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Abstract—The utilization of battery energy storage systems 

(BESS) in vehicle-to-grid (V2G) and plug-in hybrid electric 

vehicles (PHEVs) benefits the realization of net-zero in the energy-

transportation nexus. Since BESS represents a substantial part of 

vehicle total costs, the mitigation of battery degradation should be 

factored into energy management strategies. This paper proposes 

a two-stage BESS aging quantification and health-aware energy 

management method for reducing vehicle battery aging costs. In 

the first stage, a battery aging state calibration model is 

established by analyzing the impact of cycles with various Crates 

and depth of discharges based on a semi-empirical method. The 

model is further linearized by learning the mapping relationship 

between aging features and battery life loss with a linear-in-the-

parameter supervised learning method. In the second stage, with 

the linear battery life loss quantification model, a neural hybrid 

optimization-based energy management method is developed for 

mitigating vehicle BESS aging. The battery aging cost function is 

formulated as a linear combination of system states, which 

simplifies model solving and reduces computation cost. The case 

studies in an aggregated EVs peak-shaving scenario and a PHEV 

with an engine-battery hybrid powertrain demonstrate the 

effectiveness of the developed method in reducing battery aging 

costs and improving vehicle total economy. This work provides a 

practical solution to hedge vehicle battery degradation costs and 

will further promote decarbonization in the energy-transportation 

nexus. 

Index Terms—Electric vehicle, battery energy storage system, 

battery aging, model-data-driven method, energy management, 

vehicle to grid. 

ABBREVIATIONS

BESS Battery energy storage system. 
V2G  Vehicle to grid. 
PHEV Plug-in hybrid electric vehicle. 
EVs Electric vehicles. 
GEVs Grid-connected electric vehicles. 
ICE Internal combustion engine. 
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Crate Charging and discharging rate. 
SoC State of charge. 
DoD  Depth of discharge. 
RFCC Rain-flow cycle counting. 
ELM Extreme learning machine. 
ISG Integrated starter generator. 
CTUDC Chinese typical urban drive cycles. 

NOMENCLATURE

kS BESS working state vector at k . 

kSoC BESS energy state at k . 

kP BESS working power states at k . 
RI  RFCC algorithm input matrix. 
RO Extracted battery aging feature matrix. 

rainflowf RFCC function for extracting aging cycles. 

iC Extracted battery aging features in th
i  cycle. 

iDoD Battery DoD in th
i  cycle. 

iCrate Battery Crate in th
i  cycle. 

 ,  Function to quantify the influence of DoD and 
Crate on battery aging.  

i Battery cycle life loss contributed by th
i  cycle. 

L Quantified battery life loss state. 

lossf  Battery life loss quantification function. 
s
nA , p

nA Battery SoC and output power time-series at n . 
ag

F Constructed aging feature matrix. 
BS , BP BESS SoC and output power states matrixes. 

,m nD  Battery life loss in the period of n m . 
Η ELM network weight matrix. 

linearf Linear battery aging quantification function. 
L̂ Quantified battery life loss by ELM model. 

kx , ky System state and output vector in EMS. 

ku , kd System input and the disturbance vector in EMS. 

iEVS SoC of BESS in iGEV . 

EViP Auxiliary V2G power provided by iGEV . 

iEVS Battery SoC profile in energy management. 
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iEVP     Battery power profile in energy management. 

,
ˆ
bat iL    Quantified BESS life loss of iGEV . 

,bat iC    Unit cost of the battery pack in iGEV . 

,bat iQ    Capacity of the vehicle battery pack in iGEV . 

vagJ     Battery aging cost function in V2G 
management. 

phevf    PHEV power system state transfer function. 

agingC    Function to calculate battery aging cost of PHEV. 

fuelC     Function to calculate fuel cost of PHEV. 

elecC    Function to calculate electricity cost of PHEV. 

ecoJ     Vehicle operation cost function in PHEV. 

I. INTRODUCTION

N recent years, the electrification of the automotive industry 
has been identified as a potential solution for mitigating 

energy and environmental issues. The adoption of electric 
vehicles (EVs), including battery and hybrid electric vehicles, 
makes it possible to reduce fossil fuel consumption and shift air 
pollution to energy generation sectors. For example, the 
concept of plug-in hybrid electric vehicles (PHEV), which uses 
electrical driving systems for improving internal combustion 
engine (ICE) efficiency and vehicle fuel economy, has been 
recognized by many countries as an effective way to realize 
carbon neutrality. Further, the extra energy storage capacity 
provided by EVs also brings a bright prospect to improve the 
efficiency, economy, and renewable energy penetration of the 
power grid. According to [1], by deploying vehicle-to-grid 
(V2G) technology, more than 95% of carbon dioxide emissions 
can be reduced in future electricity scenarios in the UK. 

The electrification of the transportation system and the 
adoption of EVs has become an irreversible trend in all the 
attached sectors. However, to enable this benefit, the most 
costly and delicate equipment: the battery energy storage 
system (BESS), should be effectively protected. The bucket 
model is the most commonly used anti-aging model in the 
existing literature, where BESS protection is realized by 
directly limiting minimum battery energy throughput, 
maximum charging and discharging rate (Crate), and state of 
charge (SoC) level through online energy management 
algorithms [2, 3]. BESS aging is modeled as a function of 
energy throughput under different SoC states in [4]. The 
established model shows great effectiveness in prolonging the 
life of a battery and supercapacitor hybrid energy storage 
system. In [5] and [6], Crate is further considered to better 
characterize battery aging. The optimal BESS energy storage 
capacity dispatching is realized by a rule-based control model, 
where battery energy throughput and Crate are limited to 
prolong the system lifespan.  

Limiting battery energy throughput and Crate is the most 
straightforward BESS aging mitigation method with better 
algorithm interpretability [7]. However, strict limitations 
negatively also impact energy storage capacity utilization in 
auxiliary services. According to [6], in a PHEV with ICE and 
battery hybrid energy storage system, vehicle fuel economy 
decreases by around 7.5% after battery aging mitigation 
constraints are deployed. The limitation of battery Crate 
inevitably burdens the ICE system workload. Further, the 

battery pack is an electrochemical system with complex 
degradation mechanisms, and its aging can hardly be described 
by energy throughput and Crate directly. Literature [8] and [9] 
point out that the hidden aging features, which represent in an 
accumulative way with BESS operation, also greatly impact 
battery lifespan. The battery number of cycles and the 
corresponding depth of discharge (DoD) are the most 
significant hidden aging features that impact BESS aging. A 
multi-factor battery cycle life prediction method is proposed in 
[10] to quantify BESS life loss. Results on a smartphone and a 
household BESS validate the necessity of identifying 
accumulative aging parameters in battery life prediction.  

The rain-flow cycle counting (RFCC) algorithm, which has 
been widely used in analyzing the accumulative aging 
phenomenon of metallic material [11], mechanical systems [12], 
and power electronic devices [13], also shows great 
effectiveness in extracting battery aging cycles and quantifying 
battery degradation [14, 15]. In the existing literature, RFCC-
based battery aging quantification models are mainly used for 
offline BESS operation scheduling and energy system 
configuration optimization. In [16], an equivalent charge cycle 
estimation method is built based on RFCC to evaluate battery 
life loss in providing power balancing services. Simulation 
results validate model significance for investigating BESS 
optimal configuration in microgrids. Further, battery aging cost 
is quantified by analyzing battery cycles and DoD extracted 
from BESS operation profiles in [17]. The anti-aging BESS 
operation in day-ahead energy and frequency regulation 
markets is carried out by minimizing battery aging costs. The 
RFCC is able to quantify the influence of various aging factors 
on battery degradation. Based on battery life loss quantification 
results, anti-aging BESS configuration and energy management 
optimization can be realized offline.  

Nevertheless, the essence of RFCC is an abstract function 
without any analytical mathematical expression, which 
seriously burdens energy management optimization model 
solving [18, 19]. In recent years, many efforts have been made 
to simplify the RFCC algorithm to analytical expression. 
Literature [20] decomposes the RFCC-based battery 
degradation model and optimizes BESS operation iteratively. 
This method yields efficient dispatch results in mitigating 
battery aging cycles but shows limited effectiveness in reducing 
DoD and Crate. The reason is that it mainly focuses on 
suppressing battery aging on a large time-scale. Most important, 
the simplified aging model is still too complicated to be 
incorporated into online vehicle BESS management. As an 
improvement, a piecewise linearization method is further 
proposed in [21] to quantify aging costs. The cycle depth is 
simplified to BESS energy output within each control time 
interval by analyzing battery charging and discharging 
transitions. It enables the incorporation of DoD and Crate in the 
optimization of BESS operation but shows limited effectiveness 
in reducing aging cycles. Supervised learning methods, 
particularly extreme learning machine (ELM), bring a bright 
perspective to accurately approximate battery cycle aging 
mechanisms. Further, it is a strict linear-in-the-parameter model, 
which can be easily incorporated into online vehicle BESS 
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energy management. However, to the best of our knowledge, 
no research has been reported regarding this issue. 

To address the above research gap, this paper establishes a 
two-stage model-data-driven BESS aging quantification and 
health-aware energy management method for reducing the 
vehicle battery aging cost. In the first stage, a battery aging state 
calibration model is established by comprehensively analyzing 
the impact of battery cycles with various Crates and DoDs. The 
established model is linearized by learning the relationship 
between aging features and quantified battery life loss in BESS 
operation profiles based on the ELM algorithm. In the second 
stage, with the established linear battery life loss quantification 
model, a neural hybrid optimization-based energy management 
method is developed for mitigating vehicle BESS aging. The 
battery aging cost function is formulated as a linear 
combination of system states, which simplifies model solving 
and reduces computation cost. The case studies on an 
aggregated GEVs peak-shaving scenario and a PHEV with an 
engine-battery hybrid powertrain demonstrate the effectiveness 
of the developed method in reducing vehicle battery aging costs 
and improving vehicle total economy. 

The novelty and technical contribution of this paper can be 
summarized as follows: 
 This paper proposes an integrated battery aging 

quantification and mitigation energy management scheme 
based on a novel model-data-driven method. From an 
engineering point of view, it provides a practical solution 
for reducing the degradation costs of BESS in both V2G 
services and PHEVs. 

 It establishes a cycle life calibration model to label battery 
aging states in BESS operation profiles. Compared to the 
bucket model, battery life loss states can be accurately 
quantified by analyzing accumulative aging behaviors. 

 It proposes a novel linearization method for the RFCC 
algorithm that provides a close approximation of battery 
cycle aging cost. The quantification of BESS life loss can 
be represented as a linear cost function of battery working 
states, which facilitates the model deployment in online 
vehicle energy management. Compared to conventional 
simplification methods, the developed method yields more 
accurate aging quantification results that comprehensively 
reflect the impact of cycle number, cycle depth, and Crate. 

 It proposes a neural hybrid optimization-based anti-aging 
energy management method for vehicle BESS, where the 
cost function is formulated as a linear combination of power 
system working states. Compared to the conventional 
RFCC optimization method, the neural hybrid method 
simplifies model solving and reduces the computation cost 
of BESS management, which facilitates the deployment of 
anti-aging energy strategies.  

 The developed methods are deployed to the two most 
common vehicle BESS management scenarios: V2G 
services and PHEV power distribution. V2G coordinator 
and BESS management unit can incorporate this model in 
battery management to reduce battery aging costs and 
improve vehicle total economy. 

The remainder of this paper is organized as follows. Section 

II presents the developed model-data-driven BESS aging 
quantification and health-aware management framework. 
Section III establishes a model-data-driven linear battery life 
loss quantification model. The proposed neural hybrid 
optimization-based BESS anti-aging operation scheduling 
method is presented in Section IV. Section V validates the 
effectiveness of the developed method in V2G services and 
PHEV energy management. The conclusions are drawn in 
Section VI.  

II. MODEL-DATA-DRIVEN BESS AGING QUANTIFICATION AND 

HEALTH-AWARE MANAGEMENT FRAMEWORK

This section proposes a model-data-driven BESS aging 
quantification and health-aware management framework for 
reducing the vehicle battery aging cost. As shown in Fig. 1, a 
linear battery life loss quantification model is established in the 
first stage. Then, data-driven BESS energy management is 
realized in the second stage by utilizing a neural hybrid 
optimization model. 

In the first stage, a model-data-driven linear battery life loss 
quantification model is established to quantify BESS aging 
costs in energy management strategies. Firstly, the state of 
battery life loss in BESS operation data is quantified and 
calibrated by a semi-empirical battery aging model by 
comprehensively analyzing battery cycle information, 
including Crate and DoD. Meanwhile, Battery SoC and 
working power trajectories are extracted to construct an aging 
feature matrix. With the BESS aging feature matrix and battery 
life loss in the observation window as training input and output, 
an ELM learning model is further established in a data-driven 
learning process. After the training, the mapping relationship 
between the aging feature matrixes and the quantified battery 
life loss states is learned by the ELM model. In this way, the 
ELM model can provide a close approximation of the cycle 
aging mechanism of BESS in vehicles. Meanwhile, it describes 
battery aging characteristics with linear equations, which 
simplify BESS life loss quantification in online vehicle energy 
management. 

Fig. 1. Model-data-driven BESS aging quantification and health-aware 
management framework. 

In the second stage, a neural hybrid optimization-based 
BESS operation scheduling model is established to realize data-
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driven battery anti-aging energy management. The hyper-
parameters in the ELM battery aging model are extracted to 
quantify BESS aging cost in energy management strategies. 
Battery anti-aging energy management can be modeled as a 
mathematical optimization problem by following real-time 
sampled system power requirements and minimizing battery 
aging costs. With the hyper-parameters extracted from the ELM 
model, battery life loss quantification can be modeled as a linear 
combination of BESS working states (SoC and output power). 
The anti-aging BESS management target can be realized by 
minimizing the value of the linear cost function, which 
simplifies model solving and reduces computing costs. In this 
study, the linear programming algorithm is used to solve 
optimal BESS management strategies online for satisfying the 
power requirements of PHEV and V2G services. 

III. ESTABLISHMENT OF MODEL-DATA-DRIVEN LINEAR 

BATTERY LIFE LOSS QUANTIFICATION MODEL

This section establishes a linear battery aging model based 
on a model-data-driven method to quantify BESS life loss in 
energy management strategies. Firstly, a battery cycle life 
calibration model is established to label battery aging states in 
BESS operation profiles. Then, a linear battery life loss 
quantification model is built by learning the mapping 
relationship between aging features and quantified battery life 
loss states. 

A. BESS cycle life calibration model 

Battery aging is a slow and accumulative process that 
happens with the operation of BESS. To accurately quantify 
battery aging, BESS operation behavior should be globally and 
comprehensively analyzed. This part establishes a semi-
empirical battery aging model to quantify and calibrate the state 
of battery life loss in BESS operation data by comprehensively 
analyzing battery cycle information, including Crate and DoD.  

BESS output power and SoC states are used as observation 
variables of the established aging calibration model to analyze 
battery cycle life loss. The following vector is constructed to 
reflect BESS working states: 

 Tk k kSoC PS                              (1) 

Where: kSoC  and kP  are BESS energy and working power 
states at k . Model input is designed as BESS states in the whole 
operation period: 

 0 1 kRI S S SL                          (2) 

Two most significant aging characteristic parameters: DoD 
and Crate are used to quantify BESS life loss in this study. The 
RFCC method is employed here to analyze battery aging cycles 
from BESS working state profiles. The extracted battery aging 
characteristic parameter matrix RO  can be represented as: 

 1 2 rainflow ( )i n f RO C C C C RIL L       (3) 

Where:  Ti i iDoD CrateC  are the extracted battery DoD 
and Crate states in th

i  cycle. rainflowf  is RFCC function for 
extracting battery aging cycles. 

DoD and Crate are the common degradation parameters that 
characterize battery aging. In qualitative analysis, they impact 

battery packs with different cell types to a similar degree: the 
higher the value of DoD and Crate, the more the battery life will 
be depleted [22]. The 'cycle-to-failure' method uses an 
empirical cycle depth stress function to quantify the impact of 
DoD and Crate on battery life. It has been proven effective in 
inferring the aging characteristics of BESS in energy bidding 
[20], renewable energy systems [22, 23], and electric vehicles 
[24] under different working conditions.  

Commercial EVs normally use standard cells to form battery 
packs, such as 18650 and 21700 cells provided by LG Chem, 
Samsung, Panasonic, and Sanyo. According to [25] and [26], 
battery packs consisting of cells produced by the same 
manufacturer have extremely similar aging characteristics. Cell 
manufacturers usually provide an open-access experimental 
database as well as an empirical cycle depth stress function to 
facilitate the quantification and mitigation of battery aging in 
commercial applications [25, 27, 28]. Therefore, this study uses 
the empirical cycle depth stress function provided by the cell 
manufacturer to quantify the impact of cycles with various 
DoDs and Crates on vehicle BESS aging, which can be depicted 
by the following equations [29]: 

1.259( ) 1 / (535.8 925.9) 100%DoD DoD          (4) 
0.494( ) 0.8943 0.1258Crate Crate                 (5) 

In (4) and (5),   calculates percentage battery cycle life loss 
under different DoDs, while   quantifying the influence of 
Crate on battery aging. Battery cycle loss in the th

i  cycle can 
be derived by calculating the product of two functions: 

( ) ( )i i iDoD Crate                          (6) 

Where: i  is the calculated battery cycle life loss contributed 
by th

i  cycle. Battery life loss in the whole simulation period 
RI  can be calculated by accumulating i  in different cycles: 

1
( )

n

loss i
i

L f 


 RI                         (7) 

Where: L  and lossf  are the quantified battery life loss state 
and the corresponding quantification function. 

B. Model linearization by extreme learning machine 

Based on the BESS life loss assessment result, this part 
establishes a linear aging model by learning the mapping 
relationship between battery operation behaviors and the 
corresponding life loss states. 

The aging feature matrix ag
F  in the established linear aging 

quantification model is constructed as: 

, , ,
ag
m n m n m n

   F BS BP                         (8) 

Where: ,m nBS  and ,m nBP  represent the collection of battery 
SoC and power states in the period n m . 

Based on the established battery aging calibration model, 
battery aging states at m  and n  are calculated independently, 
and their difference is used to reflect BESS life loss in this 
period: 

, ( ) ( )m n n m loss n loss mD L L f f   RI RI           (9) 

Where: nL , mL , and ,m nD  are battery life loss states at m , n , 
and in the period of n m .  

In this study, the ELM algorithm, which has been commonly 
used in system identification [30] and regression analysis [31], 
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is f urt h er u s e d t o m o d el t h e a gi n g c h ar a ct eristi cs of BE S S. 
C o m p ar e d t o c o n v e nti o n al n e ur al n et w or k al g orit h m s, E L M is 
a n ai v e li n e ar m o d el. It c a n si m ul at e c o m pl e x m a p pi n g 
r el ati o n s hi p s b y o nl y u si n g li n e ar f u n cti o n s b ut fr e e of n o nli n e ar 
a cti v ati o n f u n cti o n s, w hi c h f a cilit at e m o d el d e pl o y m e nt i n 
e n er g y m a n a g e m e nt al g orit h m s. B a s e d o n t h e c o n str u ct e d a gi n g 
f e at ur es m atri x a n d q u a ntifi e d b att er y lif e l o ss i n ( 8) a n d ( 9), t h e 
est a bli s h m e nt of t h e E L M m o d el is r e ali z e d b y t h e f oll o wi n g 
e q u ati o n:  

2
mi n

p

a g

 
 Η F  D 

R
                         ( 1 0) 

W h er e: Η  i s t h e E L M n et w or k w ei g ht m atri x, w hi c h i s s ol v e d 
b y t h e ri d g e r e gr essi o n i n [ 3 2] b y mi ni mi zi n g t h e v al u e of ( 1 0). 

Aft er b ei n g tr ai n e d b y t h e c o n str u ct e d c ali br ati o n d at as et, 
b att er y a gi n g c h ar a ct eri sti cs c a n b e l e ar n e d a n d r efl e ct e d b y t h e 
w ei g ht m atri x Η . B att er y lif e l os s q u a ntifi c ati o n i n e n er g y 
m a n a g e m e nt is r e ali z e d b y t h e f oll o wi n g li n e ar tr a n sf or m ati o n: 

1

ˆ ( )
p

a
li n e ar j j

g a g

j
L f H F


    HF F             ( 1 1) 

W h er e: li n e a rf  is t h e c o n str u ct e d li n e ar b att er y a gi n g 
q u a ntifi c ati o n f u n cti o n. 

I V. NE U R A L H Y B RI D O P TI MI Z A TI O N -B A S E D B E S S  A N TI-A GI N G 

O P E R A TI O N S C H E D U LI N G M E T H O D

B as e d o n t h e est a bli s h e d li n e ar b att er y lif e l o ss q u a ntifi c ati o n 
m o d el, t his s e cti o n f urt h er pr o p o s es a n e ur al h y bri d 
o pti mi z ati o n- b as e d a nti- a gi n g e n er g y m a n a g e m e nt m et h o d. 
S y st e m o bj e cti v e s a n d c o nstr ai nt s ar e f or m ul at e d i nt o a ti m e-
wi n d o w e d o pti m al c o ntr ol pr o bl e m t o f a cilit at e d at a dri v e n 
o nli n e v e hi cl e B E S S o p er ati o n s c h e d uli n g. A g e n er al li n e ar 
ti m e- v ar yi n g di s cr et e-ti m e s y st e m s h o w n i n E q. ( 1 2) a n d ( 1 3) 
s u bj e cti n g t o t h e ti m e- v ar yi n g c o nstr ai nts i s i ntr o d u c e d a s t h e 
f u n d a m e nt al m o d el of B E S S e n er g y m a n a g e m e nt: 

1k k k kk k k   x  A x  B u  B d                    ( 1 2) 

k k k kk kk  y  C x  D u  D d                    ( 1 3) 

W h er e, t h e kx , ky , ku  a n d kd  ar e t h e s yst e m st at e v e ct or 
w it h mi n m a x , n

k k k    Rx x x x , s y st e m o ut p ut v e ct or wit h 
mi n m a x , n
k k k    Ry y y y , s yst e m i n p ut v e ct or wit h 
mi n m a x , n
k k k    Ru u u u  , a n d t h e s y st e m dist ur b a n c e v e ct or, 

r e s p e cti v el y. At e a c h k , a s et of s yst e m st at e s ar e u p d at e d, a n d 
th e b att er y a nti- a gi n g c o ntr ol pr o bl e m is d y n a mi c all y s ol v e d 
b as e d o n r e al-ti m e s a m pl e d B E S S st at es i nf or m ati o n b y t h e 
li n e ar o pti mi z ati o n m o d el.  

A. B att er y a nti- a gi n g V 2 G b e h a vi o r m a n a g e m e nt 

I n V 2 G s c h e d uli n g, B E S S i n G E V s i s u s e d t o pr o vi d e p o w er 
b al a n ci n g s er vi c es. B as e d o n t h e p o w er b al a n c e pri n ci pl e, t h e 
c o nti n u o u s-ti m e s y st e m p o w er m a n a g e m e nt e q u ati o n c a n b e 
o bt ai n e d as: 

GG  G  G  G  G d  G  A x  B u  B dx &&                   ( 1 4) 

0 0
,

n nE V  E V

T

G  E V  E V PS S  P   x L L ( 1 5) 

W h er e: GA  a n d GB  ar e p o w er s y st e m st at e tr a n sf er m atri x, 

GdB  a n d Gd ar e u s e d t o r efl e ct p o w er di st ur b a n c e i n si d e 
e n er g y g e n er ati o n a n d c o n s u m pti o n s e ct ors b e c a u s e of t h e l o ss, 

t h e f or m of w hi c h c a n b e f o u n d i n [ 3 3]. 
iE VS  r e pr es e nt s t h e 

e n er g y st at e of B E S S i n iG E V ; 
iE VP  is t h e a u xili ar y p o w er 

p r o vi d e d b y V 2 G s er vi c es of iG E V . A g gr e g at e d V 2 G p o w er 

1 i

n

E Vi
P

   is s c h e d ul e d b y f oll o wi n g t h e p e a k-s h a vi n g t ut ori al 
si g n al pr o vi d e d b y t h e n et w or k o p er at or [ 3 3, 3 4]. 

T h e q u a ntifi c ati o n of B E S S a gi n g c o st c a n b e r e ali z e d b y 
u si n g t h e f oll o wi n g li n e ar f u n cti o n b as e d o n t h e a gi n g m o d el 
est a bli s h e d i n S e cti o n III. B: 

,
ˆ ( )

i i

a
b a

g
E V  Et i l Vi n e a rL f      ΗF S  P             ( 1 6) 

W h er e: 
iE VS  a n d 

iE VP  ar e t h e v e ct ors c o n sisti n g of t h e 
c oll e cti o n of b att er y S o C a n d V 2 G p o w er st at es i n t h e 
s c h e d uli n g p eri o d. ,b at iL  is t h e q u a ntifi e d B E S S lif e l o ss of 

iG E V . I n t his st u d y, t h e miti g ati o n of b att er y a gi n g c o st of 
G E V s i s d esi g n e d as t h e o bj e cti v e of V 2 G b e h a vi or 
m a n a g e m e nt. T h e V 2 G str at e g y of G E V s c a n b e d eri v e d b y t h e 
f oll o wi n g pr o gr a m mi n g pr o bl e m:  
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,b at iC  a n d ,b at iQ  ar e t h e u nit c ost a n d r at e d c a p a cit y of t h e 
b att er y p a c k i n iG E V , r es p e cti v el y. 

B . B att er y a nti- a gi n g P H E V e n er g y m a n a g e m e nt 

Si mil ar t o V 2 G s c h e d uli n g, t h e miti g ati o n of B E S S a gi n g 
c o st i s al s o of gr e at si g nifi c a n c e i n P H E V e n er g y m a n a g e m e nt. 
I n t hi s st u d y, it i s m o d el e d as a d at a- dri v e n li n e ar o pti mi z ati o n 
pr o bl e m u n d er a ti m e- dis cr et e s y st e m, a n d t h e st at e e q u ati o n 
c a n b e d es cri b e d as: 
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W h er e: p h e vf  i s P H E V p o w er s y st e m tr a n sf er f u n cti o n. T h e 
d efi niti o n of P H E V p o w er a n d d y n a mi c s y st e m m o d els a n d 
c o n str ai nt s h as b e e n w ell st u di e d i n [ 3 5], h er e w e m ai nl y f o c u s 
o n f or m ul ati n g e n er g y m a n a g e m e nt o bj e cti v es. Si mil ar t o t h e 
V 2 G s c h e d uli n g s c e n ari o, B E S S a gi n g c ost i s c al c ul at e d b y t h e 
f oll o wi n g li n e ar e q u ati o n b as e d o n t h e est a blis h e d o nli n e 
b att er y m o d el:  

ˆ( ( ), ( ))a gi n g b at b at b atC x k k  C  Q L  u           ( 1 9) 

T h e o pti m al b al a n c e b et w e e n f u el c o n s u m pti o n, el e ctri cit y 
c o n s u m pti o n, a n d b att er y a gi n g c o st is m o d el e d as a m ulti-
o bj e cti v e o pti mi z ati o n pr o bl e m. T h e o pti m al P H E V e n er g y 
m a n a g e m e nt str at e g y i s d eri v e d b y s ol vi n g t h e f oll o wi n g 
o pti mi z ati o n pr o bl e m: 
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W h er e: f u elC  a n d el e cC  ar e f u n cti o n s t o e v al u at e f u el a n d 
e l e ctri cit y c o st of P H E V e n er g y m a n a g e m e nt str at e g y, w hi c h 
c a n b e c al c ul at e d b y t h e P H E V m at h e m ati c al m o d el i n [ 2 9].  

V. C A S E S T U D Y

I n t his s e cti o n, t h e eff e cti v e n ess of t h e est a bli s h e d li n e ar 
b att er y lif e l o ss q u a ntifi c ati o n m o d el a n d t h e d e si g n e d n e ur al 
h y bri d o pti mi z ati o n- b as e d e n er g y m a n a g e m e nt m et h o d ar e 
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verified by the two most commonly used BESS deployment 
scenarios in Energy-transportation Nexus: V2G behavior 
management and PHEV power distribution. 

A. Battery anti-aging vehicle charging management 

The established linear battery life loss quantification model 
and neural hybrid optimization-based BESS anti-aging 
management method can be used to guide the charging behavior 
of GEVs in various V2G scenarios, such as residential EVs, 
commercial EVs, and industrial EV fleets. This study mainly 
focuses on mitigating vehicle aging costs and a most basic and 
simple V2G mode: aggregated GEVs oriented peak-shaving, is 
employed to verify the effectiveness.  

In this study, the charging behavior of 50 GEVs is simulated 
to provide peak-shaving services. The configuration of the 
studied V2G scheduling scenario is illustrated in Table I. The 
battery pack of the studied GEVs consists of Lithium-Ion cells 
with 3400 mAh rated capacity and 3.8 V nominal voltage. The 
rated capacity of the battery pack reaches 53 kWh, which 
consists of 10 modules (each with 444 Lithium Ion cells) with 
a 2p5s configuration. The minimum SoC value is set as 10% to 
protect the battery from over-discharge. Grid demand data 
comes from the Stentaway Primary substation near Plymouth, 
which is provided by Western Power Distribution in the UK 
[36]. The peak-shaving reference value is set as 2 MW in the 
simulation period according to the BESS operation scheme 
carried out by Western Power Distribution. In this study, V2G 
scheduling is carried out as a case study for aggregators at the 
charging station and residential area, where GEVs can be 
regarded as fixed energy storage devices in a specific 
timeframe. The national household travel survey data [37] is 
employed to characterize the trip behavior of GEVs, and the 
Monte Carlo simulation model is used to simulate GEVs' grid-
connected timeframe.  

TABLE I. CONFIGURATION OF THE STUDIED V2G SCHEDULING SCENARIO. 

Category Parameters Value 

Battery 
parameters

Battery cell type Lithium-Ion 18650 
Battery cell capacity   3400 mAh 

Voltage nominal 3.8V/Cell, 22.8V/Module
Number of cells 444 

Battery pack configuration 2p5s 
Battery pack capacity   53 kWh 

V2G 
simulation 

Number of vehicles 50
Minimum battery SoC value 10% 
Peak-shaving reference value 2 MW 

Grid demand and V2G power profiles on a regular day within 
the simulation period are shown in Fig. 2. In this study, the 
proposed neural hybrid optimization scheme is carried out in 

the period of 16:00–24:00 and 00:00–08:00 on the next day that 
with the most active V2G behaviors and stable GEVs 
availability. As shown in (a), the demand peak appears in the 
period of 18:00 to 21:00, and the maximum grid load level 
reaches 3.3 MW because of the aggregated use of cooking and 
heating appliance in households. Grid power consumption 
valleys appear in the evening, and the minimum load is only 
0.95 MW in the early morning. Without reasonable V2G 
schemes, grid peak load will be further raised in the evening 
peak because of the uncoordinated charging of GEVs, while 
most of them will be fully charged after 24:00 when the valley 
peak appears. 

With the proposed neural hybrid optimization-based V2G 
scheme, more than 3.75 MWh of auxiliary energy can be 
provided for the grid to reduce peak demand. As a result, grid 
peak power can be reduced by 21.4% on average. It should be 
noted that the energy feedback is limited after around 22:00 
because most batteries are at a low SoC level. The V2G 
auxiliary power is reduced in this period to protect GEVs from 
deep discharge, which validates the battery protective 
effectiveness of the developed V2G scheme. After 24:00, an 
energy consumption valley appears, and the average demand 
level is only 1.32 MW. GEVs are scheduled to absorb abundant 
grid power generation in this period. With the proposed V2G 
scheme, 6.75 MWh more energy in the valley can be utilized by 
charging vehicle batteries and the demand level can be elevated 
to 2.03 MW. As a result, the grid peak-valley difference can be 
reduced by 68.6% after the V2G services are deployed, which 
validated the effectiveness of the developed neural hybrid 
optimization-based V2G behavior management method. 

Fig. 2. Peak-shaving performance of the developed V2G behavior management 
model. (a) Grid load profile; (b) aggregated V2G power profile.

Computation, power balancing, and BESS aging mitigation 
performances of different V2G schemes are further 
quantitatively compared in Table II. Firstly, the developed 

Table II. Performance comparison of different V2G management methods.

Scenario 
Case 1: 

Rule-based method 

Case 2: RFCC 

optimization method

Case 3: Cycle 

decomposition method

Case 4: Piecewise 

linearization method

Case 5: Neural hybrid

optimization method

Execution time (s) 0.22 289.71 73.22 9.35 7.64 

Load fluctuation (kW) 196.8 315.4 345.8 312.6 294.7 

Average battery DoD (%) 112.4 88.1 102.6 94.3 92.5 

Average battery cycles 7.91 3.55 3.82 5.44 3.67 

Average Crate 0.625 0.367 0.451 0.384 0.397 

BESS life loss (%) 3.59 × 10
��

2.31 × 10
��

2.92 × 10
��

2.86 × 10
��

2.41 × 10
��
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method (Case 5) is compared with conventional V2G schemes 
with and without anti-aging mechanisms, including the rule-
based method [5] (Case 1) and RFCC optimization method  [17] 
(Case 2), to validate its effectiveness. Further, the battery aging 
mitigation performance of the developed method is also 
compared with V2G schemes with simplified degradation 
models, including the cycle decomposition method [20] (Case 
3) and the piecewise linearization method [21] (Case 4), to 
highlight its technical merit. 

The rule-based method achieves the best computational 
performance because its essence is a decision tree. The average 
algorithm execution time is only 0.22 s. The deployment of the 
RFCC battery aging model in Case 2 complicates the V2G 
behavior management dramatically. As a result, its execution 
time reaches 289.71 s, which obstructs algorithm engineering 
deployment. The developed linear battery aging model and 
neural hybrid method simplify anti-aging V2G scheduling to a 
linear optimization problem. The average algorithm execution 
time can be shortened to 7.64 s, which validates the 
computational efficiency. 

The battery anti-aging target inevitably impacts V2G peak-
shaving performance. As shown in Table II, the load fluctuation 
increases from 196.8 kW (6.2%) to 315.4 kW (9.8%) and 294.7 
kW (9.2%) in the optimization-based and neural hybrid 
optimization methods, respectively. Nevertheless, with the set 
of aging mitigation targets, BESS average DoD, cycles, and 
Crate are reduced by 21.6%, 55%, and 41.3% in Case 2 and 
17.7%, 53.6%, and 36.5% in Case 5. With the rule-based 
method, the daily vehicle battery life loss reaches 0.036% in the 
simulation period on average. Battery cycles, DoD, and Crates 
can be significantly reduced by deploying the BESS life loss 
quantification model through RFCC optimization and neural 
hybrid optimization methods. The quantified BESS life loss can 
be reduced by 35.6% and 32.9% on average, which validates 
the effectiveness of the anti-aging V2G behavior management 
strategy. In summary, compared to the offline optimization-
based method, the developed method can achieve similar peak-
shaving and BESS aging mitigation performances but 
significantly improve the algorithm computation efficiency. 

The developed neural hybrid optimization method is also 
quantitatively compared with two V2G schemes with the 
simplified degradation model in Table II. The cycle 
decomposition method in Case 3 can mitigate battery aging 
cycles but shows limited effectiveness in reducing DoD and 
Crate. The reason is that it mainly focuses on suppressing 
battery aging on a large time scale. The piecewise linearization 
method in Case 3 shows great effectiveness in mitigating 
battery DoD and Crate in V2G services. However, caused by 
performance compromise in reducing model complexity, the 
battery aging cycle increases by 34.7% compared with the 
RFCC method. With the developed linearized degradation 
model and neural hybrid optimization method, battery DoD and 
Crate can be reduced by 9.8% and 12% compared to V2G 
schemes in Case 3. Meanwhile, battery aging cycles are further 
reduced by 32.5% compared to Case 4, which validates that it 
can comprehensively protect vehicle batteries in V2G services. 
As a result, the quantified daily vehicle BESS life loss can be 

reduced further by 17.5% and 15.7%, which highlights the 
technical merit of the developed method. 

B. Hybrid electric vehicle energy management 

This part further verifies the effectiveness of the developed 
BESS energy management method in PHEV power distribution. 
As shown in Fig. 3, an electric hybrid powertrain consisting of 
an internal combustion engine (ICE) and a 60 Ah battery pack 
is investigated. The rated power ICE, integrated starter 
generator (ISG), and driving motor are 147 kW, 65 kW, and 
168 kW, respectively. The battery, ISG motor, and driving 
motor are connected to the DC bus through three bi-directional 
converters. Battery works as an energy storage system to 
provide ancillary service for the vehicle-driven system. On the 
one hand, by supplying power to the driving motor, BESS 
operates to reduce the working pressure of ICE and improve the 
fuel economy of PHEV. On the other hand, BESS is also used 
to absorb the power generation from the ISG motor and vehicle 
regenerative braking system. Operation of BESS, ISG, and 
driving motor are scheduled based on vehicle power 
requirements by energy management strategies. The detailed 
parameters of the studied hybrid electric vehicle are provided 
in [35]. 

Fig. 3. The power system topology of the studied PHEV.

The Chinese typical urban drive cycle (CTUDC) with a 
driving range of 5.897 km is used in this study to verify the 
developed PHEV power distribution model. Vehicle velocity 
and acceleration profiles in one CTUDC are shown in Fig. 4 (a) 
and (b) respectively. The PHEV daily operation is simulated 
under a hybrid working condition consisting of 12 CTUDCs, 
and we mainly focus on evaluating battery anti-aging 
performance to verify the proposed health-aware energy 
management method. In this study, BESS aging is quantified 
under its whole life cycle, and the average battery aging cycle, 
Crate, and life loss every day (12 CTUDCs) are used to evaluate 
algorithm anti-aging performance. Based on the above-defined 
PHEV power system configuration and vehicle working 
conditions, battery aging characteristic parameters in five 
different energy management schemes, including the 
conventional rule-based method (Case 1) [6], RFCC method 
(Case 2) [17], cycle decomposition method [20] (Case 3), 
piecewise linearization method [21] (Case 4), and the 
developed neural hybrid optimization method (Case 5), are 
quantitatively compared.  
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Fig. 4. The Chinese typical urban drive cycle used for simulating PHEV daily 
operation and verifying energy management strategy. (a) Vehicle velocity 
profile; (b) acceleration profile. 

Fig. 5 compares the battery aging cycle, Crate, and quantified 
life loss under five different energy management schemes. 
Battery cycles and Crate reach 584 and 1.94 in Case 1 because 
BESS anti-aging target is not considered. As a result, battery 
life loss reaches 0.036% in the conventional rule-based energy 
management method. BESS aging cycle and Crate are reduced 
by 37.9% and 26.8% after the RFCC optimization method is 
employed. Battery life loss can be reduced by 46.8%, but the 
RFCC method can hardly be deployed in online PHEV energy 
management because of computational complexity. The 
performance of PHEV energy management schemes with 
simplified degradation models is shown in Cases 3 and 4. The 
cycle decomposition method can significantly mitigate the 
battery aging cycle but shows limited effectiveness in reducing 
Crate. Compared to Case 2, battery Crate increases by 23.9% in 
the simulation period. Similarly, the piecewise linearization 
method has a significant effect in reducing battery Crate but 
shows a limited performance in mitigating the aging cycle. 
Compared with the rule-based method, it mitigates 22.1% 
battery Crate but can only reduce 22.6% battery cycles (15.3% 
inferior to the RFCC method). Compared to conventional 
simplified aging models, the established linearized degradation 
model and neural hybrid optimization method can mitigate 
vehicle battery aging cycle and Crate at the same time. Battery 
Crate and number of cycles can be reduced by 15.3% and 16.7% 
compared to PHEV energy management schemes in Cases 3 
and 4. As a result, BESS life loss is further reduced by 16.9% 
and 13.2%, which validates the effectiveness of the developed 
method. 

Fig. 5.  Comparison of battery aging cycle, Crate, and quantified life loss under 
different PHEV energy management methods. 

This paper focuses on mitigating vehicle BESS aging and 
thus the elastic navigation and operation scheme is not 
considered in the proposed V2G and PHEV energy 
management schemes. It is assumed that vehicle users will 
strictly follow the scheduled BESS management strategies to 
facilitate performance verification. However, vehicle users may 
also override the operation schedules in real-world 
implementations. Future work can be conducted on deploying 
the battery life loss quantification model and anti-aging energy 
management method in human-in-the-loop vehicle BESS 

management. 

VI. CONCLUSION

A two-stage BESS aging quantification and health-aware 
management method is proposed in this paper for reducing the 
battery aging cost in V2G services and PHEV power 
distribution. A battery aging state calibration model is 
established by comprehensively analyzing the impact of battery 
cycles with various Crates and DoDs. The established model is 
linearized based on a linear-in-the-parameter supervised 
learning method. With the built linear BESS life loss 
quantification model, vehicle battery anti-aging energy 
management is realized by a neural hybrid optimization model. 
Through extensive case studies and simulations, some key 
findings are listed as follows: 
 The proposed linearization method for the RFCC 

algorithm provides a close approximation of battery cycle 
aging cost. Compared to the conventional RFCC 
optimization method, the computation cost of anti-aging 
energy management can be significantly reduced. 

 The linearized BESS aging model yields more accurate 
life loss quantification results that comprehensively reflect 
the impact of cycle number, cycle depth, and Crate on 
battery aging. It achieves a similar battery anti-aging 
effectiveness compared to the RFCC optimization method 
in V2G scheduling and PHEV energy management but 
significantly reduces algorithm computation complexity. 

 In GEVs charging behavior management, battery anti-
aging targets are realized by mitigating Crate and DoD. 
Vehicle batteries can be effectively protected in V2G 
services with the developed neural hybrid optimization-
based BESS management method. 

 In vehicle energy management, battery aging cycles and 
Crate can also be effectively mitigated with the developed 
neural hybrid optimization method. Vehicle BESS aging 
can be significantly reduced while providing online power 
ancillary services to PHEV.  

The proposed BESS aging quantification and health-aware 
management method can be incorporated into aggregated V2G 
coordinator and onboard PHEV controller. They can help 
reduce battery aging costs and improve vehicle total economy, 
thus benefiting the realization of net-zero in the energy-
transportation nexus. 
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