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Abstract.

The flowfield around a helicopter rotor in forward flight is intrinsically
unsteady and contains many complex interacting flow phenomena. As a consequence
experimental investigations are difficult to perform, difficult to interpret and costly.
There is a clear need for reliable computational methods whose uncertainties are less
than those of experiment. In this paper computational methods currently available for
the solution of problems in rotor aerodynamics are examined and the current direction

of research in this field identified.



1. Introduction.

Methods for the calculation of the flowfield around helicopter rotor blades are
much less well developed than those which are available to the fixed wing
community. The major reason for this is the overall complexity of the flow physics
which must be modelled which include varying freestream Mach number, varying
incidence, dynamic stall and strong vortex interactions. At the present time the
majority of codes which are in routine use for rotor aerodynamics are based upon the
full potential equations, with coupling to wake analyses and boundary layer codes for
lifting flows. Such codes contain considerable approximations to the flow physics and
are incapable of predicting the flow behaviour on the retreating blade. In recent years
work has been done to improve the physical modelling using the Euler and Navier-
Stokes equations.

This paper begins with an introduction to the basic physical flow processes
which any reliable (and complete) numerical method must seek to model if the rotor
flowtield is to be calculated correctly. The solution of simplified forms of the basic
equations of fluid dynamics is then considered in brief, followed by a more detailed

analysis of solutions to the Navier-Stokes equations for rotor aerodynamics.



2. The flowfield of a helicopter in forward flight.

The flow about a helicopter rotor in forward flight is asymmetric and
consequently the blades experience large variations in spanwise dynamic pressure,
with a resultant large rolling moment about the rotor hub. This problem was overcome
by de la Cierve who in 1923 introduced a flapping hinge in his autogyro design. The
flapping hinge relieves the large hub rolling moment by allowing the rotor blades to
flap, thus changing their local effective angle of incidence. The resulting flow is then
one in which the advancing blade operates at high Mach number and low angle of
incidence, while the retreating blade operates at high angle of incidence (often well
above the static stall angle of incidence of the rotor aerofoil) and low Mach number.
Other important flow features include the complicated helical wake and the strong tip
vortices which are shed by the rotor blades and with which following blades may
interact.

In this section the basic physical processes, see Figure 1 (from Caradonna),
which must be modelled if accurate predictions of the rotor flowfield are to be

obtained, are described.

2.1 Compressibility effects.
The distribution of freestream Mach number in the azimuthal plane is
described by Equation (2.1),

Mo = Mgp { usin(y) +r} (2.1)
in which r is the non-dimensional spanwise location, y is the azimuth angle and p is
the advance ratio. At high advance ratios a region of transonic flow may develop
(depending on the tip Mach number) over the outboard region of the advancing blade,

this is shown in Figure (2) where contours of freestream Mach number are plotted



over the rotor disc for an advance ratio of 0.45 and tip Mach number of 0.6.

The occurrence of transonic flow at a given spanwise location is unsteady for
rotors in forward flight with large variations in both shock strength and shock location
occurring. For azimuthal angles between 0 and 90 degrees the flow is accelerating and
the shock wave will increase in magnitude and move towards the rotor leading edge
with increasing azimuth angle. The flow is decelerating for azimuth angles in the
range 90 to 180 degrees where the shock wave will continue to move towards the
leading edge while gradually reducing in strength. This is clearly demonstrated in
Figure (3), taken from Reference (2), which shows the chordwise variation in local
Mach number for three azimuthal angles, 60, 90 and 120 degrees. The unsteady nature
of the flow is clearly evident from the symmetric azimuths (60 and 120 degrees)
where the chordwise Mach number distributions would be expected to be identical in
a steady flow or quasi-steady flow.

Where the shock is of sufficient strength to cause shock induced separation the
flow will be strongly three-dimensional. The ability to calculate transonic flows in the
rotor flowfield is of great practical importance as the onset of wave drag is a major
limiting factor in the aerodynamic performance of the rotor blade. Additionally if the
tip Mach number is highly supercritical then delocalisation may occur at the blade tip,
the occurrence of this phenomena may represent a significant contribution to the
overall level of noise which can be attributed to the rotor aerodynamics.

2.2 Blade vortex interaction (BVI).

A significant proportion of the overall lift generated by a helicopter rotor is
developed over a very small extent of the span close to the tip. Such a concentration of
aerodynamic loading leads to the formation of a very strong tip vortex which is shed

into the wake. This tip vortex is persistent and may interact with following rotor



blades. For rotors which are in hover or vertical descent the tip vortex will impinge
directly onto the following blades and strong blade vortex interactions of the type

described in Reference (4) will occur. The importance of such interactions is clearly
evident in Figure (4) (taken from Reference (4)) which shows bifurcation of a shock
on the advancing blade as a direct result of the blade vortex interaction. In forward
flight at high advance ratios blade vortex interaction is much less significant as the tip
vortices are convected downstream of the rotor disc at the freestream velocity.

The ability to model blade vortex interactions correctly is important because
this phenomena not only affects aerodynamic performance but also represents a major
contribution to the overall noise of the helicopter.

2.3 Dynamic stall.

For a helicopter in forward flight the freestream velocity varies with azimuthal

angle in the manner described by Equation (2.1). This will in turn lead to a variation

in the aerodynamic moment which, as the blades are hinged, produces blade flapping.

The resulting motion of the rotor blade can be expressed in the form,

198 +x 9B + kP = M¢ )
[

in which My is the aerodynamic moment (which varies as a function of azimuth angle
(¥), I, x and k are the moment of inertia, damping constant and spring constant of the
blade respectively, and B is the blade flapping angle. Equation (2.2) may be solved for
B as a Fourier series of the form,
N
B(t) = Bo- X a, cos(ny) + b, sin(ny) (2.3)
In which B, is the coning angle ;11:111 the azimuth angle is a function of time

The effects of the flapping motion described by Equation (2.3) are to induce



angle of attack variations such that the retreating blade operates at a much higher
incidence than the advancing blade. This angle of incidence is often well in excess of
the static stall angle of attack of the rotor aerofoil due to the unsteady nature of

the flow. Stall is delayed to a much higher angle of attack and is much more severe
than that which would be experienced at the static stall angle of attack. This
phenomena is known as dynamic stall. The sequence of events which occur after the
static stall angle is passed are illustrated in Figure (5) (from Reference (5)) for the
NACA 0012 aerofoil. As the aerofoil passes the static stall angle of attack reversed
flow begins to develop in the boundary layer towards the trailing edge. With
increasing incidence this region of reversed flow grows so that it extends over a much
greater proportion of the chord and the boundary layer begins to thicken. Eventually
the boundary layer will separate from the aerofoil surface and a strong vortical flow
develops close to the leading edge which contributes significantly to the overall lift of
the aerofoil. This region of vortical flow moves downstream with increasing incidence
until it is shed into the wake at which time lift stall begins. The flow then remains
stalled until the boundary layer becomes re-attached to the aerofoil surface, which is
often not until after the incidence has returned to a value well below that of static stall.
This behaviour results in a lift hysterisis loop of the type shown in Figure (5).

Figures (6) and (7) show flow visualisations of aerofoils undergoing dynamic stall
which have been obtained by experime:nt6 and computation’.

The dynamic stall of helicopter rotors is of great practical significance during
high speed forward flight as its occurrence restricts the maximum forward flight
speed, interestingly this is the opposite of the situation found for fixed wing aircraft
where the angle at which stall occurs imposes a limit on the minimum forward flight

speed.



2.4 Reversed flow.

In forward flight Equation (2.1) describes a region of the flow field in which
the direction of flow is reversed. This region exists on the retreating blade for
spanwise stations where,

wlsin(y)| >r 2.4)
The occurrence of reversed flow and incompressible flow near to the hub presents a
major challenge to current computational methods based upon compressible
formulations of the governing equations. At the present time incompressible flow
solvers must be employed at low Mach numbers, below 0.1, if reliable results are to
be obtained. Due to the small contribution of regions close to the hub to the overall
aerodynamic forces it may be possible to neglect this region of the rotor blade without
any significant reduction in the accuracy of the method used.
2.5 Rotor Wake.

The flowfield around helicopter rotors in hover is dominated by a complicated
helical wake. This wake can generally be considered to be both incompressible and
inviscid (although it is generated by viscous effects) as it is generally confined to thin
layers away from the main rotor, which while convected by the global flow do not
interact with it. The calculation of the geometry of the rotor wake remains one of the
most difficult and most studied problems in helicopter rotor aerodynamics. The
geometry of the rotor waké becomes very complicated in forward flight although it is
a much less dominant feature of the flowfield as it is convected away from the rotor at

the forward flight speed of the helicopter.



3. The calculation of the flowfield around helicopter rotors.

A large number of computational tools have been developed within the last 20
years to predict the flowfield around helicopter rotors. The solvers differ mainly in
their choice for the governing equations (full potential, Euler or Navier-Stokes) and
while less sophisticated models are unable to directly predict many of the flow
features which have been described in Section 2 they are able to produce useful results
using limited computational resources.

In the following sections solutions of the full potential, Euler and Navier-
Stokes equations are considered in turn.

3.1 The solution of the Full potential equations.

Until very recently the most common flow analyses were those based upon the
solution of the full potential equations. This class of flow solvers is by far the most
efficient, although much of the underlying flow physics are lost in the assumptions
which must be made. Considerable work has been done to extend the validity of the
full potential equations by coupling the governing equations with additional
theoretical and empirical models to allow the prediction of phenomena such as blade
vortex interactions, retreating blade dynamic stall and the rotor wake. A detailed
review of this work is béyond the scope of the present report and so only a brief
description is presented here. The interested reader is directed to the excellent
reviews of this field by Carradonna’®®.

The full Navier-Stokes equations, which are thought to describe the dynamics
of a fluid exactly, may be considerably simplified by assuming that the flow is both
inviscid and irrotational. The resulting velocity vector field U can then be described
by the gradient of a potential function, ®.

ie. U=Vd (3.1)



This represents a considerable simplification of the problem which must then
be solved because not only are the three velocity components (u, v, w) now replaced
by a single variable, but also the four differential equations which describe the
conservation of momentum (three equations) and conservation of energy, are now

replaced by a single algebraic expression, Bernoulli’s equation,

P _|_xl 1 voy
pm—[l - [d>t+2(V<D) H (3.2)

Taking Equation (3.2) together with the continuity equation,

dp+Vpd=0 (3.3)
ot

a closed system of equations is obtained for non-lifting bodies. In order to close the
system of equations for lifting bodies it is necessary to specify a jump condition at the
trailing edge which ensures that the potential remains single valued, this is the well
known Kutta condition.

This system of equations, known as the full potential equations, requires
significantly less computation, running at least five times faster than a comparable
Euler solver '°. The assumptions which have been made do however represent a
considerable simplification of the flow physics which are involved, and the method

must be extended by coupling with further analytical and empirical expressions if the

flow features described in Section 2 are to be modelled.

If the flow is considered to be inviscid then dynamic stall of the retreating
blade cannot be addressed. The potential flow equations may be extended to include
viscous effects by coupling with an appropriate boundary layer model *'. It may then
be possible to obtain reasonable agreement with experimental data for cases in which

the flow is lightly stalled ', see Figure (9). Massively separated flows, which are of
y
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much greater importance in the study of dynamic stall, remain beyond the scope of
this method.

The rotor wake can be considered to be inviscid ( and incompressible) as it is
generally confined to thin layers which while convected by the global flow, do not
interact with it. While the assumption that the wake is inviscid is valid, without the
inclusion of viscous terms in the governing equations there is no mechanism by which
it can be generated. If the influence of the wake is to be accounted for then it must be
modelled directly, modelling of the wake geometry can be addressed in one of two
ways, either by specifying the wake geometry fully at the beginning of the
calculation, the prescribed wake approach, or by extending the governing equations
using additional terms, usually this is achieved by coupling the flow analysis code
with an independent wake analysis method, in order to improve the modelling of the
physics involved, this is the free wake approach (a parallel can be drawn here with the
shock fitting and shock capturing techniques commonly employed for the calculation
of transonic flows).

In the fixed wake approach the structure of the wake is related to the .
calculated thrust coefficient and blade geometry empirically by means of an
experimental database. This approach is very restrictive, limiting the blade geometry
which may be considered to those which are similar to the geometry’s contained
within the database. For any unconventional blade geometry, such as that of the BERP
rotor'® which has a novel planform close to the tip, a new empirical relationship must
first be developed before reliable calculations can be expected. The freewake method
is much less restrictive in this respect and is applicable to a much wider range of
configurations. In the freewake approach the model is extended to include additional

terms and equations which describe the evolution of the rotor wake geometry over
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time. An initial guess may then be made and the wake geometry found by iterating
between the potential flow solver and the wake geometry equations. Despite the
improved physical modelling which this approach offers it has been found by a
number of authors that this method provides solutions which are no more accurate
than those obtained with a prescribed wake ',

The simplification of the governing equations which follows from the
assumption of irrotational flow has important consequences for the modelling of
shock waves as momentum is no longer explicitly conserved (although mass is). It has
been found over many years of use of the full potential equations that momentum is
conserved provided that the flow is smooth (i.e. shock free). For flows which contain
weak shock waves there is a non-physical pressure loss across the shock which
correlates well with the Rankine-Hugoniot relationships. This correlation breaks down
for shock waves of any significant strength and consequently the full potential
equations must be extended if transonic flow is to be modelled. The governing
equations may be extended by the introduction of either a non-isentropic density
relationship’ or a quasi-conservative factor™. In the first of these two approaches the
density of points on, and close to, the shock is expressed by,

P = Pisen =X (3.4)
where ds is the shock generated entropy determined from the Rankine-Hugoniot
relations. This approach is strictly only valid for steady flows but has been found to
work reasonably well for unsteady flows also.

In the second approach Lock noted that the Rankine-Hugoniot shock jump
relations suggested that the strength of the physical shock wave lies somewhere
between the strength determined by conservative (isentropic shock) and non-

conservative (where the shock is only of sufficient strength to reduce the local Mach
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number to just below one) potential flow schemes. Lock suggested a modified
potential scheme in which,

P = (1-6) DPeop + 6 Ppon (3.5)
where ®,, and Pyoq are the potentials determined by conservative and non-
conservative schemes respectively and © is the quasi-conservative factor which is
problem dependent and determined by experimentation. The ability of the full
potential methods to capture shock waves is demonstrated by the comparison with
experiment shown in Figure (10).

Vorticity cannot exist in a potential flow field, except as discrete embedded
elements (usually filaments or sheets) because in deriving the governing equations the
flow has been assumed to be irrotational. As a consequence flow features which arise
as a direct result of distributed vorticity, such as the tip vortices described in Section
2, cannot be captured at all. While such phenomena can be modelled using discrete
vortical elements additional simplifications are required to describe their convection
by the freestream as vorticity is not transported in the full potential equations.

Despite the many weaknesses of the full potential equations they have been
shown to be able to provide reasonably accurate predictions (at low cost) of the
helicopter rotor flow field when it can be considered to be essentially inviscid. In
practice this means that the potential flow equations can be considered to provide a
reliable model for all of the phenomena described in Section 2, except that of

dynamic stall on the retreating blade.
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3.2 Solutions of the Euler Equations.

During the past decade potential flow approximations for the unsteady
transonic flow past helicopter rotor blades have matured to a point where there is very
little scope for further significant improvements. Over the same period of time there
has been a rapid increase in the availability of high powered computers which has
allowed researchers in this field to focus their attention on more complete, but
computationally more expensive, approximations to the flow field. In this section the
solution of the Euler equations for rotor flow problems is considered.

The Euler equations describe the conservation of mass, momentum and energy
in an inviscid, rotational fluid and are generally written, in a Cartesian frame of
reference, in the form,

dQ + JE + JF + 9G =0 (3.6)
ot ox dy oz

where Q is the vector of conservative variables and E, F and G are the flux vectors

obtained from,

p pu pv pw

pu pu’ +P puv puw
Q=|pv E =|puv F=|pv’+P G=|pw

pw . | puw pvw pw> +P

E, u(E, +P) v(E, +P) w(E, +P)

Here p is the density, u,v and w are the components of velocity in the x,y and z
directions respectively, P is the pressure and E; is the total energy per unit volume.

In principal this system of equations can accurately describe the creation and
convection of vorticity (although only vorticity due to inviscid flow phenomena, such
as shock waves, can be created). Unlike the full potential equations, where the

simplification of the governing equations following the assumption of irrotational
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flow allows a relaxation of the condition that momentum be conserved, the Euler
equations explicitly conserve both mass and momentum. As a consequence the
Rankine-Hugoniot relations across flow discontinuities are satisfied for strong shock
waves.

Equation (3.6) is in a form which is unsuitable for the solution of flow
problems around bodies of arbitrary shape and is therefore more usually written in a
body fitted co-ordinate scheme as,

0Q OJE OF BG_
at+ae+ +8§_O 3.7

de  _0e de
in which Q=T7'Q, E =T (Ea_,(*Fg“L ng‘) etc.

Here J is the Jacobian and de/dx, de/dy, de/dz etc. are the metrics of the
transformation.

In order to solve the above equations boundary conditions must be specified
along the rotor surface and the far field boundaries. Along the rotor surface the
velocity components u, v and w are specified by the requirement that the surface
normal velocity be zero, as there can be no transfer of mass or momentum across solid
surfaces. The Euler equations therefore only require that the surface pressure
distribution be known and this is normally obtained by assuming that the normal
pressure gradient across the boundary layer at the wall be zero,

i.e. dP=0 3.8)
an

This assumption represents the neglecting of the centrifugal terms in the
normal momentum equation which is not thought to cause calculations to be in

116,17

significant error'®. Deese and Argarwa use an alternative method of calculating

the surface pressure distribution in which the rate of change of normal momentum at
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the wall with time is assumed to be zero,

apv,)
ot

ie. =0 (3.9)

where V,, is the wall normal velocity. The pressure gradient at the wall is then
determined using the normal momentum equation which should then allow a much
better approximation to the wall pressure distribution to be obtained. Special care
must be taken in applying these boundary conditions at the blade root where infinite
sweep assumptions are invoked. Under these assumptions spanwise gradients are
considered to be negligible and consequently the flux vector in the spanwise direction
may be dropped from the governing equations.

Boundary cénditions are determined for the outer boundaries by consideration
of the direction of the flow at each outer boundary grid point. At both subsonic and
supersonic inflow boundaries the required primitive variables (usually pressure,

“density and the three velocity components) are assigned their respective freestream
values. At subsonic outflow boundaries the pressure is normally specified and the
remaining data is extrapolated from the interior while at supersonic outflow
boundaries all of the required primitive variables are determined by extrapolation
from the interior of the computational domain.

The boundary conditions listed above are sufficient for the calculation of the
flowfield around non-lifting rotors in both hover and forward flight. For lifting rotors
these boundary conditions must be altered to fully account for the effects of the
boundary layer, wake and tip vortices. As the Euler equations do not include any
viscous terms explicitly they are unable to model any of these flow features directly.

These phenomena are most commonly modelled by coupling the flow analysis code

16



with additional boundary layer and wake models.

Boundary layer effects are normally modelled by relaxing the condition that
the wall normal velocity be zero and introducing a specified non-zero wall normal
velocity distribution (the so called transpiration velocity) which is determined from a
suitable boundary layer analysis, this approach is considered in detail by Lock and
Williams. "

The inclusion of the influence of shed vorticity (the wake and the tip vortices)
is complicated by the fact that the computational domain is constructed around a
single blade which only captures the near wake, see Figure (11). The remainder of the
wake and the tip vortices shed by preceding blades are not seen by the computational
grid and must be modelled using a wake analysis code, such as those used in the
solution of the potential flow equations. Such analyses are based on incompressible
lifting line theory with a linear distribution of vorticity along the span, except close to
the tip. The wake is as;umed to be a helical spiral which is modelled by a distribution
of point vorticity and is free to contract and expand in response to the local self
induced velocity. The Biot-Savat law is then applied to this system of vortical
elements which results to determine the local downwash angle which can then be used
to specify a distribution of non-zero transpiration velocity along the blade span.
Coupling of the governing equations with such models allow the extension of the
Euler equations to the calculation of the flowfield around lifting rotors, however it is
readily apparent that such models do not represent a significant step forward from the
full potential equations.

The ability of the Euler equations to accurately model the creation and
convection of vorticity represents an important step forward from the full potential

equations in the approximation of the flowfield about helicopter rotors which may be
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dominated by a vortical wake and blade vortex interactions. Unfortunately the Euler
equations are most often solved using finite difference approaches which will
unavoidably introduce false dissipation of vorticity leading to significant errors in the
flowfield calculation .

In the finite difference approach approximations to derivatives are obtained by
a Taylor series expansion of the form,

f(x+Ax) = f(x) + Ax 9f(X) + O(AX?) (3.10)
Jx

where O(Ax?) is the truncation error and is of order Ax. Rearranging gives,

Ax 9f(x) = f(x+h) - f(x) - O(Ax?) (3.11)
ox

The truncation error can be regarded as a non-physical viscosity which will act
to dissipate vorticity. The problem of numerical dissipation was studied by Rai* who
examined the convection of a Lamb type vortex in an inviscid freestream using a
Beam-Warming implicit scheme of variable temporal and spatial order. Rai’s
conclusions are summarised in Figure (12) which clearly shows the importance of
higher order schemes and finer grids in reducing false dissipation, of particular note is
curve A which demonstrates very clearly that first order schemes in time are
unsuitable for studying problems in which the convection of vorticity is of
importance.

While a higher order scheme, fifth order and above, is desirable for maintaining
accuracy schemes of this order are generally impractical as the increased stencil which
results requires a much greater number of arithmetic operations per grid point
increasing CPU time significantly.

The use of central differences to approximate derivatives will usually require

the introduction of an arbitrary smoothing parameter, usually referred to as artificial
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viscosity, to smooth spurious oscillations in the numerical solution which occur near
strong discontinuities, such as shock waves. The added terms correspond to second
and fourth order derivatives and have a similar form to the viscous terms in the
complete Navier-Stokes equation. This non-physical viscosity may cause a rapid
dissipation of vorticity and consequently degrade or prevent accurate modelling of
vortical phenomena. The need to add artificial viscosity in this way is avoided by the
use of upwind finite difference schemes, some care is required in selecting such a
scheme as the numerical dissipation due to the truncation error is often much higher
than that found in a central difference scheme.*

In addition to the truncation error and explicitly added artificial viscosity there
are also contributions to the numerical dissipation of a computational method,
although of much lesser significance, from the accuracy of surface and farfield
boundary conditions, smoothness of the grid and the rounding error of the computer
on which the calculations are performed.

Sankar and Tung'® have solved the Euler equations in a body fitted moving
co-ordinate system using an approximately factored implicit solver with explicitly
added second and fourth order artificial viscosity. The Euler solver was coupled with
an incompressible free' wake analysis code (CAMRAD) for the calculation of the
flowfield around lifting rotors. Agreement with experiment was found to be excellent
for non-lifting rotors and reasonably good for lifting rotors, see Figure (16), the
apparent over prediction of the leading edge suction peak is an artefact of the use of a
trim analysis code, which while accurately matching the specified thrust coefficient
does not necessarily match the collective and cyclic pitch angles which were
measured in the experiment. The position of the shock wave appears to have been

captured accurately, although the shock strength is over predicted because the effect of
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the boundary layer (which acts to reduce shock strength) has not been included in the
model.

The use of compact operator schemes to extend the order of the finite
difference approximation has been examined by Smith and Sankar'® who modified an
existing second order in space, Euler method for the transonic, steady flow of rotors in
hover. In their modified scheme streamwise and normal derivatives are evaluated by
weighting the derivative of a point i,j,k with the derivatives of points on either side,
using the streamwise derivative of E as an example,

Ee = a(Ei1)e + (Ei)e + (Eini)e =
(3.12)

—a_ (Bijx-Eij)+ _b_ (Bisjk - Bizjk)
2Ae 4Ae

in which Ae is the cell size in the streamwise direction and,

a=2/3(ot+2) and b=1/2 (4a.- 1)
The order of the scheme is determined by the coefficient o, for oo = 0 and o, = 1/3
fourth and sixth order operators are obtained. In Reference (18) a=1/4 was employed
to provide a fourth order operator with a compact stencil (as b=0 in this case). This
procedure leads to a system of 5 scalar tri-diagonal matrices for each of the fluxes at
every point in the flow domain which can be solved to obtain the required fluxes
using the Thomas algorithm. Smith and Sankar report an increase in CPU time of
around 1.5% per grid point based upon a comparison with the original scheme.

The significance of the use of compact operators to obtain higher order
approximations to the fluxes lies in the subsequent reduction in the number of grid
points which are required which arises as a consequence of the increased order of the
scheme. In Figure (13) results are presented which suggest that it is possible to

achieve a 50% reduction in the number of streamwise grid points while maintaining
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the same level of accuracy as the original second order scheme (this represents an
approximate halving of the total computational time which is required).

The compressible Euler equations have been solved by Deese and

19,20

Argarwal'®'” and Tung and Chang'®* using a finite volume approach in a blade fixed

Cartesian frame of reference rotating with the angular velocity, Q, of the rotor. The

governing equations are rewritten in the form,

Q% 9F 3G Q.  WQ_.

CF

— 3.13
ot Tox T3y oz Mo (3.13)

where ugq and wg are the rotational velocity components and C is given as,

0
—pQw
C=|0

pQu

0

This formulation of the Euler equations allows a much more accurate
calculation of flux terms as the flow at in the far field is uniform, although the relative
flow is not. The additional accuracy which the solution of this set of governing
equations offers is essential if an accurate solution is to be obtained using the finite
volume approach which was adopted'®. Calculation for lifting rotors were carried out
using a wake analysis technique which produced local changes to the effective angle
of attack. Excellent agreement was obtained between calculation and experimental
measurements for a non-lifting rotor in hover, part (a) of Figure (14). For lifting rotors
the agreement remains good, both in hover and for forward flight (parts (b) and (c) of
Figure (14) respectively.). Perhaps of more significance is the disappointing
comparison of results obtained from an Euler code and full potential code, Figure

(15), which seems to indicate that there is no significant overall improvement in
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accuracy, although the shock does appear to have been captured more sharply, when
using the Euler equations.

Methods for the calculation of rotor flows using the Euler equations are much
less well developed than those methods which use the full potential equation. Results
from currently available codes indicate that it is possible to achieve excellent
comparison between experiment and calculations for non-lifting rotors and good
comparison for lifting rotors. The comparison of the accuracy of current Euler codes
with state of the art full potential solvers is disappointing and seems to suggest that
no significant improvements have been achieved by using the computationally more
expensive Euler methods. The calculation of lifting flows is currently achieved by
coupling of the Euler solver with a freewake analysis method. In all of the methods
which were examined the effects of the boundary layer were neglected with a
consequent over prediction of shock strength, the inclusion of viscous effects (perhaps
by coupling with a suitable boundary layer analysis code) would seem to be a
desirable short term objective for increasing the overall accuracy of such methods.

The use of higher order approximations for the flux terms has produced some
encouraging results for studies involving blade vortex interaction, however the
inability of the Euler equations to model correctly the creation of vorticity at the blade

tips remains a major drawback for such studies.

22



3.3 Solutions of the Navier-Stokes equations.

Numerical schemes based upon inviscid governing equations, such as the
Euler equations and full potential methods described in the previos two sections, are
able to reliably predict attached compressible flow around helicopter rotors in both
hover and forward flight. The flow around the retreating rotor blade, and also the tip
of the advancing blade, is dominated by viscous phenomena and consequently the
inviscid ass_umption is no longer valid. In order to include the effects of viscosity the
full Navier-Stokes equations must be solved. The full Navier-Stokes equations are
significantly more expensive to solve than the Euler equations because of the
requirement for high grid density in order to resolve the boundary layer accurately,
this has meant that that significant progress in solving the unsteady compressible
Navier-Stokes equations for helicopter rotors has only become practical very recently
with the advent of high powered workstations and more widely available super
computing facilities.

The Navier-Stokes equations may be written for a body fitted curvilinear co-

ordinate system in the form,

0Q JE-E,) JF-F) 9G-G.)_
T L (3.14)

in which Q is the vector of the conservative variables E, F, and G are the inviscid flux

vectors and E,, F, and G, are the viscous flux vectors. The inviscid flux vectors are

given by,
p pU
pu puU + ¢, P
Q=|pv | E=|pvU+epP , (3.15(2))
pw pwU + ¢€,P
E, (E, +P)U +¢ P
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pV pW
puVv+nP puW + P
F=|pvV+nP ,G=|pvW + (P (3.15(b))
pwV +n,P pwW +{ P
(E, +P)V +nP (E, + P)W +{ P

here E, is the total energy per unit volume, P is the pressure which may be obtained
from the equation of state, J is the Jacobian of the transformation and €x, €y, €2, NMxs Nys
Mz &x, Gy and , are the metrics of the transformation. U, V and W are the

contravariant velocities defined by,

U=sx(u—x,)+6y(v—y,)+82(w—-z,)
V=n(u-x)+n,(v-y)+n,(w-z,) (3.16)
w={ u-x)+{ (v-y)+{,(w-2z,)

The grid velocity terms , x;, y; and z;, contained in Equation (3.16) represent the
motion of the grid relative to the inertial co-ordinate system (x,y,z). The viscous flux

vectors are obtained from,

0 0
ExTax T EyTyy +€,Tyg T + Ty Ty + My Ty
E,=J" ExTyy +EyTyy +E,T,, |, Fy=J7 MxTxy TNy Tyy + N7y |5
ExTig HEyTyy +E,T5, Mg +MyTyz + N, T5
_ExBx +8yBy +82Bz ] _anx +nyBy +ﬂsz

3.17)
[0 ]
CxTx +Ey Ty 182700
G, = J! Cx’rxy +§yrw +Cztyz .
CxTo +8yTyz +8572

C,By +8,By + L.,

in which the shear stresses are defined as,
Tx = MUy + Vy + W;) + 2(L + Ur)uy
Txy = Tyx = (n+ 1) (uy + vy)

Txz = Tx =}"(u + uT) (uz + Wx)
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Tyy = Mux + vy + Wp) + 2(1L + Ur)Vy
Tz = Mux + Vy + W;) + 2(1L + Pr)w,
(3.18)

Bx = Yex(WPT + Ur/Prr) + UTex + Vigy + Wy,

By = Yey(WPr + U1/Prr) + UTey + VTyy + W1y,

B, = Ye(WPr + PUr/Prr) + UTxz + VIy; + Wz

e=EJp - (W + V> + wH)2
where Pr is the Prandtl number (0.72 for air), A is the bulk viscosity (obtained from
Stokes theorem), Prr is the turbulent Prandtl number and it is the turbulent viscosity.

This system of equations is incomplete for turbulent flows for which a
turbulence model must be employed to calculate the turbulent eddy viscosity. The
choice of turbulence model is critical to the success of calculations involving
retreating blade dynamic stall and is considered in some detail later in this section.

In addition to the above equations boundary conditions must also be specified
along the rotor blade surface and at the farfield boundaries. At the surface of the rotor
blade no-slip conditions are applied, that is the three components of velocity are all set
equal to zero. In addition to the conditions imposed upon the velocity at the rotor
blade surface two other parameters must be specified (usually pressure and
temperature) and are usually obtained by setting their respective normal derivatives to
zero at the blade surface.

At the innermost point of the rotor blade the spanwise flux is usually taken to
be zero, i.e. the flow is considered to be quasi two-dimensional. Provided that the
rotor blade is of high aspect ratio and the hub is sufficiently far from the rotor tip the

application of the infinite sweep assumption in this manner is a suitable

approximation.
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Boundary conditions are specified at the outer boundaries by consideration of
the characteristic solutions. For boundaries at which the flow is subsonic extrapolated
and freestream Riemann invariants (which are constant along characteristic lines) of

the form,

R=V -2 (3.19)

" Ty
are used to obtain the normal velocity and local speed of sound using the following
relationships,
V,=2(R,-R.)
2
i (3.20)
a= ’(—4—(12e ~R_)

where R..is the freestream Riemann invariant and R, is the Riemann invariant
extrapolated from the computational domain. At an inflow boundary the tangential
velocity and entropy are also specified (using the freestream values) while at an
outflow boundary tangential velocity and entropy are determined by extrapolation
from within the computational domain.

For supersonic flows the required primitive variables are either all specified
(inflow boundaries) or extrapolated from the interior of the domain (outflow
boundaries).

Like the Euler equations the above boundary conditions are insufficient for the
calculation' of lifting rotors. For lifting flows the influence of the portion of the wake
which lies outside of the computational domain and tip vortices from proceeding
blades must all be accounted for. The influence of the shed vorticity is included using
a wake analysis method similar to those employed in the solution of both the full

potential and the Euler equations. The wake analysis method is used to calculate the
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upwash along the rotor surface due to the wake, this information is then added to the
Navier-Stokes solution by specifying a non-zero transpiration (i.e. normal to the
surface) velocity distribution.

As with the Euler equations the flux terms in the Navier-Stokes equations are
normally approximated using finite differences and consequently suffer similar
problems with false dissipation of vorticity. The use of higher order approximations
for the flux terms, described in the previous section, to reduce the magnitude of the
numerical dissipation has been tried with some success by Smith and Sankar'® for
rotors in hover and by Rai* for blade vortex interactions. The use of higher order
spatial approximations with the Navier-Stokes equations has also been investigated by
Ekaterinaris®® who studied the flowfield around delta wings at high angle of attacks
where the aerodynamics are dominated by strong vortical structures. In this work the
flowfield was divided into two discrete regions, a viscous inner region (where the
Navier-Stokes equations were applied) and an outer inviscid region (where the Euler
equations were used). Ekaterinaris was able to show that the use of higher order
approximations for the flux terms was only required in the outer inviscid region
where the grid density was much lower than in the viscous inner region. This work
would seem to suggest that higher order approximations need only be used for the
inviscid flux terms even when the flowfield is considered as a single entity.

False dissipation of vorticity as a consequence of added artificial viscosity
should be much reduced in the solution of the Navier-Stokes equation as the presence
of physical viscosity reduces the level of artificial viscosity which is required to
control spurious oscillations in the solution, much greater care is required in the
application of this artificial viscosity to ensure that it does not lead to inaccuracies in

the region of the boundary layer.
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The solution of the unsteady Navier-Stokes equations for the flowfield around
helicopter rotor blades offers the opportunity to study the dynamic stall of the
retreating blade. The flowfield around wings and bodies undergoing oscillatory
motions is usually turbulent and some consideration must therefore be given to the
choice of an appropriate turbulence model for use with the Navier-Stokes equations.
At high oscillatory frequencies the flowfield is dominated by the forcing motion,
because the characteristic time scale of the forcing motion is much smaller than that of
the turbulence, and so discrepancies between calculations where the flow is
considered fully laminar and experimental measurements are relatively small. As the
oscillatory frequency is reduced the influence of turbulence becomes more important.
The rotational frequency of helicopter rotor blades is relatively small, typically
between 5 and 10 revolutions per second, and consequently special care must be taken
in choosing an appropriate turbulence model.

There are a large number of turbulence models available in the literature
ranging from simple algebraic models, such as that due to Baldwin and Lomax, to
models which require the solution of a number of ordinary differential equations, such
as the k-g model. The selection of a turbulence model will to some extent be a
compromise between accuracy and computational cost. The relative computational
costs of several popular turbulence models (Baldwin-Lomax (BL), Renormalization
group theory (RNG), Baldwin-Barth (BB), Johnson-King (JK) and Spalart-Allmaras
(SA)) are compared in Figure (17).

The most widely used turbulence model is the Baldwin-Lomax algebraic
turbulence model. This model is simple to implement and relatively inexpensive, it
has been shown to produce very good agreement with experimental measurements for

steady attached flows and flows in which there is only a mild separation. For steady
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accurately and consistently model the flow physics involved in dynamic stall.
Additionally the results of Ekaterinaris and Menter suggest that consideration of
transitional modelling must be made, even at high Reynolds numbers. The modelling
of transition is likely to be of increased importance for the range of Reynolds numbers
over which helicopter rotor blades currently operate.

Solutions of the steady compressible Navier-Stokes equations for fixed wings
have been available in the literature for some time and have been used by researchers
in the field of helicopter aerodynamics to provide additional qualitative insight into
some of the physical phenomena encountered in the flowfield of a rotor blade. Most
recently Scott and N arramore® have studied the formation of tip vortices with a
steady Navier-Stokés solver and achieved very good agreement with experiment.

The first published solutions of the Navier-Stokes equations for the unsteady,
compressible three-dimensional flow around helicopter rotors were presented by
Wake?’ and Wake and Sankar®® for non-lifting rotors in hover and forward flight and
lifting rotors in forward flight. Their solver, which was based upon a code originally
developed for the solution of the Euler equations, utilised a mixed implicit/explicit
ADI based approach which was only first order accurate (and also non-conservative)
in time. Calculated results for non-lifting rotors in hover and forward flight were
found to give much closer agreement with experiment than had previously been
obtained using an Euler based approach, Figure (23). Comparison between calculation
and experiment was also found to be good over the majority of the span for a lifting
rotor, although poor grid resolution led to inaccurate results close to the tip.

The unsteady thin layer Navier-Stokes equations were solved by Srinivasan
and McCroske:y29 in a frame of reference fixed to and rotating with the rotor blade

using a fully implicit approximately factored ADI approach. Good agreement was
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found between the calculated results and experimental measurements for non-lifting
rotor blades in hover. Comparison was also made with the experimental results of
Caradonna and Tung®® for a lifting rotor in hover. A crude wake model was employed
in which a constant angle of attack correction was made for the wake, the downwash
angle was set equal to -3.8 degrees (this value having been obtained in previous Euler
calculations). Comparison with experimentally determined pressure distributions at
selected azimuth positions was found to be generally good for calculations in which
the flowfield is wholly subsonic and fair under transonic flow conditions. Calculated
values were found to compare poorly with measured values for spanwise stations
close to the hub (r/R < 0.5) due to the poor wake modelling.

Srinivasan and McCroskey also examined the solution of the thin layer Navier-
Stokes equations for the steady flow around fixed rotor blades with a variable
distribution of spanwise freestream velocity. Calculations performed in this manner
show a surprisingly good agreement with calculations carried out for the rotating
rotor blade in hover, Figure (24) and flow visualisations of the calculated flowfield
have shown that all of the primary features of the flowfield have been captured, More
work is required to determine if secondary features of the flowfield are captured
accurately but this work offers the opportunity for a much less computationally
expensive method of calculating the flowfield around rotors in hover using existing
steady solvers with minor modification to the freestream conditions.

Srinivasan and Baeder’® have solved the thin layer Navier-Stokes equations in
a blade fixed frame of reference using a fully implicit ADI approach with Roe’s
upwinding in all three spatial directions. For viscous flows an algebraic Baldwin-
Lomax turbulence model was used to estimate the turbulent eddy viscosity. This

method has been used with some success to calculate both lifting and non-lifting
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flows around helicopter rotor blades in hover.

Srinivasan and Baeder extended their solution procedure to non-lifting rotor
blades in forward flight in Reference (3) by solving the governing equations in an
inertial frame of reference. Blade vortex interaction studies were also performed with
encouraging results. Good qualitative and quantitative agreement was obtain with
experimentally determined pressure fields, Figure (25), for vortices passing parallel
and at oblique angles to the rotor blade. Measurements of acoustical data were also
compared with the results of the computer code and showed that a good qualitative
understanding of the acoustical details of the flowfield could be obtained from current
Navier-Stokes solvers.

In Reference (31) Duque et al have examined the flow around BERP and
UH-60A rotor blades in hover using the solution methodology of Srinivasan and
Baeder’™ . Calculations were carried out without the use of a freewake analysis
method and instead the influence of the wake was included in the specification of the
farfield boundary conditions. For a computational domain of sufficient size the
relative farfield velocities are all zero, unfortunately it is not practical for such a large
domain to be used in current calculation procedures and so instead a non-zero
distribution of velocity is specified along the outer boundaries. This distribution of
velocity is determined from a consideration of mass flow conservation, 'the thrust
produced by the rotor and simple one-dimensional momentum theories, a schematic of
the new boundary conditions is shown in Figure (26).

Rajagopalan and Mather'* have solved the incompressible, laminar, Navier-
Stokes equations for forward flight using a finite volume based method known as

SIMPLER. This method.requires only blade geometry and aerofoil characteristic data
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to obtain the full three-dimensional flowfield. Comparison with experiment ranges
from poor to fair depending upon the flow conditions (advance ratio, freestream Mach
number etc.). While this method is likely to be of little interest for the calculation of
flows around single rotors (where much more reliable methods are available) its
relative simplicity may allow the solution of much more complicated problems (such
as the interference effects for main rotor/tail rotor or tandem rotor geometry’s) with
engineering accuracy. Such complicated flowfields are currently beyond traditional
three-dimensional Navier-Stokes solvers.

Perhaps the most significant drawback associated with solutions of the full
Navier-Stokes equations is their high computational cost. A method of reducing the
computational demands for viscous solvers was investigated by Berezin and Sankar>?
who solved the Navier-Stokes equations near the blade and in the wake where viscous
effects are important (inner region) and the full potential equations elsewhere (outer
region). The two regions share a common interface along which the solvers are
coupled, see Figure (27). Comparison with calculations performed using the Navier-
Stokes solver as a stand alone method have shown that the new coupled method is in
excellent agreement along the rotor blade surface, Figure (28), although in the
flowfield there are some minor discrepancies, Figure (29). This work has shown that
results of comparable quality with a stand alone Navier-Stokes method can be
achieved in half of the computational time using a coupled approach.

At the present time no work has been published in which the Navier-Stokes
equations are solved for the retreating side of the helicopter rotor blade, although
some attention has been focused on the choice of an appropriate turbulence model*

for this class of problems.
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4. Conclusions.

Solutions of the full potential equations for the unsteady flow around
helicopter rotor blades have matured rapidly in recent years to a point where there is
little scope for further significant improvement. The full potential equations have been
applied successfully to the flow on the advancing side of the rotor disc and are able to
predict with reasonable accuracy all of the inviscid flow phenomena described in
Section (2).

Methods based upon the Euler equations have become common in the last ten
years and have been applied to the flow around advancing rotor blades with
reasonable accuracy. Comparison with state of the art potential solvers is
disappointing with very little significant improvement being obtained for a substantial
increase in computational expense (the only real advantage of using the Euler
equations instead of the full potential equation is to capture strong shocks. Strong
shocks are however not commonly found in rotorcraft flowfields). For this reason it is
unlikely that the solution of the Euler equations will receive much attention in future
work, except as a stepping stone to the solution of the full Navier-Stokes equations.

In recent years solutions of the unsteady, compressible Navier-Stokes
equations have begun to appear for the flowfield around rotors in hover and forward
flight. At the present time the use of such methods has been restricted to the
advancing rotor. Significant improvements have been obtained over inviscid methods
for transonic flow conditions.

The application of the Navier-Stokes equations to the retreating side of the
rotor disc is likely to be the next significant step forward in the modelling of rotor
flows. No such work has currently been published although some work has been done

to evaluate the performance of turbulence models for such flows. While solutions for
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the retreating blade may be possible provided that the flow remains attached, or lightly
stalled, there is concern over the ability of current turbulence models to simulate
transition between laminar and turbulent flow and massively separated flows which

are of great importance if dynamic stall is to be addressed.
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Figure (3). Calculated and experimental unsteady
Mach number distributions.

Figure (4). Pressure contours showing shock
bifurcation caused by BVI.
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Figure (7). Computational flow visualisation of
dynamic stall.
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experiment (non-lifting and lifting rotors
repectively).
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(a) Euler. .
(b) Navier-Stokes.

Figure (23). Comparison of Euler and Navier-Stokes codes with experiment.



PSiw 90, r/R=_0.945
L L]

PSt= 90, r/R= 0.775
ki T

Add

0.5

Pl BT IR SPEE Y

0.0

1
-Cp

A i 1 1 1 A A 1 "
.0 0.2 0.4 0.6 0.8 1.0
- X/C
PSle 120, r/Re_0.945
L] 1

ol aas

T T

=

-1.5 I N ! 1 ] -1.5 L 1 1 1

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
x/C X/C
PSi= 150, r/R= 0.775 PSle - 0.
1.0 T T LR= | T 150 T Sl= 150, r/R= 0.945 1

O A Experiment, Upper ]

+ + Experiment, Lower 1
— Navier-Stokes ]

—-- NS/FPE

-1.5 1 1 L '
0.0 0.2 0.4 0.6 0.8 1.0 . . . . . .
X/C X/C !

T

Figure (28). Comparison of coupled method with Navier-Stokes method. |
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Figure (29). Comparison of coupled method with Navier-Stokes method.
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