and the upper bound value 
is updated for Eq. (52). 

When solving SP specifically, the objective function is expressed as a max-min bi-level 
optimization problem. However, given that there is no direct coupling relationship between the 
probability value of RGs in SP and the second-stage decision variables, SP can be solved in two 
steps. The MP is solved first, and then the max problem is solved. 
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The model solving process is shown in Fig. 4. 
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Fig. 4. CCG solving process 

Step 1: Set the upper bound UB=+∞, lower bound LB=-∞, convergence accuracy as  , 
number of iterations w=1, and initial probability distribution of the second stage 0sp ; 

Step 2: Solve MP. Obtain the optimal decision variable in the first stage; the optimal solution 
simultaneously updates the lower bound  * *max , wLB Au  ; 

Step 3: Solve SP on the basis of the given first-stage variable *
wu , obtain the worst 

probability distribution w
sp  and SP objective function value  *

wF u , and update the upper bound 

  * *min , w wUB Au F u  simultaneously; 

Step 4: If UB LB   , stop the iteration and output the optimal solution; otherwise, update 
the worst probability value w

sp  and update the second-stage decision variable w
nv  and related 

constraints in MP; 
Step 5: Update w=w+1, and return to Step 2 to continue the iteration. 

6 Case study 
6.1 Simulation system and data 

To test the effectiveness of the proposed DRO model and algorithm, an actual CIES in North 
China was selected for simulation analysis, and the optimization program was solved by CPLEX 
in MATLAB R2016b. The 2-year measured data of PV and WT output in a certain area in North 
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China were used as the historical data set; the sampling interval was 15 min. The data set was split 
into 80% for training and 20% for test. The learning rate was set to 0.0002 [38]. Table 1 lists the 
structure and parameters of the generator and discriminator. Table 2 shows the time-of-use (TOU) 
price of the power grid in this region, and Table 3 indicates the operating parameters of the CIES 
equipment. 

Table 1. Structure and parameters of generator and discriminator 

Type layer  Title Parameters  Numerical 

Generator 1 Fully connected layer  Number of neurons 128 

  Activation function ReLU — 

 2 Fully connected layer Number of neurons 256 

  Batch norm Dynamic mean momentum 0.8 

  Activation function ReLU — 

 3 Fully connected layer Number of neurons 512 

  Batch norm Dynamic mean momentum 0.8 

  Activation function ReLU — 

 4 Fully connected layer Number of neurons 1024 

  Batch norm Dynamic mean momentum 0.8 

  Activation function ReLU — 

 5 Fully connected layer Number of neurons 24*24*1 

  Activation function tanh — 

Discriminator 1 Fully connected layer Number of neurons 512 

  Activation function LeakyReLU 0.2 

 2 Fully connected layer Number of neurons 256 

  Activation function LeakyReLU 0.2 

 3 Fully connected layer Number of neurons 1 

Table 2. Grid TOU price 

Periods Specific time periods Electricity prices（¥/kWh） 

Peak period 9:00-11:00    19:00-23:00 1.35 

Flat period         8:00       12:00-18:00  0.90 

Valley period 1:00-7:00      24:00 0.48 

Table 3. CIES operating parameters 

Parameter Value Parameter Value 
max

,MTG ELP  (kW) 300 0 min/ESS ESSC C  (kWh) 10 

,max
MTG

UP  (kW) 50 /ch dc   0.95/0.95 

,max
MTG

DP  (kW)  50 max
ESSC  (kWh) 90 

max
,MTG HLP  (kW) 360 EB

HLP  (kW) 200 

HE  1.2 EB  0.9 

,max ,max/ESS ESS
CH DCP P  (kW)  20/20 min

gridP  (kW)  0 

ia  1.2  max
gridP  (kW)  600 

ib  (¥/kW) 0.0015 ESSc  (¥/kW)  0.02 

iTS  (¥/kW) 0.25  Lossc  (¥/kW)  0.62 

iKS  (¥/kW) 0.25 HSDc  (¥/kW)  0.011 
HSD
ch / HSD

dc  0.85/0.9 ,max ,max/HSD HSD
CH DCP P  (kW)  50/50 

MTGk  (kg/kW) 0.49 gridk  (kg/kW) 0.82 

6.2 Performance Evaluation of the WGAN-GP 
(1) Wasserstein distance: the goal of model training is to make the loss as small as possible, 

that is, to minimize the Wasserstein distance between the true and generated distributions [39]. 
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This is expressed as follows: 
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where  , g
i j
dd x x  is the reference distance between the real data and generated samples. In the 

initial stage of training, the generated samples significantly differ from the real data. The generator 
adjusts the weights to make both sets more similar, and the discriminator also improves the 
discrimination ability through training. As the Wasserstein distance continues to decrease, 
eventually the discriminator will not be able to accurately distinguish the source of the input 
samples, and the RG output scenario will fully reflect the true distribution of historical data. 

(2) Fréchet inception distance (FID) measures the distance between real and synthetic 
samples [40]: 

   
1

2 2 2 2 2, 2g g x g x gx xFID P P Tr     
 

     
  

          (56) 

where x  and g  are the mean values of the real data and generated sample distributions, 

respectively; and 2
x  and 2

g  are the covariances of the real data and generated sample 

distributions, respectively. The smaller the FID, the closer both distributions are, which means 
better training performance. 

(3) Maximum mean discrepancy (MMD) is a measure of the difference between two 
distributions in a Hilbert space. It can be employed for measuring the distance between the 
generated and real data sets. MMD represents the difference between dP  and gP  for some fixed 

kernel function k, which is defined as follows [20]: 

       2
, , ,, , 2 , ,

d d gg gd
g g g gx x P xd x d d dPMMD P P E k x x k x x k x x 

 
 

   
 

    (57) 

Similar to FID, the smaller the MMD distance, the better the generation performance, which 
means the better the performance of the WGAN-GP.  

The changes of these three evaluation metrics during the training process are shown in Fig. 5.  
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Fig. 5. Changes of the evaluation metrics during training 

6.3 Clustering Results 
DBI is a minimum value index, that is, the clustering algorithm has the best classification 

effect when the DBI reaches its minimum value. The value range of the silhouette coefficient is 
[-1, 1]; the closer it is to 1, the higher the intra-cluster similarity, the lower the inter-cluster 
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similarity, and the better the clustering effect. It can be seen from Fig. 6 that for the PV output, the 
optimal number of clusters is 2; for the WT output, the optimal number of clusters is 4. Fig. 7 
shows typical RG output scenarios obtained through scenario generation and clustering. 
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Fig. 6. DBI and SC values for different number of clusters 
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Fig. 7. Optimal clustering results of RG outputs 

6.4 Analysis of Scheduling Results in Typical RG Scenarios 
To verify the effectiveness of the proposed DRO model, the scheduling scheme of typical 

RGs scenarios was analyzed, setting M=5000, 1 =0.99, and  =0.99. The results of CIES 
electrical and heat scheduling in typical scenarios are shown in Figs. 8 and 9, respectively. 
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Fig. 8. Results of CIES electrical scheduling in typical scenarios 
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Fig. 9. Results of CIES heat scheduling in typical scenarios 

It can be seen from Fig. 8 that, in terms of electric energy, in the periods when the RG 
outputs were sufficient, the electric load was entirely supplied by renewable energy (e.g., the 
9:00-16:00 periods in Scenarios 1 and 4). During peak load periods, such as 8:00-10:00 and 
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18:00-21:00, the ESS gave priority to release electric energy, but its capacity was limited, so the 
power vacancy also needed to be satisfied by the MTG and grid. According to the scheduling 
results, the power generation and purchase costs of the CIES were reduced on the basis of 
prioritizing RGs consumption, and the bidirectional energy flow of the ESS also reduced the 
power supply pressure, which in turn decreased the electricity curtailment rate, thereby effectively 
achieving a more economical system operation. 

Fig. 9 shows that, in terms of heat energy, the total heat load was satisfied by the MTG and 
EB. During most of the daytime, the MTG was put into operation to compensate for the power gap 
of RG. The heat load was mainly borne by the MTG power-supply waste heat in co-generation 
mode. During the night time, the heat load was basically supplied by the EB. Given that the 
electric load was in the valley period but the heat load was at the peak period, the heat supply of 
MTG was insufficient, and the heat load could only be borne by the EB. In addition, HSD, as a 
buffer device, also plays an important role in the balance of heat supply and demand. 
6.5 Integrated Demand Response Analysis 

To analyze the results of electrical and heat loads before and after integrated demand 
response. Fig. 10 shows the load curves before and after integrated demand response in typical 
scenarios. 
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Fig. 10. Results of IDR scheduling in typical RG output scenarios 

It can be seen from Fig. 10 that after the application of integrated demand response, the 
electric load curve tended to be smooth, realizing peak shaving and valley filling. During peak 
electricity consumption periods (8:00–12:00 and 18:00–21:00), under the influence of incentive 
policies and electricity prices, users tended to decrease electricity consumption by shifting and 
interrupting electricity loads. During low electricity load periods (1:00-6:00), the lower electricity 
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price led to an increase in electricity consumption. In addition, during the periods 20:00–24:00 and 
1:00-5:00, the heat-load reduction phenomenon was noticeable. This is because the users are less 
sensitive to temperature when sleeping at night, and the comfort requirements can be appropriately 
relaxed. 
6.6 Economic Analysis 

To verify the validity and superiority of the proposed model, four operating modes are set up 
for comparison. In Modes 1 and 2, IDR is not applied, and the heat load is set to the value at 
PMV=0. Mode 3 represents the DRO model proposed in this paper. Table 4 indicates the 
optimization results under the four modes. 

Mode 1: Multiple RGs uncertainties are considered, and IDR is not applied; 
Mode 2: Multiple RGs uncertainties are not considered, and IDR is not applied; 
Mode 3: Multiple RGs uncertainties are considered, and IDR is applied; 
Mode 4: Multiple RGs uncertainties are not considered, and IDR is applied. 

Table 4. Comparison of results for different operating modes 

Optimization results 
Operating modes  

Mode 1 Mode 2 Mode 3 Mode 4 

MTG operation cost /¥ 

Grid power purchase cost /¥ 

Grid power sales profit /¥ 

ESS operating cost/¥ 

HSD operating cost/¥ 

Carbon penalty cost/¥ 

IDR cost /¥ 

Renewable power curtailment cost /¥ 

Total operating cost /¥ 

Renewable power curtailment rate /% 

1883.23 1795.63 1730.26 1649.23 

973.41 922.25 860.85 678.36 

245.21 190.63 196.66 201.79 

24.23 28.65 30.36 25.15 

27.25 24.36 25.26 30.71 

186.56 177.56 170.45 149.52 

— — 154.36 274.79 

191.35 123.32 142.86 92.08 

3039.65 2879.36 2914.56 2696.78 

14.81 10.01 12.07 8.16 

From Table 4, it can be seen that compared with the deterministic optimization, the DRO 
produces a scheduling scheme with higher total operating costs, but lower renewable power 
curtailment rates. (1) Due to the consideration of multiple RG uncertainties, the DRO scheduling 
schemes require a higher operating cost to deal with possible worst scenarios, but doing so 
effectively reduces the impact of randomness and the volatility of RG outputs, and improves the 
accuracy of the scheduling schemes; while the deterministic optimization makes decisions based 
on RG predicted outputs, and the resulting scheduling schemes are risky and lack the adaptability 
to the uncertainty of system operation. (2) The renewable power curtailment rate decreases from 
14.81% under Mode 1 to 10.01% under Mode 2. This is because the deterministic method is only 
used for scheduling specific RG output forecasts, and the forecast uncertainty is ignored, which is 
quite different from the actual situation, thus leading to a higher power procurement rate. The 
similar conclusion can be reached when comparing Modes 3 and 4. Therefore, considering the 
uncertainty of RGs could improve the utilization of RGs to a certain extent.  

Table 4 also suggests the IDR mechanism can improve the economy of system operation. 
Specifically, the operating costs are reduced from 3039.65¥ under Mode 1 to 2914.56¥ under 
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Mode 3, and from 2879.36¥ under Mode 2 to 2696.78¥ under Mode 4. Owing to the peak-shaving 
and valley-filling effect of the flexible loads, the electricity price constitutes an incentive signal to 
guide users to appropriately adjust electricity and heat consumption. By this means, the total 
operating cost is reduced by implementing IDR programs.  
6.7 Sensitivity analysis of ambiguity set parameters 
6.7.1 Analysis of the number of historical data 

To analyze the impact of the number of historical data on the CIES operating cost, we set 

1 =0.5,  = 0.99. The CIES operating costs under different historical data numbers are shown 
in Table 5. 

Table 5. Comparison of operating costs under different numbers of historical data 

Number of data 
operating costs/¥ 

1-norm ∞- norm Comprehensive norm 

100 2969.75 3185.45 2945.34 

1000 2715.10 2736.67 2762.53 

2000 2700.95 2711.74 2712.66 

5000 2694.47 2699.78 2691.98 

10000 

20000 

2689.64 

2688.22 

2691.79 

2689.30 

2689.39 

2688.10 

Table 5 shows that as the number of historical data increases, the total operating cost of the 
CIES gradually decreases. When the number of historical data reaches a certain level, the 
decreasing amplitude of the total operating cost becomes smaller. This is because the more 
historical data there are, the closer the probability distribution of the initial RG scenario is to the 
real output. As a result, the shiftable range of the worst-case scenario probability is reduced, 
requiring less scheduling cost to manage worst-case scenarios. 
6.7.2 Analysis of different confidence levels 

To analyze the effect of confidence levels on the CIES operating costs, we set M=5000. The 
operating costs of the CIES under different confidence levels are shown in Table 6. 

Table 6. Operating costs for different confidence levels 

  
Operating costs /¥ 

1 =0.2 1 =0.5 1 =0.99 

0.5 2686.54 2688.94 2690.94 

0.8 2690.84 2690.94 2692.31 

0.99 2691.23 2691.98 2696.78 

Note that the CIES operating costs keep rising as confidence levels 1  and   increase. 
The reason is that the higher the confidence level, the larger the confidence interval. This leads to 
increased uncertainty and higher robustness of the operating scheme. 

To further analyze the superiority of the comprehensive-norm confidence interval, the 
optimization results obtained by considering only the 1-norm or ∞-norm constraints are compared 
with those obtained by considering the comprehensive-norm constraints. The specific parameters 
were set as follows: 
(1) A comparison of the operating costs with different values of the comprehensive norm and only 
∞-norm (with  set to 0.99) are shown in Table 7. 

Table 7. Operating costs for different values of the comprehensive norm and -norm 

1  
Operating costs /¥ 

comprehensive norm ∞- norm 
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0.2 

0.5 

0.99 

2691.23 

2691.98 

2696.78 

2699.78 

2699.78 

2699.78 

Table 7 indicates that when the number of historical data remains unchanged, the 
optimization result under the confidence interval of the comprehensive norm is more economical 
than when only the ∞-norm is considered. This is because the comprehensive-norm confidence 
interval is smaller and the RGs uncertainty can be more accurately characterized, resulting in 
lower operating costs. 

(2) A comparison of the operating costs with different values of the comprehensive norm and only 
1-norm (with 1 set to 0.5) is shown in Table 8. 

Similarly, it can be seen from Table 8 that when the number of historical data remains 
unchanged, the optimization result under the confidence interval of the comprehensive norm is 
less conservative than when only the ∞-norm is considered. This means that the comprehensive 
norm as a confidence interval is closer to real RG output scenarios. 

Table 8. Operating costs for different values of the comprehensive norm and -norm 

  
Operating costs/¥ 

Comprehensive norm 1- norm 

0.5 

0.8 

0.99 

2688.94 

2690.94 

2691.98 

2694.47 

2694.47 

2694.47 

6.8 Computational complexity analysis 

To verify the computational complexity of the CCG algorithm, the number of historical data 
is set to 5000 and the comprehensive norm 1  and   is selected as 0.5 and 0.99, respectively. 
The results for each iteration are shown in Fig. 11. 
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Fig. 11 CCG algorithm iteration process 

It can be seen from Fig. 11 that the objective function value has met the given iteration accuracy 
after four iterations. This is because the DRO model is decoupled into MP and SP using the CCG 
algorithm, where there is no direct coupling between the scenario probability distribution in SP and the 
second stage decision variables. So, it is unnecessary to use the traditional strong duality or KKT 
conditions to convert the bi-level model of SP into a single- level model, which avoids the complex 
model transformation problem. This reduces the computational complexity and can meet the real-time 
requirements of actual scheduling. 
6.9 Comparison with other optimization methods 
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6.9.1 Comparison with stochastic programming and robust optimization 
In this section, the proposed DRO method is compared with traditional stochastic 

programming and robust optimization methods. The robust optimization approach uses a box 
uncertainty set and sets the fluctuation interval as 20%; stochastic programming adopts typical 
scenarios and corresponding probability distributions. The DRO model parameters were set as 
follows: M=5000, 1  and   equal to 0.99. The optimization results of these methods are 
shown in Table 9. 

Table 9. Optimization results of different optimization methods 

Costs/Profits 

Optimization methods 

Stochastic 

programming 

Robust 

optimization 

Proposed  

DRO 

MTG operation cost /¥ 1523.23 1735.63 1649.23 

Grid power purchase cost /¥ 658.36 689.25 678.36 

Grid power sales profit /¥ 222.55 211.12 201.79 

ESS operating cost/¥ 28.69 30.53 25.15 

HSD operating cost/¥ 32.25 25.66 30.71 

Carbon penalty cost/¥ 136.45 168.55 149.52 

IDR cost /¥ 276.89 280.36 274.79 

Renewable power curtailment cost /¥ 108.53 150.34 92.08 

Total operating cost /¥ 2539.65 2866.42 2696.78 

Renewable power curtailment rate /% 10.86 13.66 8.16 

Note that the total operating cost of the CIES optimized by the DRO model is lower than that 
of traditional robust optimization and higher than that of stochastic programming. This is because 
the scenarios obtained by stochastic programming based on the probability distribution function 
do not consider the worst cases, resulting in weak robustness; traditional robust optimization pays 
too much attention to extreme RGs scenarios, which causes the CIES scheduling scheme to be too 
conservative, resulting in higher curtailment cost and less economical operation than the DRO 
method. 

All in all, DRO combines the characteristics of stochastic programming and robust 
optimization, making full use of the scenario probability distribution generated by a large amount 
of historical data. The RGs uncertainty can be managed by adjusting the dispatching scheme 
including the MTG output, grid power purchase, ESS charge and discharge, etc. Compared with 
robust optimization considering only worst scenario information, the DRO model improves the 
consumption rate of renewable energy and achieves a more economical operation. Therefore, 
DRO can effectively avoid the limitations of stochastic programming and robust optimization, and 
achieve a good balance between economy and robustness. 
6.9.2 Comparison with other DRO methods 

In order to further test the performance of the proposed DRO method, comparative tests have 
also been implemented between ours and other existing DRO methods. Considering that Moment 
based DRO (MDRO) and Wasserstein based DRO (WDRO) are commonly used DRO methods to 
deal with the uncertainty of renewable energy [13], which are adopted as the comparison 
algorithms, where the moment based ambiguity set contains all distributions with the prescribed 
moment information (mean and covariance). The optimization results of different DRO methods 
are listed in Table 10. 
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Table 10. Optimization results of different DRO methods 

DRO methods Total operating cost /¥ Renewable power curtailment rate /% Calculation time /s 

Proposed DRO 2696.78 8.16 16.8 

MDRO 2795.23 9.68 286.2 

WDRO 2706.92 8.55 370.7 

As shown in Table 10, the performance of the proposed DRO method outperforms the other 
DRO methods, which is reflected by the fact that our method has less operating cost, lower 
renewable power curtailment rate, and less calculation time. (1) When enough renewable power 
output data are available, more probability information can be obtained, but only moment 
information is included in the moment based fuzzy set, which cannot reduce the ambiguity set by 
merging more data. Thus, the MDRO is more conservative than ours and the WDRO. (2) 
Regarding the total operating cost, the proposed DRO has little difference with the WDRO in 
conservatism, but has significant advantages over the WDRO and MDRO in calculation time. The 
reason for this is that the WDRO and MDRO generally construct convex optimization model 
through the reflected linear decision rule and the duality theorem, which will increase the 
difficulty of optimization model transformation and its solution; while our method only needs a 
simple linearization, which avoids a complex mathematical conversion and calculation process. 
Therefore, it can be concluded that our method is superior to other commonly used DRO methods. 

7 Conclusions 

To manage the uncertainty of renewable energy generation and promote the consumption of 
renewable energy, a data-driven two-stage distributed robust scheduling model for CIESs was 
developed. A comprehensive norm consisting of the 1-norm and ∞-norm was defined as a 
probability distribution confidence set. In the solving stage of the proposed model, the CCG 
algorithm was adop1ted to iteratively solve the DRO model, thereby avoiding the complex 
transformation of strong duality or KKT conditions and reducing the complexity of the solution. 
The main conclusions drawn are as follows: 

(1) To manage multiple RGs uncertainties, a scenario generation method based on a 
WGAN-GP is proposed. This solves the gradient vanishing and mode collapse problems of 
original GANs and gives rise to a more stable training. The historical data set of RG outputs is 
fully utilized. This avoids traditional probability density information, which leads to a wider 
applicability. 

(2) The PMV metric is introduced to describe the ambiguity of users' thermal comfort. An 
integrated demand response mechanism was devised to realize peak shaving and valley filling and 
reduce CIES operating costs. 

(3) By analyzing the sensitivity of the ambiguity set parameters, we observed that the larger 
the historical data set of RGs, the smaller the confidence interval of the uncertainty set, and the 
lower the conservativeness of the scheduling plan. Compared with only considering the ∞-norm or 
1-norm, the comprehensive norm employed as the confidence interval is closer to real RG output 
scenarios, and the resulting operation is more economical. 

(4) With respect to traditional stochastic and robust methods, the simulations performed on an 
actual CIES in North China indicate that the proposed DRO model can well balance the 
relationship between system economy and robustness, thereby confirming the effectiveness and 
superiority of the DRO model. Furthermore, our approach is better than other commonly used 
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DRO methods, i.e. Moment based DRO and Wasserstein based DRO, with better operational 
economy, lower renewable power curtailment rate, and higher computational efficiency. 

The presented work has not taken into account the data privacy protection issue [41], while 
more realistic application scenarios should consider the preservation of data privacy while 
designing CIES scheduling schemes. With the increasing prevalence of cyber-attacks, e.g., false 
data injection attacks [42], it would be interesting in the future to find out how to make the 
scheduling strategies resilient to these attacks. 
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