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Abstract—This paper presents measurements of Radar Cross
Section (RCS) of five Unmanned Aerial Vehicles (UAVs), compris-
ing both consumer grade and professional small drones, collected
in a semi-controlled environment as a function of azimuth aspect
angle, polarization and frequency in the range 8.2-18 GHz. The
experimental setup and the data pre-processing, which include
coherent background subtraction and range gating procedures,
are illustrated in detail. Furthermore, a thorough description
of the calibration process, which is based on the substitution
method, is discussed. Then, a first-order statistical analysis of the
measured RCSs is provided by means of the Cramér–von Mises
(CVM) distance and the Kolmogorov–Smirnov (KS) test. Finally,
radar detection performance is assessed on both measured and
bespoke simulated data (leveraging the results of the developed
statistical analysis), including, as benchmark terms, the curves
for non-fluctuating and Rayleigh fluctuating targets.

Index Terms—Radar Cross Section, Measured Data, Statistical
Analysis, Radar Detection Performance, Drone Detection.

I. INTRODUCTION

The detection of small Unmanned Aerial Vehicles (UAVs),

commonly referred to as drones, is a challenging problem

in both civilian and defence applications. This is due to the

unsuitability of many current surveillance radars to provide

adequate detection performance for such types of targets,

characterized by weak radar signatures, low flight altitude

and slow speed. Remarkably, the detection of UAVs is also

problematic due to the high number of false alarms resulting

from the similarity between radar signatures of drones and

birds (see [3], [4]). On the other hand, the cyber and physical

threats from drones is becoming a serious issue [5] due to the

exponential increase in the use of small commercial drones

(see [6] for an overview of threats from unauthorized small

commercial UAVs). In this context, collecting drone data and

analyzing their Radar Cross Section (RCS) is a critical step

towards the design of appropriate system architectures capable

of dealing with these types of targets as well as for the

This paper was presented at the 2022 IEEE 9th International Workshop on
Metrology for AeroSpace (MetroAeroSpace) [1] and at the Radar 2022 Inter-
national Conference on Radar Systems [2]. Corresponding Author: Antonio
De Maio.

Massimo Rosamilia, Antonio De Maio, Augusto Aubry, and Vincenzo
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development of an accurate performance prediction of existing

algorithms.

Not surprisingly, some valuable experimental campaigns

aimed at characterizing UAV radar signatures have been con-

ducted and the corresponding results are available in the open

literature. In [7], the RCS of small UAVs have been measured

for different aspect angles in the frequency interval 8 − 12
GHz and in VV polarization. The measurements have also

been examined using the Inverse Synthetic Aperture Radar

(ISAR) method, which provides useful information regarding

the components that mostly contribute to the drone signature.

Similarly, ISAR imaging has been also employed in [8] to

analyze the RCS of several small consumer drones measured

in the frequency bands 3 − 6 GHz and 12 − 15 GHz for

different aspect angles. In [9], six commercial UAVs have

been measured at 15 GHz and 25 GHz for both HH and

VV polarizations. The RCS measurements of two off-the-

shelf drones in the frequency band 5.8 − 8.2 GHz has been

addressed in [10], and in [11] RCS data of several drones

have been collected in the frequency range 26 − 40 GHz.

In [12] the RCS measurement of small UAVs has been

investigated in challenging scenarios (outdoor environments,

hangars, etc.) using a portable system. Some measurements

in the Ku radar band have been conducted in [13], whereas,

unlike aforementioned references, [14] has presented three-

dimensional RCS measurements of a nano-drone from 23 GHz

to 25 GHz. Simulation and experimental results of micro-

drone rotor blade electromagnetic scattering as a function of

polarization, frequency and azimuth angle have been presented

in [15], whereas a highly accurate UAV RCS simulation

has been developed in [16] and the corresponding results

compared with those of measurements and simpler simulation

approaches. In [17], the RCSs of some nano and micro

drones have been collected in the X-band for several elevation

angles, and some statistics related to measured RCS data

have been provided. A statistical analysis of experimental data

of nine flying drones, collected with a Frequency-Modulated

Continuous Wave (FMCW) Ku-band radar has been presented

in [18], with emphasis on the analysis of amplitude fluc-

tuations of the drone body/blades as well as the signature

decorrelation time. Besides, [9] has presented both a statistical

analysis of the measured RCS and a performance prediction

of a specific UAV recognition system, whereas in [13] radar

detection performance has been analyzed in the context of

a short-range battlefield radar. Further study on UAV RCS-

based recognition using statistical-based parameters, machine

learning, and deep learning techniques has been presented
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in [19]. In [20], an experimental 35 GHz FMCW coherent

radar has been proposed to detect small UAVs, whilst [21]

has investigated the detection of drones using the MIRA-CLE

Ka system, which is a MIMO radar developed for imaging

applications. In [22], the detection and the RCS measurement

of a DJI-Phantom 4 have been assessed with the RAD-DAR,

which is an experimental FMCW coherent radar operating at

X-band. Detection and tracking using the multistatic Netted

Radar (NetRAD) system have been addressed in [23] lever-

aging micro-Doppler analysis to discriminate flying drones

from clutter returns, whereas discussions on UAV detection

via FMCW radars have been also provided in [24], [25].

Furthermore, [26] has provided an overview of the state of the

art in drone activity monitoring using radar systems, and in [6]

particular emphasis has been placed on the current detection

and tracking techniques tailored to drone threats based on

radars, acoustic and other available sensors.

Although some statistical analyses of the RCS of drones

collected at several frequencies have been reported in [9]–

[11], [14], this paper presents an extensive statistical analysis

of the RCS of five drones measured in the whole X- and

Ku-band, HH and VV polarization, for different azimuth

aspect angles using an angular resolution of 0.1 degree and

a frequency resolution of 1.5 MHz. In addition, unlike the

mentioned papers whose focus is on drone classification, the

main purpose of this study is the assessment of search radar

performance on measured data, with UAVs modeled as point-

like objects. The scope of this paper is twofold: presenting

the statistical analysis of the RCS signatures of five drones,

i.e., AscTec Firefly, AscTec Pelican, Venom VN10, Parrot

AR.DRONE, and DJI Matrice 100, and evaluating the radar

detection performance using both measured RCSs and tailored

fluctuation models, i.e., fitting UAV RCS data. To this end, the

raw RCS data are collected in a semi-controlled environment

as a function of frequency, azimuth aspect angle and polar-

ization in the interval 8.2 − 18 GHz. A complete description

of the experimental setup and the data pre-processing, from

signal acquisition to the calibrated RCS measurements, is

provided. Specifically, the pre-processing operations, which

include Coherent Background Subtraction (CBS) and range

gating procedures, are illustrated with a discussion on the

RCS calibration procedure relying on the substitution method.

Moreover, the accuracy of the measurements, mainly affected

by noise-induced uncertainties, is investigated in terms of

the acquisitions Signal to Noise Ratio (SNR). The results

are analyzed considering sliding frequency intervals of 200

MHz corresponding to a range resolution of 0.75 m, which

allows to model the drones as point-like targets. Furthermore,

a detailed first-order statistical analysis of the measured drone

RCSs is performed by fitting the data with (one- and two-

parameters) distributions typically employed to model RCS

fluctuations [27], via the minimization of the Cramér–von

Mises (CVM) distance between the empirical and the theo-

retical Cumulative Distribution Functions (CDFs). The Kol-

mogorov–Smirnov (KS) test is also employed to further study

the goodness-of-fit of the chosen distribution. Hence, in the

context of a coherent detection, radar performance is studied

versus the integrated SNR at the radar receiver, with the drones

Fig. 1. A notional representation and an actual snapshot of the experimental
setup.

RCS modeled as a fluctuating target from Coherent Processing

Interval (CPI) to CPI. In particular, the detection performance,

evaluated leveraging both measured and simulated fluctuations

(according to the inferred distribution), is compared with

standard benchmark based on stationary (Swerling 0) and

random (Swerling 1) targets.

The rest of the paper is organized as follows. Section

II presents the experimental setup and describes the pre-

processing steps. The statistical behavior of the measured

RCSs is analyzed in Section III, while the radar detection

performance is evaluated in Section IV. Finally, Section V

addresses concluding remarks and outlines some possible

future research avenues.

II. EXPERIMENTAL SETUP

In this section, a thorough description of the experimental

setup involved in the measurement campaign is provided along

with details on data pre-processing, measurements uncertain-

ties and calibration. The RCS data has been collected in a

laboratory environment using the measurement setup depicted

in Fig. 1 which is composed of

• Radar Absorbing Material (RAM) panels to mitigate

multipath reflections from the ceiling, walls and floor;

• a 2-port MS46322A Anritsu Vector Network Analyzer

(VNA) capable of providing a dynamic range greater

than 100 dB up to 40 GHz. By transmitting a stepped-

frequency waveform, the VNA measures the frequency

response of the illuminated area over a pre-defined band-

width using at most Nf = 16001 frequencies in the

probing waveform. The VNA is controlled remotely from

a PC using an Ethernet cable;
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• a LinearX precision turntable with an angular step res-

olution of (up to) 0.1 degrees. The turntable is fully

controlled remotely from a PC through commands sent

via an RS-232 serial connection;

• a standard PC to control and synchronize the turntable

and the VNA via the Laboratory Virtual Instrument

Engineering Workbench (LabVIEW) as well as to store

the raw data. The PC is also used to process the data

offline;

• a pair of identical standard horn antennas, one for trans-

mission and the other for reception; they are connected to

the two ports of the VNA by means of low-loss coaxial

cables and co-located on a tripod. The positions of the an-

tennas have been adjusted with a cross-laser level to steer

the antenna boresights at the target. Rotating the antennas

allowed data collection for different polarizations.

Before proceeding with the measurements, the VNA has been

calibrated using the standard “thru” calibration procedure to

provide a measurement setup with a flat frequency response

up to the antennas. The LabVIEW scripts have been designed

to trigger a turntable step rotation after the data acquisition

by the VNA at a specific aspect angle. This has guaranteed

collections of frequency responses with a stationary target. In

particular, a short time delay has been also included before

collecting a new measurement to ensure that the setup was

actually stationary after each step rotation.

Although the VNA measured all S-parameters [28] at each

frequency, for the considered experiments only the forward

complex transmission coefficient S21, corresponding (for the

case at hand) to the spectral response of the illuminated area at

a given frequency, has been recorded and analyzed. The HH-

pol and VV-pol returns from five drones have been measured

versus frequency and target azimuth aspect angle using two

different pairs of horn antennas. Specifically, measurements in

the interval 7−13 GHz are collected via Marconi Instruments

model 6036/4 antennas, operating from 8.2 GHz to 12.4 GHz.

Besides, data at the Ku-bands (12 − 18 GHz) are acquired

via Narda, model 639 antennas, operating from 12.4 GHz

to 18 GHz1. Regardless of the employed antennas, the VNA

has been configured to sample the 6 GHz bandwidth with

Nf = 4001 frequency points and the turntable azimuth step

resolution has been set to 0.1 degrees for 360 degree rotations.

For measurements in the range 7 − 13 GHz, the distance

between the antennas and the target has been set to approx-

imately 7.2 m, whilst for the higher frequency bandwidth a

distance of approximately 3.4 m has been used. A summary

of the experimental parameters used to collect and analyze

the data is reported in Table I, whereas the specifications

of the analyzed drones are listed in Table II. Note that

the employed measurement setup falls in the so-called near-

1Due to the frequency response characteristics of the antennas employed in
the two measurement setups, the data acquired outside the spectrum portions
8.2−12.4 GHz, for the first setup, and 12.4−18 GHz, for the second setup,
have been discarded.

TABLE I
SETUP AND ACQUISITION PARAMETERS.

Parameter Setup 1 Setup 2

Frequency Interval 7− 13 GHz 12− 18 GHz
Analyzed Frequency Bandwidth 8.2− 12.4 GHz 12.4− 18 GHz
Bandwidth B 6 GHz 6 GHz
Azimuth Rotation Step 0.1 degrees 0.1 degrees
Frequency Steps Nf 4001 4001
Frequency Stepsize ∆f 1.5 MHz 1.5 MHz
Unambiguous Range 99.93 m 99.93 m
Target-antennas Distance ≈ 7.2 m ≈ 3.4 m
Distance from Ceiling 2.71 m 2.71 m
Height above Floor 1.28 m 1.28 m
Range Gating 6.5− 7.8 m 1.5− 4.6 m
Number of FFT/IFFT Points 400100 400100

field2 non-anechoic range scenario [29]. Before concluding

this section, a discussion on data pre-processing (including

CBS, range gating, and frequency windowing) together with

the RCS calibration process follows.

A. Data Pre-processing

For each acquisition, a background measurement (obtained

in the absence of the drone) has been collected and subtracted

coherently in the frequency domain from all the data acquired

in the presence of the target. Range-gating has been then

applied to the high range resolution background-free profile

to further isolate the target response in range from residual

multipath reflections which could not be eliminated with the

CBS [29], [30]. To achieve this, a tailored rectangular window,

with parameters matched to the drone size and the target-

antennas distance (see Table I), has been used. Fig. 2 illustrates

an example of the range gating procedure performed for a

measurement in the interval 7 − 13 GHz. As a matter of

fact, the clean signal is obtained as the product of the target

range profile and a rectangular window, defined as 1 within the

swath 6.5− 7.8 m and 0 elsewhere. The figure clearly shows

that the entire target response is located within the considered

window, however outside that region a multipath contribution

(due likely to the ceiling) is present at 8.4 m. Furthermore,

strong interference is also evident at approximately 9.8 m due

reasonably to the absence of overall back-wall scattering when

the drone is present (a phenomenon known as “shadowing”),

which nullifies the effect of the CBS on that specific range.

The frequency spectrum of the clean signatures has been

then used to extract the point-like target response over a

moving bandwidth of 200 MHz, corresponding to a range

resolution of 0.75 m. Precisely, the frequency domain is dis-

cretized in several frequency bins of 200 MHz having central

frequencies {8.3 GHz + (i× 100) MHz, i = 0, . . . , 96} and

the data are processed separately in each of them. Therein,

the target can be approximated as a point-like reflector (i.e.,

target scatterers within the range resolution cell) whose power

2Since the measurements have been collected in the near-field region,
the resulting RCS values can exhibit some deviations from the actual ones.
However, it is worth pointing out that the provided results are aligned with
those obtained in previous far-field measurement campaign, when comparisons
are possible, thus supporting the reliability of the conducted assessment.
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TABLE II
MEASURED DRONES SPECIFICATIONS.

Drone # Rotors Blades Size Weight Width Depth Height Primary Use

AscTec Firefly 6 210 mm 1600 g 470 mm 430 mm 165 mm Mapping/Surveying
AscTec Pelican 4 250 mm 1650 g 360 mm 360 mm 188 mm Film & Photo/Mapping/Surveying
Venom VN10 4 135 mm 148 g 290 mm 210 mm 38 mm Film & Photo

Parrot AR.DRONE 2.0 4 190 mm 420 g 517 mm 517 mm 127 mm Film & Photo
DJI Matrice 100 4 345 mm 2355 g 759 mm 755 mm 205 mm Film & Photo/Mapping/Surveying

Shadowing

effect

Multipath

Target 

Response

Window

Fig. 2. Representation of the range gating procedure in the range/time domain.
The range gating is performed by means of a rectangular window (displayed
as a solid red line).

response (i.e., non-calibrated RCS) is extracted as the squared

magnitude peak in the time domain.

B. RCS Measurements and Calibration

For a given target measurement, after the pre-processing

stage (comprising CBS, range gating and frequency band

selection) the resulting squared magnitude peak value in the

range domain constitutes the power of the target return and is

theoretically related to its RCS for the analyzed frequency bin

via the radar equation. However, in the process of measuring

the absolute RCS of a particular target, it is essential to

include an accurate RCS calibration step. The substitution

method [29] is the most often used calibration procedure for

RCS measurements, which involves measuring a calibrating

target (with a known RCS) with the same test-bed used to

collect data from the target under test [29]. As a result, each

measurement related to the RCS of the calibrating target at

a given frequency3 is compared with the theoretical RCS,

and the resulting dB difference is utilized to calibrate the

target measurements, provided that the test-bed, as well as

the system parameters, are stationary. To this end, conductive

spheres are the most commonly used calibrating targets, not

only because their response does not change with aspect

angle and polarization, but also because the RCS of such

objects (assumed ideally manufactured) can be determined

analytically [31], [32].

3The peak power of the calibrating target is measured as the squared
magnitude peak in the time domain of the received response after CBS, range
gating, and pass-band filtering around the considered frequency bin.

Precisely, the calibration factor for a given frequency bin

with central frequency f and polarization p is determined as

K(f, p) =
σsph(f, p)

σth,sph(f)
, p = {HH,V V } (1)

where σsph(f, p) is the measurement of the received peak

power of the sphere for the considered polarization p and

analyzed frequency bin f , whereas σth,sph(f) is the theoretical

RCS at the central frequency f . As a consequence, the

calibrated RCS of a target can be computed as

σ̂(f, θ, p) =
σtg(f, θ, p)

K(f, p)
(2)

where σtg(f, θ, p) is the measurement of the peak power

return of the object under test, with reference to the angle

θ, polarization p, and frequency bin centered at f .

The technique employed to measure the RCS of the drones

in a specific polarization is summarized in Procedure 1.

In the performed campaign, a conductive 10 cm diameter

sphere has been used to calibrate the drone measurement data.

To assess the measurement accuracy of the collected RCS

(after the calibration procedure), three independent measure-

ments of the same sphere have been taken, with the first

serving as a reference (to compute the calibration factors)

and the others as tests (to validate the calibration procedure).

As a matter of fact, measuring the error of the difference

between the known and the measured RCS is a simple and

effective way to estimate the overall uncertainty connected to

the experimental setup at hand [29]. The results reported in

Fig. 3 show that, as expected, the calibrated RCS of the first

measurement achieves the theoretical one, while those related

to the test measurements exhibit a mismatch less than 1.4 dB

in the 8.2 − 12.4 GHz range and less than 0.5 dB in the

12.4− 18 GHz bandwidth.

In this regard, the errors between the calibrated tests data

(measurements 2 and 3) and the theoretical values are mainly

due, as illustrated below, to the SNR of the measured data

which, varies from 11 to 24 dB for the first range of fre-

quencies and from 19 to 30 dB for the other one. The SNR

of the measured data is computed in the time domain as the

ratio between the peak power values of the target response

(obtained as specified before) and the power of the strongest

noise sample (computed performing gating on a range window

not affected by the target presence, e.g., 20 − 30 m). Hence,

according to [29] and [33], under reasonable acquisition setups

the uncertainty ∆σ (expressed in dB) associated with the



5

8.5 9 9.5 10 10.5 11 11.5 12

Frequency [GHz]

-22.5

-22

-21.5

-21

-20.5

-20

-19.5

-19

R
C

S
 [
d
B

s
m

]

Theoretical RCS

Measurement 1

Measurement 2

Measurement 3

(a)

8.5 9 9.5 10 10.5 11 11.5 12

Frequency [GHz]

-22.5

-22

-21.5

-21

-20.5

-20

-19.5

R
C

S
 [
d
B

s
m

]

Theoretical RCS

Measurement 1

Measurement 2

Measurement 3

(b)

13 14 15 16 17 18

Frequency [GHz]

-21.6

-21.4

-21.2

-21

-20.8

-20.6

-20.4

R
C

S
 [

d
B

s
m

]

Theoretical RCS

Measurement 1

Measurement 2

Measurement 3

(c)

13 14 15 16 17 18

Frequency [GHz]

-21.6

-21.4

-21.2

-21

-20.8

-20.6

R
C

S
 [

d
B

s
m

]

Theoretical RCS

Measurement 1

Measurement 2

Measurement 3

(d)

Fig. 3. Calibrated versus theoretical RCS of a conductive sphere with a
diameter of 10 cm in the frequency interval: (a) and (b) 8.2-12.4 GHz, (c)
and (d) 12.4-18 GHz. As to the polarization, (a) and (c) consider the HH case,
whereas (b) and (d) refer to the VV setup. The calibration procedure exploits
the first measurement.

Procedure 1 RCS measurement of a target as a function of

frequency over different aspect angles for a given polarization.

Input raw data (with and without target) for a given polariza-

tion

1. load background data;

2. for θ ∈ {i× 0.1, i = 0, . . . , 3599}
2.A. load the data with target aspect angle θ and polar-

ization p;

2.B. perform CBS;

2.C. apply range gating on target’s range profile;

2.D. for f ∈ {8.3 GHz + (i× 100) MHz, i = 0, . . . , 96}
a) pass-band filter in the interval from f −

100 MHz to f + 100 MHz;

b) estimate the target power return σtg(f, θ, p) as

the squared magnitude peak value in the time

domain;

c) compute σ̂(f, θ, p) using (2);

end

end

Output target RCS as a function of frequency over different

aspect angles.

measured data is related to the SNR (expressed in linear unit)

via

∆σ = −20Log

(
1− 1

SNR

)
. (3)

For the case at hand, the noise-induced measurement un-

certainty, computed according to (3), is reasonably in the

range 0.03 − 0.72 dB for the interval 8.2 − 12.4 GHz, and

0.01−0.11 dB for the 12.4−18 GHz bandwidth. Therefore, the

data reported in Fig. 3 comply with the resulting confidence

intervals, and the occurrence of a few outliers is likely to

be related to the worst-case event where the largest error is

experienced in both the reference and test measurements.

It is also worth mentioning that, while the SNR plays a

key role in the measurement uncertainties experienced in the

current setup, additional experimental setup limitations due to

difference in the average illumination (between measurements

of the drones and the calibration target) [29], background-

target interaction, imbalance between in-phase and quadrature

components, and near field acquisition, just to mention a

few, are always present [29], although difficult to quantify

accurately.

III. DRONE RCS STATISTICAL BEHAVIOR

The classic approach for evaluating radar detection per-

formance is based on the assumption that the target’s RCS

fluctuation follows one of the Swerling models I-V [27].

However, as confirmed by some practical cases, amplitude

fluctuations do not always comply with the aforementioned

models, resulting in a mismatch between the actual and

the theoretical radar performance. Indeed, several alternative

fluctuation models (e.g., Weibull, Log-normal, shadowed Rice,

two-state Rayleigh-chi, just to mention a few) have been

proposed in the open literature to cope with this problem [27],
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[34], [35]. Using a suitable statistical description for the target

RCS behavior enables the accurate prediction of radar detec-

tion performance as well as the design of appropriate signal

processing architectures. Toward this goal, in this section, the

measured RCS signatures of several drones are statistically an-

alyzed by fitting the data with well-known and commonly used

distributions (at most bi-parametric), over different frequencies

and polarizations. Then, the most appropriate statistical model

for each drone RCS collection (in the aspect angle domain) is

selected resorting to the CVM distance and the KS test.

The RCS analysis of the AscTec Firefly is discussed in

Subsection III-A, then the other drones are studied in Sub-

section III-B.

A. Statistical Analysis of AscTec Firefly RCS

A detailed analysis of the AscTec Firefly’s RCS is provided

in this subsection. Before proceeding further, it is worth

mentioning that the worst case noise power (averaged over

the two polarizations) observed in the measurements, after

pre-processing, subband analysis, and calibration, is NF ≈
−34.5 dBsm for the frequency band 8.2 − 12.4 GHz, and

NF ≈ −44.5 dBsm for the interval 12.4 − 18 GHz. Given

the noise level NF , an estimate of the measurements SNR

in a given frequency bin, which provides insights on the

measurement accuracy (see (3)), is given by the ratio between

the target RCS and NF , i.e., it can be practically computed as

SNR(f, p) = σ̂(f, p)/NF . For the case at hand, apart for a

few outliers, the SNR is in the order of 20 dB, corresponding

to a ∆σ < 0.09 dB.

As to the RCS, Fig. 4 displays both the mean and standard

deviation values (with respect to aspect angle) versus fre-

quency, with reference to both HH and VV RCS acquisitions.

Remarkably, similar average RCS values are obtained in both

the HH and VV polarizations, in agreement with [7]. The

plots also reveal that, for a given frequency bin, the standard

deviation of the measured RCS is about 15 dBsm, which

might be attributed to the presence of a few major scatterers

whose interaction significantly changes with aspect angles.

This behavior is supported by Fig. 5, which illustrates the RCS

of the drone in polar coordinates (at varying azimuthal angles)

for HH polarization and different central frequencies, i.e., 9.5

GHz, 10.7 GHz, 14.1 GHz, and 15.9 GHz. Actually, the figure

highlights that the RCS is characterized by a fast fluctuation

in angle. As already said, this behavior is mainly determined

by the composition of the dominant scatterers returns.

Let us now focus on the first-order statistical analysis. Since

the drone RCS strongly changes with aspect angle, it appears

reasonable the exploitation of a statistical model to describe

the target fluctuation and accurately predict radar detection

performance. Indeed, even if the actual RCS of the drone is

a deterministic quantity4, due to the unknown target aspect

angle, it can be treated as a random variable so as to capture

its ensemble behaviour.

4It is worth noting that the RCS of a flying drone is likely to exhibit a
dynamic behavior due to vibrations, internal structural bending, and changes
in orientation induced by possible turbulent atmosphere.

Fig. 4. Mean values of AscTec Firefly’s RCS versus frequency for HH and VV
polarizations (solid and dashed lines, respectively). The top (bottom) border
of the shaded area represents the mean value plus (minus) standard deviation.
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Fig. 5. Polar plot of AscTec Firefly RCS [dBsm] for HH polarization in the
frequency bin with central frequency: (a) 9.5 GHz (blue curve) and 10.7 GHz
(red curve), (b) 14.1 GHz (blue curve) and 15.9 GHz (red curve).



7

Inspired by previous studies on target RCS fluctuation statis-

tics, in this paper the distributions (at most bi-parametric5)

reported in Table III are studied to model the RCS of the

AscTec Firefly. In the table, Γ(x), γ(a, b), and erf(x) indicate

the Gamma, the incomplete Gamma, and the error functions,

respectively.

The fitting of the above-mentioned distributions with the

data is performed considering the RCS measurements for

different aspect angles at a given frequency f and in a

polarization p = {HH,V V }. Formally, the parameter vector

of the distributions is determined as a solution to the following

optimization problem

θ̂(f, p) = argmin
θ

CVM(σ̂(f, p), F (x;θ)) (4)

where F (x;θ) is the CDF of the distribution under

test, θ denotes the distributional parameters, σ̂(f, p) =
[σ̂1(f, p), σ̂2(f, p), . . . , σ̂n(f, p)]

T∈ R
n, with n = 3600, is the

vector of the measured/observed RCS, and [36]

CVM(σ̂(f, p), F (x;θ)) =√√√√ 1

12n
+

n∑

i=1

[
2i− 1

2n
− F (σ̂i(f, p);θ)

]2 (5)

is the CVM distance, with (·)T being the transpose oper-

ator and R
N the set of N -dimensional column vectors of

real numbers. The optimization problem in (4) is tackled

by means of the iterative algorithm proposed in [37] which

is implemented in MATLAB with the function fminsearch,

using as initial estimates of the distributional parameters those

obtained via the MATLAB function fitdist. Fig. 6 displays the

CVM distances between the optimally fitted (according to (4))

distributions and the empirical CDF for different frequencies,

whereas the average CVM distances are reported in Table IV.

Inspection of the table reveals that the Gamma CDF in general

achieves the lowest average CVM distance from the measured

data, whereas the Weibull distribution ranks second. Hence, to

confirm the quality of the aforementioned model to faithfully

describe the collected data, a KS test is performed [36],

[38]. This is a non parametric statistical procedure which can

be used to assess the goodness-of-fit between the empirical

and the theoretical RCS distributions, i.e., it tests the simple

hypothesis6

H0 : σ̂i(f, p) has the CDF F (x; θ̂(f, p)), p = {HH,V V }.
(6)

Since the KS test requires independent observations, before

evaluating the KS statistics the RCS data have been decimated

to ensure a certain degree of data uncorrelation, and hopefully

independence among the measurements. Specifically, a deci-

mation factor of 36 (corresponding to a step of 3.6 degree) has

been considered, resulting for each drone RCS dataset in an

average (over the frequencies) one-lag correlation coefficient

5Distribution models with more than two parameters might result in
overfitting issues, which are not addressed in the present study.

6Notice that when KS is used with estimated parameters from the data as
in (6), the test cannot theoretically be used in its basic form [39].

close to 0.5. This value is compatible with that provided by

the approximated expression [27]

∆θ =
c

2Lf
(7)

where c is the speed of light and L is a characteristic linear

length of the UAV.

In a nutshell, the KS test tackles the hypothesis testing

problem (6) by comparing a threshold with the largest absolute

difference between the empirical CDF of the data and the

theoretical one. Formally,

Dn(f, p)
H1

≷
H0

γ(αKS) (8)

where

Dn(f, p) = sup
σ̂i(f,p)∈σ̂(f,p)

∣∣∣F̂ (σ̂i(f, p))− F (σ̂i(f, p);θ)
∣∣∣ (9)

with F̂ (σ̂i(f, p)) the empirical CDF at a given frequency

and polarization of the measured RCS values (for different

aspect angles) collected in the vector σ̂(f, p), whereas γ(αKS)
is the decision threshold (which does not depend on the

tested distribution) set to ensure the desired significance level

αKS . Besides, the implementation of (8) is tantamount to

comparing the p-value of Dn(f, p), under the null hypothesis,

with αKS [40]. Fig. 7 illustrates the outcomes of the KS tests

in terms of p-values along with the desired significance level

αKS = 0.01. Looking over the plots unveils that, regardless of

the frequency and the polarization, the resulting p-values are

always greater than the significance level. As a consequence,

the H0 hypothesis cannot be rejected.

To gather further insights in the fitting procedure, the

Quantile-Quantile (QQ) plot [41], [42], displaying the quan-

tiles of the empirical distribution against those of the fitted

Gamma model, are reported in Fig. 8 with reference to

the data corresponding to the maximum and minimum p-

value, which, for the case study at hand, are achieved at

VV polarization in bins with center frequencies 14.4 GHz

and 10.10 GHz, respectively. Precisely, the red curve is the

line connecting the points (QG25%, QE25%) and (QG75%,

QE75%), with QGX% and QEX% the Xth percentiles of

the fitted Gamma and the empirical distributions, respectively,

whilst the blue curve is the QQ plot. The curves are close

to the bisector, indicating that the fitted models adequately

describe the measured data in the examined cases.

Finally, Fig. 9 concludes this subsection with the analysis

of the Gamma parameters obtained with the fitting procedure.

In particular, Fig. 9(a) compares the sample mean of the

measured RCS with the first moment of the fitted Gamma

distribution. The results show that Gamma expectation is very

close to the mean RCS σ̃p, p = {HH,V V } of the drone. The

shape parameter of the optimally fitted Gamma is examined

in Fig. 9(b) versus the frequency. A close examination of the

figure reveals that the shape parameter is relatively close to

1, indicating that the RCSs can be well represented using a

statistical distribution close to an Exponential (Swerling I-

II) model. However, based on the results shown in Fig. 6

and Table IV, a plain Exponential distribution is unable to
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TABLE III
CDFS OF THE CONSIDERED MODELS.

Distribution CDF Parameter 1 Parameter 2 Mean

Exponential F (x;λ) = 1− e−λx, x ≥ 0 λ > 0, rate - µ = 1/λ

Gamma F (x;α, β) = 1
Γ(α)

γ
(

α, x
β

)

, x ≥ 0 α > 0, shape β > 0, scale µ = αβ

LogNormal F (x;χ, σ) = 1
2

[

1 + erf
(

ln x−χ

σ
√

2

)]

, x > 0 χ ∈ (−∞,+∞) σ > 0 µ = eχ+σ
2

2

Weibull F (x; a, b) = 1− e−(x/a)b , x ≥ 0 a ∈ (0,+∞), scale b ∈ (0,+∞), shape µ = aΓ(1 + 1/b)

fully predict the behavior of the measured data, and a bi-

parametric distribution, i.e., the Gamma, appears necessary to

better capture the data statistical properties.

TABLE IV
MEAN CVM DISTANCES BETWEEN EMPIRICAL AND THEORETICAL CDF

OF ASCTEC FIREFLY’S RCS.

Distribution mean CVM HH mean CVM VV

Exponential 0.93 0.73
Gamma 0.59 0.49

LogNormal 1.11 1.37
Weibull 0.63 0.50

B. Statistical Analysis of Others Drones RCS

In this subsection, the statistical analysis is conducted on

the collected RCSs of the other tested drones7 (see Table II).

Fig. 10 shows the mean and standard deviation values of the

RCS versus frequency for HH and VV polarizations. Like the

results obtained for the AscTec Firefly (see Fig. 4), the consid-

ered drones achieve similar RCS values in both HH and VV

polarizations. Moreover, large fluctuations in the RCS values

can be observed, with a standard deviation in the order of 10

dBsm for the AscTec Pelican and DJI Matrice 100 (Figs. 10(a)

and 10(d)) and 20 dBsm for the Venom VN10 and the Parrot

AR.DRONE 2.0 (Figs. 10(b) and 10(c)). As to the statistical

analysis, Table V reports the mean values (over the frequency)

of the CVM distances computed between the empirical and

theoretical CDFs of the measured RCSs in both HH and VV

polarizations. Interestingly, the Gamma model is still able to

achieve the lowest average CVM distance in almost all the

scenarios, with some exceptions where Weibull distribution

prevails over the others (see for instance the case of Asctec

Pelican in HH or Venom VN10 in VV). However, under these

specific instances, the mean CVM distances achieved by the

Gamma and the Weibull model are relatively close. Moreover,

unlike the Weibull, the Gamma fluctuation law enables a quite

simple and closed-form analytical evaluation of the detection

performance [35].

Fig. 11 shows the shape parameter values of the fitted

Gamma versus frequency for both polarizations. For almost

all the cases, the Gamma shape parameter is close to 1,

underlining that the measured RCS first-order statistics are

not far from an Exponential-like behavior. The only exception

7For the case of DJI Matrice 100, to ensure that it may be approximated
as a point-like reflector, frequency bins 100 MHz wide have been used,
corresponding to a range resolution of 1.5 m.

which is worth a further investigation is the AscTec Pelican.

As a matter of fact, Fig. 11(a) reveals that for the frequency

bands 10.2 − 10.8 GHz and VV polarization, the Gamma

shape parameter is close to 2, meaning that the fluctuation

follows a chi-squared distribution with 4 degrees of freedom.

Remarkably, this latter distribution (used in the Swerling 3 and

4 models) is typically employed to model targets composed of

scatterers of similar strength plus one dominant scatterer, with

the latter having RCS 1+
√
2σo, where σo is the sum of RCS

of the randomly distributed equal-strength scatterers [27].

IV. RADAR DETECTION PERFORMANCE

In this section, the radar capabilities to detect UAVs is

analyzed by comparing performance under experimental target

fluctuations with that resulting from appropriate statistical

models. In particular, due to the huge fluctuations in RCS and

hence in the resulting SNR of the received radar signal, the

detection performance would also be extremely dependent on

the aspect angle. This poses a severe problem in the evaluation

of the radar performance because the exact computation for

each angle is both complicated and of no practical utility (a

perfect knowledge/estimate of the target aspect angle must

be available) [27]. Therefore, an average performance based

on a statistical model for the target RCS (modeled as a

random variable) is a viable mean to carry out a detection

analysis [43]–[45]. In this respect, it is assumed that the

target’s scatterers, whose composition determines the RCS

value, are all within a resolution cell. The Probability of

Detection (PD), computed assuming a desired Probability of

False Alarm Pfa = 10−4, is used as performance metric.

In the following, it assumed that a standard pulse-Doppler

radar illuminates the target (in the Fraunhofer region) for a

CPI T̃ = MT , with M the number of pulses and T the

Pulse Repetition Interval (PRI). It is assumed that the azimuth

aspect angle of the drone is constant within the CPI, namely,

the target amplitude does not change from pulse to pulse.

Therefore, for a radar operating with a carrier frequency f
and polarization p = {HH,V V }, the received signal can be

modeled as

r = a(θ, f, p)ejφs+ n (10)

where

• a(θ, f, p) denotes the useful signal strength which ac-

counts for the target RCS (at aspect angle θ) and the

other terms involved in the radar equation;

• φ accounts for the target phase response, including the

target range, and it is assumed uniformly distributed over

[0, 2π];
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Fig. 6. CVM distances between the empirical and the theoretical CDFs for the measured RCS of AscTec Firefly: (a) HH polarization, (b) VV polarization.

TABLE V
MEAN CVM DISTANCES BETWEEN EMPIRICAL AND THEORETICAL CDF.

mean CVM distance HH / VV

Distribution AscTec Firefly AscTec Pelican Venom VN10 Parrot AR.DRONE 2.0 DJI Matrice 100

Exponential 0.93 / 0.73 1.21 / 1.43 1.17 / 1.08 0.93 / 0.99 0.85 / 0.77

Gamma 0.59 / 0.49 0.73 / 0.66 0.62 / 0.69 0.66 / 0.57 0.62 / 0.55

LogNormal 1.11 / 1.37 1.09 / 1.15 1.26 / 1.32 1.06 / 1.21 0.98 / 1.04

Weibull 0.63 / 0.50 0.67 / 0.68 0.65 / 0.66 0.67 / 0.58 0.64 / 0.58
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Fig. 7. P-values resulting from the KS test for Gamma distribution versus
the AscTec Firefly’s RCS measurements. The significance level (dashed red
curve) αKS = 0.01, is reported as a reference.

• s = [1, ej2πfdT , . . . , ej2πfd(M−1)T ]T represents the

Doppler steering vector evaluated in correspondence of

the Doppler frequency fd (assumed known), with j =√
−1;

• n ∼ CN(0, σ2
nI) is the interference plus noise contribu-

tion, modeled as a zero-mean complex circularly symmet-

ric Gaussian random vector, with covariance matrix σ2
nI;

therein, σ2
n is the noise power level assumed, without loss

of generality, equal to 0 dB.

For the case at hand, the optimum coherent detector is given

by [27]

|s†r|
H1

≷
H0

ζ (11)

where (·)† denotes the conjugate transpose operator, H0 and

H1 indicate the null and the alternative hypothesis (i.e., target

echo absence/presence within the received observation vector),

respectively, and ζ is the detection threshold set to ensure the

desired Pfa.

Let us define the actual integrated SNR for the specific

target aspect angle θ, as

SNRc(θ, f, p) = SNRc
σ(θ, f, p)

σ̃(f, p)
(12)

with SNRc the average integrated SNR over all aspect angles

and σ̃(f, p) the mean target RCS value. Then, the probability

of detection for the decision rule in (11) at the aspect angle θ
can be obtained as [27]

PD(SNRc, θ, f, p) = Q

(√
2SNRc

σ(θ, f, p)

σ̃(f, p)
,
√

−2 logPfa

)

(13)

with Q(·) denoting the Marcum Q function [46]. Hence,

the mean detection performance over the aspect angle at

given carrier frequency f and polarization p can be computed

averaging (13) over all the looking angles, i.e.,

PD(SNRc, f, p) =
1

3600

∑

θ∈T

PD(SNRc, θ, f, p) (14)

where T = {i× 0.1, i = 0, . . . , 3599}.

To validate the fluctuation models inferred in Section III,

the resulting average PD for each theoretical distribution are

considered. Specifically, the PD corresponding to the Gamma

fluctuation model (whose closed-form expression is available

in [35]) is estimated via standard Monte Carlo counting

techniques over 104 independent trials, with the integrated

SNR given by

SNRc(θ, f, p) = SNRc
ρ(f, p)

µ(f, p)
(15)
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Fig. 8. QQ plots of measured RCS of AscTec Firefly versus Gamma
distribution with fitted parameters for two frequency bins in VV polarization:
(a) 14.4 GHz, (b) 10.10 GHz. The corresponding p-values are: (a) 0.995, (b)
0.050.
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Fig. 9. Analysis of the Gamma distribution’s parameters versus frequency,
fitted with the RCS measurements of AscTec Firefly. (a) Comparison between
the mean RCS values and the expectation of the fitted Gamma distribution
versus frequency for HH and VV polarization; (b) Gamma shape parameter
values versus frequency.

where ρ(f, p) is randomly drawn from a Gamma distribution

with parameters θ(f, p) = [α(f, p), β(f, p)], inferred from the

fitting procedure, whereas µ(f, p) denotes its corresponding

expected value, i.e., µ(f, p) = α(f, p)β(f, p). Therefore, it

results in an average PD

PD(SNRc, f, p) =
1

104

104
∑

i=1

Q

(
√

2SNRc
ρ(f, p)

µ(f, p)
,
√

−2 logPfa

)

.

(16)

For comparison purposes, the PD curves PDSW0 and PDSW1

for non-fluctuating (SW0) and fluctuating (SW1) targets, re-

spectively, are also included, where [27]

PDSW0(SNRc) = Q

(√
2SNRc,

√
−2 logPfa

)
(17)

and

PDSW1(SNRc) = P
1/(1+SNRc)
fa . (18)

PD versus SNRc related to the AscTec Firefly is displayed

in Fig. 12 for four different frequencies, i.e., 12(a) 14.1 GHz,

12(b) 15.9 GHz, 12(c) 8.5 GHz, and 12(d) 17.1 GHz. The

values of the involved Gamma shape parameter are reported

in Table VI. Specifically, Figs. 12(a) and 12(b) consider the

scenario of Exponential-like RCS fluctuation behavior, i.e.,

α ≈ 1, whilst Fig. 12(c) and Fig. 12(d) refer respectively

to the largest and the lowest values of the shape parameter,

which are achieved, for this UAV, at the polarization HH

and VV, respectively (see Table VI). The figure shows nearly

perfect adherence (with negligible displacements) between the

PD curves obtained using measured and simulated data in all

the reported cases, proving that, also from a radar detection

standpoint, the fitted Gamma distribution is able to describe

the measured data. Furthermore, the results outline that the PD

curves pertaining to the drone data are always distant from

the SW0 benchmark, but quite close to those of the SW1

model. This emerging trend is expected given the observed

RCS Exponential-like fluctuation characteristics highlighted in

Section III. In this regard, the results clearly pinpoint that when

α is close to 1 (see Figs. 12(a) and 12(b)), the standard SW1

model provides accurate performance prediction. Conversely,

the more the shape parameter value deviates from 1, the larger

the discrepancy between the predicted performance with the

SW1 model and the actual one. Unarguably, the 1.5 dB SNRc

difference at PD = 0.9 between the aforementioned curves (in

HH), illustrated in Figs. 12(c) and 12(d), standouts that there

are specific circumstances where the performance predicted

with the SW1 model leads to an inaccurate performance

estimate of the radar detection task. The larger the value of α
(provided that α > 1), the larger the underestimate. In similar

manner, as α approaches 0, the overestimation increases.

To further analyze the cases reported in Table VI, the

radar detection performance is studied versus the aspect angle,

assuming SNRc = 13 dB, in Figs. 13 and 14, which refer to

the HH and VV polarization, respectively. Moreover, both the

SW1 benchmark and the average PD value (14) are reported for

comparison purposes. As expected, regardless of the frequency

and the polarization, the PD fluctuates as the aspect angle

varies, but reaches, in most cases, performance saturation with

PD = 1. Conversely, cases where worse performance are
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Fig. 10. RCS mean and standard deviation values versus frequency for a) AscTec Pelican, b) Venom VN10, c) Parrot AR.DRONE 2.0, d) DJI Matrice 100.
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Fig. 11. Shape parameter values of the Gamma distribution fitted with the RCS data of a) AscTec Pelican, b) Venom VN10, c) Parrot AR.DRONE 2.0, d)
DJI Matrice 100, versus frequency in HH and VV polarization.
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experienced, with values below 0.1, are restricted to a few

particular aspect angles. However, according to the previous

analysis, the achieved average PD is close to 0.65.

In Table VII, the average PD values obtained for SNRc =
{5, 13} dB leveraging the other collected drones RCS data,

with reference to the two polarizations and different frequen-

cies, i.e., {9, 11, 13, 15, 17} GHz, are compared with those

obtained with the SW1 model. The actual performance is very

close to the theoretical counterpart in almost all the reported

cases, with differences from SW1 in the order of 0.01 for

SNRc = 5 dB and less than 0.05 (except for some outliers)

for SNRc = 13 dB. Thus, the trends of Figs. 12(a) and 12(b)

are confirmed by these new achievements, i.e., the SW1 model

yields an accurate performance prediction, as long as the shape

parameter is close to 1. Again, particular attention should

be paid to the cases where the shape parameter α of the

fitted Gamma model deviates from 1. Some instances falling

into this last scenario are analyzed in Fig. 15; therein (see

Table VIII for the corresponding values of the Gamma shape

parameter) Fig. 15(a) refers to the Venom VN10 at 9.1 GHz,

Fig. 15(b) shows the Parrot AR.DRONE at 14 GHz, Figs. 15(c)

and 15(d) consider the AscTec Pelican at 9.2 GHz and 10.5

GHz, respectively. In all the examined cases, a discrepancy

between the actual and the SW1 performance curves is clearly

experienced in both polarizations. This behavior, previously

analyzed in Figs. 12(c) and 12(d), is again reflected in the

results under investigation pertaining to the other drones,

which further corroborates the requirement for tailored (bi-

parametric) fluctuation models to accurately predict the UAVs

radar detection performance.

TABLE VI
VALUES OF THE GAMMA SHAPE PARAMETER FOR THE FREQUENCIES

ANALYZED IN FIG. 12.

Frequency αHH αV V

14.1 GHz 1.05 1.08
15.9 GHz 1.07 1.04
8.5 GHz 1.33 1.08
17.1 GHz 1.15 0.9

V. CONCLUSION

This paper has considered the radar detection performance

prediction leveraging measured RCS of small UAVs collected

in a semi-controlled environment as a function of frequency,

angle, and polarization. Specifically, RCS measurements from

five drones of different sizes and characteristics have been

acquired in the frequency range 8.2-18 GHz. Hence a statisti-

cal analysis over a moving bandwidth of 200 MHz has been

performed checking the adequacy of some distributions (at

most bi-parametric) to describe the first-order RCS statistics.

The results have highlighted that, in the considered frequency

bands, the RCSs of the drones assume quite small values and

are characterized by strong fluctuations in angle. Besides, from

a statistical standpoint, the Gamma distribution proved capable

of modeling such measurement variability, characterized, in

the majority of cases, by Exponential-like fluctuations. Pre-

cisely, the RCS variability can be usually described using

Gamma shape parameter values close to 1. The detection

performance has been evaluated using both collected and sim-

ulated data (via Monte Carlo counting technique) considering

as terms of comparison the standard Swerling 0 and Swerling 1

models. Usually, the curves exhibit performance deviations in

the order of dB fractions from the Rayleigh fluctuating target

case.

Future research avenues might consider further statistical

analyses including RCS measurements collected in cross-

polarization as well as the investigation of the corresponding

radar detection performance by resorting to a full polarimetric

processing architecture. Finally, it is of particular interest the

extension of the measurement campaign to include data collec-

tion at elevation angles within the interval 0-10 degrees, which

are relevant for typical anti-drone search radar applications.
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Fig. 12. PD versus SNRc curves using measured and simulated AscTec Firefly data for HH and VV polarization in the frequency bin with central frequency:
(a) 14.1 GHz, (b) 15.9 GHz, (c) 8.5 GHz, and (d) 17.1 GHz.
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Fig. 13. PD over aspect angles curves using measured and simulated AscTec Firefly data for SNRc = 13 dB in HH polarization. The plots refer to the
frequency bin with central frequency: (a) 14.1 GHz, (b) 15.9 GHz, (c) 8.5 GHz, and (d) 17.1 GHz.
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Fig. 14. PD over aspect angles curves using measured and simulated AscTec Firefly data for SNRc = 13 dB in VV polarization. The plots refer to the
frequency bin with central frequency: (a) 14.1 GHz, (b) 15.9 GHz, (c) 8.5 GHz, and (d) 17.1 GHz.
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Fig. 15. PD versus SNRc for HH and VV polarization curves using measured and simulated drones data: (a) Venom VN10 at 9.1 GHz, (b) Parrot AR.DRONE
at 14 GHz, (c) AscTec Pelican at 9.2 GHz, (d) AscTec Pelican at 10.5 GHz.
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