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All-electric aircraft can eliminate greenhouse gas emissions during aircraft mission, but

the low predicted energy storage density of batteries (=0.5 kWh/kg), and their life cycle, limits

aircraft payload and range for regional aircraft. Proton Exchange Membrane Fuel Cells

(PEMFCs) using hydrogen are explored as an alternative power source. As the effort on

designing high power density and highly efficient fuel cell systems continues, a trade off study on

the effect of fuel cell configurations and the electrical conversion strategy on system efficiency,

total weight, failure cases, and reduction of power due to failures, will inform future designs.

Introducing viable fuel cell stacks and electrical configurations motivates such a trade off study,

as well as concentrated design effort into these components. Currently available fuel cell stacks

are designed at lower power (in the range of 150kW) to what is required for regional aircraft

propulsion (in the range of 4MW). Hence to achieve the total required power, the fuel cell stacks

are connected in parallel and series to create multi-stack configurations and provide higher

power. In this study, multi-stack fuel cell configurations and the selected DC/DC converters are

assessed. Each configuration is evaluated based on power converter design and redundancy,

design for high voltage, degradation of fuel cell stacks, total system efficiency, and controllability

of fuel cell stacks.

I. Introduction

H
ydrogen and electrification technologies promise complete decarbonization given that their implementation

challenges are addressed [1] in comparison to hybrid electric propulsion with batteries [2]. Spinelli et. al [2]

presented a methodology to study the trade offs between environmental compatibility, in the form of NOx emissions and

fuel consumption for a hybrid electric regional aircraft. Electrifying aircraft with hydrogen Fuel Cells (FCs) offers

great potential to reduce fuel consumption and emissions, while satisfying the high power demand required for aviation.

Currently, their application is limited to advanced research program that considers the use of FCs as a replacement

of Auxiliary Power Units (APUs) [3], and more recently in the propulsion of small and commuter aircraft (ARPA-E,

REEACH projects). In 2016, the world’s first fuel cell and battery powered aircraft, a 4-seater DLR-HY4, flew for 10

minutes [4]. In this design, batteries powered take-off and climb, and hydrogen fuel cells provided 80kW of power in

total to the rest of the flight profile. DLR is also working on the BALIS project from January 2021, to develop a fuel cell

powertrain for regional aircraft (40+ seats, 1000km and 1.5MW) [5]. In 2021, ZeroAvia’s 6-seater fuel cell aircraft flew

for 20 minutes [6].

Different propulsion architectures and configurations with fuel cells have been explored in [7] and their benefits

were discussed. Propulsion requirements were considered for high altitude operation, high sensitivities to system weight

and volume, high differences in power during different mission phases, and compatibility with the current aviation

infrastructure and certification processes. Architecture selection directly affects the efficiency, hydrogen consumption,

and water vapour output, thermal, and energy management strategies of fuel cell systems, their life cycle, and their

performance degradation. Electrical power train configurations must be assessed according to the selected fuel cell

configurations. This paper demonstrates possible configurations for fuel cell stacks and the electric power trains, and

∗Lecturer in Propulsion Integration, Centre for Propulsion and Thermal Power Engineering, bahareh.zaghari@cranfield.ac.uk
†Ph.D Student, Centre for Propulsion and Thermal Power Engineering, tianzhi.zhou@cranfield.ac.uk
‡Research Fellow, Centre for Propulsion and Thermal Power Engineering, hb.enalou@cranfield.ac.uk
§Research Fellow, Centre for Propulsion and Thermal Power Engineering, evangelia.pontika@cranfield.ac.uk
¶Professor, Centre for Propulsion and Thermal Power Engineering, p.laskaridis@cranfield.ac.uk

1

 AIAA SCITECH 2023 Forum 
23-27 January 2023, National Harbor, MD & Online 

 10.2514/6.2023-1593 

 Copyright © 2023 by Bahareh Zaghari. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. 

 AIAA SciTech Forum 

li2106
Text Box
Issued with: Creative Commons Attribution Non-Commercial License (CC:BY:NC 4.0).  Please refer to any applicable publisher terms of use.



assesses their impact on electrical component design, as well as system efficiency, total weight, power losses and energy

management strategy, and the selected mission.

Scaling the fuel cell technology, electrical systems, and the propulsion architecture for larger aircraft is currently

beyond the state-of-the-art fuel cell systems technology, since MW-levels of power are required while maintaining a

low aircraft weight. Fuel cells have higher specific energy, shorter refuelling time, longer life, and lower emission

with non-carbon sources hydrogen harvest of in comparison with batteries [8]. However, their low specific power, low

efficiency, high thermal losses of the stacks and the auxiliary system, water vapour output and lack of hydrogen-provision

at airports, remain as considerable design and logistical challenges. The specific power of existing commercial fuel cell

stacks is approximately 1.6 kW/kg[9]. The specific power of the fuel cell stacks (based purely on the active component

of the fuel cell) is studied in [10], which 10kW/kg is estimated for future developments. However, this threshold does

not assume that fuel cell auxiliary parts and the hydrogen tanks are incorporated into the design. Kadyk. et al [11]

proposed a fuel cell sizing methodology, based on the relation between efficiency and power density. They proposed that,

by oversizing the fuel cell, the required power from each stack reduces, achieving greater efficiency. This paper does not

conduct a study on the influence of extra weight resulted due to oversizing the stacks for the required mission power.

Also, in this study the influence of oversizing the fuel cells on energy management strategy has not been explored.

There are several studies that include more detailed electrical system level analysis and simulation: Kasim et al [12]

developed a pure FC for Cessna level aircraft applications, where a complete fuel cell system was simulated, and the

holistic flight mission simulation of the system was conducted, concluding that a fully hydrogen powered 8-passenger

aircraft is feasible. A failure analysis of the system was also included. Zeng et al [10] presented an integrated fuel cell

and aerodynamic model for a 30kW level two-seat aircraft. Hartmann et al [13] presented a comprehensive PEMFC

powered system, with superconducting cables and motors for regional aircraft. They investigated the usage of liquid

hydrogen to provide cryogenic cooling of superconductors. As there has not been a specific FC stack design for

electrified aircraft, we propose exploring different configurations that can lead to the design of new stacks with higher

power. Kasim et al [12] argues that a multi-stack system can not only achieve higher power demand, but also improve

system reliability, though there is not enough research in the design and selection of multi-stack system analysis for

aircraft propulsion applications to support this idea. Zhou et al [14] reviewed the multi-stack fuel cell system, including

their architectures, performance and power management. They compared different association types for the multi-stack

FCs with converters for electric vehicle industry. In this paper we extend this paper to other multi-stack configurations

that are suitable for aviation and the design and implementation limitations at high voltage and high altitude due to

weight constrains. Yan et al [15] investigated coordination methods for multi-stack fuel cell system to obtain optimal

efficiency of two-stack and three-stack FC systems. This is achieved by identifying the optimal power setpoint of each

stacks based on analytical solutions and try to tune the stack with an online control system. This method is feasible to be

scaled for aviation if the analytical models can predict the behaviour of the stacks accurately for design and off design

conditions. Cardenas et al [16] investigated the degraded mode operation of multi-stack fuel cell upon the loss of one of

its stacks. Higher fuel consumption due to degradation of one cell due to reduction of efficiency was presented. This

efficiency reduction was controlled by choosing which FC should be isolated in the case of degradation in one of the

stacks.

Selection of system voltage for the electric powertrain has been studied with considering the trade offs between (a)

weight, for example cable’s weight (lower weight for higher voltages), and (b) at higher voltage and increasing altitude

the occurrence of arcing increases as a result of decrease of the breakthrough voltage with decreasing surrounding air

pressure, (c) reduction of conduction and Ohmic losses in power electronics and electric machines but with an increase

of switching losses due to high voltage demand, (d) lack of high power density protection systems for high voltage

distribution, and (e) the power stability and maintenance consideration. In a study presented in [17] a 6MW powertrain

was modelled with a variable and constant distribution voltage. The optimum system voltage of the variable system

voltage architecture was considered near the operating voltage of the electric motor (>1500V), while the optimum system

voltage of the constant system voltage architecture was identified at higher voltages between 3000V and 4000V. In this

paper we have selected a fixed 2000V DC-bus voltage as a system voltage and a variable DC-bus voltage up to 3080V.

Both voltages are below the threshold studied in [18] for operating at a safe voltage at high altitude for regional aircraft.

In this paper several fuel cell configurations and their DC/DC converters are investigated to show their advantages

and disadvantages for a propulsion system of regional aircraft. Firstly, the mission, the selected aircraft, and the

propulsion system is presented, then the configurations are introduced and their contributions and challenges are

discussed. The impact of converter selection on total system efficiency, system stability, failure scenarios and power

losses, fuel consumption, and weight analysis for the selected missions is demonstrated.
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Fig. 1 An example of a propulsion system with FC stacks configured for different voltage and current outputs.

Different DC/DC converter configurations are assessed to maintain the bus voltage at 2000V. These configurations

are shown in Fig. 10. Eight permanent magnet synchronous machines were designed for 500kW power at

rotational speed of 2000RPM.

Range 300 nmi Payload 3500 kg

Calibrated Climb Speed 160 kts Cruise Mach 0.46

Take-off Weight 17913 kg Cruise Altitude 19000 ft

Table 1 Flight mission specification

II. Propulsion System
A 4MW fully electrified aircraft propulsion is selected. This propulsion system (Fig. 1) is modelled, to demonstrate

the interactions between the FC stacks and the electrical configurations. In this system, two DC bus at 2000V are

connected with bus ties. 2.4MW of power is required from each “side” of the propulsion system.

MIT’s Qmil/Qprop tool [19] was adopted for propeller design and propeller performance analysis. The produced

propeller maps were integrated into our in-house model Hermes [20]: a flight path analysis platform in the Centre for

Propulsion Engineering at Cranfield University. Table 1 shows the flight mission used in this analysis, and Fig. 2 shows

the flight profile. FCvelocity®-HD6 Proton-Exchange Membrane Fuel Cell (PEMFC) stack operating points are chosen

for this study. Table 2 presents FC parameters, and a detailed description of the model of the FC stack is presented

in [21, 22].

An integrated framework within CHARM (Cranfield Hybrid-electric Aircraft Research Model) is used to model the

mission performance of novel electrified propulsion systems. This model captures the coupled integration between

components with the overall aircraft system, enable emissions and energy consumption evaluation, heat management

system detailed design and performance analysis at off-design conditions, electric power system and component design

and performance analysis, and capture the interactions between the sub-systems and aircraft level.

The proposed electrical architecture is modelled and analysed with the in-house E-HEART (Enabling-Hybrid

Electric Aircraft Research and Technology) tool, which is part of CHARM. Electrical components and their interactions

at component and their integration levels are studied within E-HEART. Different modelling approaches, from low

fidelity fundamental equations to high fidelity models, such as finite element analysis for electric machines, and dynamic

modelling of power electronics are included in E-HEART. For this study fundamental equations and finite element
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Fig. 2 Altitude and Mach variations for the duration of the flight.

Symbol Description Value

𝑇 Fuel cell operating temperature 330𝐾

𝑁 Fuel cell stack number 762

𝑧 Moving electron number 2

𝜏 Fuel cell dynamic time constant 0.1𝑠

𝜂𝐶 Compressor adiabatic efficiency 85%

Table 2 PEMFC system specifications

analysis have been employed for electric motor modelling. The integration of electric motor to the propeller have been

explored in [23], where a similar architecture have been used. The design decisions for the electric motor and the

propeller are explained to reduce noise and energy consumption.

A. Electric Power System Modelling

Fig. 3 describes the workflow to model the electric motor and the power converters and conduct a performance

analysis. In this workflow the initial sizing of the motor is performed with the information received from the mission

and the aircraft requirements, such as required power, motor rotational speed, volume, and thermal management

requirements. Efficiency maps are obtained for a range of torque and rotational speed variations as well as distribution

voltage and current requirements. These efficiency maps are then included in the performance modelling tool as a series

of look up tables for the aircraft level studies presented in [24]. Interior Permanent Magnet (IPM) motor is chosen for

this study. IPM motor was designed in ANSYS Motor-CAD and more details are provided in Table 3) and the efficiency

map is shown in Fig. 4. Finite element analysis with ANSYS Motor-CAD is used to model the motor and the final

results are shown as efficiency maps. The Direct Quadrate (D-Q) modelling of 3-Phase IPM machine is used to control

and design an H-bridge motor inverter.

Power converters design and compliant with flight requirement directly affect its power densities. It is predicted that

Parameters Values

Rotor diameter 317.5 (mm)

Stator diameter 450 (mm)

Number of poles 16

Airgap 1.25 (mm)

Stack length 370 (mm)

Number of slots 48

Table 3 Electric machine design parameters
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Fig. 4 Electric motor efficiency map. This is for the case where BUS voltage was constant at 2000V.

we might reach to 50kW/kg power density in the next decades with new silicon carbide, GAN devices, and emerging

thermal management systems. In recent years, high voltage Silicon carbide (SiC) MOSFETs (>10-kV) have been

developed due to their high blocking voltage, fast switching speed, and low switching loss [25].Considering the high

d𝑣/d𝑡 (50–100 V/ns) in the switching transient, these power electronics require specific design considerations [25].

To study the design of the power converters and their integration as part of the electric power distribution we have

considered the study based on current off the shelf components.

In design of power converters the switches are the major sources for power losses. Insulated gate bipolar transistors

(IGBTs), thyristors, metal oxide semiconductor field effect transistors (MOSFETs) and are used for power converters.

IGBTs with higher voltage and current design points but relatively lower switching frequencies are selected for this

study. As the electrical motor selected for this study has a rotational speed less than 3000 rpm, the high frequency

switching power converters are not considered. For the selected distribution design voltage in this study (2000V) and

maximum power requirements for (4MW), we have selected an IGBT from infineon (model: FZ1500R33HL3) that has

low switching losses (refer to Fig. 5) but also can work under voltage higher that 2000V when collector-emitter voltage

𝑉CES = 3300V, Continuous DC collector current 𝐼CDC = 1500A while keeping high voltage DC stability.

H-bridge inverter circuit is chosen Fig. 6 and efficiency is found for the variation of motor torque and rotational

speed (as shown in Fig. 7. This efficiency map is obtained from a parametric study carried out from modelling the

IGBTs from their characteristic shown in the datasheet partially shown in Fig. 5.

The non isolated bidirectional DC/DC converter was modelled using the FZ1500R33HL3 IGBT characteristics in a

circuit shown in Fig. 8. The results of the modelling are shown as an efficiency contour for a given input voltage (𝑉i)

and power output 𝑃o (or power demand). The efficiency contour for one of the cases presented in Section III is shown

in Fig. 8.

III. Multi-Stack fuel cell configurations
Possible multi-stack configurations with DC/DC converters are shown in Fig. 10. These configurations are assessed

based on their FC stacks and system efficiencies as well as the electrical component efficiencies, power losses due to

failure, voltage and current variation due to degradation, and their total weight. Table 4 summarises these analyses. The

analysis and explanations in this paper does not consider the way the FC stack auxiliary system are connected, which

they can also be in series or parallel but only consider the electrical connections. The influence of electrical connections

on hydrogen and oxygen supply due to their specific configurations are not considered in this paper.
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Fig. 5 Switching losses per pulse as a function of the collector current and the gate resistance. (a) Switching

losses for the IGBT-Inverter when 𝑉CE = 1800V, 𝑉GE = ±15V. (b) Switching losses for the IGBT-Inverter when

𝑉CE = 20V. Image is adopted from IGBT’s (FZ1500R33HL3) data sheet from infineon.

V bus

Vab, Vbc

C3

Fig. 6 H-bridge Inverter for a three phase AC electric motor. The six IGBT3 modules indicated in this image

are chosen based on the bus voltage and load current requirements. For this study FZ1500R33HL3 from infineon

is chosen.
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Configurations Description Comparisons

(a - a) Highest voltage achieved by

adding 16 stacks in series.

High voltage conversion to

𝑉bus.

Independent control of stack voltage is no longer achieved by one

DC/DC converter. This system has lowest reliability if some of

the FCs degrade or in the case of faults. This configuration at

high voltage (>3000V [18]) is not recommended due to lack of

protections and insulation designed for partial discharges at high

altitude (at 40kft of altitude above sea level) that can be used

without high weight penalties.

(b - b) 8 stacks can be connected in

series.

Efficiency optimization with only few power electronics convert-

ers. This configuration at high voltage (>3000V [18]) is not

recommended due to partial discharges at high altitude. However,

if the design of cable insulation changes to provide higher power

density, higher voltages can be recommended. This configuration

is also more vulnerable to faults at high altitude, so it is not rec-

ommended because limiting the altitude capability of the aircraft

will result in cruising at lower altitudes where the drag is higher

and the fuel consumption will be higher.

(c - c) 8 stacks can be connected in

series and 2 branches of them

in parallel.

Efficiency optimization with only few power electronics convert-

ers. This configuration allows higher efficiency for the DC/DC

converter due to smaller converter gain.

(d - d) 4 stacks connected in parallel

and then in series.

This configuration provide higher current and has 1 converter

for voltage control which can be a single failure point if the

converter fails and half of the total power from the FCs is lost.

This configuration is more reliable than configuration (e) when

one FC degrades [21]

(e - e) 4 stacks connected in series

and then in parallel.

Converter for this configurations could be designed but also the

rest of the system could be designed without a converter like case

(h).

(f - f) 16 stacks with individual

DC/DC converters connected

in series then to the bus

Independent control of voltage level is enabled as well as insulation

when operating in degraded mode. Accurate control of the

converters are required.

(g - g) 16 stacks with individual

DC/DC converters with con-

trollers are connected to the

bus

Several degrees of freedom for energy management, control of

power drop as as result of degradation with individual converters,

and faulty mode operation are possible. Voltage conversion rate

is the highest if 𝑉𝑏𝑢𝑠>𝑉𝑠𝑡 , efficiency of the converter and its

power density is the lowest. Configuration (g-g) is heavier so the

maximum payload will be reduced and the energy consumption

will be higher when performing the same mission, but it offers

better operability in degraded and faulty mode. Degradation

tolerance of this configuration may prolong time-on-wing.

(h - h) 4 stacks connected in series

and then in parallel.

This configuration provide lower current to the bus than case (g)

and does not have a converter for voltage control. The electric

machine and the inverter have to be designed to support the voltage

range and consequently the power requirement during each phase

of the mission.

(i - i) 4 stacks connected in series. This configuration is the most reliable system with higher effi-

ciency for the converter in comparison to case (d) and (e) due

to reduction in current. But four converters add higher weight

compare to case (h), but instead provide constant voltage for the

bus.
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Configurations Description Comparisons

(g - i) Two different configurations

for each buses.

Since two buses are connected for power sharing in the case of

failure a mixture of more efficient or highly reliable but heavier

configurations can be joint together. For example configuration

(g) is the most reliable but the heaviest and configuration (i) is

the most efficient

Table 4 Assessment of electrical configurations for the FC stacks and DC/DC converters. Where configurations

are connected, for example a-a, means the two 2000V bus are connected with a bus ties for power sharing.

Despite the same output propulsion power, the selection of FC configurations and architecture has an impact on

system weight and loss of power due to failure. A retrofit approach is adopted in this study which means that the FC

propulsion system is implemented on an existing aircraft design. For this reason, the Maximum Take-Off Weight

(MTOW) is a constraint, consequently the maximum take-off power is fixed for all the investigated configurations.

The heavier FC and converter configurations increase the Operating Empty Weight (OEW) of the aircraft, therefore,

the weight allowance to be shared between payload and range will be reduced, since the MTOW is fixed. Due to the

low hydrogen consumption of the FC, 500-1000kg of hydrogen is usually sufficient to cover the ranges of a regional

turboprop aircraft. Consequently, the higher FC system weight will limit the payload, if we assume a constant tank

capacity.

Furthermore, when comparing the different FC configurations, the heavier FC configurations (hence heavier OEW),

will have increased aircraft weight when performing the exact same mission (payload, range, altitude), which means that

the power requirement and fuel consumption will be higher at cruise.

A. Configurations (h) and (i)

Comparing cases (h) and (i) for total system efficiency shows that, removing the converters increase the total system

efficiency (Fig. 11) by a small percentage. This is due to added benefit on removing the converter efficiency, even

though the inverter efficiency in the case of variable voltage (case h) is slightly lower than when bus voltage is fixed

(Fig. 12). This is mainly due to the characteristics of the selected IGBTs and their losses at high voltage.

The efficiency of the fuel cell stacks and the system is not affected by the bus voltage variations, and for both case i

and h the efficiency has not changed (Fig. 12a). Motor efficiency is similar for the case with constant and variable bus

voltage (Fig. 12b) this is due to careful selection of motor design parameters to support variable voltage requirements.

Voltage and current variations are shown in Fig. 13. More investigations are needed in terms of the winding insulation

at 3080V (the highest system voltage for case h) and protections due to arching.
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Fig. 11 Overall system efficiency for cases i and h.

IV. Conclusion
This paper presents a trade off study between different multi-stack FC configurations, DC/DC converter topologies

and their contributions, and their impact on the mission requirements. For a 4MW electrified propulsion with PEMFC,

several electrical configurations were assessed qualitatively based on their efficiency performance at high voltage, the
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Fig. 12 Efficiencies of the proposed propulsion

system components for the duration of the flight.
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appropriate power electronics for each configurations, and power losses due to FC degradation and failure cases. Aircraft

performance parameters, FC system efficiency and overall propulsion efficiency over flight time for two configurations

were shown. The system without a converter and with variable bus voltage showed slightly higher overall efficiency.

The main differences between the cases presented are on total system weight and design of electric power distribution

protection in the case of failure. The comparisons of different configurations shown here were based on electric

powertrain redundancy considerations. The increase use of power converters in powertrain design can be used as a way

of protection against electrical faults and loss of complete power. The effect of different electric power distribution

protection have not been studied in this study and needs to be investigated for future studies.
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