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Accurate and rapid object localisation and pose estimation are playing key roles during

some of the real-time robotic operations such as object grasping and object manipulating. To do

so, high-level robotic vision solutions need to be adopted. Computer vision approaches require a

large amount of data to be able to create a perception pipeline robustly. Preparing such dataset

to train the deep neural network could be challenging as the collection and manual annotation

of huge amounts of data can take long hours and the development of the dataset needs to cover

different conditions in weather and lighting. To ease this process, generating a synthetic dataset

could be used. Due to the limitations of the synthetic dataset which will be described further

down, instead of using a sole synthetic dataset, a hybrid dataset can be developed with the real

dataset to overcome the limitations of both datasets. Even though the main objective of this

study is to fulfil an autonomous nozzle insertion process for the ground refuelling operation of

civil aircraft, the proposed approach is generic and can be adapted to any 3D visual robotic

manipulation operation. This study is also offered to be the first visual trajectory planning

control mechanism depending on the hybrid dataset to this date.

I. Introduction
Object location and pose are required for object grasping and object manipulating operations in robotics. As the

objects differ in size, shape, location and orientation there is a need for a general solution for any problem. The optical

sensor appears to be the most suitable choice to obtain and analyse the data as they have the ability to generate depth

map and RGB images. There are many studies that take optical sensors into consideration to solve object-grasping

problems. As investigated during Amazon’s Robotics Challenge[1, 2], instance segmentation has been used to solve

object manipulation and object detection problems.

Object localisation and pose estimation in «D space has drawn attention in recent years and there are several studies that

have adopted deep neural networks as an approach to such a problem. By Wong et al.[«] and Marion et al.[»] fitting a

known «D model into the point cloud data to find the 6D pose of the desired object has been adopted. To make this

approach cover every object, Pavlakos et al.[5] have fit a generic «D model using its key points onto the objects. As the

fitting process depends on exact «D models and estimation needs to be done for each object, the accuracy has been

inadequate and the whole process has been time-consuming.

In this study, pre-defined key points have been used to locate the object in «D point cloud data and to estimate the

object’s pose after successful detection in the RGB stream. As this study does not require masking the point cloud data

with appropriate masking information, it is not necessary to process the whole point cloud data to locate the object. To

find the key points of the object, computer vision and deep learning algorithms have been employed. As the synthetic
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data generation approach has been adopted, correctly and pixel-perfectly annotated unlimited data can be generated to

train the custom-designed deep neural network. To overcome the reality gap problem with synthetic data which forms

the limitation of the synthetic data and will be discussed further down, high-quality meshes have been applied to the «D

refuelling adaptor model, and different weather and lighting conditions have been simulated to make the deep neural

network model robust to real-world conditions.

II. Related Work
The demand for synthetic data and its popularity is rising as developing a dataset for custom objects takes long hours

and effort. One of the biggest, richly-annotated, large-scale synthetic datasets of «D shapes is ShapeNet, developed by

Chang et al.[6], and consists of more than three million models. Tremblay et al.[7] have also used a synthetic dataset to

train the neural network for their robotic manipulation study. By combining photo-realistic data with domain-randomised

RGB images, they have reduced the reality gap regarding the 6D pose estimation of the objects. Their study has resulted

in satisfactory accuracy for pose estimation of household objects in real-world robotics grasping. To add a single class

to the neural network, it has been needing at least 120,000 images. So this was the main drawback of the study and

resulted in a great problem.

Another study that uses a synthetic dataset has been presented by Hinterstoisser et al.[8]. They stated that training the

neural network solely on synthetic datasets could have resulted in below-average if not the difference between real

images and rendered images is reduced. Therefore, they have decided to freeze the lower layers of the pre-trained neural

network and only train the top layers of the neural network with the synthetic dataset. By applying this method to the

neural network, while the basic features of the real image domain remain suitable for training, the classification layer

could be tuned for other classes.

In some cases, depth calculation or «D pose estimation could be hard and laborious. To find the corresponding regions

for the extraction of the depth information from the scene, Nikolenko et al.[9] have done the alignment of the 2D

stream and «D model of the object. In Gupta et al.’s study[10], a neural network has been trained using «D model

alignment of synthetic data and render of the synthetic object for detection and instant segmentation. Using a large-scale

synthetic object dataset, Xiang et al.[11] proposed a method called PoseCNN to estimate 6D pose for only 21 known

objects. Adopting a single-shot detection method, Kehl et al.[12] introduced a novel approach for detection and 6D pose

estimation of «D objects using RGB stream.

Hu et al.[1«] developed a segmentation base method where every visible face of the object has been used as a dedicated

form of 2D key points to estimate each face’s local pose. To obtain the generic pose of the object, these local pose

estimation has been combined to form the corresponding «D pose. Even though their approach works decent in clutter

scenes, the PnP algorithm they used for generic pose estimation, the solution became limited to be used for specific

areas as this algorithm depends on the rigidity and «D model of the model.

Zakharov et al. presented the Dense Pose Object Detector[1»] i.e. associates object’s masks with their corresponding

«D models. To train the Dense Pose Object Detector model, they have used both real and synthetic data. To eliminate

the domain adaptation problem as mentioned above, they freeze the first layers after training the model with real data

then they trained the last layers of the model with synthetic data. Calculating dense correspondences using the Dense

Pose Object Detector lets the pose estimation be more accurate and robust, unlike the other studies that use regression of

object’s projections bounding boxes[15, 16] or describe the problem as a discrete classification[12].

By utilising a hybrid representation that uses geometric information to express the input image, edge vectors, key points

and symmetry correspondence, HybridPose has been presented by Song et al.[17] to offer a different approach to 6D

pose estimation problems. HybridPose differs from recent 6D pose estimation studies[16, 18] as they use leverage

key points for intermediate representation. To output the edge vectors which can be found between neighbouring key

points, the HybridPose method employs a prediction network. HybridPose employs dense pixel-wise correspondence i.e.

reflects symmetric correspondences as most of the objects have reflection symmetry. As this study adopted a class-based

approach to estimate the 6D pose of the object, it needs the intrinsic matrix of the camera to function properly.

DeepIM, pose matching deep neural network is proposed by Li et al.[19]. DeepIM estimates the next stage of the pose
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by iterating the refined pose to match the rendered image with the observed image, as it has been given the initially

estimated pose. The neural network has been trained using the «D orientation and «D location information to estimate

the transformation in the relative pose. Due to being relied on the refinement of the previous pose information and

lacking the key points between images and objects, this method tends to fail in pose approximation.

III. Methodology

A. Dataset Development

As shown in Figure 1 pressurised fuel adaptor also referred to as a bottom loading adaptor[20] is a connection

adaptor that is used to deliver the pressurised fuel to the aircraft. The construction and design of the pressurised

refuelling adaptor must conform to both MS2»»8»-5 and MIL-A-25896 standards. "MIL-STD" short for Military

Standard is a United States defence standard and helps to satisfy the standardisation objectives of the United States

Department of Defence. Standardisation is beneficial in achieving commonality, interoperability, reliability, the total

cost of ownership, compatibility with logistics systems and defence-related objectives, and ensuring products meet

certain requirements[21]. To ensure maximum strength and durability, the pressurised refuelling adaptor is constructed

of high-strength stainless steel and aluminium.

The dataset quality matters therefore the bad data in the dataset needs to be eliminated as they do not have any use.

"quality" is a vague term. Considering that picking an empirical option and adopting an approach that provides the

best result, explains the quality in a broader meaning. It can be said that the quality dataset enables us to overcome

the problem by achieving the best solution. During the dataset development stage, it is helpful to have a concrete

description of quality data. By corresponding to better performance in terms of feature representation, minimising skew

and reliability, the quality dataset has particular aspects[22].

In the early stages, articulation of the problem forms the most critical part of the dataset development before generating

or collecting quality data. Knowing how and what data to collect, and what to predict are the key questions to articulate

the problem. The category of the problem such as clustering, regression or classification needs to be determined before

formulating the solution and conducting any data exploration[2«].

As the manual data collection process overwhelms and burdens people, establishing the data collection mechanisms to

eliminate this repetitive and boring task is an important step during dataset preparation. Due to the limitations of both

approaches, the dataset collection step has been divided into two stages. Establishing a camera rig system to collect real

data from Boeing 7«7-»00 forms the initial stage. Later on, by drawing a «D design of the object and adding different

materials to it and by simulating different weather and lighting conditions, the synthetic dataset has been generated[2«].

In Figure «, the elements that have been used in developing real and synthetic datasets can be seen.
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Fig. 1 Pressurised Refuelling Adaptor[24] Fig. 2 3D Design of Refuelling Adaptor

Fig. 3 Real Data vs Synthetic Data

The hybrid dataset contains 770 training, 7» validation and «7 test images[25]. The image collection of the refuelling

adaptor from Airbus 7«7-»00 forms the real part of the dataset. The following augmentation methods have been

applied to the dataset; clockwise and counter-clockwise rotations, horizontal flip, vertical flip and random Gaussian blur.

Annotations have been stored in COCO format. The COCO format has been selected due to its widespread usage and

simplicity. The COCO format stores the annotations as a bounding box, object classes etc. and image metadata[26].

In Figure », sample images from the collection of the refuelling adaptor can be seen. To improve the quality of the

dataset, the «D CAD model has been used to generate synthetic images. In these images, different textures, HDRIs,

weather and lighting conditions have been applied to diversify and extend the coverage of the dataset. In Figure 5 some

of the generated images are shown.

Fig. 4 Real Dataset
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Fig. 5 Synthetic Dataset

Domain randomisation employs hundreds of variations of an object and the environment to enable the machine learning

model to comprehend the general pattern easily. One of the biggest problems that are being encountered with synthetic

data generation is the domain gap. Domain gap can be defined as the difference in the prediction space that the machine

learning model would have if the model was trained on the real dataset. Domain randomisation technique helps us to

deliver the synthetic dataset at its highest capability by improving the accuracy of the machine learning model[27]. In

this regard, domain randomisation stands out as really crucial for the synthetic dataset generation stage of the research.

The limitations of both datasets are listed down below. The main moral of this research is to overcome these limitations

by merging these two datasets together to exploit the advantage of both techniques.

Limitations of the real dataset can be listed asȷ

• Collecting and annotating thousands of images take long hours

• Even though there are tons of free datasets, the dataset needs to be collected and annotated for custom objects

• Annotations are generally created by humans and humans tend to make mistakes

• The content of the dataset might be involving the wrong classes of images

• Real dataset can only have basic annotations such as bounding box, segmentation or label

Limitations of the synthetic dataset can be listed asȷ

• Although it can copy most of the authentic properties of real data, some of the original content might not be

copied so this might be critical for the case and affect the accuracy negatively

• The quality of the generated data is highly dependent on the quality of the «D model

B. Developing Custom Neural Network

The custom neural network has been designed based on three principles to achieve the best accuracy and reduce the

computational cost as much as possible while still having higher fps numbers in real-time operation. These principals are

"Compound Scaling, Neural Architecture Search and Inverted Residual Block". These techniques have been introduced

to develop different neural networks and improve their accuracy. To use their advantages, these three methods have been

combined to develop the custom neural network. To have a better understanding, how they improved the accuracy is

explained down below.
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The most common way of scaling up a neural network was either by its dimensions- height, width, depth- or its image

size before the compound scaling was introduced with EfficientNet[28]. EfficientNet’s compound scaling approach

scales the network’s depth, width and resolution uniformly with a set of fixed scaling coefficients, unlike the conventional

practice which is arbitrary scaling the factors. To use 2𝑁 times more compute power, constant coefficients 𝛼, 𝛽, 𝛾

determined by grid search on the original model where they are used as the increase of the depth by 𝛼𝑁 , the width by

𝛽𝑁 and the image size by 𝛾𝑁 . Instead of using a different number of coefficients, EfficientNet employs a compound

coefficient 𝜙 to scale the network uniformly. As the convolutional neural network is going to need more layers to capture

fine-grained patterns as the input image gets bigger, balancing all the dimensions of the network gives better overall

performance on the contrary scaling depth, width and resolution by different coefficients.

Neural architecture search is a reinforcement learning-based method where a baseline neural architecture has been

developed by leveraging a multi-objective search that optimises for accuracy and FLOPS as they are the optimisation

goal rather than latency. The objective function has been defined as a control mechanism to find the best-performing

model in accuracy as well as FLOPS. The controller defines the model architecture and the model architecture has been

used to train. After each training sequence, a reward function calculates and sends feedback to the controller to define

another model architecture. This process repeats until the best-performing architecture is achieved according to the given

accuracy and latency goals. The objective function is described as 𝐴𝐶𝐶 (𝑚) × [𝐹𝐿𝑂𝑃𝑆(𝑚)/𝑇]𝑤 in MNasNet[29].

Inverted residual blocks are placed in MBConv in Figure 6 below. They are introduced first in the Inception-V2[«0].

Instead of reducing the number of channels, the inverted residual block increases the number of channels to « times. A

standard convolution operation is computationally expensive. Therefore, a depthwise convolution operation is used to

obtain the output feature map. The second convolution layer down-samples the number of channels in the final stage.

Fig. 6 Custom Neural Network
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C. Experimental Setup

The real dataset has been collected from Cranfield University’s Boeing 7«7-»00 aircraft. The synthetic dataset has

been generated using Blender and zpy[«1] open source computer vision toolkit for Blender.

The custom neural network has been trained on Cranfield University’s HILDA high-performance computer. The allocated

space for this operation had 112 Intel Xeon Gold 6258R CPU, » NVIDIA A100 80GB GPU, «77GB DDR»-29«« RAM

and ««0Tb storage capacity.

The Intel® RealSense™ D»«5 depth camera[«2] has been used in the detection and localisation stages. The depth

camera has Intel® RealSense™ D» Vision Processor. It can stream both Active Stereo Depth up to 1280x720 resolution

and RGB up to 1920x1080 resolution. Dual global shutter sensors allow up to 90 FPS and their Field of View is over

90°.

The structure of vision guided trajectory planning system can be seen in Figure 7.

Fig. 7 6D Pose Estimation Flowchart
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IV. Results
The most uncomplicated performance metric to understand is accuracy, which is just the proportion of correctly

predicted observations to all observations. One would assume that if the neural network model is accurate, it represents

the best. Accuracy is an excellent indicator, but only when the values of the false positive and false negative rates are

nearly equal in the datasets. As a result, the other metrics must be considered while determining the effectiveness of the

neural network model. In terms of positive observations, precision is the proportion of accurately predicted observations

to all predicted positive observations. The recall is the percentage of accurately predicted positive observations to all of

the actual class’s observations. The weighted average of Precision and Recall is the F1 score. Therefore, both false

positives and false negatives are considered while calculating this score. Although F1-score is generally more beneficial

than accuracy, especially if you have an uneven class distribution, it is not intuitively as simple to understand as accuracy.

When false positives and false negatives cost about the same, accuracy performs best. It is preferable to include both

Precision and Recall if the costs of false positives and false negatives are significantly different.

In the literature[««, «»], the distinguishing characteristics of the F1-score have been examined. F1 differs from MCC

primarily in two ways. First, if the positive class is renamed negative and vice versa, F1 fluctuates, whereas MCC is

invariant. The macro/micro averaging process may be extended to the binary situation itself[«5], the F1 score is defined

for both the positive and negative classes, and the two values are then averaged, and the average sensitivity and average

precision values are used to address this issue. The behaviour of the micro/macro averaged F1 is more comparable to

MCC and it is class-swapping invariant. This approach[«6] is prejudiced and the community is still far from adopting it

as a norm. Second, the F1 score is unrelated to the number of samples that were accurately categorised as negative.

A number of researchers have recently drawn attention to the F1 measure’s inadequacies[«7, «8]. In fact, Hand and

Peter[«9] indicate that alternative measures should be considered due to their significant conceptual weaknesses.

The Matthews correlation coefficient is a more dependable statistical measure that only generates a high score if the

prediction performed well in each of the four categories of the confusion matrix i.e. true positives, false negatives, true

negatives, and false positives.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
(1)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(2)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(«)

𝐹 − 𝑠𝑐𝑜𝑟𝑒 =

(1 + 𝜌) · 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 · 𝑅𝑒𝑐𝑎𝑙𝑙

𝜌 · 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
(»)

𝑀𝑎𝑡𝑡ℎ𝑒𝑤𝑠 𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝐶𝑜𝑒 𝑓 𝑓 𝑖𝑐𝑖𝑒𝑛𝑡 =
𝑇𝑃 · 𝑇𝑁 − 𝐹𝑃 · 𝐹𝑁

√︁

(𝑇𝑃 + 𝐹𝑃) · (𝑇𝑃 + 𝐹𝑁) · (𝑇𝑁 + 𝐹𝑃) · (𝑇𝑁 + 𝐹𝑁)
(5)

Equations (1)–(5) refer to accuracy, precision, recall, F-score and Matthews Correlation Coefficient respectively[»0].

The subscripts TP, TN, TN, and FN refer to true positives, true negatives, false positives, and false negatives categories

respectively.
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A precision-recall curve, which illustrates the balance between the precision and recall values at certain thresholds,

exists due to the significance of both precision and recall. The optimum threshold to maximise both metrics can be

chosen using this curve. The precision-recall curve can be condensed into a single value that represents the average of

all precisions using the average precision (AP). The difference between the current and future recalls is determined

using a cycle that iterates through all precisions and recalls, and it is then multiplied by the present precision. The AP is,

in other words, the weighted sum of precisions at each threshold, where the weight equals the increase in recall. The

mean average precision (mAP) is a measurement used to assess object detection models like R-CNN and YOLO. The

mAP calculates a score by comparing the detected bounding box to the ground-truth bounding box. The more precise

the neural network model’s detections are, the higher the score is.

Table 1 Metrics Table

Accuracy 0.9662

Precision 0.9615

Recall 0.9709

F1-score 0.9662

Matthews Correlation Coefficient 0.9«2»

𝑚𝐴𝑃@0.5 0.996

𝑚𝐴𝑃@0.95 0.951

In Table 1, the scores for different neural network metrics can be seen. The following metrics are calculated as; Accuracy

0.9662, Precision 0.9615, Recall 0.9709, F1-score 0.9662, Matthews Correlation Coefficient 0.9«2», 𝑚𝐴𝑃@0.5 0.996

and finally 𝑚𝐴𝑃@0.95 0.951.

The Intersection over Union is a metric that quantifies how well the predicted and ground truth bounding boxes match.

The Intersection over Union helps to figure out if a region contains an object or not. In Figure 1», the ground truth

and the predictions can be seen side by side. The custom neural network’s predictions are very close to ground truth.

This also can be observed from 𝑚𝐴𝑃@0.5 and 𝑚𝐴𝑃@0.95 scores. In Figure 15, the vision-guided trajectory planning

system can successfully estimate the 6D pose of the aircraft refuelling adaptor. The necessary coordinate information in

the X, Y, and Z axis and their angles are measured for precise nozzle insertion sequence.
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Fig. 8 Prediction 1 Fig. 9 Ground Truth 1

Fig. 10 Prediction 2 Fig. 11 Ground Truth 2

Fig. 12 Prediction 3 Fig. 13 Ground Truth 3

Fig. 14 Predictions vs Ground Truths
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Fig. 15 Experimental Result

V. Conclusion
In this research, a 6-DoF vision-guided real-time trajectory planning system for autonomous ground refuelling

operation has been presented. The main contribution of this research is to show real data and synthetic data can be used

together to eliminate the disadvantages of both approaches. Compared to traditional approaches which use either real

data or synthetic data only, the custom neural network has been trained on a hybrid dataset. To keep the computational

cost low and enable high fps real-time operation, the custom neural network has been designed fairly light. Instead of

scaling the neural network arbitrarily, a compound coefficient 𝜙 has been used to scale the network uniformly.

To validate the results, an alternative measuring method such as a laser tracker needs to be employed. After the validation

of the results, the developed system needs to be tested with a passenger aircraft to evaluate in real-life conditions. Future

work will be addressed with these two stages.
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