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ABSTRACT 7 
In recent years there has been a growing interest in gas turbine fault diagnosis, especially 8 

under dynamic conditions, due to the evolving operating profile of gas turbines and the need to 9 

deploy computationally efficient and high-precision diagnostic solutions in real-time. One of the 10 

main challenges of fault diagnosis in real-time is the power imbalance between the compressor 11 

and turbine that occurs during transient operation. In addition, the heat soakage phenomenon 12 

characterizing the transient conditions has a substantial impact on the accuracy of the diagnosis. 13 

Finally, any sudden failure that might happen during transient operating conditions creates an 14 

additional challenge to fault diagnostics. The present study proposes a gas turbine diagnostic 15 

approach based on time-series measurements encapsulating steady-state and transient 16 

operating conditions. Specifically, the introduced novel approach is capable of quantifying the 17 

surplus/deficit of the power between the compressor and the turbine by utilizing the time-series 18 

data representing the observed deviations in the shaft rotational speed in order to determine the 19 

power balance in the shaft. The maximum diagnostic errors for constant fault and sudden 20 

failure are less than 0.006% during the dynamic maneuver. The results demonstrate and 21 

illustrate that the proposed method could effectively and accurately diagnose the severity of 22 

aero-engine faults at both steady-state and transient conditions. Therefore, this study has great 23 

potential for gas turbine practitioners since the diagnosis under transient conditions in real-24 
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time can enhance the capability of engine online condition monitoring and improve the 25 

condition-based maintenance of gas turbine assets. 26 

Key Words: Turbofan Engine Degradation; Time-series Fault Diagnosis; Real-time Engine Fault 27 
Monitoring. 28 
 29 

Nomenclature 30 
 31 

𝐴 = Area [𝑚2] 32 

𝐴𝑊 = Auxiliary work [𝑊] 33 

𝐶𝑃 = Characteristic parameter 34 

𝐶𝑊 = Compressor work [𝑊] 35 

HP = High-pressure 36 

𝐼 = Shaft inertia [𝑘𝑔 ∙ 𝑚2] 37 

LP = Low-pressure 38 

𝑛 = Number of measurements 39 

𝑁 = Shaft rotational speed [𝑟𝑝𝑚] 40 

𝑃 = Pressure [𝑎𝑡𝑚] 41 

𝑃𝑅 = Pressure ratio 42 

𝑄 = Heat rate [𝑊] 43 

𝑅𝑀𝑆𝐸 = Root mean square error 44 

𝑆𝑃 = Engine shaft surplus power [𝑊] 45 

𝑇 = Temperature [𝐾𝑒𝑙𝑣𝑖𝑛] 46 

𝑇𝑊 = Turbine work [𝑊] 47 

𝑈 = Heat transfer coefficient [𝑊 (𝑚2 ∙ 𝐾)⁄ ] 48 

𝑊 = Mass flow rate [𝑘𝑔/𝑠] 49 

𝑋 = Degradation index 50 

𝑍 = Measurements 51 
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 52 

Greek Letters 53 
 54 

𝜏 = Time constant [𝑠] 55 

 56 

Subscripts 57 
 58 

a = Actual condition 59 

c = Clean condition 60 

E = Efficiency 61 

F = Flow capacity 62 

g = Gas flow 63 

ht = heat transfer 64 

in = Inlet 65 

loc = Local component characteristic 66 

m = Metal 67 

out = Outlet 68 

 69 

1. Introduction 70 

The gas turbine engine is among the most important process engines for commercial and military aircraft [1]. Over 71 

the past years, there has been a dramatic development in gas turbine technology with more and more complex engine 72 

structures [2,3]. Gas path fault diagnosis is crucial to ensure the safety, economy, and reliability of aero-engine 73 

operations. Accordingly, a growing interest in gas path analysis (GPA) of gas turbine engines has been witnessed to 74 

guarantee effective condition-based maintenance. GPA is a gas path fault diagnosis technique that establishes the 75 

relationship between unmeasurable health parameters and measurable operating parameters [4]. GPA, established in 76 

1969 by Urban [5], plays an essential role in the condition monitoring of gas turbine engines. As sudden failure has 77 
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dramatically impacted engine safety, real-time fault diagnosis is becoming a significant area of research in gas turbine 78 

engine condition monitoring.  79 

The majority of aero-engine gas path analysis methods are based mainly on gas path measurements available from 80 

steady-state operating conditions [6]. In contrast, the gas path measurements obtained during transient conditions are 81 

mainly analyzed and processed offline, which cannot meet the requirement of online and real-time health monitoring. 82 

If the engine encounters a sudden fault during any transient maneuver, the steady-state gas path fault diagnostic system 83 

will not be able to respond promptly. In addition, engine component performance degradation will affect the 84 

compressor surge margin [7]. Therefore, real-time assessment of the compressor surge margin is crucial for safe 85 

control and operation of the engine transient process. Consequently, there is an urgent need to address the fault 86 

diagnosis in real-time under dynamic maneuvers for gas turbine engines on continuous feedback of gas path fault and 87 

improve the engine’s emergency response capability. Until recently, little attention has been paid to the real-time 88 

monitoring of engines under transient conditions. 89 

 
(a) Sliding window method 

 
(b) Steady-state approximation method 

Fig. 1 Fault diagnosis methods at transient conditions. 90 

In recent years, several attempts have been made to diagnose gas turbine degradation under both steady-state and 91 

transient conditions, where two different approaches have been proposed. The first one, the sliding window method, 92 

is to simulate the gas path measurements during the whole dynamic maneuver with estimated degradation and then 93 

compare them to the actual engine measurements from the monitoring system in order to iterate the predicted fault 94 

(Fig. 1 (a)). Li (2003) [8] developed a fault diagnosis method for turbofan engines under transient conditions based 95 

on the sliding window method. Ogaji et al. (2003) [9] conducted a gas turbine fault diagnosis based on artificial neural 96 

networks during a dynamic maneuver. Tsoutsanis et al. (2015) [10] proposed a fault diagnostic method by map tunning 97 

with selected sliding windows for the targeted gas path measurements, where the average prediction error is 0.15%. 98 

In the following two years, the GPA method has been further developed by Tsoutsanis et al. [11,12] to incorporate the 99 
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fault prognosis for gas turbines under dynamic conditions. Chen et al. (2022) [13] conducted an aero-engine fault 100 

diagnosis based on a sequential method under dynamic conditions. However, the above methods considered only soft 101 

degradation during a dynamic maneuver, which is the most common in gas turbines, but attention should be paid to 102 

the abrupt degradation scenarios in transient conditions.  103 

The second method, the steady-state approximation method, considers time-series measurements independent. A 104 

steady-state fault diagnosis model is applied to each set of discrete measurements for both steady-state and dynamic 105 

conditions in the timeline (Fig. 1 (b)). Li and Ying (2020) [14] attempted to evaluate the degradation indices of a 106 

heavy-duty industrial gas turbine engine based on a steady-state approximation method for both steady-state and 107 

dynamic conditions. The diagnostic results were promising for the examined test cases, but the diagnosis accuracy 108 

might be compromised for other types of engines. The reason for this lies in the fact that the impact of transient 109 

conditions in the fault diagnosis, as expressed by a power imbalance, heat soakage, and lag response under dynamic 110 

conditions, has not been considered. Heavy-duty industrial gas turbine engines could ignore the aforementioned 111 

transient effects as they have the inertia of slow dynamic response. Still, they should be accounted for faster response 112 

gas turbine engines such as aero-derivative and aero-engines. Especially for engines with rapid transient maneuver 113 

capabilities and larger temperature and pressure variations in different operation conditions, the above method will be 114 

inappropriate, and the integrity of the diagnosis will be severely affected by transient effects. The power imbalance 115 

among different components on the same shafts and the heat soakage effect will greatly impact estimating the health 116 

parameters during dynamic conditions. Although the method could predict the health state in real-time, the predicted 117 

results will not be accurate, In such a situation. 118 

The main challenge of fault diagnosis in real-time is the dynamic effect during transient maneuvers. Currently, 119 

fault diagnosis methods under transient conditions proceed either with the fault diagnosis after selecting a sliding 120 

window [2–5] or the steady-state approximation method without considering the dynamic effects such as heat soakage 121 

and power imbalance [14]. Therefore, it is of paramount importance for the condition-based maintenance of gas 122 

turbine engines to have a fault diagnosis algorithm that is capable of capturing the actual health state in real-time, even 123 

with sudden failure during dynamic operating conditions. 124 

A time-series diagnostic method is proposed for gas turbine engines operating under both steady-state and dynamic 125 

conditions to address the gap mentioned above in the literature. The novelty of this study lies in the fact that we 126 

proposed a diagnostic method for transient conditions which could quantify the dynamic effects during transient 127 
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maneuvers at each time instant. The fault diagnosis captures the transient effect in the gas turbine in accordance with 128 

time series gas path measurement data. More specifically, the power imbalance between turbine and compressor is 129 

addressed by accounting for the shaft acceleration rate in order to determine both the surplus power under dynamic 130 

conditions and the power equality constraints for each shaft. The heat soakage effect during transient conditions could 131 

also be considered in the diagnosis model when previous measurements in the timeline are utilized to calculate the 132 

new metal temperature in the following timeline. In addition, the lag response that characterizes the transient 133 

conditions could be addressed by considering the first-order lag. Finally, as the measurements are successive, the 134 

sudden failure could also be diagnosed accurately during any time point of a dynamic maneuver. Based on the 135 

literature review, no publications have been found so far that could correctly diagnose the fault level in real-time under 136 

transient conditions. The main contributions of this study are summarized as follows: 137 

1) A new real-time successive fault diagnosis method is proposed by considering the engine monitoring system 138 

under dynamic conditions. 139 

2) The proposed algorithm considers transient effects on fault diagnosis based on time-dependence data. 140 

3) The fault level of five engine components that experience degradation simultaneously could be reflected in 141 

real-time when new time-series data is transferred to the diagnostic system while the constant engine 142 

degradation is implanted.  143 

4) In all previous research efforts, the sudden failure during dynamic conditions had a severity level that made 144 

it difficult to be monitored in real-time. This study could observe the sudden failure during a transient 145 

maneuver with excellent diagnosis accuracy. 146 

The remaining part of the paper proceeds as follows: The second section of this paper will describe the 147 

methodology for the related methods. The third and fourth section of the paper deals with the application and the 148 

analysis, respectively. The final section summarizes the main findings and implications of this study. 149 

2. Methodology 150 

2.1 Assumptions 151 

The methodology and test cases are based on the following assumptions since these will facilitate the comparison 152 

of the proposed method to a recently published benchmark method [14]. 153 
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⚫ Measurement noise/bias is ignored because there are mature methods for noise filtering and sensor 154 

verification [15,16]. Furthermore, rather than sensor-related issues, this research attempts to improve the 155 

performance of the diagnostic algorithm. 156 

⚫ The efficiency, flow capacity, and pressure ratio indices are used to quantify the fault level as health 157 

parameters. Furthermore, the pressure ratio index is assumed to be the same as the flow capacity index [17]. 158 

⚫ All turbofan engine rotating components are experiencing degradation simultaneously. Moreover, any sudden 159 

failure will cause concurrent degradation of all engine components. 160 

2.2 Turbofan Engine Performance and Degradation Modelling 161 

2.2.1 Performance Modelling 162 

Our previous publications have validated the steady-state and transient engine performance models [13,18] in the 163 

C # environment. Fig. 2 [13] presents the turbofan engine configuration with station numbering that includes a fan, a 164 

low-pressure compressor, a high-pressure compressor, a combustor, a high-pressure turbine, and a low-pressure 165 

turbine. The design point specification of the turbofan engine in concern is presented in Table 1. The turbofan engine 166 

measurements on-wing for fault diagnosis are listed in Table 2 [19].  167 

 168 
Fig. 2 Configuration of turbofan engine in concern and its station numbering [13]. 169 

 170 

 171 
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Table 1 Turbofan engine design point specification. 172 

Item Symbol Unit Value 
Flight Mach Number 𝑀𝑁 - 0.8 

Flight Altitude 𝐴𝐿𝑇 km 11 
Intake Airflow Rate 𝑊𝑖𝑛 kg/s 222 
Burner Fuel Flow  𝑊𝐵𝐹𝐹 kg/s 0.1876 

Low Heating Value 𝐿𝐻𝑉 MJ/kg 118.429 
Engine Pressure Ratio 𝐸𝑃𝑅 - 33.8 
Engine Bypass Ratio 𝐸𝐵𝑅 - 9 

 173 

Table 2 Turbofan engine measurements on-wing [19]. 174 

No Measurement Symbol 

1 Ambient pressure 𝑃1 

2 Ambient temperature 𝑇1 

3 Bypass inlet total pressure 𝑃33 

4 Low-pressure compressor (LPC) exit total pressure 𝑃4 

5 LPC exit total temperature 𝑇4 

6 High-pressure compressor (HPC) exit total pressure 𝑃5 

7 HPC exit total temperature 𝑇5 

8 Low-pressure turbine (LPT) inlet total pressure 𝑃9 

9 LPT inlet total temperature 𝑇9 

10 LPT exit total pressure 𝑃10 

11 LPT exit total temperature 𝑇10 

12 Flight Mach Number 𝑀𝑁 

13 LP shaft rotational speed  𝑁𝐿𝑃 

14 HP shaft rotational speed 𝑁𝐻𝑃 

15 Burner fuel flow rate 𝑊𝐹𝑢𝑒𝑙 
 175 

2.2.2 Degradation Modelling 176 

Normally, the performance of gas turbines is related to the performance of each sub-component [12,20]. Therefore, 177 

Eq. (1) defines the degradation index (𝑋) which is related to the degradation of each component characteristic 178 

parameter[21,22].  179 

 
𝑋 =
𝐶𝑃𝑎
𝐶𝑃𝑐

 
 
(1) 

where the subscript “𝑎” and “𝑐” represent the actual and clean conditions, respectively. If 𝑋 is 1, it means that the 180 

engine is at a nominal clean condition where the denominator is the same as the numerator [23,24]. 181 
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Table 3 [25] summarizes the health parameters relevant to the turbofan engine in concern. The ‘Health State 1’ 182 

refers to constant/smooth degradation of the engine in concern, whereas the ‘Health State 2’ refers to a more severe 183 

level of degradation, which is double that in ‘Health State 1’. The magnitude of ‘Health State 2’ refers to a large 184 

bypass turbofan engine that has completed 6000 flight cycles [25]. The ‘Health State 1’ is also applied to the engine 185 

degradation level before sudden failure, whereas ‘Health State 2’ represents the engine degradation level after sudden 186 

failure. 187 

Table 3 Degradation indices of turbofan engine [25]. 188 

Component Symbol Health Parameter Health State 1 Health State 2 [25] 

𝐹𝐴𝑁 𝑋𝐹𝐴𝑁 
𝑋𝐹𝐴𝑁,𝐸 FAN efficiency index -1.425 % -2.85 % 

𝑋𝐹𝐴𝑁,𝐹 FAN flow capacity index -1.825 % -3.65 % 

𝐿𝑃𝐶 𝑋𝐿𝑃𝐶 
𝑋𝐿𝑃𝐶,𝐸 LPC efficiency index -1.305 % -2.61 % 

𝑋𝐿𝑃𝐶,𝐹 LPC flow capacity index -2.00 % -4.00 % 

𝐻𝑃𝐶 𝑋𝐻𝑃𝐶 
𝑋𝐻𝑃𝐶,𝐸 HPC efficiency index -4.70 % -9.40 % 

𝑋𝐻𝑃𝐶,𝐹 HPC flow capacity index -7.03 % -14.06 % 

𝐻𝑃𝑇 𝑋𝐻𝑃𝑇 
𝑋𝐻𝑃𝑇,𝐸 HPT efficiency index -1.905 % -3.81 % 

𝑋𝐻𝑃𝑇,𝐹 HPT flow capacity index +1.285 % +2.57 % 

𝐿𝑃𝑇 𝑋𝐿𝑃𝑇 
𝑋𝐿𝑃𝑇,𝐸 LPT efficiency index -0.539 % -1.078 % 

𝑋𝐿𝑃𝑇,𝐹 LPT flow capacity index +0.2113 % +0.4226 % 
 189 

2.3 Benchmark Method 190 

Nonlinear gas path analysis is widely used for model-based fault diagnosis, where the engine thermodynamic 191 

performance model may be defined by Eq. (2). The iteration solver is applied to update the degradation index 𝑋 during 192 

fault diagnosis in order to minimize the difference between the predicted measurements (𝑍𝑃𝑟𝑒𝑑𝑖𝑐𝑡) from the engine 193 

model and the actual measurements (𝑍𝐴𝑐𝑡𝑢𝑎𝑙) available from a service engine. In this study, the Newton-Rapson 194 

method [26] is chosen as the iteration solver for all the cases regarding performance simulation and fault diagnosis. 195 

 
𝑍 = 𝑓(𝑋) 

 
(2) 

where 𝑍 denotes measurements of the engine, and 𝑋 denotes the degradation indices of engine components. 196 

The root mean square error (𝑅𝑀𝑆𝐸) defined by Eq. (3) [27,28] is selected to evaluate the convergence with a 197 

threshold of 1E-5 as the convergence criteria. 198 
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𝑅𝑀𝑆𝐸 =   
(𝑍𝑃𝑟𝑒𝑑𝑖𝑐𝑡 ,𝑖 − 𝑍𝐴𝑐𝑡𝑢𝑎𝑙 ,𝑖)

2

𝑛

𝑛

𝑖=1
 

 

(3) 

where 𝑛 is the number of measurements. 199 

 200 
Fig. 3 Schematic of benchmark fault diagnosis method [13]. 201 

 202 
The method proposed by Li and Ying in 2020 [14] will be used as the “benchmark method” in this study. The 203 

schematic of the benchmark method is shown in Fig. 3 [13]. It is clear that the steady-state fault diagnosis model is 204 

characterized by time independence as the steady-state approximation is employed. The method will be applied to a 205 

high bypass ratio civil turbofan engine in order to generate some baseline diagnostic results.  206 

The performance simulation and fault diagnosis processes are invoked in the same iteration loop. The iteration 207 

variables of the benchmark method are the ten degradation indices listed in Table 3 and the blocks with a purple color 208 

in Fig. 4. The convergence is checked based on compatibility shown in the blocks with blue color in Fig. 4. The 209 

detailed process is explained as follows: 210 
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The flight altitude, Mach Number, and inlet condition are known through on-wing measurements. Then, the fan 211 

inlet condition could be obtained by the intake model. It follows that the fan bypass pressure ratio could be calculated 212 

based on Eq. (4) [29] where 𝑃33 is a gas path measurement. As the fan inlet condition, shaft speed, and bypass pressure 213 

ratio are known, the fan outlet temperature and pressure at both core and bypass could be determined through the fan 214 

model [13].  215 

 
𝑃𝑅𝐹𝐴𝑁 ,𝐵𝑃 = 𝑃33 𝑃2⁄  

 
(4) 

The 𝐿𝑃𝐶 pressure ratio is obtained by Eq. (5) [30] where 𝑃4 is a gas path measurement and 𝑃3 could be determined 216 

from the fan model. Then, the 𝐿𝑃𝐶 model calculation will follow as the pressure ratio, shaft speed, and inlet condition 217 

are known. It is worth noting that the core mass flow rate obtained in the 𝐿𝑃𝐶 model is used to update the core flow 218 

and bypass flow rates in the fan model, which will also determine the bypass ratio. Moreover, the fan work is also 219 

updated according to the new bypass ratio. 220 

 
𝑃𝑅𝐿𝑃𝐶 = 𝑃4 𝑃3⁄  

 
(5) 

The 𝐻𝑃𝐶 pressure ratio can be obtained by Eq. (6) where 𝑃5 and 𝑃4 are gas path measurements. Then the 𝐻𝑃𝐶 221 

model could be used to calculate the outlet condition as the pressure ratio, shaft speed, and inlet condition are known.  222 

 
𝑃𝑅𝐻𝑃𝐶 = 𝑃5 𝑃4⁄  

 
(6) 

As the 𝐻𝑃𝐶 outlet condition is known, the burner outlet condition could be calculated as the fuel flow rate is also 223 

known. The mixture model is applied to calculate the 𝐻𝑃𝑇 inlet condition. The 𝐻𝑃𝑇 pressure ratio could be obtained 224 

by Eq. (7) where 𝑃9 is gas path measurements and 𝑃7 could be known from the mixture model after the combustor. 225 

 
𝑃𝑅𝐻𝑃𝑇 = 𝑃7 𝑃9⁄  

 
(7) 

The 𝐿𝑃𝑇 inlet condition could be obtained by the mixture after 𝐻𝑃𝑇. The 𝐿𝑃𝑇 pressure ratio could be obtained by 226 

Eq. (8) [31] where 𝑃9 and 𝑃10 are gas path measurements. Finally, two sets of duct and nozzle are applied to calculate 227 

main flow and bypass flow exhaust condition. 228 

 
𝑃𝑅𝐿𝑃𝑇 = 𝑃9 𝑃10⁄  

 
(8) 

 229 
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Guess: XFAN,E, XFAN,F, XLPC,E, XLPC,F, XHPC,E, XHPC,F,  XHPT,E, XHPT,F, XLPT,E, XLPT

Handle: Fuel Flow (WFuel)
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FAN Model

Compressor 
Model (HPC)

Burner Model

 Mixture 
Model

Turbine Model 
(HPT)

 Mixture 
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A12, loc

A12, DP

W9, loc
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TWLPT

CWHPC

TWHPT

Compressor 
Model (LPC)

Duct Model 
(Bypass)

Nozzle Model 
(Bypass)

CWLPC

W4, pre,
T4

A35, loc

A35, DP

Data:
T1, Alt, MN

Data:
NLP, P1, P33, 

Map

Data:
NLP, P4, Map

Data:
NHP, P5, Map

Data:
NHP, P9, Map

Data:
KHDP,  PDP

Data:
NLP, P10, Map

Data:
KHDP,  PDP

Data:
Aout, DP

Data:
KHDP,  PDP
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Aout, DP

LP shaft power 
compatibility?

W4, T4 
compatibility?

HP shaft power 
compatibility?

W7 
compatibility?

W9, T9 
compatibility?

Nozzle Area 
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T5
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T10
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Data:
T4

Data:
T5

Data:
T9

Data:
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CWFAN

T5

W3

 230 
Fig. 4 Fault diagnosis based on steady-state model. 231 

There are eleven convergence criteria in the diagnostic algorithm represented in blue blocks in Fig. 4. The 232 

convergence criteria could be classified into two categories. One set of convergence criteria is obtained from gas path 233 

measurements, including 𝑇4, 𝑇5, 𝑇9, and 𝑇10. The other set of convergence criteria is required to satisfy the mass flow 234 

compatibility, shaft power balance, and design nozzle area at the design point. It is worth noting that the LP and HP 235 
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shaft power compatibility in blue blocks means that the turbine work has to be equal to the compressor work plus any 236 

auxiliary work at all times, as the steady-state approximation fault diagnosis method is employed. This is one of the 237 

main assumptions of the benchmark method that may lead to diagnostic errors since the surplus power during dynamic 238 

conditions is ignored. Another source of uncertainty is the assumption that the typical phenomenon of heat soakage 239 

and lag response during dynamic conditions is ignored when the steady-state model is implemented. In such a 240 

condition, diagnostic accuracy may be compromised. 241 

2.4 Proposed Method 242 

 243 
Fig. 5 Schematic of proposed fault diagnosis method. 244 

The benchmark method may be sufficient for slow transient maneuvers which characterize heavy-duty industrial 245 

gas turbines as the steady-state approximation is employed in their study. However, the performance of the benchmark 246 

method is limited in transient conditions if the power imbalance among shaft, heat soakage, and lag response are not 247 

considered. This study intends to diagnose the health of a civil turbofan engine with time-series data during steady-248 

state and transient conditions. The transient effect could not be ignored for the turbofan engine in concern as it exhibits 249 

a fast and dynamic response. The schematic of the proposed method is demonstrated in Fig. 5, where shaft speeds 250 

derive the surplus power during dynamic processes among adjacent measurement steps in the diagnostic system for 251 

the consideration of shaft power compatibility in Fig. 4. Moreover, the heat soakage is also considered in the engine 252 
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sub-models to represent the heat transfer between gas and engine metal during the transient maneuver for the 253 

temperature compatibility check in Fig. 4. the first order lag is selected in this study to represent the lag response of 254 

sensor property in Fig. 4 under dynamic conditions. It is clear that the measurements are time-dependent in the 255 

proposed method, where the surplus power, transient heat transfer, and lag response are needed to be considered in 256 

consecutive time steps, which are highlighted in the green block in Fig. 5. In addition, the shaft model also takes lag 257 

response into account to capture the dynamic response with increased precision. Although the two red points under 258 

dynamic conditions are selected to illustrate the new method in Fig. 5, the proposed method is also suitable for steady-259 

state conditions.  260 

 261 
2.4.1 Rotor Dynamics 262 

Gas path measurements could not directly monitor the surplus power among each shaft. As the engine shaft speed 263 

is monitored in time-series, the rotor acceleration rate could be derived through the deviation of shaft speed in finite 264 

time steps by Eq. (9) [32,33].  265 

 

𝑑𝑁

𝑑𝑡
=
𝑁(𝑡 + ∆𝑡) − 𝑁(𝑡)

∆𝑡
 

 

(9) 

In such a condition, the surplus power (𝑆𝑃) could be calculated by Eq. (10) [34,35] by rotor acceleration rate, shaft 266 

speed, and shaft inertia (𝐼). 267 

 
𝑆𝑃 =

4𝜋2

3600
∙ 𝐼 ∙ 𝑁 ∙

𝑑𝑁

𝑑𝑡
 

 

(10) 

Then, the power balance among each shaft could be obtained by (11) [36,37]. The equation is tenable for both 268 

steady-state and dynamic conditions where the 𝑆𝑃 is zero during the steady-state condition. Hence, the proposed 269 

method could satisfy the shaft power compatibility when surplus power is considered for both steady-state and 270 

dynamic conditions in a more coherent fashion than the benchmark method. 271 

 
𝑇𝑊 = 𝑆𝑃 + 𝐶𝑊 + 𝐴𝑊 

 
(11) 

where 𝑇𝑊 is turbine work, 𝐶𝑊 is compressor work, and 𝐴𝑊 is auxiliary work for power offtake. 272 
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2.4.2 Heat Soakage 273 

During transient maneuvering, changing gas temperature in a turbofan engine will affect the engine metal 274 

temperature. This phenomenon is called heat soakage and is not considered in the steady-state fault diagnosis of the 275 

benchmark method. 276 

The heat soakage is considered in the dynamic engine model in the proposed method. The heat transfer between 277 

gas flow and engine metal is obtained by Eq. (12) with exponential decay [38]. 278 

 
𝑄 = 𝑈ℎ𝑡 ∙ 𝐴ℎ𝑡(𝑇𝑔,𝑘+1

𝑏 − 𝑇𝑚 ,𝑘) ∙ (𝑒
−∆𝑡 𝜏⁄ − 1) 

 
(12) 

where 𝑄 is heat rate, 𝑈ℎ𝑡 is heat transfer coefficient, 𝐴ℎ𝑡 is the effective contact surface, 𝑇𝑔,𝑘+1𝑏  is the gas temperature 279 

in the current step before considering heat soakage, 𝑇𝑚,𝑘 is the metal temperature in the previous step, ∆𝑡 is the time 280 

step, and 𝜏 is the time constant. 281 

The heat transfer coefficient is calculated as follows: 282 

 

𝑈ℎ𝑡 =
1

1
𝐹𝐶

+
𝑙𝑒𝑓𝑓
𝑘𝑚

 

 

(13) 

Additionally, the time constant is determined by Eq. (14). 283 

 

𝜏 =
𝑐𝑚 ∙ 𝑊𝑚
𝑈ℎ𝑡 ∙ 𝐴ℎ𝑡

 
 

(14) 

where 𝑊𝑚 is the effective mass of engine component, 𝑐𝑚 is the specific heat of the engine material. 284 

The change of engine metal temperature (𝑑𝑇𝑚) could be obtained by Eq. (15).  285 

 

𝑑𝑇𝑚
𝑑𝑡

=
𝑄

𝑐𝑚 ∙ 𝑊𝑚
 

 

(15) 

The metal temperature of the engine component in the current step (𝑇𝑚,𝑘+1) could be obtained as follows: 286 

 
𝑇𝑚 ,𝑘+1 = 𝑇𝑚 ,𝑘 − 𝑑𝑇𝑚  

 
(16) 

The change of gas enthalpy (∆𝐻𝑔) when considering the heat transfer could be determined by Eq. (17). 287 

 

∆𝐻𝑔 =
𝑄

𝑊𝑔
 

 

(17) 

where 𝑊𝑔 is the mass flow rate of gas. 288 
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The gas enthalpy at the current step with the consideration of heat soakage (𝐻𝑔,𝑘+1) could be obtained as follows: 289 

 
𝐻𝑔,𝑘+1 = 𝐻𝑔,𝑘+1

𝑏 + ∆𝐻𝑔  
 

(18) 

where 𝐻𝑔,𝑘+1𝑏  is gas enthalpy at current step before considering heat soakage. 290 

The gas temperature at the current step with the consideration of heat soakage (𝑇𝑔,𝑘+1) could be determined by Eq. 291 

(19). 292 

 
𝑇𝑔,𝑘+1 = 𝐺𝑎𝑠𝑃𝑟𝑜𝑝[𝐻,𝑃](𝐻𝑔,𝑘+1,𝑃𝑔,𝑘+1,𝐹𝐴𝑅 ,𝑊𝐴𝑅) 

 
(19) 

2.4.3 Lag Response of Engine Shafts 293 

The time delay phenomenon of the engine shafts during transient maneuvering is represented using the first-order 294 

lag. As 𝑁𝑜𝑢𝑡(𝑠) is measured through an on-wing monitoring system, the 𝑁𝑖𝑛(𝑠) could be derived by Eq. (20) [39,40] 295 

for the engine model. 296 

 

𝑁𝑜𝑢𝑡 (𝑠)

𝑁𝑖 𝑛(𝑠)
=

1

𝜏 ∙ 𝑠 + 1
 

 

(20) 

where 𝜏 is the characteristic time, 𝑁𝑜𝑢𝑡(𝑠) is the input with delay and 𝑁𝑖𝑛(𝑠) is the input value without delay. 297 

3. Application and Analysis 298 

Four case studies are examined in this paper. In order to make a direct comparison between the proposed and the 299 

benchmark methods [14], the same computer environment is used. To be more specific, a personal computer with 300 

Intel(R) i7 CPU @2.90GHz and 16 GB RAM is used to evaluate the computational time of the diagnostic process for 301 

all case studies. The four cases are specified as follows: 302 

Case 1. This case study aims to evaluate the effectiveness of the benchmark diagnostic method [14] when the 303 

engine gas path measurements represent dynamic operating conditions without consideration of heat soakage.  304 

Case 2. The measurements in this case study represent the dynamic performance with the effect of heat soakage 305 

included. This case study aims to investigate the effectiveness of the benchmark diagnostic method [14] for diagnosing 306 

the health of the engine from transient measurements by taking into account the heat soakage phenomenon in order to 307 

set a baseline diagnostic data set that will be further used for comparing it with the proposed method. 308 

Case 3. This case study demonstrates and illustrates the proposed method’s advantage compared to the baseline 309 

diagnostic results from Case 2, which implemented the benchmark method [14]. 310 
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Case 4. While the previous three case studies tested the diagnostic results under constant fault levels during a 311 

transient maneuver, this case study is designed to demonstrate the capability of the proposed method to deal with 312 

sudden failure during transient operation. 313 

The first three cases have a constant degradation level called ‘Health State 1’ as shown in Table 3 [25]. In Case 314 

study 4, we inject the degradation level denoted as ‘Health State 1’ between [0-3) s and ‘Health State 2’ between [3-315 

15] s with the sudden failure initiated at the time mark of 3.0 s. 316 

3.1 Case 1: Benchmark Method - Transient Measurements without Considering Heat Soakage 317 

As mentioned in the methodology, the benchmark method [14] did not take into account the surplus power in the 318 

fault diagnosis during dynamic conditions. This may be true as the focus of that study was a heavy-duty industrial gas 319 

turbine engine. Due to its large shaft inertia, the transient maneuver for heavy-duty gas turbine engines is relatively 320 

slower than other gas turbines (i.e., aero-derivative engines and turbofans). However, such an assumption will 321 

compromise the diagnostic performance of other gas turbines. 322 

Fig. 6 (top) demonstrates an acceleration fuel schedule with a 0.1 s time step during a dynamic maneuver for the 323 

turbofan engine in concern. It is well known that the power balance between compressor work and turbine work will 324 

not be satisfied during the transient maneuver. As shown in Fig. 6 (middle), the maximum surplus power obtained 325 

from the power imbalance between the compressor and turbine is close to 320 kW during the maneuver for both 𝐿𝑃 326 

and 𝐻𝑃 shafts. The maximum difference between compressor work and turbine work is 5.3% and 3.0% for 𝐿𝑃 and 327 

𝐻𝑃 shaft in Fig. 6 (bottom), respectively. Therefore, if the surplus power is ignored, the relative error will propagate 328 

to the diagnostic results. It follows that the larger the surplus power, the less accurate the diagnostic results will worsen 329 

in steady-state approximation. 330 

The average computation time for diagnosis with the benchmark method is 0.2024 s. Fig. 7 presents the diagnostic 331 

results based on the benchmark method. It is apparent from this figure that the surplus power impacts the accuracy of 332 

the diagnosis. The error of the diagnosis keeps increasing until approximately the 3 s mark, where the maximum 333 

prediction error is observed. Then, the prediction error of health parameters decreases as the surplus power falls off. 334 

In such a condition, the benchmark method will lead to fluctuation of the diagnostic results and may set a false alarm 335 

of sudden engine degradation. Moreover, the faster the variation of the fuel schedule is, the larger the surplus power 336 

and the bigger the prediction errors are going to be. The average prediction error of all ten health parameters during 337 

the transient maneuver is shown in Fig. 8. Although the average maximum prediction error of ten health parameters 338 

Jo
urn

al 
Pre-

pro
of



18 
 

hovers at 1.4265% in Fig. 8, the maximum prediction error during the dynamic maneuver is 6.3396 % at 2.6 s for 339 

𝑋𝐹𝐴𝑁,𝐸. Such a prediction error may lead to inaccurate diagnosis. 340 

 341 
Fig. 6 Fuel schedule and power imbalance between 𝑪𝑾 and 𝑻𝑾 during a transient maneuver. 342 

In summary, the benchmark method could be beneficial if the surplus power is negligible. This typically happens 343 

when there is a slow variation of fuel flow rate with respect to time during a transient maneuver. In other cases, the 344 

benchmark method will significantly fluctuate its diagnostic results. Consequentially, the benchmark method cannot 345 

monitor the engine health state in real-time when each set of measurements is recorded. Thus, such a method is not 346 

capable of monitoring the sudden engine failure that a bird strike may cause. 347 
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 348 
Fig. 7 Predicted health parameters during a transient maneuver. 349 
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 350 
Fig. 8 Average relative error of health parameters during a transient maneuver. 351 

3.2 Case 2: Benchmark Method - Transient Measurements by Considering Heat Soakage 352 

During dynamic operating conditions, the gas turbine is not only facing power imbalance among shafts but also 353 

experiences heat transfer between gas and engine components. Fig. 9 presents the effect of heat soakage on exhaust 354 

gas temperature with time during a transient maneuver with and without considering heat soakage. It is evident that 355 

heat soakage impacts the gas path measurement of the exhaust temperature by delaying its increase in comparison 356 

with the case where heat soakage is ignored, as seen in Fig. 9. If the engine is faced with a slam transient maneuver, 357 

the predicted engine health parameters are likely to be affected. 358 

 359 
Fig. 9 Effect of heat soakage on exhaust gas temperature. 360 
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 361 
Fig. 10 Predicted health parameters during a transient maneuver. 362 

The average computation time for diagnosis is 0.1997 during the 15 s maneuver, where the benchmark method has 363 

been implemented. It can be seen from the plot in Fig. 10 that the estimated degradation indices have a relatively 364 
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higher deviation from the actual health state when compared with Case 1. Apart from the 𝐻𝑃𝑇 efficiency degradation 365 

index, the heat soakage phenomenon will increase the prediction error when considering the heat soakage in transient 366 

measurements. The surplus power will lead to over-prediction of the 𝐻𝑃𝑇 efficiency degradation, while the heat 367 

soakage will under-predict the 𝐻𝑃𝑇 efficiency degradation. Fig. 11 provides the summary of the average prediction 368 

error for ten health parameters. The maximum average error of the benchmark method has increased from 1.4265 % 369 

in Case 1 to 5.8738 % in Case 2 when the transient measurements consider heat soakage. Moreover, the maximum 370 

error during the entire transient maneuver is 13.3647 in Case 2 at 3.0 s for 𝑋𝐹𝐴𝑁,𝐸. The consideration of heat soakage 371 

in the engine measurements will delay the prediction of the maximum degradation for all ten degradation indices. 372 

Ignoring the heat soakage during transient diagnosis will impact the prediction accuracy during transient conditions. 373 

The results of this case study provide important insights into the applicability of the benchmark method for engine 374 

transient maneuvers. It becomes clear that using transient measurements in a steady-state approximation fault 375 

diagnostic system will have noticeable prediction errors during dynamic operating conditions. Moreover, the shift of 376 

diagnostic results is possible to raise a false alarm. If the diagnostic system dispatches frequent false alarms, the fault 377 

diagnostic program’s confidence will be significantly compromised from an operation and maintenance perspective.  378 

 379 
Fig. 11 Average relative error of health parameters during a transient maneuver. 380 
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This case study employs the proposed method for fault diagnosis during a transient maneuver while considering 382 

heat soakage in the transient engine measurements. Fig. 12 illustrates the relative error of the ten degradation indices 383 

during a dynamic maneuver. 384 

 385 
Fig. 12 Relative error of degradation indices during a dynamic maneuver. 386 
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Comparing the results in three cases (Fig. 13) reveals that the proposed method could estimate the health 387 

parameters with greater precision than the benchmark method. Table 4 summarises the diagnostic results for all three 388 

case studies. The computation time of Case 3 is 0.1567 s which is slightly better than that of Case 2. This is because 389 

the maximum allowed iteration steps terminate the diagnostic process; rather than the convergence threshold when 390 

affected by surplus power, heat soakage, and lag response during a transient maneuver. The average diagnostic error 391 

by the proposed method is 0.0007 % which is superior to the benchmark method (1.5239 % in Case 2). Moreover, the 392 

maximum error during the entire transient maneuver is 13.3647 % and 0.0058 % in Cases 2 and 3, respectively. It 393 

follows that the proposed time-series fault diagnosis method is superior to the benchmark method in both 394 

computational time and prediction accuracy aspects.  395 

 396 
Fig. 13 Comparison of diagnosis effectively of three cases. 397 

 398 

Table 4 Summary of three diagnosis cases. 399 

Parameter Symbol Unit Case 1 Case 2 Case 3 
Average Run Time 𝑅𝑇 Second 0.2024 0.1997 0.1567 

Average Error 𝐴𝐸 % 0.4224 1.5239 0.0007 
Maximum Error 𝑀𝐸 % 6.3396 13.3647 0.0058 
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3.4 Case 4: Proposed Method - Sudden Failure during Transient Manoeuvre 401 

The aero-engine may be faced with foreign object damage like bird strikes during flight. In such a condition, 402 

sudden degradation may happen during the flight. Moreover, the bird strike is more likely to occur during the take-off 403 

and landing processes when the engine runs under a transient or quasi-steady-state condition. Hence, it is necessary 404 

to verify the capability of the proposed method under sudden failure during dynamic conditions in real-time.  405 

The sudden failure is assumed to happen at the 3.0 s mark during the transient maneuver in Fig. 6 (top). The health 406 

state is suddenly changed from ‘Health State 1’ to ‘Health State 2’ represented in Table 3. Fig. 14 presents the relative 407 

error of diagnostic results obtained from the proposed method during dynamic conditions with sudden failure. It can 408 

be seen from Fig. 14 that the proposed method could capture the sudden failure with high prediction accuracy. Fig. 15 409 

compares the results of ten health parameters among all four Cases. The maximum relative error of all ten degradation 410 

indices is less than 0.0059 % in Case 4. It is evident that the relative error of all health parameters with sudden failure 411 

in Case 4 is similar to that of Case 3.  412 

Table 5 presents the diagnostic results of all four Cases. The average computation time of Case 4 is only 0.1582 s 413 

which amplifies the suitability of the proposed method for real-time implementation. It is worth noting that the 414 

computation time of Case 4 is similar to Case 3. The sudden failure does not affect the computational efficiency of 415 

the proposed method. From the perspective of diagnostic accuracy, the average and maximum errors for all ten health 416 

parameters during the dynamic maneuver are 0.0009 % and 0.0059 %, respectively. The maximum error is observed 417 

at 3.6 s for 𝑋𝐹𝐴𝑁,𝐸 and the sudden failure is taking place at 3.0 s, which means that the proposed algorithm is not 418 

compromised when dealing with sudden failures. The average and maximum errors of Case 4 are similar to those of 419 

Case 3. The sudden failure during the dynamic condition also does not affect diagnostic accuracy. 420 

In summary, the results demonstrate and illustrate that the proposed method is capable of diagnosing the engine 421 

health state with time-series data at both steady-state and dynamic conditions in real-time, even when there are sudden 422 

faults during transient conditions. 423 
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 424 

Fig. 14 Relative error of degradation indices during dynamic maneuver. 425 
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 426 
Fig. 15 Comparison of diagnosis effectively of four cases. 427 

Table 5 Summary of four diagnostics cases. 428 

Parameter Symbol Unit Case 1 Case 2 Case 3 Case 4 
Average Run Time 𝑅𝑇 Second 0.2024 0.1997 0.1567 0.1582 

Average Error 𝐴𝐸 % 0.4224 1.5239 0.0007 0.0009 
Maximum Error 𝑀𝐸 % 6.3396 13.3647 0.0058 0.0059 

 429 

Despite the dynamic effect of rotor inertia, heat soakage and lag response during transient maneuver, the volume 430 

dynamic does not engage with the proposed method which may affect the diagnostic precision when very small-time 431 

step is selected. The volume dynamic is suggested to be considered in future work. However, it is worth noting that 432 

the effect of volume dynamics is less important when compared with the three dynamic effects mentioned in this study 433 

unless a limited time step is employed in the diagnostic system. Moreover, Further studies are suggested to integrate 434 

the proposed method with the aircraft and gas turbine starting models to track the engine health state from engine start 435 

until engine shut down during the whole aircraft mission. The health monitoring system could provide a real fault 436 

diagnosis in real-time on-wing, improving aircraft engine reliability, availability, and safety in such a condition.  437 
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4. Conclusions 438 

This study is designed to provide the first systematic account of aero-engine transient characteristics during fault 439 

diagnosis in time-series data to fill the research gap in engine fault diagnosis under dynamic conditions. The findings 440 

clearly indicate that the proposed method could accurately diagnose the engine fault level under dynamic conditions. 441 

The most prominent finding to emerge from this study is that the sudden failure during transient conditions could be 442 

quantified correctly in real-time. In general, this study strengthens the idea that the proposed method could address 443 

the fault diagnosis of aero-engine in real-time under both stable and dynamic conditions.  444 

The conclusions extracted from this study are below: 445 

• When the heat soakage phenomenon during a dynamic condition is not considered, the diagnosis results 446 

predicted by the benchmark method come with a maximum error of 6.3396 %. Moreover, the predicted 447 

degradation indices fluctuate during a transient maneuver. 448 

• The maximum diagnostic error has increased to 13.3647 during the entire transient maneuver when 449 

considering the heat soakage phenomenon in engine gas path measurements. It is clear to see that the 450 

benchmark method cannot provide correct results for the test cases. 451 

• The proposed method could take both surplus power, heat soakage, and lag response into consideration. The 452 

maximum error of the health parameter is only 0.0058 % under a constant health state during transient 453 

conditions with a computation time of 0.1567 s.  454 

• More importantly, the proposed method could also diagnose the sudden failure during transient maneuvers 455 

with a maximum error of 0.0059 % in 0.1582 s. 456 

Before this study, the challenging real-time determination of the aero-engine fault level in dynamic conditions had 457 

not been investigated in detail. The present study extends our knowledge of turbofan engine fault diagnosis under 458 

dynamic conditions. A key strength of the present study is the fault diagnosis of sudden failure under transient 459 

maneuvers. 460 

Overall, the findings of this investigation complement those of earlier studies of engine fault diagnosis under 461 

dynamic maneuvers in real-time. These findings contribute in several ways to our understanding of aero-engine fault 462 

diagnosis and benefit engine safety, availability, and reliability. 463 
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Highlights 

 A novel real-time successive fault diagnosis method is proposed. 

 Time-series data consider the transient effect in gas path measurements. 

 Constant engine degradation could be monitored with high accuracy in real-time. 

 Sudden failure during dynamic conditions could be captured with great precision. 

 The proposed method is far better than the benchmark method. 
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