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Abstract

This report investigates the general theory and methodology of high resolution nu-

merical schemes for one-dimensional hyperbolic conservation laws.

The Universal Formula from which 2-level explicit conservative arbitrary-order nu-

merical methods can be derived is developed.

This report also explores the issue of linear stability. A new approach to linear

stability analysis is presented.

The generalized formulation for TVD methods with stable region of —1 < ¢ <1 is
proposed.

To demonstrate the theories, some third order and fourth order TVD methods are

generated. !

1This report is a part of Ph.D research work supervised by Dr. E.F. Toro
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Chapter 1

INTRODUCTION

1.1 Background Review

The scientific study of numerical solution of hyperbolic conservation laws has been
carried out for decades, and has been gathering momentum with each succeeding

year.

Research into discontinuous nonlinear hyperbolic systems is difficult, not only by
virtue of the complexity of the subject itself, but also because of the emergence of

discontinuities or shocks with time evolution during wave propagation.

However difficult is it, a great deal of progress has been made over last fifteen years
since shock-capturing methods were introduced. In recent years, there have been
intensive efforts in developing Riemann-problem based shock-capturing schemes.
Presently, a variety of such methods are available. Usually, these schemes are entitled
"High Resolution Methods’, which have the following essential characteristics:

e They are at least of second-order accurate in smooth regions of the flow.

o They sharply resolve discontinuities without generating excessive smearing.

e They are free of spurious oscillationns in the computed solution.

1



2 Arbitrary-Order High Resolution Schemes

The recent high resolution schemes include TVD (total variation diminishing) meth-
ods, TVB (total variation bounded) methods, and the most newly developed ENO
(essentially non-oscillatory) methods. See [1-11].

Although these schemes, say ENO schemes, can achieve high order accuracy in both
smooth regions and up to discontinuities, the highest order in practice is only second
order in space and time. It is well known, even in the case of smooth initial data, that
linear hyperbolic systems, within a short time, evolve an inevitable and unacceptable
amplitude error caused by dissipation, and phase errors due to dispersion from the
second order truncation error of these second order methods. Therefore, higher
order methods for the approximation of the hyperbolic conservation laws are needed

for both scientific research and manufacturing purposes.

There are different methods which can be used to construct numerical methods,
but there is an absence of a general theory and universal formula to define the high
order numerical methods, and, hence, reveal the intrinsic structure of the numerecal
methods and the relationship between these methods. Here rises a question: does

there exist a general theory and formula which governs the numerical methods?

As is well known, a numerical method is useless if this method will not converge to
the differential equation. To prove convergence, there is a fundamental theorem for
linear finite difference methods, which declares that for a consistent linear method
stability is necessary and sufficient for convergence [12] [13]. Although linear stability
is not a sufficient condition for guaranteeing nonlinear stability, it is still a necessary
condition for achieving nonlinear stability. Therefore, linear stability analysis plays

a significant role in the development of a numerical method.

There are several techniques which can be used to prove linear stability. But, it
isby no means an easy task, especially for a method of more than second order
accuracy. Normally, quite complicated algebraic triangular functions will be en-
countered, which are very difficult to analyse. Presently, there is no efficient and
effective way to deal with the problem, and the popular method is experimental.
This is time-consuming and tedious. Obviously, a simple and reliable method for
proving linear stability is desired. Here rises another question: How can we derive

such a method?
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All we have discussed so far is linear systems. When extending these methods to

nonlinear conservation laws we expect to meet two new problems.

1. The method might coverge to the wrong weak solution;

2. Nonlinear instability.

In order to overcome the first problem, a numerical method must take the conser-
vation form. That is, to guarantee that a numerical method will converge to the
true solution of the PDE, the numerical method valid for linear systems has to be

transformed to a conservative method, i.e. given the form of numerical flux function.

Supporse we had got a high order numerical method which takes the form U ;‘“H =

> reo BxU} ., the question is: how can we transform it into numerical flux form?

To get rid of the second problem, Total Variation (TV) Stable Methods are needed.
In terms of ENQO’s scheme, the idea of uniformly high order both for smooth and

discontinuities is very attractive.

Analysis of the problem of nonlinear unstability, clearly, it is trigered by oscillations
caused by discontinuities developed with time evolution. But, if we could find a
method in which extra conditions were supplemented at the discontinuities, there-
fore, treated differently, then, the whole function would become a piecewise smooth
function except the discontinuous points. Subsquently, all high order numerical

methods could be used peacefully throughout as in the linear case.

Here rises the question: how can we supplement the extra conditions at discontinu-

ities and how can we treat discontinuous points differently from smooth points?

Answering all the questions presented so far are the objectives of this project.

1.2 Objectives

The objectives of this project can be outlined as follows:
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o Explore the general theory and universal formula defining the numerical meth-

ods in the form of U}“H = Y peo BrU}44, for linear scalar advection equation.
e Investigate a general and simple approach for linear stability study.

e Find a way to transform a numerical method of the form: U ;‘“ =D peo BrURy,
into the form: UM = U — £ [F(U™ ) — F(U™;5 —1)].

J

e Derive the general high order TVD or ENO methods for nonlinear hyperbolic

conservation laws.

o Implement the high resolution methods to solve real problems.

Because two-level explicit numerical methods have obvious advantages over other
methods, this project will concentrate on developing two-level explicit numerical
methods.

The final goal of this project is to produce a general numerical method to deal with
nonlinear hyperbolic conservation laws for real applications such as gas dynarnics.
This is an ambitious scheme in which we adopt a different approach from other
schemes. The report presented here is only a part of a series of works on this

scheme.

Because this is a large project, a good strategy is obviously needed.

1.3 The Strategy

First of all, we start with the linear scalar advection equation and generate the

universal formula for two-level explicit arbitrary-order numerical methods.

Then, we investigate the issue of linear stability and develop a general approach to

linear stability analysis.

After that, we extend these methods to nonlinear hyperbolic conservation laws, i.e.

firstly ensure these methods are in the form of conservitive form, secondly, prove
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these methods are TVD methods, and further more, develop a uniformly high order
accuracy method throughout both the smooth region and the shock points.

Finally, use these methods to solve real problems in gas dynamics and aeronautical

flows.
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Chapter 2

THE UNIVERSAL FORMULA
DEFINING
ARBITRARY-ORDER
NUMERICAL METHODS

2.1 Introduction

In this chapter we are interested in finding a universal formula defining arbitrary-
order numerical methods for the linear scalar advection equation and identifying the

structure and relationship between these methods.

In one space dimension, the linear scalar advection equation takes the following

form:
uytau, = 0 —-oco<r<oo,t>0 (2.1a)

u(z,0) = ue(x) (2.1b)

Here, u is the conserved variable and a is a constant wave propagation speed.

7



8 Arbitrary-Order High Resolution Schemes

Historically, there are a variety of ways to define finite difference numerical methods,

which include:

e Direct derivation by replacing the derivatives in 2.1a by relevant finite differ-

ence approximations.

o Interpolation methods using the grid points.

e The Taylor Series Expansion (TSE).

Although the direct derivation method is more natural than the Taylor Series Expan-
sion method, and most of the explicit numerical methods used today are generated
from direct finite difference approximations to the PDE, the TSE method has great

advantages over the first two methods.
Firstly, any methods derived from TSE are automatically consistent with the PDE.

Secondly, the truncation error, therefore, the order of the method resulting from

TSE i1s self evident.
Further more, any TSE numerical methods are stable under certain CFL conditions.

Finally, any high order finite difference methods can be achieved theoretically using

the TSE method.

In spite of these advantages above, unfortunately, the TSE method has not gained
the widespread applications as it should deserve. In the past, only one numerical
method, i.e. the Lax-Wendroff method comes from the TSE.

The objective of this chapter is to investigate the Taylor Series Expansion method in
detail and as a result find a method defining the general theory and universal formula
for arbitrary-order explicit finite difference methods. In order to distinguish this
method from others we define this method as the Truncation Error Vanish Method

(TEV).
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2.2 The Universal Formula Defining Arbitrary-
Order Hyperbolic Numerical Methods

We discretize the computational plane by choosing a uniform mesh with a mesh
width A = Az and a time step £ = At, and define the computational grid z; =
Jh, 1, = nk. We use U} to denote the computed approximation to the exact

solution u(z;,t,) of 2.1a.
THEOREM 1

The universal formula from which a two-level explicit arbitrary-order numerical
method can be derived for the model hyperbolic equation, u; + au, = 0, is defined

as

14
Urtt = " Bi, Uy, (2.2)

a=1

where « is the grid point number; p is the number of grid points used, P = m + 1;

m is the accurate order; By, are constant coefficients which are determined by

By =1- Y B, (2.3)

a=1,ka#0

i By, k), = (=¢) (n=1,2,...,m) (2.4)

a=1,ka#0

where c is Courant number, ¢ = "AA;.

Note, in the notation of 2.2, k, need not only be a integer, but could also a fraction.
PROOF

In order to prove Theorem 1, we first analyse the local truncation error of 2.2 by

Taylor Series expansion of both sides of the equation, then set the truncation error
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equal to zero, namely, let the truncation error vanish. This is the essential idea of

TEV method.

The truncation error of 2.2 can be written as:

P
E(z,t) = u(z,t+ At)— Z Bru(z + ko A z,1)

oa=1

=\ A"
= wu(z,t)+ Z U + O(At™ )

n=1
= (ko O )"
- Z By, |u(z,t) + Z %uﬂ + O(Az™) (2.5)
a=1 n=1

where m is the order of accuracy of the scheme, 1 < m < 00; up = uy, up =
Uy, etc. and the same for u,n; At™ = (At)" for simplisity. The relationship
between m and p obviously is:

p=m+1 (2.6)
From scalar equation 2.1a, it is easy to get that:

3
Ut = —QUg, Uy = azux:ca Us = — A Ugs,

Therefore,
Ugn = (—a)nuzn (27)

Substitution of 2.7 into 2.5;

E(z,t) = u(z,t)— ZBkumt +ZAt (—a) ugzn

n=1
—ZBka Z (ks A"”) 2= spn + O(AE™Y) 4 O(H2™HY)
oa=1 n=1
= < ZBk ) 'U,(.'E t + Z [At nux"
a=1

Yo, Ge by,

n!

+ O(At™Y) + O(Az™) (2.8)

a=1
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11

In order to achieve mth order accurate numerical method, the following equations

must be satisfied:

a=1

n P
At (—a) tgn — Z Bkaw
a=1

(n=1,2,3,...m)

n! n!

cAz

-~ ¢ is the Courant number.

where: a =

Simplify equation 2.9b, it becomes:

ncn n : kz n
(——1) ;TA:I: —;BkGHA.’l‘ =0

l.e.

p

ZkZ‘Bka =(—-¢)"(n=1,2,---,m)

a=1

Therefore, equations 2.9a and 2.9b can be rewritten as:

{ Bkc.:O =1- Z:l,ka;éo Bka

Z:::l,k,,;éo klBy, = (—c)" (n, =1,2,---,m)

n
’U,z-n=0

(2.9a)

(2.9b)

(2.10)

(2.11)

This is equation 2.3 and 2.4, and Theorem 1 is proved. Equation 2.11 can be

transformed into other forms:
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and:

Arbitrary-Order High Resolution Schemes

Byp=0=1-— E;n=1,k,,¢o B,
kyBy, + k2B, + - -+ + kn Bi,, = —c
k‘%Bkl + k%Bb + -4 k?anm = ¢?

< (2.12)
k;anl + kEanz +---+ k‘ZlLBkm = (_c)m
| (ke #0)
( Br,=o=1- E?:l,kuqéﬂ B,
-1
Bk1 kl kq km —C
B k2 k2 k2 2
O I I B ‘ (2.13)
By, Beokp oL kD (=)™
| (ka #0)

Assuming we want a m-th order numerical method, we know from 2.6 that we have

to work out p coefficients By, (a = 1,2,---,p) in 2.2. As you can see, 2.11 or 2.12

or 2.13 have p equations, hence, these equations are closed. Using these equations

all coefficients Bj, wanted by 2.2 can be derived, so that arbitrary-order numerical

methods for linear model equation 2.1a can be achieved.

We define Theorem 1 the Universal Formula Theorem of hyperbolic numerical meth-

ods.

2.3 Some Features of the Universal Formula

Some interesting features can be drawn by analysing the formula.

1.

The Grid Points: By definition of 2.2, we know that kq is not limited to

the integers. This implies that the computational points for a numerical method

can be both integer points (i.e. j = £1,42,...,+00), and fraction points (i.e.
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] = :i:%,:t%,:i:O.l, ...). What this means is that a numerical method can be con-
structed in such a way that it is not mandatory to take all even divided points in a

computational domain.

2. The Order of Accuracy: As described before, the order of accuracy of a
numerical method depends on the number of nonlinear related grid points used,
that is, the more the computational points are involved the higher the order gained.

They are governed by 2.6, m =p — 1.

3. The Number of Numerical Methods Which Have the Same Order: Us-
ing the same number of grid points, but by using different points, different numerical
methods can be obtained. Considering that the grid points can be both integer and
fraction points, the number of numerical methods with the same order is infinite.
If only considering the integer points, the number of numerical methods(N) which

have the same order equal to the number of the points used.

N=P (2.14)

For example, for four integer points schemes we can find four third order numerical
methods.

In next section we will use some examples to demonstrate these features and also to

show how to apply the universal formula to derive high order numerical methods.

2.4 Applications of the Universal Formula

2.4.1 Three Points Schemes

First, we consider the three points schemes. We will see that some familiar numerical

methods can be found from the Universal Formula.
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Frome equation 2.6, we know that the highest order m with three points schemes is

m=p—1=3-1=2

Therefore,

1. THREE POINTS SCHEMES FOR: U;‘“ = f(U}l,U;‘_I,U}LH)
Here, kl = 0, k2 = —1, k3 =1

So the numerical method takes the form

UMt = BoU? + By U, + BiUZ,, (2.15)

using equation 2.12; we get

and

By=g(c+1) (2.16)

substitution of 2.16 into 2.15

1

Ut = (1= U + 5

n 1 n
(+ U, + 5(02 - Ui, (2.17)

Note: here we get the famous Lax-Wendroff method.

2. THREE POINTS SCHEMES FOR: U*! = f(U?, Ur,, U™ ,)
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Here, kl - 0, k2 = —1, k3 = -2

So the numerical method is

UMt = BoUP + BLyUR, + B_,UL, (2.18)
From 2.12
__B_1 —_ 2B_2 = —c
B_i+4B_,=¢?
B0=1—B_1“'B—2
Therefore

B0:1+%Cz—§c

2

B_y =2 —c? (2.19)

B_2 = %02 —_ %C

Replace 2.19 into 2.18

1, 3 1
Upt = (L4 56 = SOUS + (2~ UL, + (56 = 59U

5¢ =3 (2.20)

Note: this is the Beam-Warming method.
3. THREE POINTS SCHEMES FOR: UJ’-”"1 = f(UF, U, Uls)

Following the same routine above, we can get another second order method. It is

1 3 1 1
UMt = (1+ §c2 + §C)Uf — (¢ +2c)UFy, + (502 + §C)Uf+2 (2.21)

This is like Beam-Warming method for ¢ < 0.



16 Arbitrary-Order High Resolution Schemes

So far, we have got all three integer points numerical methods for three points

schemes. Now, we will consider some numerical methods in which fraction points

are involved for three points schemes.

4. THREE POINTS SCHEMES FOR: UM = f(U7,U”

-1
2

yUL1)

1-1

Here, ky =0, ky = =1, ks = —1

27

So
U}”'l = BOU]" + B_%Ug‘_% + B_lU;‘_l

and

Bozl—B_la—-B_l

——;—B_l — B_{ = —c

2

%B_% + B_l = 62

Therefore

By=1+2¢ -3¢
B_% =4(C—62)
B_,=2*-c¢

Substitution of 2.23 into 2.22

ndl n 2 n
urt = (142 -3c)Ul +4(c—c )Uj_%

+ (2¢* — )U,

J

5. THREE POINTS SCHEMES FOR: U}*! = f(Up,Ur ,,Ur,)

Similarly, we get the numerical method

9 1
UJn+1 — (1 + 32 — 4C)U;’1 + i(c - c2)U;l_% + '2-(3c2 — c)U;'l_l

(2.22)

(2.23)

(2.24)

(2.25)
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2.4.2 Four Points Schemes

From here on, we only consider the integer points schemes. Due to 2.14, we expect

to get four third order numerical methods for four points schemes.

From 2.6, the highest order m with four points schemes is

p=4
m=3

1. FOUR POINTS SCHEMES FOR: U}"H = f(Ur, UL, U1, Ula)
Here, ky =0, ky = —1, ks =1, andky =2

From equation 2.12

By=1—-B_1— B, - B,
—B_1+ B +2B; = —c
B.i+ B +4B;=¢

—B_1+ B, +8B; = ¢

and
By=1+1c-c -3
13,12 .1
By =gc’ +5¢° + 3¢
Bi=31l+1idf-c¢
1,13
B; = ge— gc
Therefore

i 1 g g 1, 1
Uj+1 = (1-}-56—62——2‘ 3)(Jj +(ECS+502+§C)UJ'_1
1 1 n 1 1 n
+(-2— 34 §c2 - U7y, + (gc -~ 663)Ui+2 (2.26)
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Using the same routine we can acheive all other third order methods as follows:

2. FOUR POINTS SCHEMES FOR: UM! = f(U?,U%,,U%, 5, Ulys)

11 1 1 5
n+l __ 2 3 n 3 2 n
Uj+ = (1+—6—C+C +EC )U] —(50 +'2"C +3C)Uj+l
1 3 2 3 n 1 3 1 2 1 n
+(5¢ +2¢ + 50U = (56 + 53¢ +§C)Uj+3 (2.27)

3. FOUR POINTS SCHEMES FOR: U = f(Ur,, U, U, UZ,,)

n 1 3 2 1 n 1 3 1 n
Uj +1 = (1 + 56 —C - EC)UJ- + (EC -_ gc)Uj_2
1, 1, 1. ... 1, 1.4 .
_(663 - 502 + gc)UJ-Jrl +(c+ §c2 - §c3)Uj_l (2.28)

4. FOUR POINTS SCHEMES FOR: Ut = f(Ur,,Ur,,Ur,, Ur)

1 11

1 )
n _ 3 2 n 3 n
Uj+1 = (1—-66 +C ——6—6) 3 +('2—C —562+3C)Uj_1
1 3 1 1 1
—(-2“03 — 262 + -2-C)U;L_2 + ('6-63 — -2"C2 + §C)U;‘L—3 (229)

2.4.3 Five Points Schemes

From equation 2.6, the highest order m we can get with five points schemes is

p=35
m=4

1. FIVE POINTS SCHEMES FOR: U = f(UP,, Uz, U, Us,,, UZ,,)

Here, k1=—2, kgz—-l, k3= 1, k4=2, k5:O
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From 2.12, we get

By=1-B_y,—B_,— B, — B,
—2B_3—B_1+ By +2B; = —c¢
{ 4By + B_1+ B +4B; =¢?
—8B_;— B_1+4+ B, +8B, =-¢
16B_y+ B_,+ B, +16B, = ¢*

and
By =1+1c* -3¢
B_y =&t + 1 — 562 — o)
§ Boi=1(2c+28 - 12— ict)
By = §(c® +4c% — ¢t — 4c)
| 5= e bt 164 et
Therefore

1 1 2 1 3 A\ rrn
+(12c— 516 ~ ¢ +5.¢ Loj (2.30)

2. FIVE POINTS SCHEMES FOR: Ut = f(Ur,,Ur,, Ur,, U, UF)

25 35 5 1 1 1 11
Uttt = (1——c+ = - =+ ="Ur+ (et ==+ = — —c)Ul,
12 24 12 24 24 4 24 4
4 T 7 1 " 1 19 n
+(§C - 562 + '6-63 - 664)Uj_3 + (264 - 203 -+ 'Zcz - 3C)Uj_2
13 3 1
+(4¢c — ?c2 + -2—c3 - -6-64)U;1_1 (2.31)
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3. FIVE POINTS SCHEMES FOR: U*! = f(Ur,, U, Ur,, U, U%,)

1 1 1 1
n+l 4 3 2 n
Uj = (1 — —=c + j (ﬁc —_— -1—2-6 — ’2—4C + ‘1—2‘C)Uj_3
3
+(z 4+ = — =t = U, + (7 = E+ = + -o) UL,

~)UTy, (2.32)

4. FIVE POINTS SCHEMES FOR: Ut = f(UF,,Ur, Upy, Ulyp, Ulys)

1 5 5 5 1 1 11 1
l(n-}-l 4 3 2 lrn 4 [rn

1 1 3 1
+(ZC4 +3 4+ Zcz - —2—c)U;‘+1 - g(c4 +3¢ — & = 3c)U},
1 n
+ﬁ(c4 +2¢% = —2c)Uf, 4 (2.33)

5. FIVE POINTS SCHEMES FOR: U = f(UF, Uy, Uly, Ubys, Ulys)

1 5, 35, 25 1, 3, 13
Ut = (14 —cta 23122202 0p0r (2t + 23+ 2262 n
i (L4 57+ ¢ + 53¢ + IV — (G + 3¢ + e +49Uk,
1 19 1
+(ZC4 +2¢ + Icz +3c)U}, — g(c4 +7¢ + 14¢* 4 8c) Uy 5
1
+ﬂ-(c4 +6c® + 11 + 6c)UT 4 (2.34)

So far, we have considered three, four and five points schemes. Actually, we can
develop any high order numerical methods using more points according to the Uni-
versal Formula Theorem. To illustrate this the 20th order numerical method is
presented in the appendix. When deriving higher order methods, equation 2.13 is

recomanded by computing program.



Chapter 3

NEW APPROACH FOR
LINEAR STABILITY
ANALYSIS

3.1 Introduction

The Lax Equivalence Theorem says that for a consistent linear numerical method

stability is necessary and sufficient for convergence to the true solution of the PDE.

As discussed in the last chapter, any numerical methods developed from Theorem
1 are automatically consistent with the PDE. Therefore, provided we can prove
these methods are stable, then these methods are guaranteed to converge to the real

solution of the Partial Differential Equation.

However, the difficulty lies in that it is not a simple task to theoretically prove
and analyse the stability of a proposed numerical method, even for linear scalar

advection problems.
At present, there are several techniques available to analyse stability. This includes:

21
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e Discrete perturbation method.
¢ Maximal norm method.

e Fourier Series method.

In this chapter, we are going to further investigate the Fourier Series method and

develop a new approach to the linear stability analysis.

3.2 New Approach for Linear Stability study

THEOREM 2

The stability condition of any two-level explicit linear numerical method,

14
n+l __ n

a=1

can be defined by

P

A=1-2 > Bx., (3.1)

a=1,kq==%1,%3,...

where A is the amplifier factor, |A| < 1 and k, are odd integer numbers.
PROOF

The Fourier Series method based on assuming that

Ur = A7eliee (3.2)

J

where, A} is the amplitude at time level n; L is the wave number in x-direction,

L= 27”; T is the wavelength; ¢ is the complex number, : = v/—1.
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Considering the general form of linear numerical methods

P
Urtt = Z Bi Ul (3.3)

a=1
From 3.2, we have

{ yrtt — AZH eilitse
J

n — AniL(j4ka)Dz
Ulyy, = AgeitUthe)

Replace 3.4 into 3.3

P
A7£+161L]A:1: — E :BkaAnLezL(]-i-ka)Az

a=1

Dividing both sides by A7e'L747, we get amplifier factor A:

n+41
AL
n
Af
14
- § :Bkaeszan

a=1

p
= ) Bye*’ (3.5)

a=1

where, 6 is the phase angle, § = L A z.

The absolute value of the amplifier factor |\| is called amplifier coefficient. Obviously

if |]\| > 1, the numerical method will not be stable, otherwise, it is stable.

We can rewrite 3.5 as:
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P P
A = z By, cos k0 +1 Z By, sin k.0

a=1 a=1
where,
P
Y = Z By, cos k.0
a=1
P
Yi = Z Bka Sinkao
a=1
Therefore

Al = /72 +F (3.7)

This is the normal approach of analysing the stability in practice using the Fourier
method. But, as you can see, generally 3.7 is a very complicated triangular algebra,
especially for high order numerical methods, say, over second order. For a method
over second order, |A| is very difficult to work out, or even, impossible to manipulate

using 3.7.
Here we are going to adopt a new approach.

Equation 3.5 can be rewritten as:

\ = inaeikGG

a=1

14
— B() + Z Bkaeikae

a=1,ka#0
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= 1- i By, + i Bkaeikaa

a=1,ka#0 a=1,ka#0
r
= 1= ) B (1—¢* (3.8)
a=1,kq#0

Since Bo=1—37%_, , .o B, from 2.3.

Because the amplipier factor A is a real number, to satisfy this if and only if the

following condition is qualified:
ko0 = nrw

where n are all real integer numbers.

Consider the case in which the k&, are integer points,

ko = 0,+1,42,..., +o0o0.

In this case, 3.8 simplely becomes

p
A= 1= > By (1-e*)
a=1,ka#0
4

= 1-2 Y B,

a=1,kq=+1,%3,...

This implies 3.1, and proves the Theorem 2.

Next section, we will demonstrate with some examples how convenient to use The-

orem 2 for linear stability study.
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3.3 Stability Analysis for Three, Four and Five

Points Schemes

In last chapter, using the Universal Formula Theorem, we produced numerical meth-
ods involving three, four, and five points. Now, we will deal with the stability of

these methods according to Theorem 2 .

3.3.1 Three Points Schemes

1. Lax-Wendroff method. See equation 2.17.

J

1 1
Ut = (1= U7 + 5(02 + Uiy + '2'(02 - Ui

here,

B0=1—62 ka=0
Boy=1(+c) ka=-1
Bi=1(c*—¢c) ka=1

Substitution of these into 3.1, gives

A = 1-2(B.1+ B))
= 1-2¢ (3.9)

Equation 3.9 is the amplification function A(c) in terms of Courant number c. Fig-
ure 3.1 illustrates this function.

As is clearly shown, when A moves from -1 to 1, c is contained the region between
-1 and 1 but not elsewhere. Therefore, the stable region of Lax-Wendroff method is:
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Lax—Wendroff Method
LAMBDA

0.5

0.0+

—0.5

-1.0 1 { | | C
-1.0 -0.5 0.0 0.5 1.0
Figure 3.1: Stable Region for L-W Method

—1<e¢<1 (3.10)

2. Beam-Warming method. See 2.20.
Un+1_ 1 1 2 3 Un 9 2 Un 1 2 Un
= + 3¢ -50) P4+ (2c— ) j—l+'2'(c —Uj_,

here,

From 3.1
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Beom—-‘Wcrming Method
LAMBDA

0.5
0.0+

—0.5

-1.0 | l l , C
0.0 0.5 1.0 1.5 2.0
Figure 3.2: Stable Region for B-W Method

)\ = 1-—2B_1
= 1—4c+2c (3.11)

From Figure 3.2, the stable region of this method is:

0<c<?2 (3.12)

3. Equation 2.21

. 1 3 \rm _ n
U; = (1+ —2-62 + §C)Uj —(+ 2c)U% + 5(‘:2 + Uy

and from 3.1
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Second Order Method

LAMBDA
1.07

0.5

0.0+

~0.5

-2.0 -1.5 -1.0 -0.5 0.0
Figure 3.3: Stable Region for Equation 2.21

A=1+4c+2 (3.13)

From Figure 3.3, the stable region of this method is:

~2<¢<0 (3.14)

3.3.2 Four Points Schemes

1. Equation 2.26

1

1 n
202 + é‘C)Uj_l

n 1 2 13 n 13
‘ Uj-H = (1-{‘56—6 -—EC)Uj-F(gC +
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1 1 1 1
+(zE+ 2 — Ul + (5e— 603)UJT*+2

2 2 6
here,

B0=1+%C—C2—%03 ke =0

B_; = %cs + %cz + %c k, =—1

Bi=1if+it~c ko =1

By =1ic—3c ko =2
From 3.1

4 4
A=1-— —?;cs -2 + 3¢ (3.15)

Figure 3.4 shows that when A moves from -1 to 1, there are multiple regions
satisfying the condition of |A\| < 1. Namely, the CFL region is not unique. The

three regions are:

—2<c< 15 (3.21a)
—1<c<0 (3.21b)
05<c<1 (3.21c)

Computational experiments tell us that only the region 3.21b is stable. Other regions

are spurious.

Therefore, the stable region for this method is:

~1<¢<0 (3.22)

2. Equation 2.27
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Third Order Metnod
LAMBDA

1.5
1.0
0.5
0.0
—-0.5
—-1.04

—-1.5-

—2.0 | T I I 1 , C
-2.0 -1.5 -1.0 -~0.5 0.0 0.5 1.0

Figure 3.4: Stable Region for Equation 2.26

11 1 1 5
U}L'H = (14 —c++ —c3)U}1 —(z+ =+ 3c)Ur

6 6 2 2
1 3. 1, 1, 1. .
H5¢" +26 + 50Uz — (56" + 3¢ + 394
From 3.1
4 20
A=1+-=-+6+=c (3.23)

3 3

The stable region for this method is: (see Figure 3.5)

—2<c< 1 (3.24)
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Third Order Method
LAMBDA

1.5+
1.0
0.5
0.0
—0.5
—=1.0

—1.57

—2.0 T | T T | 1 C
=-3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0
Figure 3.5: Stable Region for Equation 2.27

3. Equation 2.28

. 1 1 1, 1, 1.
Ut = (1+ é-cs - - ic)Uj - (ECS - 502 + gc)UjH
1, 1, . 1, 1.
+(c+ §c2 - Ec:’)UJ-_1 + (gcs — EC)U]-_2
4 4
:1+§é—28—§c (3.25)

The stable region for this method is: (see Figure 3.6)

0<c<1 (3.26)
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Third Order Method

LAMBDA

1.5
1.0
0.5
0.0
~0.57
—1.0

—1.5

-2.0 T T T T T  C
-1.0 -0.5 0.0 0.5 1.0 1.5 2.0
Figure 3.6: Stable Region for Equation 2.28

4. Equation 2.29

1 11 1 5
U}"H = (1- 663 + - ry U + (503 - icz + 3c)Ur,
1 3 1 1 1
—(=c® =22 + §C)UJ’}_2 +(z -+ =

2 66 3¢ t39Ui

4 2
A=1-— §c3 + 6% — -39c (3.27)

The stable region for this method is: (see Figure 3.7)

1<c<?2 (3.28)
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Third Order Method
LAMBDA

1.5
1.0
0.5
0.0
~0.5-
- 1.0+

—1.5

=20 T T T I T  C
0.0 0.5 1.0 1.5 2.0 2.5 3.0
Figure 3.7: Stable Region for Equation 2.29

3.3.3 Five Points Schemes

1. Equation 2.30

1 5 1 1 1 1
n+l 4 2 n 4 3 2 n
Uj = (1 + ZC - ZC )UJ + (‘-?Zc + E’l) —_ 5;6 ol -1—2'C)Uj_2

2 2, 1, 1,... 14 2, 1, 2.
+(§C+ §C2 - 663 - -é 4)Uj_1 + (663 + §C2 — '6“64 -_ ’3—C)Uj+1

1 1 2 1 3 4 n
Hge— 5% ~ 3¢ T35 )05

2
A =1- §C2 + 504 (329)

The stable region for this method is: (see Figure 3.8)
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Fourth Order Method
LAMBDA

0.5
0.0
—0.5
—1.0

—-1.5-

_2.0 T T T 1 C
-2 -1 0 1 2
Figure 3.8: Stable Region for Equation 2.30

|
G
A

c<-1.73
c<1 (3.30)

I
IA

2. Equation 2.31

25 35 5 1 1 1 11 1
n+l — 1—-—== v 2 Y 3 P | n -4 __-3 2 - Up
Uj (1= get54¢ = 13¢ + g5 + (7€ — 3¢ + 55¢ — 19Ui
4 T, T, 1, 1 19 .
+(§c - §c2 + ECS - gc4) st (ZC4 -23 4 -?‘[—-cz —3c)Ur,

13, 3., 1 ...
+(4C - —3—62 + *2—63 - 664)(]]-_1
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Fourth Order Method
LAMBDA
1.0+
0.5
0.0
—0.5+
~1.0-

—-1.51

—-2.0 T T T T T T T  C
00 05 10 15 20 25 30 35 40
Figure 3.9: Stable Region for Equation 2.31

2, 16, 40, 32
_ 4 24 165 40, 32 31
A 1+3c 3c—{—3c 3¢ (3.31)

The stable region for this method is: (see Figure 3.9)

IA A

373 < c<4 T (3.32)

3. Equation 2.32

1, 5, 5, 5
1}+1 — __-.4 v 3_Y2_ = n i o o il n
U; (1 6 T5° " 6° 60> vi + (24° ¢ "ut T 12“) i=3
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Fourth Order Method

LAMBDA
2.0

1.5

1.0

0.5

0.0+

—0.5

C

-1.0 T | — T
-1 0 1 2 3

Figure 3.10: Stable Region for Equation 2.32

1 1 1 1 1 3
+ (-—-—c4 + =+ = — -c) Ur,+ (:1_04 -+ Zc2 +3 ) ur,

2 4
A=1- §C4 + gca - §c2 - gc (3.33)

The stable region for this method is: (see Figure 3.10)

c < —-0.73
c<?2 (3.34)
c<3

o
IAIN A

2.73
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4. Equation 2.33

1, 5 5 1 1 11 1
n+1 — = e <2 n hnind n
U; (1 5¢ 6c+6)U +(24c+ c+24c+4>U]_1
1
<—c +c +4c -—g )UJ"+1 (c4+203_c“2—3c) U;“
1

T2

(c*+2¢% - —2¢) Ul 5

B

A=1-— -g—c4 — 203 — %cz + gc (3.35)

The stable region for this method is: (see Figure 3.11)

c< =273
c<0 (3.36)
c<1

=

=5 |

W M

IA A A

5. Equation 2.34

1 5 35 25 1 3 13
n+l 2 n_ (14,23 2 n
U; (1-{-246 +12 +——-24c +——12c) U; (60 +2c +—3c +4c) Uy

1 19 1
+ (Zc‘* +2¢° + 74—8 + 3c> Ua = g (c* +7¢% +14¢% + 8c) UL,

]' n
+5, (c* +6c° + 11¢* + 6¢) UL,

2, 16, 40, 32
A=1+432c+o+ o+ (3.37)

The stable region for this method is: (see Figure 3.12)



Chapter 3. Linear Stability Analysis 39

Fourth Order Method

LAMBDA
2.0

1.5

1.0

0.5

0.0

—0.5

-1.0 I , , } C
-3 -2 -1 0] 1
Figure 3.11: Stable Region for Equation 2.33

—4 < ¢<-3.73
3 < c< -1 (3.38)

3.3.4 Some Computational Results

Figure 3.13 to Figure 3.15 show some computational results. As you can see from
Figure 3.13, the second order method has an obvious error with time marching
after only 1000 steps, and the third order method, Figure 3.14, begins a distinctive
error at 6000 time steps, but the fourth order method, Figure 3.15, still looks very
good after 20000 steps. This indicates that the accuracy of computational results

enhances dramatically by moving from second to fourth order.
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Fourth Order Method

LAMBDA
1.0+

0.5+

0.0
—0.54
-1.04

—-1.54

1.0

0.5

0.0

—0.54

—1.0— I I l I X
69 70 71 72 73
Figure 3.13: Computational Result of Lax-Wendroff Method
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Third Order Method

U
1.0+

0.5+

0.0+

-0.5

- 1 .O 1 X
419 420 421 422 423 424
Figure 3.14: Computational result of Equation 2.28

Fourth Order Method

1.0

0.5

0.0

/Time step=20000

—0.54

~1.0-1% | T T = X
1399 1400 1401 1402 1403 1404
Figure 3.15: Computational Result of Equation 2.30
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Chapter 4

CONSERVATIVE FORM OF
THE UNIVERSAL FORMULA

4.1 Introduction

So far, we have created the Universal Formula (UF) in chapter 2, which can construct
2-level explicit arbitrary-order numerical methods. We have also developed a new
method to deal with the linear stability problem in chapter 3. From now on, we will
shift our interest to nonlinear problems, that is, extend the linear Universal Formula
to nonlinear hyperbolic conservation laws and define the conservative form of the

Universal Formula.

In this chapter, we intend to find a general way to transform the Universal Formula

in the form of

14
Ut =3 B Uy, (4.1)
a=1

into conservative form in terms of numerical fluxes,

43
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Lok .
Upt = U} = T IF(U™ ) = (U35 = 1)) (4.2)

so that these methods are guaranteed convergence to the true weak solution of the

PDE when implementing these methods to nonlinear problems.

4.2 The Conservation form of the Universal For-
mula(UF)

4.2.1 Derivation of Conservation form of UF

THEOREM 3

The conservative form of the Universal Formula can be defined as

k|1 1
nt+l _ n n n
vt = T h aFf —ZZ’:B’% jtka (4.3)
a=1 "%
here, ¢, = f'( f+ko)%; F . = f(ULy,). For linear case, FI, = aU7y, .

PROOF

Manipulating equation 4.1, we have

r
n+l __ § : n
UJ - Bk“ Jtka

a=1

P
= B+ ), BiUb,

a=1,ka#0

14
= Ur=(1-B)Ur+ Y BiUf,

a=1,kq#0
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n 1 n : l n
= U] - '}; 'C_O‘(l - B())E1 b Z _Bkon-l-kq

C
a=1,ka#0 "%

-

= Ui-3laf - ng“Bkaij
a=1l "®

This is the equation 4.3, and the proof is completed.

The equation 4.3 is called the Conservative Universal Formula.

4.2.2 Numerical Flux of the UF

The Conservative Universal Formula can be rewritten as

n n k & n
Uj +1 _ Uj _ ZZA" ke (4.4)

a=1
here « is the grid point number; A, are the coefficients.

THEOREM 4

Assuming the numerical flux takes the following form:

P
F(U"5) = BaF}y, (4.5a)
a=2
p—-1
FU™j—-1)= zBa+1F]z.ka (4.5b)
a=1

the coefficients B, are defined by

B,= A,
By = -4,
B, — Boy1 = As
(¢=2,3,...,p—1)

(4.6)
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PROOF

Consider P points schemes such that the p points are arranged as the follows:

k1<k2<k3<...<kp (47)

Then,

P -1
F(U%j) = FU™ji—1) = > BaFfiy, — > Bat1Ffu,

a=2 a=1
n n

= ByFji, — BaFjyy,

p-1
+ (Ba - Ba+1)Fj7f%-ka
a=2
From 4.4, we get
p—1 Ld
ByFry, — BaFlue + 3 (Ba— Bas))Flyr = 3 AaFjs,  (48)

Comparing the coefficients of both sides of 4.8, we have the following equations:

B,=A,
B2 - ‘—Al
Ba - Ba+1 = Aa

(a=2,3,...,p—1)

This is 4.6, and the proof is done.

Late on, we will use some examples to demonstrate how to apply Theorem 4 to

obtain the numerical flux.
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4.3 Consistency of the Conservative Form of UF

The conservative method is consistent with the original PDE, provided the numerical

flux function F reduces to the physical flux f in the case of constant flow.

If u(z,t) = u, we expect

where, 4 is constant.

This is equivalent to

FU% ) - FU%-1) = F(a,4,...,2) - F(,4,...,1)

= f(u) - f(w)
=0 ' (4.10)
From 4.3, we have
1 Tl
F(U™j) = F(U%j-1) = -F} - ;;Bkc. Tk (4.11)

If we can prove 4.11 equals 0, then, the conservative universal formula is consistent

with the real PDE.

Assuming U?,, =11 Va,so that F, = f(@) Va, 4.11 becomes

1 p
s (U™ ] — _ . - .
F(U™;j) U™53-1) . (l aE=1 Bka) f(@) (4.12)
Recall, 1 — Y"?_, By, = 0 therefore, 4.11 is 0. This proves that our conservation

form of universal formula is consistent method.
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4.4 Conservation Form of Three, Four and Five

Point Schemes

In chapter 2 we have derived three point, four point and five point numerical meth-
ods. In this section, we will transform them into conservative form according to

Theorem 3 and Theorem 4.

4.4.1 Three Points Schemes

1. U}l+1 = f(U}z-—l’ _;1’ U;L.*.l) (L'W methOd)

According to 4.3, we can rewrite the L-W scheme for the linear equation as

n n k 1 n n 1 n
(].7 +1 = U'.7 bt E '—'2'(]. + C)Fj-—l + C‘F‘,j + 5(1 - C)P}-}-l (413)

Hence, according to 4.7, ky = —1, k3 =0, k3 =1

and from 4.4,
A1 = —%(1 + C)
A2 =cC
A3 = %(1 - C)

From 4.6, we get

Therefore, the numerical flux is
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_ " - 1 n, 1 n
FEM(U™5) = 51+ F} + 5(1 = o) Ffyy

2. Uit = f(Ur,,Ur,,Ur) (B-W method)

From 4.3 the B-W scheme can be write as

. . k[ 1 n no_ 1 n
Uj“ =U} - 7 —5(0_ DF,—(2-0oFL, - '2'(‘:_3)Fj

J
Here, k; = —2, ky = —1, k3 =0, and

B3=A3:—'%(C—3)
B —_-——Al (C—l)
B2 B3—A2—C—2

So the numerical flux is

FP (U7 ) = 5(e = 1)FLy — (e~ 3)F]

M

3. UJ?““ = f(UF,U%,,U},). See 2.21

As before we get

n n k 1 i n ! o
Uj+1 =" — 5 —-—2-(c+3)Fj + (2+C)FJ+1 2(1 +C)Fj+2

J

and, the numerical flux is

n 1 n
FER(U™5) = —(3 +0)Ff — 5(1 +¢)Fp

49

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)
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4.4.2 Four Points Schemes

1. U]n+1 = f(Urs,Ur,,Ur,,U}). See 2.29

From 4.3 we get

Un+1

J

Ur — =

J

—(

1

2

E[ 1 11, 1 3\
(G — 5o+ P+ (56 2+ )L,

5 1 11
c2_§c+3)an_1+(Ec2_c+_6_)FJT’ (419)

here, ky = =3, ky = =2, ks=—1, ky =0

and,

According to 4.6

Hence,

and, the numerical flux is
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FPU™5) = (ze

1, 1 1, . 3 1, T..

6° ~ 3ot it Gem g — g
1 1, .

Hee et

2. UJTL+1 = f(Ur,, U, U UL, ). See 2.28.

Doing the same routine we get

2

1, 1 1,
(gcz — ¢t )

3. U;H-l - f(U;—la U;L, U}L.*.l, U;L+2)- See 2.26.

The conservation form of this method is

The numerical flux is

“n2¢ e
1, 1 .
562-}-56 1)}7]'_*_1

n 1 1 K
My —(1+ 5c— 502)Fj—1

51

(4.20)

(4.21)

(4.22)

(4.23)
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1 1 1 5 1 1
F4—P n, » — _ 2 - _ Fn = 2 = n
(U ’]) (6c +2C+3) 7 +(6 3C 2C)E7+1
1
+€(c2 —1)F}, (4.24)

4. UM = f(UP, Ul Ulg, UZys)- See 2.27.

k 11

i ) 1y 1,5 ,
Uj+1 = U] y —('é'+c+ ‘6‘02)Fj +(§c2+§c+3)FJ+1
1 3\ 1 1,
(Zc + 2¢+ )FJ+2+(—C + 2C+ 3)F'j+3 (425)

The numerical flux is

P 11 1, 3
FPUng) = (% +c+6c Vi — (3¢ + 5+ g S
1 1 1
+('662 + -2-6 + g)F;lg‘ (426)
4.4.3 Five Points schemes
1. UM = f(Ur,, Uy, U, Uy, Uz, ,). See 2.30.
From 4.3
1 1 1 1 1
ntl . pn — ZAF" — — - —c— —F"
U Ui c=3%) (et 3¢ ~ e -
2 2 1, l,.. 1, 2 1, 2
—-(5 §C—'6—2——C)F‘_ '—(EC +§C—Ecs_§)Fj+l
1 1 1

(G-~ 3 3)F;;2 (4.27)
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here, ky = -2, ko = —1, k3 =0, ks =1, ks = 2, and,

A= —(52+ %c2 — Elzc— =)
no=—(r 3 e M)
{ Az =3%c-3c

he= (4 310 -3

| As = —(35— 3¢ — 5S¢+ 3:°Y)

From 4.6, we have

B5 A5 ('13 2140 EC2+ L 3)
B2=—A1 +LC2—§1‘IC—115

{ B2—B3=A2 —(§+§C é 2 éCs)
Bg—B4:A3-—_— -C—%CS

| Bi—Bs=As= (102"*‘36 écs-g)

Work out B3 and B,

-7 45, _1.2__13
{B3 17 T 8C— 3¢ — 5€

By=1 - 1c2~g-c+l

8 12 12

we get the numerical flux of this method:

1 1 11 7 5 1
5-P 3 2 1) 2
= (=4 —F — —c— —)F" L +2c-—¢

F= (U 9) (¢ + 3¢ ~ e it (g tge ¢

1, 1, 5 1T 1, 1,

g S S Fn -
Hge — 3¢ ~ gt @)in — (7€ — ¢
1 1.
~52¢ 1 )i

Un+1 = f( 4’Un_3, Un 2,Un_1, Un) See 2.31.

Going the same routine as above we get
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E[25 35 5, Ls
12 24° 7 12°

407 T, 1, 1 19 i
373 +€cz—gc3)Fj_3 (=c® — 2 -1——c—3)FJ-_2

13 3, 1
—(4 - 3+ 5c - Ecs)F" (4.29)
and the numerical flux of this method is
1 1 11 1 13 15 11 1
FSP n _ -~ 3 _ -2 il n oYY -2 _SF"n
(U"4) (54¢ —1¢ tae~ Pt (g —get e 5=

3. UMt = f(Ur5,Ur,,Ur U, UR,,). See 2.32.

k[1, 5, 5 5 1 1 1 1,
A G =G — ¢ et )

1 1 11
—¢ -+ —c—)F, (4.31)

1 1 11
5—-P n 3 2 n
= (—F— = — —c4 —)F" e B BT
F=(U"3) (526 ¢ gt i~ (Ge — ¢ —get )i
7 3 13
il 3___ 2 el i Fn
Hge — 3¢ tget )f
1 1, 11 1
—(=c - =+ =c F? (4.32)
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4. UMt = f(Ur,,Ur,Ur,,Ur,, UR ). See 2.33.

5 1 11 1
n+l1 n n
U; = Ul—+ (—c +6c +——c —) (—c + c +§Zc+4)Fj—l
1 3
—(ch +c+ 1€ E)FJ’fH + 6(03 +3c® —c—3)F},
1
_ﬁ(c3+2c2 —c—2)F}, (4.33)
The numerical flux is
1 1 11 1 7 3 13
FS—P n, el Fr— (= 3 = _ 2 n
(U%3) = (¢ +3¢ 3+ DF PGt et ge )
1, 5 9 1 .
+(Sc + ﬁc - 8 E)F}+2
1
—51(8' +26% —c—2)F}, (4.34)

U"’+1 f(Un, U;l+1, U?+27 U]+37 U]+4) see 2.34.

ET 1 5 35 925 1., 3. 13
U(H—l — n__ el il n -3 2 - n
j U =5 (5 + 3¢ +24c+ G+ et YF,

1 19 .
—(Zc3+2c2+zc+3)F+2+ (c +7c¢* + 14c + 8)Fl' 5

1
—54-(8 +6c®+11c+6)Fy, (4.35)

The numerical flux is

1 5 35 25 1, 13, 23 23
5—-P n, : - o F'n - il n
(U g) (24 + ¢ T gt ) in (8C + ¢+ g¢t )fie
1., 15 13

+("c tRdtyetn)

+6c® + 11c + 6)F (4.36)

n
Fiis

24(
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Chapter 5

GENERALIZED
FORMULATION FOR
CENTRAL HYPERBOLIC TVD

SCHEMES

5.1 Introduction

When we apply high order conservative methods to deal with nonliear hyperbolic
problems, we run into a dilemma. Accompanying these high order methods are
spurious oscillations invoked by numerical dispersion. In most cases, the oscillations
are trigered by discontinuities. As is well known, nonlinear hyperbolic systems may
produce discontinuities (shocks, contact discontinuities) even if the initial condition
is a smooth function. This phenomena is characteristic of nonlinear hyperbolic

convervation laws.

Recently, there have been intense efforts made towards developing a theory and
method to resolve this problem. TVD theory and method has been proved very

useful in fighting spurious oscillations, although at discontinuities schemes have to
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reduce to first order accuracy.

In this chapter, we will further investigate the TVD methods and define TVD regions

for some high order numerical methods.

5.2 Oscillation Free Criteria

There is a local maximum criteria, see[15], which states that if

yrtl _ pyn

0 < (]}_T"(—J:?Sl, f07" a>0
urtt —pyr

0 < 2——L <1, for a<0 (5.1)
Uj _Uj+1

then, U;""l at the new time level is bounded by the data. However, 5.1 only valid
for a CFL number in the region —1 < ¢ < 1.

In linear cases, the value of U;‘“ is determined by the CFL number. For example,
if the stable region of a numerical method is 1 < ¢ < 2, then the value of U;‘H at
the next time level will lie between U'., and U} ,, depending on the CFL number

C.

Therefore, the genefal form for local maximum criteria should have the following

form:

LOCAL MAXIMUM CRITERIA

yrtt _p»
0 < =1 It <1 k<e<k+1
Uj-(k+1) - UL,
yrtt — pyr
0 < 2 —3F <1 —(k4+1)<c<—k (5.2)
Uiy — Uj+(k+1)
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here, k is a positive integer, i.e. £k =0,1,2,...,00.

When developing a TVD numerical method, the linear stable region of this method

must be taken into account as we will see in the next section.

5.3 TVD Region for Arbitrary-Order Numerical
Methods

There are several techniques in use to curb the oscillations. We will follow the

flux-limiter method here.

5.3.1 Generalized Formulation Defining TVD Region for
Methods with CFL Number: 0 <c¢<1

THEOREM 5

Any numerical flux of hyperbolic numerical methods can be written as the following

form:

FU™j) = a|Up+ (Do AUy + D1 AT y)

J—=

N

o0

+ Y DiAUp ¢J+k] (5.3)

k=—00,k#~1,0

where ¢; are flux limiters, Dj are coeflicients, and

AU;_y =UF = U,
AUjy = Uiy = Uf
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For a method with CFL number: 0 < ¢ < 1, the flux limiters are determined by

(1-c)b;
<
¢] - C(D_laj + Do — Dl)
bi < 1—-c¢
- = e(Do + D_10;_4)
—(1-¢)
P S .
¢J—2 = Caj—-lD—Z (5 4)
—(1 —_ c)0j9j+1 [P 0j+k
< k=1,2,.
¢]+k — C(Dk _ Dk+1) ( <y 700)
—(1-¢)
. < k - _37 _4’ . y
Ptk < c(Dk — Dr41)05-105-2 - - . Okt ( )
AU,y
where 0; = —A—U;;
PROOF
From 5.3, the numerical method is
U;H'l = U;‘ —c [an + (Do A Uj+]§ +D., A Uj—%) é;
+ Z Dy AUjypps Gt
k=—00,k#—-1,0
—Ur, - (Do AUii+Da b Uj_g.) $i-1
— Z Dk A Uj+k—% ¢j+k—1]
k=-—-00,k#—-1,0
= Ur-c [AU]-_% + Do AUy 6;+ D AUy &
—Do Uj_;_ b1
_D__1 A U]—% qu"l - D1 A UJ+!2' é] + D—2 A U]—% ¢j“2
+ Z (Dk = Di41) B Ujpirs ¢i+k] (5.5)
k=—00,k#—2,~1,0
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Modifying 5.5, we get

Ut —ur ¢
—_‘m = c|(1+ D-1¢; — Do¢j-1) + (Do — Dl)‘aj —D_1¢j-10;-
o AU k 1
+D_2¢;-20;-1 + Z (Di — Dk+1)T{7t‘i‘2'¢j+k:|
1
k=—00,k#—2,~1,0 i=3
1
= c [1 + (D—-l + (Do — Dl)@f) ¢; — (Do + D_10;-1)¢;1
M
= Pj+k
+D_30;_1¢;—2 + Dy — D)7
201052 ;( ¢ ’°+1)a,-aj+1 B
-3
+ > (Dk — Dig1)0-105-5 .. 0j+k+1¢j+k} (5.6)
k=—o00
where:
¢; = ¢(0;)
o = ok (5.7)
T AUj+% .
For oscillation free solutions we require:
ntl _ pn
< - L <
O I A Uj_l - 1
2
and assuming:
#(0)=0 for 6<0 (5.8)

we get



62 Arbitrary-Order High Resolution Schemes

1-c¢

[#

(0_1 (Do Dl)%) 4 <

1—c¢

(Do + D_10;-1)¢;-1 <

1-c¢

c
—D_30;_1¢;_2 <

. 11—
~(Dt — Di41) LD (k=1,2,...,00)

9j0j+1 ---9j+k [

l1-—c¢
—(Dg = Di41)0;-10;—2 .. . 041410545 <

Therefore,

(1 - )b;

- <
¢J - c(D_19j + Do - Dl)
iy < l1-c¢

971 = (Do + D_10;_1)
—(1-¢)
c9j_1D__2
-“(1 - c)9j9j+1 eee 0j+k

C(Dk —_ Dk+1)

¢j2 <

$jrk < (k=1,2,...,00)

-(1-¢
e < k=-3,-4,...,—
¢J+k - C(D,rc — Dy )0j_10j_2 e 0j+k+1 ( )

This is 5.4, and the proof is completed.

5.3.2 Generalized Formulation Defining TVD Region for
Method with CFL Number -1 <c¢ <0

THEOREM 6

The numerical flux of any hyperbolic numerical method can be written as follows
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F(U™j) = a [U;‘H + (Do AUps+Di & Uj+%) é;

+ E D A Uj+k+% Dtk

k=—00,k#1,0

(5.9)

where, ¢; are flux limiters. Dy are coefficients.

AUjps = Ujse = Ujia
AUjyy = Uy = U}
etc

For a method with CFL number: —1 < ¢ <0, the flux limiters are determined by

1+¢
N L
¢J - C(DO + D]OJ)
Pj-1 < SR
C(Dlaj__l + DO — D-—l)

l1+c¢
< -
¢J+1_ CD20]'

(5.10)

1+¢
e <
¢]+k - C(Dk - Dk+1)0j0j+1 . e 0j+k—1
(1 + c)0j_10j_2 e 0j+k
C(Dk - Dk+1)

(k=2,3,...,00)

Givk < (k=-2,-3,...,~00)

PROOF

From 5.9, the numerical method is

UMttt = Ulte [U;‘+1 + (Do AUjs+Di A Uj+%) ;i
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+ Z Dy A Uj+k+% Ptk

k=—00,k#1,0

—U: - (DO A Uj_% +D1 AUH—%) ¢j—1

— Z Dk A Uj+k—%— ¢j+k—l}

k=—o00,k#1,0
= Up+c|(1+Dogj — Drdia) AUy + (D-adics = Dodi) AUj-y
+D1d; A UJ-+:% — Dyj1 O Uj+%

o0

+ Z (Dk b Dk+1) A Uj+k+15 ¢j+k} (5.11)

k=—00,k#—1,0,1

Modifying 5.11 we get

U;H T - e [(1 + Do¢j — D1¢j—1) + (D-1 — D )d)j—l + D1¢;0;
N ’ ” ST g, T
b AU, k4l
“Daginbi+ Y. (De- Dkﬂ)—&}—*—ﬁmk}
k=—00,k#£—1,0,1 ity
1
= ¢ [——1 — (Do + D16;)¢; — ((D—l - DO)H - Dl) $j-1
-1
+D29j+1¢j+1 - Z(Dk - Dk+1)0j0j+1 .- -0j+k—1 Di+k
k=2
-2 ¢ .
_ D.—D ks 5.12
k;oo( k ’°+l)ej_10j_2 . .eHJ (5.12)
where:
¢; = ¢(0;)
AU, s
6, = —-2 (5.13)



Chapter 5.

Generalized TVD Schemes

For oscillation free solutions we require:

Ut - Uy
0< <1
-4 Uj+§

and assuming:

we get

Therefore,

#(0)=0 for 050

(Dl —(D—1—D0)61 >¢j-—1 < Lte

J=1 ¢
1+
(Do + D16;)¢; < c
14
—D30;¢j11 < -
1+¢
(Di = Dit1)00541 - - Oigk-1jpr < (k=2,3,...,00)
Pitk l+ec
- D < k=-2,-3,...,—
(Dk k+1)0j—10j-2 T 0j+k = . ( 2a 3’ ’ OO)
1+¢
L —
¢J - C(Do + Dlﬂj)
$j-1 < (140
c(D10j_1 + Do - D_l)
14+¢
.
¢J+l - CD20]’
1+¢
ke < k=23,...,00
¢]+k - C(Dk — Dk+1)0j0j+1 ce 0j+k—1 ( )
(1 + c)0j_10j_2 e 0j+k
ik < k=-2,-3,...,—
¢]+k — C(Dk - Dk+l) ( )

65

(5.14)
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This implies 5.10, and proves Theorem 6.

5.3.3 TVD Region for Third Order Methods

As applications of Theorem 5 and Theorem 6, in this section we are going to find
the flux limiters for equations 4.22 and 4.24, and then analysing TVD regions for
these methods.

1. TVD method for 4.21

4.21 has a stable region of 0 < ¢ < 1. The numerical flux of this method can be

written as follows for linear advection case: See 4.22.

1 ¢ ¢ 1
4—Prrmm, -\ n
FYPU™ ) =a Uj+(§—-2—+E)AU,-+1§+E(1—c2)AUj_% (5.15)
here,
AU;-1 Ui = Ui
AUy = Ui = U7

The first term on the right side of the equation is the first order upwind method,
the rest terms are the high order corrections which increase the accuracy but also

give rise to the spurious oscillations.

According to 5.3, the limiter form of 5.15 is

FPU™5) =a |UF + E S AU+
) =a|% T3 T2 T e T s

1

6(1 —cH A Uj_%> ¢J] (5.16)

here:
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1 ¢ ¢
Do =3-3%%
1
D-l = 6‘(1 - 62)
From 5.4 we have
66,
< j 5.17
¢ < cff;(1+c)+2—¢ (5.17)
6
%i-1 S BT X (14005 (5:18)
here,
g, = 2V (5.19)
! AUH%

As you can see, the flux limiters are functions of § and Courant number c, this
means that different ¢ has different TVD region. For ¢ =1, 5.17 and 5.18 become

60,
;< - 2
6
. < .
4 < (5:21)

Figure 5.1 shows the TVD regions for ¢ = 0.7 and ¢ = 1. As you can see, the TVD

region will enlarge with the value of ¢ decreasing.
Figure 5.2 shows the computational result of this method with time step of 20000.

The CFL number used is 0.7, and the TVD limiters adopted in the computation are

as follows:
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Solid line: C=0.7
Symbol line: C=1

2 3 4 5 6 7 8 9 10

Figure 5.1: TVD Region for Third Order Method

PH 7]
6_4

0

LJ1D—

0.8

0.6

0.4

0.2

0.0

Time step=20000

LLramanannncscsant

1398

i I | [ I X

1400 1402 1404 1406 1408

Figure 5.2: Computational Result of Third Order TVD Method
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6;
- 0<0,<0.6
% = Gaaae+1s =0T
g = 1 0.6 < 6; < 1.8 (5.22)
¢; = 6 9; > 1.8

0.7(1.3 + 1.76;)
2. TVD method for 4.23
This method hase stable region of —1 < ¢ < 0.

The numerical flux of this method takes the following form in the linear case. See
4.24

: n 1 ¢ c 1
F*P(U™j)=a [UH1 - (5 +3+ —6—) AUy + -6-(1 —cHA UH%] (5.23)

Adding flux limiters, it becomes

—Prrra. - n 1 ¢ ¢ 1
F*“PU™j)=a [Um - ((g +t5+ ) AU +s(1-)A Uj+g) ¢j] (5.24)
here,
1 ¢ ¢
Dy = ‘“(5 + 5 + g)
1
D1 = —6(1—62)

From 5.10, the flux limiters for this method are

—66,_,
$j-1 < a0 +2+4d (5.25)
4 =0 (5.26)

2+ ¢+ (1 —c)bj)
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here,

0; = (5.27)

5.3.4 TVD Region for Fourth Order Method

Consider the fourth order method 4.27 which is stable in the region of —1 < ¢ < 1.

The numerical flux of this method is, (see 4.28)

FS—P(UTL;]):(Z[U]”-}-D_]AUJ_%+D0AUJ+%+D1AUJ+%J (5.28)
~ here,

1 ¢c & &8
D4 = —4¢+—————
! TR

1 7 Poss

Do = =——c+—

0 = 3TRTR
3 2 1
D1 — _(c_.__c.___i_*_.._

From 5.3, the flux limiter form of this method is

FS-PU™ §) = a [U; + (D_1 AU,_1+ Do A UH%) ¢;+ D1 AUjsdi| (5.29)

i=2

using 5.4 and doing some manipulations, we finally get the following limiters

< 240,
T |24+ )1+ )0 +2(7T+ c) —3c(1 + ¢)]

; (5.30)
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24
. <
%1 S BT 0T 00 + 20+ 96 — &) — 2]
0;410;
) < J+1Y5
v S c(2-c)(1+¢)
here,
o, = 2Vt 0
i = AUj_l_% a >
AU, 3
0. — i+3
; AUH% a<0
and,
c=|c

Figure 5.3 shows the TVD region for ¢ =1 and ¢ = 0.7.

sl

(5.31)

(5.32)

(5.33)

(5.34)

Figure 5.4 shows the computational result. The CFL number used is 0.7. The

TVD limiters are:

¢ = 3.465;2;1 if s2s1 0 <0is03
¢j = 1 0.3 < 0_,' <2
4
% = 34686, i 2azs 072
and
¢j+1 = 0 0j+10j <0
$it1 = %ﬁi 0<840; <1

¢j+1 = 1 0j+10j >1

(5.35)

(5.36)
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here,

PHI
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AU,
AU;,

=

(5.37)

0j110; =

[

Solid line: C=0.7
Symbol line: C=1

H3a,
e
N
3 G
Ceeey,
cag,

FOLE Sy,

0] 1 2 3 4 5 6 7 8 9 10
Figure 5.3: TVD Region for Fourth Order Method
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Fourth Order TVD Method

.U 1.0 B i
0.8 ° Tir;e step=10000
. v | C=0.7
0.4-
0.2-
0.0 i f T - ' X

698 700 702 704 706 708

Figure 5.4: Computational Result of Fourth Order TVD Method
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Chapter 6

CONCLUSIONS

Based on the findings in this report, the following conclusions can be drawn:

A series of theorems constructing 2-level explicit arbitrary-order high resolution

methods for one-dimensional model hyperbolic equation are established.

Theorem 1 defines the law from which 2-level explicit arbitrary-order numerical

methods for the model hyperbolic equation can be derived.
Theorem 2 gives the rule of dealing with the problem of linear stability analysis.

Theorems 3 and 4 show a way of developing 2-level explicit conservative arbitrary-

order numerical methods and numerical flux.

Theorems 5 and 6 produce TVD methods for central numerical schemes with

stable region of -1 < ¢ < 1.

In order to demonstrate how to implement these theorems, as examples, some third
order and fourth order high resolution schemes are presented. Computational re-
sults of these schemes show some previously unseen distinguishing features of high

resolution methods.
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Appendix A

The 20th Order Numerical
Method

The 20th order method takes the following form:

UJT"” = BoU} + B_1wUjy + BoUj s + BsUjs + B-7Uj,
+ B_6U]?‘_6 + B_5U;‘_5 + B_4U;-1_4 + B_3U;l__3 + B_zU}L_z
+ BLUj, + BiUjy + BuUjy, + BsUjys + BaUjy,
+ BsUj s + BeUjye + BrUl; + BsUls + BoUlyg
+ BioU}410 (A1)

where

B_jo = —5.4125441274697011E — 07 C — 5.4125442193536856E — 08 C?
+ 8.334060771409744E — 07 C° + 8.3340608286850486E — 08 C*
— 3.488244178100931E — 07 C° — 3.4882441891155766E — 08 C°
+ 6.2018699671233378E — 08 C7 + 6.2018699781630719E — 09 C®
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— 5.6212428632890577F — 09 C° — 5.62124286952818E — 10 C°

+ 2.8337919393891736F — 10 C'* + 2.8337919414809486E — 11 C'?
— 8.2180457465338512E — 12 C*® — 8.2180457507619695F — 13 C*
+ 1.354185244170744F — 13 C*® + 1.3541852446737389E — 14 C'°
— 1.171440522636276 E — 15 C'7 — 1.1714405229588017E — 16 C'8
+ 4.1103176232824669F — 18 C'° + 4.1103176241380932E — 19 C'*°

B_o = 1.2027875799663232E — 05 C + 1.3364306711344411E — 06 C?
— 1.8491921508798121 FE — 05 C° — 2.0546579573255938E — 06 C*
+ 7.7085597515460868F — 06 C° + 8.5650664136481394E — 07 C*®
— 1.3605424588926793F — 06 C7 — 1.5117138455282181E — 07 C®
+ 1.219016208481073E — 07 C° + 1.3544624551725358E — 08 C1°
— 6.0415222193403872F — 09 C!' — 6.7128024702854551F — 10 2
+ 1.7100969895060985F — 10 C*® + 1.9001077669921326E — 11 C**
— 2.7243020794222938F — 12 C¥® — 3.0270023115029691E — 13 C'¢
+ 2.2491658034449778F — 14 CY" + 2.4990731155980741E — 15 C*®
—7.3985717218632879E — 17 C*° — 8.2206352482552116E — 18 C?°

B_g = —1.2854792258442681F — 04 C — 1.6068490601938150E — 05 C?

+ 1.9721086119309995E — 04 C* + 2.4651357766736245E — 05 C*
— 8.1743718940279278E — 05 C° — 1.0217964890385482F — 05 C*®
+ 1.428065355387014E — 05 C” + 1.7850816965332447E — 06 C*®

— 1.2592043798505395E — 06 C° — 1.5740054761137869E — 07 C'*°
+ 6.0977941920976703E — 08 C'! + 7.622242744484152E — 09 C'?
— 1.6720311077765168E — 09 C*® — 2.0900388856030767E — 10 C**
+ 2.5554272136247108E — 11 C*® + 3.194284018082011E — 12 C'®
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— 2.005506174699382E — 13 C7
+ 6.2476827872381071E — 16 C"°

81

— 92.5068827190492179E — 14 C*®

+ 7.8096034858409144E — 17 C*°

B_, = 8.8147147022441235E — 04 C + 1.2592449720362899F — 04 C?

— 1.3480868260251767E — 03 C*
+ 5.5414611748462071E — 04 C°
— 9.5373632669074515E — 05 C7

— 1.9258383301538196 F — 04 C*
+ 7.9163731210419160FE — 05 C®
— 1.3624804681203933F — 05 C®

+ 8.218213675544677TE — 06 C° + 1.1740305258767458E — 06 C°

— 3.8533056741743935F — 07 CM —

+ 1.0134817956397296 E — 08 C*°
— 1.4754246524325741E — 10 C*°
+ 1.1020912436507576 E — 12 C*7
— 3.2800334632538536E — 15 C*°

B_¢ = —4.3706293678705118E —03 C —
+ 6.6520539913242586 E — 03 C°
— 2.6992754360052182E — 03 C°
+ 4.5398869824749103E — 04 C7
— 3.7788748938689926 E — 05 C°
+ 1.6925148814571187E — 06 C'*
— 4.2229287043591243F — 08 C*°
+ 5.8407602736300839E — 10 C*®
— 4.1700939722246099E — 12 C*7
+ 1.1948693330177068E — 14 C**

5.5047223943406495E — 08 C'?
+ 1.4478311371637456E — 09 C*
— 2.1077495041098964E — 11 C*®
+ 1.5744160627642396E — 13 C'®
— 4.6857620914379306F — 16 C*°

7.2843823472016191F — 04 C?

+ 1.1086756682913929E — 03 C*
— 4.4987923993807736E — 04 C°
+ 7.566478310195485E — 05 C®

— 6.2981248265185162F — 06 C'°
+ 2.8208581368916746E — 07 C'?
7.0382145095313115E — 09 C**
+ 9.7346004587333441E — 11 C*°
— 6.9501566220910104F — 13 C*®
+ 1.9914488888179928F — 15 C*°

B_s = 1.6783216790265943F — 02 C + 3.3566433739730434F — 03 C?
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— 9.5338759119334336E — 02 C® — 5.0677518335719013E — 03 C*
+ 1.0061219734637984E — 02 C° + 2.012243948862976E — 03 C°

— 1.6287905249829739E — 03 C7 — 3.2575810519266637E — 04 C®
+ 1.283826360655336E — 04 C° + 2.5676527224143184E — 05 C'°
— 5.3947515886538981 F — 06 C11 — 1.0789503180983456E — 06 C'2
+ 1.2690531937984211E — 07 C*® + 2.5381063883369351E — 08 C'*
— 1.6710964543258815E — 09 C¥® — 3.3421929095318834E — 10 C°
+ 1.1470745596579926 E — 11 C'7 + 2.2941491198815431F — 12 c®
— 3.1863182212735747E — 14 C*° — 6.3726364440528092E — 15 C*°

B_, = —5.2447552382367639E — 02 C — 1.3111888163451239E — 02 C*

+ 7.8003552315233024E — 02 C° + 1.9500888102217392E — 02 C*
— 2.9733434540143964F — 02 C° — 7.4333586397198753E — 03 C°
+ 4.4892831985170432E — 03 C7 + 1.1223208001032861E — 03 C®
— 3.94214353407299F — 04 C° — 8.1053588378368919E — 05 C°

+ 1.2643031133976332E — 05 C'* + 3.1607577843734094E — 06 C'
— 2.8073362574115141E — 07 C** — 7.0183406452931007E — 08 C'*
+ 3.539489732800221 E — 09 C*° + 8.8487243340955198E — 10 C*°
— 2.3515028472187363E — 11 C'7 — 5.8787571193929876F — 12 C'®
+ 6.3726364423175025E — 14 C*° + 1.5931591109380331E — 14 C*°

B_s = 0.1398601399322489 C' + 4.6620046671199018E — 02 C*
— 0.2012107160430074 C® — 6.7070238726304382F — 02 C*
+ 6.9933004598079787E — 02 C° + 2.3311001541969804E — 02 C°
— 9.156660441459236E — 03 C7 — 3.05222014810262E — 03 C®
+ 5.9537875973539355E — 04 C° + 1.9845958663193471E — 04 C°
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— 2.1597279728755198E — 05 C'! — 7.1990932446989605E — 06 C'?
+ 4.560971098645676 E — 07 C** + 1.5203236999083242F — 07 C*
— 5.5501202564010796 E — 09 C*®* — 1.8500400858978121E — 09 C®
+ 3.5941669532496461F — 11 C*7 4+ 1.19805565135244FE — 11 C*®
— 9.5589546628469194F — 14 C'° — 3.1863182216990149E — 14 C*°

B_, = —0.3409090907740962 C — 0.1704545455456840 C?
+ 0.4431026355289627 C° + 0.2215513178433360 C*
— 0.1141806087503913 C°® — 5.709030439213017E — 02 C°®
+ 1.2714396381982809F — 02 C7 + 6.3571981927759303E — 03 C®
— 7.5256550066543344F — 04 C° — 3.762827504347923E — 04 C*°
+ 2.5750408250353993E — 05 C'! 4 1.2875204128610629E — 05 C'?
— 5.233979019443609F — 07 C*® — 2.6169895104208433E — 07 C'*
+ 6.205243213563923E — 09 C*® + 3.1026216076239978E — 09 C'°
— 3.9454585366658115E — 11 C'7 — 1.9727292688812399E — 11 C'®
+ 1.0355534216861282F — 13 C*® + 5.1777671099087964F — 14 C*°

B_; = 0.9090909089340871 C + 0.9090909091587303 C?
— 0.499788846365348 C° — 0.4997888465311628 C*
+ 0.1000945339323041 C° + 0.1000945339715666 C°©
— 9.9309289012765676 E — 03 C7 — 9.9309289056588156 E — 03 C*®
+ 5.52176686112127F — 04 C° + 5.5217668637241141E — 04 C°
— 1.8201402847760972E — 05 C** — 1.8201402856741592E — 05 C'?
+ 3.6126371888276745E — 07 C*® 4+ 3.6126371906854591F — 07 C™*
— 4.2155308676830449F — 09 C*® — 4.2155308699409659E — 09 C*®
+ 3.6510167586153395E — 11 C*" + 2.6510167600918578E — 11 C'®
— 6.9036894753918626 F — 14 C'° — 6.903689479377323E — 14 C*°
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B, = —0.9090909089982441 C + 0.9090909090107639 C?

+ 0.4997888467038099 C* — 0.4997888464761192 C*

— 0.1000945340215663 C° + 0.1000945339597436 C*®

+ 9.9309289117927961E — 03 C7 — 9.9309289044145661E — 03 C*®
— 5.5217668675993216E — 04 C° + 5.5217668630038223F — 04 C*°
+ 1.8201402870649327F — 05 C'! — 1.8201402854301842FE — 05 C*?
— 3.612637193622773F — 07 C'® + 3.6126371901919222F — 07 C'**
+ 4.2155308735369533E — 09 C'® — 4.2155308693570004E — 09 C*®
— 2.6510167624410223E — 11 C'" + 2.6510167597207196E — 11 C*®
+ 6.9036894856845310F — 14 C'° — 6.9036894784028248E — 14 C*°

B, = 0.3409090911590382 C — 0.1704545454095551 C*?
— 0.4431026357790551 C* + 0.2215513177642915 C*
+ 0.1141806088171811 C* — 5.7090304375038911F — 02 C*®
— 1.2714396389902835E — 02 C” + 6.3571981909751434E — 03 C®
+ 7.525655011554771E — 04 C° — 3.7628275033047855E — 04 C'°
— 2.5750408267719344F — 05 C'! + 1.2875204125074939 C'?
+ 5.2339790230882308E — 07 C*® — 2.6169895097051142E — 07 C*
— 6.2052432180178555E — 09 C** + 3.1026216067765952E — 09 C°
+ 3.9454585395780889EF — 11 C'7 — 1.9727292683423773E — 11 C*®
— 1.0355534224698324 E — 13 C*° + 5.1777671084932366F — 14 C*°

B; = —0.1398601398680919 C + 4.6620046550289472E — 02 C”
+ 0.2012107161932965 C* — 6.707023865762228E — 02 C*
— 6.9933004638802393F — 02 C° + 2.3311001527102117E — 02 C°
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+ 9.1566604463335817F — 03 C7 — 3.0522201465355389E — 03 C*®

— 5.9537876003893763E — 04 C° + 1.9845958654107830E — 04 C'°
+ 2.1597279739557117E — 05 C'* — 7.1990932416161747E — 06 C'2
— 4.5609711009187323F — 07 C** + 1.5203236992836355E — 07 C'**
+ 5.5501202591831552E — 09 C*® — 1.8500400851574985E — 09 C'®
— 3.5941669550703171E — 11 C*" + 1.1980556508912785E — 11 C'®
+ 9.5589546677486802F — 14 C** — 3.1863182204603885E — 14 C*°

B, = b5.2447552542760158E — 02 C — 1.3111888087354322E — 02 C*

— 7.8003552387288705E — 02 C® + 1.950088805984191FE — 02 C*

+ 2.9733434559988135E — 02 C° — 7.4333586305919156E — 03 C°
— 4.4892832009135923F — 03 C7 + 1.1223207991417077E — 03 C®
+ 3.24214353557277T5E — 04 C° — 8.1053588322611519E — 05 C'°
— 1.2643031139325643E — 05 C'' + 3.1607577824812954F — 06 C*2
1 2.8073362585376238E — 07 C*® — 7.0183406414589029E — 08 C''*
— 3.5394897341775433E — 09 C*® + 8.8487243295521279E — 10 C*®
1+ 2.3515028481189938E — 11 C'7 — 5.8787571165019582E — 12 C®
— 6.3726364447379082E — 14 C'® + 1.5931591101781878FE — 14 C*°

By = —1.6783216790265943E — 02 C + 3.3566433397294302E — 03 C*?
+ 2.5338759146446066E — 02 C® — 5.0677518143916545E — 03 C*
— 1.0061219742240127E — 02 C* + 2.012243944745893E — 03 C°
+ 1.6287905259103595E — 03 C7 — 3.2575810475890017F — 04 C®
— 1.2838263612394298F — 04 C° + 2.5676527198963036E — 05 C'*°
+ 5.3947515907457231E — 06 C'' — 1.1789503172426883E — 06 C*?
— 1.269053194239874F — 07 C** + 2.5381063866006513E — 08 C'*
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+ 1.6710964548665981E — 09 C*® — 3.342192907471848E — 10 C'°
— 1.1470745600117163E — 11 CY7 + 2.2941491185692477F — 12 C*®
4 3.186318222225057TE — 14 C'° — 6.3726364406004012F — 15 C*

Bs = 4.37062937989995E — 03 C — 7.2843822351700458E — 04 C*

— 6.6520539990204087E — 03 C* + 1.1086756619139275E — 03 C*
+ 2.6992754381966501 E — 03 C° — 4.4987923857653351E — 04 C°
— 4.5398869851632942F — 04 C7 + 7.5664782958773701E — 05 C®
+ 3.77887489556616E — 05 C° — 6.2981248182117565E — 06 C™°

— 1.692514882065163E — 06 C'' + 2.8208581340692872E — 07 C*?
+ 4.22292870564138E — 08 C'® — 7.0382145038040535E — 09 C™*
— 5.8407602751987296E — 10 C*® + 9.7346004519377128E — 11 C'°
+ 4.1700939732493913E — 12 CV7 — 6.9501566177616943E — 13 C"®
— 1.1948693332930086E — 14 C*° + 1.0014488876789506E — 15 C*°

B, = —8.8147147022441235E —04 C + 1.2592449419145932F — 04 C*
+ 1.348086827653146E — 03 C° — 1.9258383147415187E — 04 C*
— 5.5414611795211459E — 04 C° + 7.91637308834124E — 05 C°
+ 9.5373632726828108E — 05 C7 — 1.3624804646819964E — 05 C°
_ 8.2182136792058245E — 06 C° + 1.1740305238792094E — 06 C*°
+ 3.8533056754888451 E — 07 C'! — 5.5047223875425271E — 08 C*?
— 1.0134817959171436E — 08 C*® + 1.4478311357821706E — 09 C*
+ 1.4754246527719211E — 10 C% — 2.1077495024685307E — 11 C*°
— 1.1020912438723225E — 12 CV7 + 1.5744160617175219E — 13 C*®
+ 3.2800334638485865E — 15 C'° — 4.6857620886819089E — 16 C*°
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By = 1.2854792233381353F — 04 C — 1.6068490020642247E — 05 C*
— 1.9721086142894054E — 04 C° + 2.4651357511000552E — 05 C*
+ 8.174371900901958E — 05 C° — 1.0217964836322332E — 05 C*®
— 1.4280653562422396 E — 05 C7 + 1.78508169084522F — 06 C®
+ 1.2592043803954657E — 06 C° — 1.5740054728028971E — 07 C'°
— 6.0977941940620429E — 08 C'' + 7.6222427331900794E — 09 C**
+ 1.6720311081924454FE — 09 C*3 — 2.0900388833025625E — 10 C**
— 2.5554272141348674F — 11 C* + 3.1942840153432374F — 12 C'®
+ 2.0055061750332314E — 13 CV7 — 2.5068827172994957E — 14 C®
— 6.247682788135984TE — 16 C*° + 7.8096034812267166E — 17 C*°

By = —1.2027875830989893E — 05 C + 1.3364306203536201E — 06 C*
+ 1.849192153014139E — 05 C® — 2.0546579310704337E — 06 C*
— 7.70855975777T1679E — 06 C° + 8.56506635816245E — 07 C°
+ 1.3605424596677215F — 06 C7 — 1.5117138396853592E — 07 C*®
— 1.2190162089731396E — 07 C° + 1.3544624517689925E — 08 C°
+ 6.0415222211036277E — 09 C'' — 6.7128024586735774E — 10 C*?
— 1.710096989876961E — 10 C** + 1.9001077646274995E — 11 C**
+ 2.7243020798742975F — 12 C*® — 3.0270023086891944E — 13 C'°
— 2.2491658037391251E — 14 C'7 + 2.4990731138014241E — 15 C"®
+ 7.3985717226506696 E — 17 C'° — 8.220635243519829F — 18 C*°

By = 5.4125441176801199E — 07 C — 5.4125439871243214E — 08 C*
— 8.3340607804876036E — 07 C® + 8.3340607014844473E — 08 C*
+ 3.4882441807603583E — 07 C° — 3.4882441623128323E — 08 C*®
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— 6.2018699704524168E — 08 C” + 6.2018699499478518E — 09 C®
+ 5.6212428654146464FE — 09 C° — 5.6212428530759774E — 10 C°
— 2.8337919401552493E — 10 C'! + 2.833791935858306F — 11 C*?
+ 8.2180457481542722F — 12 C*® — 8.2180457392895429E — 13 C**
— 1.3541852443693002E — 13 C™ + 1.2541852433059194E — 14 C*¢
+ 1.1714405227661243E — 15 C'7 — 1.1714405220838428E — 16 C'®
— 4.110317623631571E — 18 C" + 4.1103176218282869E — 19 C*°

By = 1 4 9.643184E — 09 C — 1.549768 C* — 4.8558619E — 09 C°
+ 0.6598717 C* + 2.192701E — 10 C® — 0.121028 C®
+ 3.0618016E — 10 C7 + 1.1531415E — 02 C® + 1.6614871E — 11C°
— 6.2741595E — 04 C'® — 4.3139212E — 13 C"' 4 2.0418935E — 05C*?
+ 2.4922193E — 14 C* — 4.0202718E — 07 C™* — 1.3142628FE — 16C"®
+ 4.6662447F — 09 C*® + 3.0843404F — 19 C'" — 2.9237123FE — 11C*®
— 7.3362479E — 22 C*® + 7.5940576E — 14 C*°

where, C is the CFL number.

The stable function of this method is

A = 1 — 2(—2.1820901E — 08 C + 1.91839 C* + 2.2592523F — 08C*
— 1.144243 C* — 6.8021899E — 09 C*® + 0.2509956 C°®
+ 1.1990592F — 09 C7 — 2.6645366E — 02 C® + 4.4792958E — 11C°
+ 1.5550008E — 03 C'° + 2.3386265E — 13 C'!' — 5.3070333E — 05C*?
— 1.5452447F — 14 C*® 4+ 1.0802879E — 06 C™* + 4.9565642E — 16C™°
— 1.2842341E — 08 C'¢ — 4.3901846F — 18 C'7 + 8.1889627F — 11C"®
+ 4.1853998E — 21 C' — 2.1549903F — 13 C*) (A.2)
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The stable regions of this method are: (see Figure A.1)

—4 < C<-3.75
-3 < (C<-258
-2 < C<-13
-1 < c<1 (A.3)
13 < C<2
258 < C<K3
3.7 < C<4
LAMBDA

2._
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Figure A.1: Stable Region of the 20th Method

Figure A.2 showes the computational result. The initial date of the calculation is
absolutely smooth. As you can see that even thought the time evolves fifty-thousants

steps there is hardly any error.
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Figure A.2: Computational Result of the 20th Numerical Method




