
D
R

T

Journal Pre-proof

Estimation of non-symmetric and unbounded region of attraction using
shifted shape function and R-composition

Dongyang Li, Dmitry Ignatyev, Antonios Tsourdos, Zhongyuan Wang

PII: S0019-0578(22)00607-3
OI: https://doi.org/10.1016/j.isatra.2022.11.015
eference: ISATRA 4867

o appear in: ISA Transactions

Received date : 17 December 2020
Revised date : 18 November 2022
Accepted date : 18 November 2022

Please cite this article as: D. Li, D. Ignatyev, A. Tsourdos et al., Estimation of non-symmetric and
unbounded region of attraction using shifted shape function and R-composition. ISA Transactions
(2022), doi: https://doi.org/10.1016/j.isatra.2022.11.015.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the
addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive
version of record. This version will undergo additional copyediting, typesetting and review before it
is published in its final form, but we are providing this version to give early visibility of the article.
Please note that, during the production process, errors may be discovered which could affect the
content, and all legal disclaimers that apply to the journal pertain.

© 2022 Published by Elsevier Ltd on behalf of ISA.

https://doi.org/10.1016/j.isatra.2022.11.015
https://doi.org/10.1016/j.isatra.2022.11.015


Journal Pre-proof

Estimation of non-symmetric and unbounded region 

D
a

2
b

D

p
p

A

u
U

 

* 

 

T

C

Title page showing Author Details
Jo
ur

na
l P

re
-p

ro
of

of attraction using shifted shape function and R-

composition 

ongyang Lia,b,*,1, Dmitry Ignatyevb,2, Antonios Tsourdosb,2, Zhongyuan Wanga,1 

 School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 
10094, China 
 School of Aerospace, Transport and Manufacturing, Cranfield University, Cranfield MK43 OAL, UK  

 

eclaration of competing interest 

The authors declare that they have no known competing financial interests or 
ersonal relationships that could have appeared to influence the work reported in this 
aper. 

cknowledgments 

This work was supported by Cranfield University; the China Scholarship Council 
nder Grant No. 201906840024; and the Fundamental Research Funds for the Central 
niversities, China, No. 3091011401. 

                                                  

Corresponding author. Tel.: +86 15651776672 

E-mail address: dongylee@njust.edu.cn 

1 Postal address: School of Energy and Power Engineering, Nanjing University of Science and 

echnology, Xuanwu District, Nanjing 210094, China. 

2 Postal address: School of Aerospace, Transport and Manufacturing, Cranfield University, 

ranfield MK43 OAL, UK. 

li2106
Text Box
ISA Transactions, Volume 136, May 2023, pp. 308-322
DOI:10.1016/j.isatra.2022.11.015


li2106
Text Box
Published by Elsevier. This is the Author Accepted Manuscript issued with: Creative Commons Attribution Non-Commercial No Derivatives License (CC:BY:NC:ND 4.0).  
The final published version (version of record) is available online at DOI:10.1016/j.isatra.2022.11.015. Please refer to any applicable publisher terms of use.




Journal Pre-proof

 

Estimation of non-symmetric and unbounded region of 

att  

1 

M  

nonl . 

Ther  

analy , 

most  

[1]. . 

This t 

Revised Manuscript (Clean version)
Jo
ur

na
l P

re
-p

ro
of

1 

raction using shifted shape function and R-composition

Abstract 

Sum-of-squares programming is widely used for region of attraction (ROA) 
estimations of asymptotically stable equilibrium points of nonlinear polynomial 
systems. However, existing methods yield conservative results, especially for 
non-symmetric and unbounded regions. In this study, a cost-effective approach 
for ROA estimation is proposed based on the Lyapunov theory and shape 
functions. In contrast to existing methods, the proposed method iteratively 
places the center of a shifted shape function (SSF) close to the boundary of the 
acquired invariant subset. The set of obtained SSFs yields robust ROA subsets, 
and R-composition is employed to express these independent sets as a single 
but richer-shaped level set. Several benchmark examples show that the 
proposed method significantly improves ROA estimations, especially for non-
symmetric or unbounded ROA without a significant computational burden.  

Keywords 

Non-symmetric and unbounded region of attraction, Shape function, 
Polynomial nonlinear system, Sum of squares programming, Lyapunov stability 

Introduction 

any real-world systems are governed by nonlinear equations [1]. Stability analysis of a

inear system in its general form using analytical techniques is difficult, if not impossible

efore, there is significant research interest in numerical methods that facilitate stability

sis. As opposed to linear time-invariant systems that allow for global analysis of stability

 nonlinear systems are stable only in a specific region around an equilibrium point (EP)

For practical applications, it is important to determine the associated invariant set [2,3]

 invariant set, the so-called region of attraction (ROA) of the relevant EP, is an importan
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metric for system stability and robustness, and specifies the extent to which the initial states 
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e disturbed away from the expected steady states. Moreover, an actual dynamic system

ave multiple stable EPs (or limit cycles) [2]. Therefore, the operative range of the system

 be contained in the ROA of the expected EP. However, identification of the exact ROA

allenging both numerically and analytically [3]. Over the last few years, several studies

 investigated techniques for obtaining a closer approximation of the exact ROA fo

rent applications, such as aerospace, robotics, medical, chemical processes, traffic, and

gical systems [2–24].  

he most popular methods for ROA estimation are based on the Lyapunov function (LF)

e facilitate the identification of the appropriate conditions for the stability of equilibria

ough the construction of LFs has been extensively studied [25], this is not a straightforward

and might not provide a solution for general cases. Many computational construction

ods have been developed, together with various forms of relaxation, to develop a

ralized approach for LF construction. A well-developed approach is the sum-of-squares

) technique. The condition for a nonnegative multivariable polynomial is relaxed using

OS polynomial [7]. For example, ( )s x  is an SOS polynomial if there exist polynomials

1)} ( )m
i x R  such that 2

1
( ) ( )m

ii
s x f x


 , where [ ]xR  represents the set o

nomials in nx  with real coefficients where m  and n  are positive integers [7]. The

ed SOS constraint is more stringent but improves the tractability of both the construction

e LF and the computation of its invariant sublevel set, which is useful for ROA estimation

iled discussions on SOS techniques can be found in the literature [7,8,20,26].  
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SOS problems with constraints have been addressed via SOS programming. Freely available 
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LAB toolboxes, such as SOSTOOLs [27] and SOSOPTs [28], transform SOS constraints

semidefinite problems (SDPs), which are then solved using SDP solvers such as SeDuM

 For example, in SOS programming, the verification of a polynomial ( )s x  as an SOS

nomial is equivalent to confirming the existence of a positive semidefinite matrix Q  such

 

( ) ( ) ( )T
ns x Z x QZ x     

e ( )Z x  is an appropriately chosen vector of monomials in nx  and n  denotes the

f SOS polynomials in nx . This is a basic feasibility problem in SOS programming

another common class is the optimization problem for a linear objective function [26]

e problems are formulated using linear matrix inequalities (LMIs) and solved using LMI

rs. However, the formulation of some practical problems might result in bilinear matrix

ualities that cannot be easily solved using LMI solvers, which occurs during the process of

tifying the largest possible invariant subset of the ROA [2,5]. In the ROA problem, the

ion variables to be optimized are coupled with auxiliary SOS multipliers. One solution is

e bilinear solvers (such as PENMBI in YALMIP [30]). Although they facilitate direc

ment of bilinear problems, they are less developed than linear solvers, and convergence to

bal optimum cannot be guaranteed [5,8,9,31,32]. The other approach is to convert it into

o-way iterative search between LFs and SOS multipliers using the additional structure of

OA estimation problem rather than a general bilinear problem. It then becomes affine in

 multipliers if LF is fixed and vice versa [27,33]. A two-way search can then be

eniently solved using widely used linear solvers.  
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Two-way iteration procedures have been investigated in many applications to improve these 
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edures. For example, an interior expanding algorithm [34] was proposed to enlarge ROA

ation using a positive definite polynomial (or ‘shape function’) and the resulting

ithm was denoted as the V-s iteration algorithm [10,35,36]. The elements that affect the

rmance of V-s iterations including the choice of the initial LF 0V , the degree of the new

V , and the shape function ( )p x , have been considered to increase the size of the

ation. A higher-degree LF is searched rather than the usual quadratic ones to achieve a

r level set [31]. However, the computational burden dramatically increases with an

ase in the system’s dimension and/or the degree of the polynomial. Several methods have

 proposed to address this problem. For example, a composite LF consisting of lower

ee LFs, such as pointwise maximum and pointwise minimum LFs have been investigated

37]. In addition, a family of parameter-dependent LFs was used for improved estimation

 alternative to using only one Lyapunov estimate [38]. A systematic method (denoted as

mposition [39]) was utilized for richer-shaped estimation [40] by composing LFs using R-

tions. Optimization of the initial LF 0V  is also important. The method in [13] proposed

izing 0V  to avoid numerical infeasibility in the initial step when the level set is lower

 the solver tolerance. Topcu et al. [5] proposed using information from simulations to

rate better LF candidates to improve the performance of an estimation algorithm

rding the shape function, a quadratic form was customized for better alignment with the

e of the exact ROA [2] or to reflect the relative importance of states in practical problems

43]. However, an appropriate shape function is difficult to define without prior knowledge

e system and a systematic approach has not been proposed [5,13,21]. A quadratic form of
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( ) Tp x x M x  is widely used, with a general assumption of EP at the origin. The shape matrix 
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n n  ( n  is the system dimension) is a positive definite matrix that is problem-dependen

commonly used to scale the state space domain. In most applications, the shape function

ed throughout the iterations [44]. In [2], an adaptive shape function was proposed to

te the quadratic parts of the newly found LF in each iteration. A better estimation is

ined for some examples, especially for those with a symmetric or simple ROA. However

ame problem of convergence is encountered after certain iterations in the conventional V

orithm. 

 other ROA estimation methods such as [13], an additional constraint is introduced to

ove the estimation, but it can be highly restrictive when a higher-degree LF is searched

[31] proposed the use of a series of consecutive rotations of an elliptical-shaped function

nlargement of ROA estimation. A similar approach was proposed based on the variation

e matrix P  [9]. In [45], sufficient conditions were provided to guarantee that the subleve

of the polynomial LFs yielded an inner approximation of the exact ROA up to any desired

racy. However, these conditions are only applicable to the bounded ROA. The application

S programming to the Van de Pol system yields a result similar to that obtained in [2]. A

le algorithm for handling the bilinear problem for ROA estimation was described in [22]

ever, it is similar to the two-way iterative search in the widely used V-s iteration algorithm

 addition to the aforementioned modifications, the V-s iteration algorithm uses an

ased number of iterations to enlarge the ROA estimation. However, this is not a universa

dy. For example, in cases of early converged optimization and/or numerical infeasibility

cularly for a system with an unbounded or irregular ROA, this approach does not work
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Another feature is that the geometric center of the shape function, either fixed or adaptive, is 
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ed at the origin. This limits the estimation, especially for non-symmetric or unbounded

. 

he main contribution of this work is a modification of the V-s algorithm that facilitates the

f shifted shape functions (SSF) with shifting centers. This approach yields a significantly

ged ROA estimation, especially for nonsymmetric or unbounded ROA, as compared to

ing methods. To the best of our knowledge, the form of the shifted shape function proposed

is paper has never been explored, although it can be absorbed in the general construction

S polynomials. The SSFs are constructed by shifting the centers that are chosen iteratively

 the proven obtained level set of the true ROA. Thus, it is advantageous to utilize

iously obtained results. The proven level set can be conveniently obtained using the V-s

tion algorithm. In addition, the V-s algorithm allows the SSF to satisfy the constraints. A

f shifting centers with corresponding SSFs is generated to produce several proven subsets

OA. The union of these sets based on R-composition yields a compact and richer-shaped

t without an increase in the LF degree, thus alleviating the computational burden. The

osed approach is denoted as RcomSSF in the remainder of this report. It pushes forward

xtension when additional iterations do not provide further ROA expansion or when

erical infeasibility is encountered. In addition, it can exploit the improvements of the V-s

tion algorithm, for instance, modifications of the shape matrix and the initial LF. 

he remainder of this paper is organized into different sections. First, the ROA estimation

lem is described using fundamental theories in Section 2. Then, using SOS techniques, the

putational V-s iteration algorithm is presented. Section 3 describes the shape function as a



Journal Pre-proof

 

premise of the proposed method. The proposed RcomSSF is then presented in Section 4 
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ding the details of the construction and implementation of the SSF and R-composition

ion 5 presents several numerical benchmark examples from the literature. The

tiveness and advantages of the proposed method are demonstrated by comparing it with

ing ROA estimation algorithms. Finally, Section 6 summarizes the main conclusions o

eport. 

Region of attraction estimation 

Problem formulation 

onsider an autonomous nonlinear polynomial system  

0( ), (0)x f x x x  ,  (1)

e nx  is the state vector and ( )f x  is a 1n  polynomial vector field. Without loss

nerality, we assume that the origin is an asymptotically stable EP such that (0) 0f  . The

, a set of initial conditions whose trajectories do not go beyond this set and always

erge back to the origin, can be defined as  

 0 0: : If (0) then lim ( ) 0n

t
x x x x t


    .  (2)

n exact ROA can be obtained only for relatively simple nonlinear systems and is almos

ssible for real-world systems. As such, numerous studies have investigated the

lopment of methods for ROA estimation [2,4–20,46]. The estimation of the ROA in this

 is based on Lemma 1 using the direct Lyapunov theorem that specifies a sublevel set of

 as an inner approximation of the true ROA of an asymptotically stable EP [37]. 
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Lemma 1 If there exist a continuously differentiable scalar function ( ) : nV x   and a 
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ive scalar    such that 

 ( ) 0 0V x x    and (0) 0V  , (3)

 : : ( )x V x    is bounded, (4)

{ : ( / ) 0} {0}x V x f      ,  (5)

 the origin is asymptotically stable and   is a subset of the ROA. The level   can be

ized to obtain the largest possible estimation. ( )V x  that satisfies Lemma 1 is called a

t LF. When   in Eq. (4) is unbounded, the system is globally asymptotically stable [7]

o enlarge the estimation  , an interior expanding algorithm [2,34,44] is introduced

ein a scalar polynomial function ( ) [ ]p x xR  ( [ ]xR  is the set of polynomials with rea

icients in nx ) and another positive scalar    are defined. It is ensured that 

 : : ( )nx p x     is bounded, (6)

   , (7)

e ( )p x  which denotes the shape function is a positive definite and convex polynomial

positive scalar   is maximized by imposing constraints (3)–(5).  

he polynomial constraints can be relaxed into SOS constraints using SOS techniques based

e connection between the nonnegativity and the sum of squares [7,20] and then solved

 SOS programming. For the set containment constraints in Eqs. (5) and (7), a well

n generalized S-procedure [5,7] is employed.  

emma 2 (generalized S-procedure [5]). Given polynomials 0 1( ), ( )... ( ) [ ]mg x g x g x xR

n  and 1( )... ( )m ns x s x  , if  



Journal Pre-proof
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i ig x s x g x  ,  (8) 
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1i

  

   1 2 0: ( ), ( )... ( ) 0 : ( ) 0n n
mx g x g x g x x g x     .  (9)

herefore, the set containment constraint in Eq. (5) can be formulated as follows  

 2 2( / ) ( ) 0V x f l V s       , (10)

e n  denotes the set of SOS polynomials in nx . Constraints (7) can be

mulated in the same manner. Therefore the ROA estimation problem (3)–(7) can be

ulated as an optimization problem 

1 2, ns s 



max  

Subject to            1 nV l    

 2 2

1

( / ) ( )
( ) ( )

n

n

V x f l V s
V p s

 

  

      

   
,  (11)

e ( )( 1,2)il x i   is a small positive polynomial (typically Tx x  with some small  

guarantee that V  is strictly positive and the derivative of V  is strictly negative

( 1,2)i   is an auxiliary SOS multiplier with an appropriate degree. The resulting

ization problem (11) is a bilinear problem with  ,  , and the decision variables in V

led with that in is . 

V-s iteration algorithm 

 straightforward way of solving the bilinear optimization problem (11) is to use a bilinear

r, which is not as well established as linear solvers [31]. A bypass solution is to relax the

lem into linear subproblems, followed by the use of a two-way iterative search algorithm

h leads to the so-called V-s iteration algorithm [31,44]. The problem (11) can then be
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formulated as a three-linear problem with three steps:  -step,  -step, and V -step. When 
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topping criteria of the algorithm are met, a new normalized LF V  , is obtained with a

en level set 

 : : 1nx V     ,  (12)

e V   is the optimized LF and    is the largest possible level set taken as an estimate

e true ROA. Given an initial feasible LF, 0V , a shape function 0p , and the expected

ber of iterations N , the V-s iteration algorithm, denoted as Algorithm 1, can be executed

llows 

 

orithm 1: V-s iteration 

ut: an appropriate LF 0 ( )V x ; a shape function 0( )p x ; the number of iterations N ; 

tput: V  . 

 
 0V V , 0p p ; 

for 1:i N  do 
 

 -step: hold V  fixed and solve for 2s  and   :  

  :=
2 SOS
max
s




 s.t. 2 2[( / ) ] ( ) nV x f l V s        ; (13) 

 
 -step: hold V  and   fixed and solve for 1s  and   : 

  :=
1 SOS
max
s




 s.t. 1( ) ( ) nV p s       ; (14) 

 
oldV V , :old   ; 

 V -step: hold 1 2, , ,s s     fixed and solve for the new V  that satisfies: 

2 2

1

1

[( / ) ] ( )
( ) ( )

(0) 0

n

n

n

V x f l V s
V p s

V l
V

 

  





 

      

   

 



; (15) 

 if (15) is feasible then 
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else 

/oldV V   , 

return 
end if 

 if   /old TOL        then  

return 
end if 

 end for 
 V V  ,  : : 1nx V     . 

 

emark 1: To satisfy Eq.(14), the degree of the SOS multiplier 1s  is chosen such tha

1deg degp s V  . In Eq. (13), (0) 0f   indicates that there are no constant terms in

/ )x f  so the multiplier 2s  associated with the term ( )V   in Eq. (13) should no

de a constant term. The degree of 2s  is then chosen to be larger than the maximum degree

2 , 2l , and ( / )V x f  . Additional details on the practical aspects of the computation

ess can be found in the literature [2,31]. 

emark 2: The choice of the initial LF 0V  is flexible if it guarantees that the initial search

asible. An optimized 0V  is favorable for better estimation; for instance, using the

ization procedure in [13] or the simulation-guided procedure in [3] to obtain a better 0V

ever, considering the difficulty of constructing a LF, a more systematic method is widely

 in the literature as follows 

0
TV x Px , (16)

e P  is computed using the Lyapunov equation 

TA P PA Q   ,  (17)
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0

/
x

A f x


    is considered Hurwitz. P  is a positive definite matrix. 0Q  , and 

Q 

R  

( )p x r 
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I  ( I  is the unit matrix) is typically selected to allow for the largest ball estimation [2]. 

emark 3: In addition to expanding the estimation from the interior, the shape function

 can be used to measure the size of the ROA. The convergence of   and the othe

ents can be considered as the stopping criteria of the algorithm, such as 

. two consecutive   are less than a programmed tolerance TOL ; 

. numerical infeasibility alert for the optimization problem in Eqs. (13)–(15); 

. the specified number of iterations N  is reached. 

emark 4: The V-s iteration algorithm converts the bilinear problem into an iteration

edure that includes two optimization problems (  -step and  -step) and a feasibility

lem (V -step) at each iteration, which can be solved using linear SDP solvers, such as

uMi. The bisection procedure must be applied in the  -step and  -step because the

ization variable   (  ) is coupled with the decision variables in 2s  ( 1s ).  

emark 5: The computational complexity increases dramatically with the scale of the

lem, namely, with the degree and dimension of the system ( )f x  and the degree of the

hat is searched. This is an inherent limitation of SOS optimization. Thus, the approach is

ed to systems with fewer than eight to ten states with a cubic degree. Polynomial models

gher degrees can be addressed with fewer states [47]. Usually, the  -step is responsible

uch of the computational burden owing to the higher overall degree. Suitable software

additional information about the V–s iteration can be found in [48]. The free-distributed

ox SOSOPTS [26] is used in this study. 
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s mentioned in Section 2.1, a user-defined shape function ( )p x  is introduced to enlarge

nner approximation of the ROA, and an appropriate choice of ( )p x  can enhance the

ation [2]. According to this definition, ( )p x  can be any positive definite and convex

nomial, but a widely used choice is a quadratic function with its geometric center at the

n 

( ) Tp x x M x ,  (18)

e the positive definite matrix M  is used for practical implementation. This form is

en for three reasons. First, the introduction of the  -step incurs additional computationa

 Therefore, the interior expansion step is implemented using a computationally cost-

ient quadratic form to avoid obscuring the estimation improvement owing to the incurred

putation cost. Second, the system is assumed to have an asymptotically stable EP at the

n. Thus, the origin is the only identified point inside the true ROA without additiona

ledge, which justifies the selection of the geometric center at the origin. Third, the shape

ix M  is vital for an accurate estimation because it is associated with physical meaning

 as the shape information of the ROA, dimensional scaling information, and the importance

rtain directions in the state space [44]. Its choice is problem-dependent, but generally, M

ed as an identity matrix when prior knowledge is unavailable. The quadratic 0V , which is

puted using Eq. (16), can also be considered as a shape function. 

 the traditional V-s iteration (Algorithm 1), the shape function is fixed. A modification in

roposed the updating of the shape function iteratively using the quadratic component of a
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newly found LF. This modified algorithm (Algorithm 2) can be illustrated by an additional 
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after the V -step in Algorithm 1. 

orithm 2: Modified V-s iteration using an adaptive shape function 
-7: Same as Steps 1–7 in Algorithm 1; 
a: Update the shape function ( )p x  using the quadratic component of V ; 

0: Same as Steps 8–10 in Algorithm 1. 
 

iven that V  must be positive definite, and (0) 0V  , it does not consist of constant and

r terms. Therefore, the adaptive shape function will only have quadratic terms, which

ies that the geometric center of the shape function is still at its origin. As demonstrated in

he adaptive shape function aligns better with a simple-shaped ROA, for instance, the ROA

e Van de Pol system. However, this is challenging for a complex-shaped or unbounded

. In addition, it aligns with only one direction (or converges in one direction) and possibly

es estimation degradation in other directions. Moreover, it suffers from the same

ergence problem as Algorithm 1.  

or brevity, Algorithms 1 and 2 will be designated as A1 and A2, respectively, throughou

eport. 

ROA estimation via RcomSSF 

lthough the algorithm with the previously mentioned modifications could improve ROA

ations in some cases, it still provides conservative estimations and requires significan

putational resources. For the V-s iteration algorithm, with the geometric center of the shape

tion located at the origin, the expansion is bounded in a domain around the origin. Thus

plication is limited for nonsymmetric and unbounded ROA. In this study, the proposed
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RcomSSF improves ROA estimation using SSFs and exploits the algorithm without being 
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ered by its limitations. 

Shifted shape function 

his section examines the concept of the SSF. Rather than being fixed at the origin, as in

onventional shape function in Eq. (18), the center of the shape function is shifted away

 the origin to another point inside the verified level set. Given that the center is a valid

t inside the true ROA, the SSF defined in this way complies with the definition of the shape

tion. It plays the role of interior expansion and guides the estimation growth towards a new

n. The SSF is effective, especially for non-symmetric or unbounded ROA, because of the

t of the shifting center. The shifts can be performed for any shape function; however, for

licity in demonstration and implementation, an ellipsoidal shape function with a shifting

r x  is considered in this study 

( ) ( ) ( )Tp x x x M x x    .  (19)

 can be considered as an extension of Eq. (18) with additional constant and linear terms

duced by x . Thus, it can be incorporated into the general construction of SOS

nomials. Although it is simple, this definition of shape function has never been explored

e best of the author's knowledge. This form, compared with the general SOS construction

 monomials, is an efficient and systematic way to construct shape functions using x

M . This method of construction allows explicit physical information or expert knowledge

 embedded into the process to improve the ROA expansion capabilities. In addition

use the proposed shape function construction fits the SOS framework, elaborate numerica

ization procedures facilitate this approach. 
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dimensional examples in Fig. 1. A comparison between 2( )p x  and 1( )p x  shows the

t of different shape matrices, whereas a comparison between 3( )p x  and 2( )p x  shows

hifting effect of x .  

Rounds of shifts 

he shifting procedure implemented in the shift rounds is described in this section. A shape

tion with a new center x  will generally produce a new level set   . In the next round

 center is selected inside the level set obtained in the previous round. As such, a series of

s yields a series of different proven level sets via iterative shifting. This process can be

inued until convergence to the exact ROA occurs. Subsequently, these acquired level sets

ombined into one set via R-composition [39,40] as the final verified inner approximation

e exact ROA. 

he algorithm is discussed in detail in the following. Initially, the first attempt at a proven

 set of the ROA is performed, for example, using Eq. (16). Subsequently, V-s iteration is

 to obtain a new improved estimation  0 0: : 1nx V     . A1, A2, or othe

ithms can then be used to find 0  , which is used by RcomSSF as an initia

oximation. Subsequently, using the shifting procedure, other proven level sets stem from

  

s shown in Fig. 2, a set of shifting centers ix  ( 1,2,...i  , i  indexes the shifts in the firs

d) is chosen from 0   for the first round of shifts. Then, the V-s algorithm is applied to

in the corresponding optimized LF iV   and the relevant proven level sets

 : 1n
ix V    . Next, for the second round of shifts, ijx  ( 1,2,...j   index shifts in
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the second round) are chosen inside the respective proven level set i  and produce the 
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nd-generation optimized LFs ijV  , and the corresponding proven level sets

 : : 1n
ijx V    . Similarly, the third round of shifts is performed to obtain the third

ration of proven level sets  : : 1n
ijk ijkx V     ( 1,2,...k   indexes the shifts in the

 round). The tree structure for this process is illustrated in Fig. 2. To differentiate differen

s, the indexes , ,i j k  denote the independent shifts in the first, second, and third rounds

ctively. The subscripts, except for the last one, refer to the parent LF and the parent leve

for instance,  123 123: : 1nx V      is obtained for the center 123x  and is chosen

 the parent level set  12 12: : 1nx V     . For succinctness, the approach is

onstrated for only three rounds of shifts; however, without loss of generality, it can be

ded to a higher number of rounds.  

 should be mentioned that the V-s iteration algorithm for the SSF must have a fixed shifting

r to maintain expansion around the specific center. Otherwise, the shifting effect will be

ralized. For example, if A2 is used, the adaptive shape function composed of the quadratic

s of the new LF will always maintain the center at the origin. The examples in Section 5

sed to demonstrate the algorithm. 

Selection of shifting centers 

ere some considerations for selecting the shifting center x  are considered.  

irst, x  must be contained within a proven level set   to guarantee the set containmen

traint in Eq. (7) is satisfied, thus ensuring that the following iterations are feasible.  

econd, x  should be close to the boundary of  . For clarity, a two-dimensional example

ed for the demonstration in Fig. 3. Several locations (denoted by iC  and 1,2,...i  ) of
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x  are shown in  . 1C  is expected to yield a larger ROA estimation than 2C , because 1C  
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ther from the origin and closer to the boundary. One method involves manually selecting

ocation of x  in a proven level set after the previous estimation round. However, for

ral cases, a more generalized procedure may be required. Here, we propose a method for

tructing a general selection algorithm. The algorithm is illustrated in Fig. 3. First, a phase-

tion 

pert knowledge. Subsequently, a line can be assigned to each given phase angle   . The

 of the ROA expansion should be specified. This direction can be determined

r by iteratively sweeping the entire domain or by prioritizing particular directions based

section of each line with the available level set boundary curve defines the point  P . The

dinates of  P   can be obtained by simultaneously solving the equations of the line and

 curves. Subsequently, the distance from the origin to the intersection point  P   can be

mined. As such, the shifting center can be chosen as Px x


   , where Px


 is the

dinate of , and (0, 1)   is the design parameter. The simulations show that a higher

ber of iterations is required for a smaller value of   to push the estimation beyond the

t level set. Otherwise, for a larger  , the center is too close to the boundary, and this

imity results in a small   in Eq. (6) thereby reducing the capability of the interior

nsion algorithm. For the cases considered in this study, the optimal value of   is 0.8.  

hird, a center x  near the convex boundary usually yields a better estimation. In contrast

ter near the concave boundary sees little estimation expansion because it has already

oached the concave boundary of the exact ROA. For example, the case considered in Fig

( 1,4,5,6)i i   is superior to 3C .  
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Fourth, there is no limit on the number of selected centers, and in general, the higher the 
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ber, the more accurate the estimation. However, it should be noted that increasing the

ber of selected centers also increases the computational cost. Therefore, the selection of an

opriate number of centers is a trade-off between accuracy and computational cost.  

he aforementioned considerations will be discussed further in Sec. 5 based on simulation

ples.  

R-composition 

-composition is a systematic way of composing LFs using R-functions. It facilitates the

isition of richer and more flexible LFs and has been used for ROA estimation [39,40]. In

investigation, it is employed in the final step of the RcomSSF to provide a more compac

t by combining the independent level sets obtained from the shifting procedure into a

e set. The compact form of the result is also beneficial for further application. Thus, the

osed method is more complete.  

-functions can represent the natural extension of Boolean operators (e.g., AND, OR, NOT)

eal-valued functions and are, therefore, essential tools for representing the intersection

n, and complement in a geometric setting. The full description of R-functions is beyond

cope of this work and can be found in [39] and the references presented therein. 

onstructed using the LF ( )V x , the function 

( ) 1 ( )R x V x    (20)

 R-function. When ( ) 0R x  , the set  ˆ : ( ) 0nR x R x    is the proven level set in

(12) for ROA estimation. The Boolean functions “NOT,” “AND,” and “OR” correspond

e R-functions, “R-negation,” “R-intersection” and “R-union” in Table I.  
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The R-composition parameter   from  Table I which is chosen within (0, 2] , facilitates 
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 implementation freedom in this work, and 2   is chosen. Geometrically, if 1( )R x

2( )R x  are positive inside a geometrical region and negative outside, then the R

section and R-union represent the intersection and union between the two sets

 1: ( ) 0nx R x   and  2 2
ˆ : : ( ) 0nR x R x   , such that 

   1 2 1 2 1 2 1 2
ˆ ˆ ˆ ˆ: ( , ) 0 , : ( , ) 0n nR R x R R R R R x R R R      .  (21)

or instance, if 1 1( ) 1 TR x x M x   and 2 2( ) 1 TR x x M x  , where 1 diag(1,9)M   and

diag(9,1) , then the intersection and the union between sets 1R̂  and 2R̂  are shown in

4. 

herefore, the R-union is adopted in RcomSSF to produce the union of the estimation. For

ple, the union of the ROAs corresponding to the LFs , , ,...( , , 1,2,3...)i ij ijkV V V i j k     tha

btained via rounds of shifts can be computed iteratively as follows 

  0: 0 , ( ( (1 ,1 ),1 ),1 ,...)n
e e e i ij ijkx R R R R R V V V V              (22)

e have 

0e i ij ijk          (23)

 is considered in [39,40] that ( ) (0)e eR x R   is a LF when 2   or, more precisely, a

unov-like function, because the classical LF condition that requires continuous

rentiability is relaxed. The sufficient conditions for ( ) (0)e eR x R   are that a LF can be

d in [39,40]. A detailed discussion is omitted because R-composition in RcomSSF assumes

ask of better communication of the result in a compact form, and the union of the LFs is

sed to initialize the next optimization process, although this is possible. 

RcomSSF 
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ws 

orithm 3: RcomSSF 

ut: an appropriate LF, 0 ( )V x ; shape function 0( )p x ; the number of iterations N   

tput:     
 Run V-s iteration to obtain the optimized LF, 0V   and the relevant parent level set 

 0 0: : 1nx V     ; 

 The first round of shifts:  

Initialization: 

Give phase angle  and coefficient   to calculate   and locate shifting 

centers ix  ( 1,2,...i  ) in 0  ; specify the shape matrix M ; 0 0V V  , 

0 ( ) ( )T
i ip x x M x x     and iteration number N ； 

Run V-s iteration: obtain the optimized LF iV   and level set i ； 

Further shift check:  

Calculate   again as New  

if   /New TOL         then  

continue the next round; 
else 

go to Step 6; 
end if 

 The second round of shifts: 

Initialization: 

Give phase angle  and coefficient   to calculate   and locate shifting 

centers ijx  ( 1,2,...j  ) in  : : 1n
i ix V     ; specify the shape matrix 

M ; 0 iV V  , 0 ( ) ( )T
ij ijp x x M x x     and iteration number N ; 

Run V-s iteration: obtain the optimized LF, ijV   and the level set ij   

Further shift check. 
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Initialization: 

Give phase angle  and coefficient   to calculate   and locate shifting 

centers ijkx  ( 1,2,...k  ) in  : : 1n
ij ijx V     ; specify the shape matrix 

M ; 0 ijV V  , 0 ( ) ( )T
ijk ijkp x x M x x     and iteration number N ; 

Run V-s iteration (A1): obtain the optimized LF, ijkV   and level set ijk  ; 

Further shift check. 
 The fourth round of shifts … 

 R-composition of 0  , i  , ij  , and ijk   …into one single level set e  using 

Eq. (22). 

he proximity of the center to the boundary   /New      is chosen as a metric for

er shift checks. The tolerance TOL  can be customized to 10%, which means that if the

nsion in the phase  direction is less than 10%, then the shifting stops in this direction

rwise, a new center is decided and the next round of shifts occurs. Shifts in the same round

e performed in parallel to reduce the entire verification period.  

 RcomSSF, an increase in the number of shift rounds with an increased number of selected

 centers leads to a linear increase in the number of iterations. This is advantageous in terms

e computation cost compared to other modifications, for example, improvement by using

creased degree of LF. Moreover, the shifting procedure yields more significant growth in

stimation. These considerations account for the computational efficiency of the proposed

od. In addition, when applied to practical problems, RcomSSF is feasible provided tha

-s iteration algorithm is feasible, and RcomSSF yields a better estimation without the

ementation of more sophisticated approaches.  
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ifying the N  matrix of the shape function[3,13,40,44]. However, RcomSSF is effective

 without expert knowledge of the shape functions or locations of the shifting center. 

 the next section, RcomSSF is benchmarked against A1, A2, and other methods from the

ture using several examples. 

Simulations 

Systems with bounded ROAs 

et us consider systems with bounded ROAs. 

xample 1.  Here we consider a Van de Pol system taken from [2] 

1 2
2

2 1 2 15 ( 1)
x x
x x x x
 


  

.  (24)

 has a stable EP at the origin and an unstable limit cycle. The problem of ROA estimation

e Van de Pol system has been extensively studied [2,3,6,38,49], and it is considered a

hmark example for RcomSSF validation. Its exact ROA is the region enclosed by the limi

, which can be plotted using the reverse trajectory method, as shown in Fig. 5 (a). To

 the estimation, the initial LF 0 ( )V x  is computed using Eq. (16) for Q I , and the

ices A  and P  are defined as follows 

0 1 2.7 0.5
,

1 5 0.5 0.2
A P

    
    

    
. 

computation is then initialized based on the following expressions  

2 2
0 1 1 2 2 0 0( ) 2.7 0.2 , ( ) ( )V x x x x x p x V x    .  (25)
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e ROA is shown in Fig. 5. The results obtained for algorithms A1 and A2 in [2] under the

 initial conditions are also shown for comparison. Fig. 5 (a) shows that when a six-degree

 searched using the iteration number 30N   and 60, A2 with an adaptive shape function

s a larger estimation than A1 with a fixed shape function. However, it still fails to predic

xact ROA. Moreover, there is no improvement in the estimation for both A1 and A2 after

erations because the algorithm converges. This is examined in further detail in Fig. 5 (b)

2. The variation in the adaptive shape function is plotted for the 1st, 30th, and 60th iterations

results indicate that the ellipse rotates anticlockwise to align better with the shape of the

ROA. Stretching along the major axis and shrinking along the minor axis can also be

rved, which subsequently leads to a small increase and decrease in the estimation in the

sponding directions. However, the significant rotation and stretching almost stop after 30

tions, and the estimation process converges. In summary, A1 yields worse estimations

pared to A2 for the same number of iterations. Both A1 and A2 converge before reaching

rue ROA; therefore, a further increase in the number of iterations does not contribute to

xpansion of the estimate. Shrinking of the shape function in a certain direction leads to a

e estimation. 

he proposed RcomSSF addresses these issues. The V-s iteration is performed first to yield

id initial level set. The final V   for A1 at 30N   is selected as the initial LF 0V  . A

e matrix M I  is selected for the general circle ( )p x . To initialize the first round o

s, two centers 1 [1, 1]x   and 2 [ 1, 1]x     are selected directionally inside the level se
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tion is constructed using Eq. (19) with 1 [1, 1]x   as follows 

2 2
1 1 2 1 2( ) 2 2 2p x x x x x     .  

g this shape function, the proven level set  1 1: : 1nx V      (green dotted line in

5 (c)) that very precisely covers the ROA for 2 0x   is obtained. Another shifting center

[ 1, 1]   gives the second shape function  

2 2
2 1 2 1 2( ) 2 2 2p x x x x x     .  

wise, using the second shape function, the proven level set  2 2: : 1nx V    

n dashed line in Fig. 5 (c)) that precisely covers the ROA for 2 0x   is obtained. Together

nion of the three level sets 0  , 1  , and 2   is computed using R-composition based

q. (22) 

0 1 2: { | 0}, ( (1 ,1 ),1 )n
e e e U Ux R R R R V V V            (26)

 

0 1 2e      .  (27)

s indicated in Table I, eR  is a complex function. However, in this case, a polynomia

oximation can be obtained 

6 5 4 2 3 3
1 1 2 1 2 1 2

2 4 5 5 6 5
1 2 1 2 2 1
4 3 2 5 2 3 5 4

1 2 1 2 1 2 1 2
7 5

2

0.097268 0.047707 0.007790 0.003634
0.001048 0.000208 3.601840e 0.000273
0.000271 0.000396 9.588542e 1.126447e
2.250610e .

( )

0

e x x x x x x x
x x x x x x
x x x x x

x

x

x x x

R


 



   

   

   

 



4 3 2 2
1 1 2 1 2

3 4 3 2
1 2 2 1 1 2

2 5 3 2
1 2 2 1 1 2

2
2

542801 0.073756 0.082728
0.021571 0.003026 0.000389 0.000149
0.000249 8.912165e 1.182416 0.417432
0.076201 1

x x x x x
x x x x x x
x x x x x x
x



 

   

   

 

.  
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ol system in [45]. However, the ROA estimate obtained for a six-degree LF was less than

rue ROA and was similar to the A2 prediction shown in Fig. 5 (a). In addition, the method

is limited to bounded ROA, however, the proposed RcomSSF can also be applied to the

unded ROA, as illustrated in the following examples. 

Systems with unbounded ROAs 

any real-world systems have unbounded ROAs. These are considered below to validate

SSF. 

xample 2.  Consider the following system [2,50] 

3 2
1 1 1 1

2 2

4 6 2 ,
2 .

x x x x
x x

    


 
  (28)

nalysis of the linearized system, combined with the vector field plot in Fig. 6 (a), shows

the system has three EPs, namely, two stable node sinks (0,0) and (1,0) and the saddle

t (0.5, 0). A line 1 0.5x   divides the plane. The trajectories originating from the left

/ right-hand side of this line sink down to the node (0, 0) /(1,0). Therefore, two ROAs

spond to two stable node sinks, and each of them can be treated equivalently. For the sake

evity, the performance of the RcomSSF will be demonstrated for only one EP, namely

, with an unbounded ROA in the 1 0.5x   plane.  

or ROA estimation, the initial LF is computed using Eq. (16) for Q I , and the matrices

nd P  are obtained 

2 0 0.25 0
,

0 2 0 0.25
A P

   
    

   
. 

, the computation is initialized as follows 
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 2 2
0 1 2( ) 0.25 0.25V x x x  .  (29) 
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e first examine the results for algorithms A1 and A2 [2,50]. In these two cases, the initia

e function is set as 

0 0( ) 0.8 ( )p x V x   (30)

the quartic LF is searched. As shown in Fig. 6 (a), A1 converges after approximately 30

tions. The adaptive shape function takes the form  

2 2 2 8
1 2 1 2( ) 2.58 3.47e 3.28ep x x x x x      (31)

 the 30th iteration, and A2 covers a much larger area as shown in Fig. 6 (a). However, the

lation result in [2] shows that the left boundary of 1x  is still limited by 1.0 , even when

umber of iterations is increased to 150. This limitation, however, can be circumvented

 the proposed RcomSSF, which allows for an extension in the 1x  direction when using

F. The level set obtained for A2  0 0: : 1nx V      after 30 iterations is used to

uce shifting centers, and a center 1 [ 0.8, 0]x     is chosen to expand the estimate in the

direction. For the shape matrix M I , the SSF constructed using Eq. (19) is given by

2 2
1 1 2 1( ) 1.60 0.64p x x x x    .  (32)

g RcomSSF, a new proven level set  1 1: : 1nx V      (green dotted line in Fig. 6

is obtained. The left boundary is then extended from 1.0  to 1.8 , but the estimation

g the 2x  axis shrinks. Inspired by the adaptive shape function in A2, a shape matrix

diag(1,1 /16)  is customized to apply a greater weight to the 2x  axis. In this case, the

wing shape function is obtained 

1

2 2
1 1 2 1( ) 0.0625 1.60 0.64

M
p x x x x    .  (33)
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terations (green dashed line, denoted as  1 11 1: : 1
M M

nx V     ). The estimation

nds along not only the 1x  axis but also the 2x  axis. The union of the obtained leve

is computed using Eq. (22) as 

10 1: { | 0}, (1 ,1 )
M

n
e e ex R R R V V          (34)

 

10 1Me    .  (35)

resulting level set is represented by the red dotted line in Fig. 6 (b).  

his example shows the ability of the proposed RcomSSF method to extend the estimation

specific direction defined by a shifting center. 

xample 3. Consider the following system [2] 

1 1 2 1 2

2 1 2 1 2

50 16 13.8
13 9 5.5

x x x x x
x x x x x
   


  

. (36)

nalysis of the linearized system yields a stable node (0, 0) and a saddle point (1.45, 18.17)

vector field plot in Fig. 7 (a) shows the boundary of the ROA for EP (0, 0). At the

lization stage of the algorithm, 0 ( )V x  is computed using Eq. (16) for Q I  as follows

1
2 2

0 1 2 20.011694 0.01( ) 3034 0.043969V x xxx x  .  (37)

shape function is set to 0 0( ) ( )p x V x , and a four-degree LF is searched iteratively. 

 Fig. 7 (a), the results of A1 (blue lines) and A2 (black lines) are shown. There is no

ficant improvement after 30 iterations, which indicates that convergence is achieved. This

orces the idea that an increase in the number of iterations cannot be a universal remedy

eover, the estimation obtained via A1 approaches the exact boundary only in a specific



Journal Pre-proof

 

region, and the adaptive shape function in A2 guides the estimation to grow in a skewed 
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tion; it does not fit the boundary. However, an unbounded ROA means that there is an

rtunity for estimation growth. The proposed RcomSSF fulfills this extension using the

ing procedure. The final ROA estimate obtained after two rounds of shifting is plotted in

7 (a). The results show that the proposed algorithm significantly improves ROA prediction

he effects of the shape function parameter, namely, centers and N  matrix, on the

ation results and the algorithm application are discussed in the following. For the firs

d of shifts, the proven level set obtained after 30 iterations of A1 is chosen as the paren

 set  0 0: : 1nx V     . Two different centers 1 [0, 4]x     and 2 [ 7.5,0]x     are

en to pull the estimation towards a negative 1x  and a negative 2x . For the center

[0, 4] , the shape matrix 1 diag(1/ 4,1)M   is selected. The corresponding shape

tions are as follows 

2 2
1 1 2 2( ) 0.25 8 16p x x x x    . (38)

he center 2 [ 7.5,0]x    , the identity matrix is selected as a shape matrix, and the shape

tion is as follows 

2 2
1 1 2 2( ) 15 56.25p x x x x    . (39)

obtained proven level sets are identified using green lines (green solid line

 1: 1nx V     and green dashed line  2 2: : 1nx V     ) in Fig. 7 (b). Even the

round of shifting significantly extends the ROA estimation. The second round of shifts is

 performed. Three new centers are selected from the first-round level set 1  . The center

[0, 11]   is selected to move the extension further into the third and fourth quadrants. Fo

hape matrix, 1 diag(1/ 4,1)M  , the SSF is given as 
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 2 2
11 1 2 2( ) 0.25 22 121p x x x x      (40) 
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resulting level set  11 11: : 1nx V      is represented by the magenta solid line in

7 (b). Then, in 2  , the centers 21 [ 18,2]x     and 22 [ 3,8]x     are chosen to extrac

stimation in the second and third quadrants, respectively. For M I , the SSFs are

ined as follows 

2 2
21 1 2 1 2( ) 36 4 328p x x x x x     , 2 2

22 1 2 1 2( ) 6 16 73p x x x x x     . (41)

resulting level sets are represented in Fig. 7 (b) by the magenta dashed line

 21: : 1nx V    ) and the magenta dotted line (  22 22: : 1nx V     ). In the

est of brevity, further shifts are omitted. Finally, the union of the level set is computed

 Eq. (22) as follows 

0 1 2 11 21 22

: { | 0},
( ( ( ( (1 ,1 ),1 ),1 ),1 ),1 )

n
e e

e

x R
R R R R R R V V V V V V



     

  

      
  (42)

0 1 2 11 21 22e            .  (43)

union e  can be visualized in Fig. 7 (a). 

rom the comparison of the A1, A2, and RcomSSF methods shown in Fig.7(a), it can be

luded that the ROA predictions obtained for A1 and A2 are limited by their convergence

an increased number of iterations (from 30 to 60) cannot facilitate further expansion

ltaneously, this limitation is circumvented in the case of the proposed approach RcomSSF

ignificant estimation improvements are demonstrated, even after several shifting rounds

shifting process can be continued further and is limited only by the available time and

putational resources. 
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The effect of the shape matrix M  on the algorithm performance is also studied. Fig. 7 (c) 
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s that the estimation obtained using 1M  expands more along the 1x  axis, and maintains

ilar expansion along the 2x  axis because more weight is assigned to 1x  in 1M  based

e geometry knowledge of the ellipse. This highlights the effect of the shape matrix and

ates its selection. 

xample 4.  Here we consider Hahn’s example as follows 

2
1 1 1 2

2 2

2x x x x
x x

   


 
. (44)

his system has an asymptotically stable EP at the origin, and its exact ROA is known to be

1 . The determination of ROA has been extensively studied [6,31,51]. The predetermined

e function is given by 

14.47 18.55
( )

18.55 26.53
Tp x x x 

  
 

 (45)

used in a previous study [31]. ROA estimation can be increased for higher-degree LFs and

mposed LF via pointwise maximum or minimum polynomials [31]. Nevertheless, the

ictions are highly conservative. To significantly improve the estimations, the use o

iple-shape functions obtained by rotating the major axis of an ellipse every three degrees

oposed in [31]. Consequently, a series of level sets is obtained. The envelopes of these sets

hown in Fig. 8 (a) for comparison. Even though the estimations are improved compared

e single LF method, the estimation is still boxed inside 6x  . The results of the invarian

ethod [51] benchmarked against Hahn’s example are plotted in Fig. 8. The results are

 more conservative. Overall, these methods are not well-suited because of the unbounded

re of the problem. 
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ods are initialized with 0 ( )V x  and computed using Eq. (16) for Q I   

2 2
0 1 20.5 0 5) .(V x x x .  (46)

omparison, the initial shape function is set with Eq. (45), and a search is performed for a

egree LF. As shown in Fig. 8 (a), A1 with the fixed shape function yields better

ations than A2 with the adaptive shape function, indicating that the modification in A2 is

necessarily effective. In addition, both A1 and A2 encounter the same problem o

ergence, similar to the previously considered cases. Fig. 8 shows that the proposed

SSF outperforms the aforementioned methods. The RcomSSF not only significantly

ds the estimations towards the unbounded region, but also predicts the boundary of the

lity region more precisely. The ROA estimate is achieved after two rounds of shifting, as

n in Fig. 8 (b). The level set  0 0: : 1nx V      obtained using A1 is taken as the

t level set. Considering that the exact boundary 1 2 1x x   and 0   are symmetric abou

rigin, two centers, 1 [ 4,3]x     and 2 [4, 3]x    , are chosen from 0  , together with

I  to produce the following shape functions  

2 2
1 1 2 1 2( ) 8 6 25p x x x x x      and 2 2

2 1 2 1 2( ) 8 6 25p x x x x x     . (47)

two obtained proven level sets are represented by the green lines in Fig. 8 (b) (the green

 line  1 1: : 1nx V      and the green dashed line  2 2: : 1nx V     ). Next

he second round of shifts, the centers 11 [ 5,5]x     and 12 [ 6,2]x     are selected from

 and symmetrical centers 21 [5, 5]x     and 22 [6, 2]x     are selected from 2  . The

ting level sets are represented using cyan lines. The second round closely approaches the

r and lower boundaries. Moreover, the proposed routine can be performed for the nex
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round of shifts for further expansion. Using R-composition, these independent level sets are 
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bined into a single set 

0 1 2 11 12 21 22

: { | 0},
( ( ( ( ( (1 ,1 ),1 ),1 ),1 ),1 ),1 )

n
e e

e

x R
R R R R R R R V V V V V V V



      

  

       
 

(48) 

 

0 1 2 11 12 21 22e                (49)

own in Fig. 8 (a). 

xample 5. This example is a three-degree Taylor expansion of the system given in [52]

2
1 2 3

2 3
2 3 1 1 1 1

3 3 5
3 1 2 3 2 3 3

+
( 1/ 6 )

2 1/10 (2 / 3 2 / 5 )

x x x
x x x x x x
x x x x x x x

 


   


      

.  (50)

 originates from an asymptotically stable EP (0,0) and three other unstable EPs. The ROA

ation results of EP (0,0) for A1, A2, and the proposed RcomSSF method are shown in

9 (a) and (b), respectively, and the cross-section for 2 0x   is shown in Fig. 9 (c); the

-dimensional visualization is shown in Fig. 9 (d). The results show that the RcomSSF

 a larger provable level set by shifting to centers 1 [0.8,0,0]x   , 2 [ 0.8,0,0.6]x   

[0.2,0, 0.8]  and 4 [0,0,1.2]x   , which are chosen in the level set obtained by A1. We

te 0   as the set obtained using A1 and ( 1,2,3,4)i i    as the sets obtained during the

ing procedure. Their union via R-composition using Eq. (22) is given by 

0 1 2 3 4

: { | 0},
( ( ( (1 ,1 ),1 ),1 ),1 )

n
e e

e

x R
R R R R R V V V V V



    

  

     
 (51)

0 1 2 3 4e           (52)
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This example demonstrates the effectiveness of RcomSSF for a higher dimensional system.  
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Conclusion 

nowledge of the ROA is crucial for nonlinear system analysis and control design

ever, existing methods facilitate conservative estimates, especially for non-symmetric or

unded ROAs. A cost-effective method (RcomSSF) for ROA estimation of nonlinea

nomial systems that demonstrates superior effectiveness compared to other existing

oaches is proposed in this study. This method utilizes shape functions with centers that are

ed iteratively closer to the boundary of the obtained proven subset. SOS programming

ods are applied to obtain Lyapunov functions for the shifted shape functions. A

position method for Lyapunov functions, namely R-composition, is used in the proposed

SSF to combine the resulting independent level sets into a single level set or single

tion, which results in a compact and richer-shaped expression.  

he proposed method is based on SOS optimization techniques and relies on the efficiency

e SOS solver. One of the well-recognized limitations of these solvers is that their

putational complexity increases dramatically with the scale of the problem. 

ive examples from the literature, including two- and three-dimensional systems with

ded or unbounded, symmetric, or non-symmetric ROA are used to benchmark the

osed RcomSSF compared to existing methods. The results demonstrate the exceptiona

rmance of RcomSSF. The main advantages of the algorithm are the following: improved

ation even when other algorithms encounter estimation limits owing to convergence or

erical infeasibility, improved estimation precision at the cost of a linear increase in the
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computational burden, instead of a polynomial growth in the case of high-degree LFs, and no 
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or should be used online please.) 

1 Demonstration of shape functions: 1( ) : [1,0;0,1], [0,0]p x M x 

) : [1,1;0,3], [0,0]M x  ;  

2 Conceptual diagram of three rounds of shifts in RcomSSF 

3 Location of shifting centers 

4 Green line: the union between two ellipses  1 2 1 2
ˆ ˆ : ( , ) 0nR R x R R R   ; Red

 the intersection between two ellipses  1 2 1 2
ˆ ˆ : ( , ) 0nR R x R R R   . 

5 ROA estimation for Example 1 

) ROA estimation for A1 and A2 at 30 and 60 iterations 

) ROA estimation and level sets of ( )p x  for A2 

) Shifting details of RcomSSF 

) ROA estimation for RcomSSF 

6 ROA estimation for Example 2 

) ROA estimation for A1 and A2  

) ROA estimation for RcomSSF 

7 ROA estimation for Example 3 

) Vector field and ROA estimation using A1, A2, and RcomSSF 

) Effect of shifting centers  

) Effect of shape matrices 

8 ROA estimation of Example 4 

) ROA estimation for A1, A2, RcomSSF, and the methods in [31,51]  
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(b) Shifting details of RcomSSF 
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9 ROA estimation for Example 5 

) ROA estimation for A1 and A2  

) ROA estimation for RcomSSF  

) Cross-section for 2 0x    

) Shifting details of RcomSSF 

 

Fig. 1 Demonstration of shape functions: 1( ) : [1,0;0,1], [0,0]p x M x  ; 

2( ) : [1,1;0,3], [0,0]p x M x  ; 3( ) : [1,0;0,3], [1,1]p x M x   

 solid line: 1( ) 1p x  ; red dotted line: 2( ) 1p x  ; orange dashed line: 3( ) 1p x  ; 
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111 111
V sx V  

112 112
V sx V  

121 121
V sx V  

122 122
V sx V  

211 211
V sx V  

122 122
V sx V  

211 212
V sx V  

221 222
V sx V  

11 11
V sx V  

12 12
V sx V  

21 21
V sx V  

22 22
V sx V  

1 1
V sx V  

2 2
V sx V  

0 0
V sV V  R-composition e

 

Fig. 2 Conceptual diagram of three rounds of shifts in RcomSSF 
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Fig. 3 Location of shifting centers 
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Fig. 4 Green line: the union between two ellipses 

 1 2 1 2
ˆ ˆ : ( , ) 0nR R x R R R   ; Red line: the intersection between two ellipses 

 1 2 1 2
ˆ ˆ : ( , ) 0nR R x R R R   . 
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(a) ROA estimation for A1 and A2  

at 30 and 60 iterations 

(b) ROA estimation and level sets  

of ( )p x  for A2 

 
(c) Shifting details of RcomSSF (d) ROA estimation for RcomSSF 

Fig. 5 ROA estimation for Example 1 

 
(a) ROA estimation for A1 and A2 (b) ROA estimation for RcomSSF 

Fig. 6 ROA estimation for Example 2 
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(a) Vector field and ROA estimation using A1, A2, and RcomSSF 

 
(b) Effect of shifting centers (c) Effect of shape matrices 

Fig. 7 ROA estimation for Example 3 

 

(a) ROA estimation for A1, A2, 
RcomSSF, and the methods in [31,51] 

(b) Shifting details of RcomSSF 

Fig. 8 ROA estimation of Example 4 
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(a) ROA estimation for A1 and A2 (b) ROA estimation for RcomSSF 

 

(c) Cross-section for 2 0x   (d) Shifting details of RcomSSF 

Fig. 9 ROA estimation for Example 5 
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ig. 1, blue solid line: 1( ) 1p x  ; red dotted line: 2( ) 1p x  ; orange dashed line: 3( ) 1p x 

ig. 2, no legend. 

ig. 3, no legend. 

ig. 4, Green line: the union between two ellipses  1 2 1 2
ˆ ˆ : ( , ) 0nR R x R R R   ; Red

 the intersection between two ellipses  1 2 1 2
ˆ ˆ : ( , ) 0nR R x R R R   . 

ig. 5 (a), red sold line: Exact ROA; blue solid line: A1, N=30; blue dotted line: A1, N=60

 solid line: A2, N=30; black dotted line: A2, N=60. 

ig. 5 (b), black solid line: N =30, ( )V x ; black dotted line: N =60, ( )V x ; cyan dash-do

 N =1, ( )p x ; cyan solid line: N =30, ( )p x ; cyan dotted line: A1, N =60, ( )p x ;  

ig. 5 (c), red sold line: Exact ROA; blue solid line: A1; green dotted line: 1st [1, 1]; green

ed line: 1st [-1, -1] 

ig. 5 (d), red sold line: Exact ROA; green dotted line: RcomSSF e  

ig. 6 (a), light blue arrow: Vector field; red sold line: Exact ROA; blue solid line: N =30

( )V x ; black solid line: N =30, A2 ( )V x ; blue dashed line: N =30, A1 ( )p x ; black dashed

 N =30, A2 ( )p x . 

ig. 6 (b), black solid line: A2; green dotted line: N =30, 1st [-0.8, 0]; green dash-dot line

0, 1st [-0.8, 0], 1M ; green dashed line: N =50, 1st [-0.8, 0] 1M ; red dotted line: RcomSSF
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Fig. 7 (a), light blue arrow: Vector field; red sold line: Exact ROA; blue solid line: N =30, 
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blue dotted line: N =60, A1; black solid line: N =30, A2; black dotted line: N =60, A2

 dotted line: RcomSSF e . 

ig. 7 (b), blue sold line: A1; green solid line: 1st [0, -4] 1M ; green dashed line: 1st [-7.5, 0]

enta solid line: 2nd [0, -11] 1M ; magenta dashed line: 2nd [-18, 2]; magenta dotted line: 2n

]. 

ig. 7 (c), green dash-dot line: 1st [0, -4]; green solid line: 1st [0, -4] 1M ; magenta dash-do

 2nd [0, -11] 1M ; magenta solid line: 2nd [0, -11] 1M  

ig. 8 (a), red sold line: Exact ROA; blue solid line: N =30, A1; black solid line: N =30

green dotted line: RcomSSF e ; magenta solid line: Ref. [31]; magenta dotted line: Ref

ig. 8 (a), red sold line: Exact ROA; blue solid line: A1; green solid line: 1st [-4, 3]; cyan

ed line: 2nd [-5, 5]; cyan dash-dot line: 2nd [-6, 2]; green dashed line: 1st [4, -3]; cyan solid

 2nd [5, -5]; cyan dotted line: 2nd [6, -2] 

ig. 9 (a), blue: N =30, A1; red: N =30, A2 

ig. 9 (b), red: N =30, A2; green: RcomSSF e  

ig. 9 (c), blue solid line: N =30, A1; black solid line: N =30, A2; green dotted line

SSF e ; 

ig. 9 (d), blue: N =30, A1; green: 1st [0.8, 0, 0]; cyan: 1st [-0.8, 0, 0.6]; magenta: 1st [0.2

.8]; black: 1st [0, 0, 1.2]  
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Table I: Correspondence between logical functions and R-composition 

oolean Geometry R-composition 

OT complement ( )R x  

ND intersection 2 2
1 2 1 2 1 2 1 2( , ) ( ) ( ) ( ) ( ) ( ) ( )R R R R x R x R x R x R x R x      

OR union 2 2
1 2 1 2 1 2 1 2( , ) ( ) ( ) ( ) ( ) ( ) ( )R R R R x R x R x R x R x R x      

 



Journal Pre-proof

Estimation of non-symmetric and unbounded region

H









Jo
ur

na
l P

re
-p

ro
of

of attraction using shifted shape function and R-

composition

ighlights

A numerical method based on SOS programming is proposed to
enlarge  the  estimation  of  the  region  of  attraction  for  locally
asymptotically  stable  equilibrium points  of  general  polynomial
systems.
The method innovatively uses shifted shape functions to enlarge
the  region  of  attraction  estimation,  effective  even  for  non-
symmetric  or  unbounded  region  of  attraction,  for  which  the
existing methods present limitations.
R-composition is employed to express the result in a compact
form.
The proposed method can bring ROA estimation improvement
without incurring dramatic computation costs as compared with
some existing methods.
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