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Abstract
When developing an energy management strategy (EMS) including a battery aging model for plug-in 
hybrid electric vehicles, the trade-off between the energy consumption cost (ECC) and the equivalent 
battery life loss cost (EBLLC) should be considered to minimize the total cost of both and improve the life 
cycle value. Unlike EMSs with a lower State of Charge (SOC) boundary value given in advance, this 
paper proposes a model predictive control of EMS based on an optimal battery depth of discharge (DOD) 
for a minimum sum of ECC and EBLLC. First, the optimal DOD is identified using Pontryagin’s 
Minimum Principle and shooting method. Then a reference SOC is constructed with the optimal DOD, 
and a model predictive controller (MPC) in which the conflict between the ECC and EBLC is optimized in 
a moving horizon is implemented. The proposed EMS is examined by real-world driving cycles under 
different preview horizons, and the results indicate that MPCs with a battery aging model lower the total 
cost by 1.65%, 1.29% and 1.38%, respectively, for three preview horizons (5, 10 and 15 s) under a city 
bus route of about 70 km, compared to those unaware of battery aging. Meanwhile, global optimization 
algorithms like the dynamic programming and Pontryagin’s Minimum Principle, as well as a rule-based 
method, are compared with the predictive controller, in terms of computational expense and accuracy.
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Nomenclature 𝑃𝑏𝑎𝑡 battery power 𝑚𝑓 fuel consumption 𝑃𝑏 power consumed by electrical load 𝜑 battery purchase cost 𝑃𝑙 battery internal power loss 𝑐𝑓,𝑐𝑒 prices of fuel fossil and electricity 𝑃𝑚 motor power 𝑆𝑂𝐶 initial SOC level 𝑃𝑒𝑔𝑢 EGU output power 𝑆𝑂𝐶 final SOC level 𝑃𝑎𝑢𝑥 power consumed by auxiliary components 𝜆 co-state variable 𝑛𝑚 motor rotational speed 𝛿 increment of initial co-state value 𝑇𝑚 motor output torque List of abbreviations 𝑄𝑏 battery capacity EMS energy management strategy 𝐼𝑏 battery electrical currency ECC energy consumption cost 𝑈𝑜𝑐 battery open circuit voltage EBLLC equivalent battery life loss cost 𝑅𝑏 battery internal resistance SOC battery stage of charge 𝛤 nominal battery life DOD depth of discharge 𝐼𝑛𝑜𝑚 nominal battery current MPC model predictive control 𝐸𝑂𝐿 battery end of life PHEV plug-in hybrid electric vehicle 𝜎 severity factor DP dynamic programming 𝑄𝑙𝑜𝑠𝑠 battery capacity loss in percentage PMP Pontryagin’s minimum principle 𝐵 pre-exponential factor ECMS equivalent consumption minimum strategy 𝐸𝑎 activation energy SDP stochastic dynamic programming 𝑅 gas constant AMT automatic mechanical transmission 𝑇 absolute temperature HEV hybrid electric vehicle 𝐴𝑕 Ah-throughput CD-CS charging-depleting and charging-sustaining 𝑧 power law factor ISG integrated starter generator 𝛾 Ah-throughput under working conditions EGU engine-generator-unit 𝑡𝑓 duration of the trip BSFC brake specific fuel consumption 𝐽 total cost FC fuel consumption 𝐿 instantaneous cost EC electricity consumption 𝐻 Hamilton function RMSE root mean squared error 
 

1 Introduction 

Low-carbon, green and sustainable development of transportation has boosted electrification of road vehicles 
worldwide [1]. In particular, plug-in hybrid electric vehicles (PHEVs) that are capable of improving fuel economy, 
enabling vehicle-grid interaction, as well as overcoming the range anxiety, have been developed and applied on a large 
scale [2]. 

For optimal economy of PHEVs, it is critical to devise an energy management strategy (EMS) for coordinating the 
power distribution among multiple energy sources. Many methods have been used for EMS development such as 
rule-based methods [3], fuzzy-logic based methods [4], optimization theory based methods like dynamic programming 
(DP) [5], Pontryagin’s Minimum Principle (PMP) [6-7], and equivalent consumption minimum strategy (ECMS) [8-9]. 
Intelligent methods, e.g., machine learning [10] and artificial neural network [11-12], were also employed. For a better 
online application, predictive methods, especially model predictive controls, have been increasingly applied to design 
the EMS [13-14]. Several integrated EMSs based on two or more foregoing approaches have been also devised [15-17]. 

Despite the distinct improvement of battery technology in recent years, the purchase cost of a battery system still 
accounts for a significant proportion of overall cost of PHEV powertrains. Besides lowering the energy consumption 
cost (ECC), the energy management strategy is also expected to reasonably control the factors contributed to the battery 
aging, e.g., the depth of discharge (DOD) to extend the battery life and reduce the equivalent battery life loss cost 
(EBLLC), eventually minimizing the sum of the ECC and EBLLC and enhancing the life span value of vehicles. 
Moreover, the ECC and EBLLC are always conflicting especially for PHEVs. Typically, increased use of battery electric 
energy yields inexpensive propulsions and lowers the ECC; however, more battery energy depletion also indicates a 
deeper discharging level, which can accelerate the battery capacity fade and raise the EBLLC, probably increasing the 
total cost related to energy consumption and battery health decay. Therefore, when developing a sophisticated EMS, the 
tradeoff between the ECC and EBLLC should be carefully incorporated. 
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The open literature reports various methods to develop EMSs aware of battery aging. For example, for HEVs, 
energy management including a battery aging model was implemented based on PMP algorithm [18-19]. 
Control-oriented energy management was proposed to minimize fuel economy while maintaining the battery State of 
Health (SOH) within a reasonable range using PMP [20]. In [21], a soft constrained method was used in the EMS to 
optimize the power distribution between power sources, and the authors integrated a penalty term to the objective 
function to represent the battery life cost with respect to temperature. The ECMS was leveraged to optimize the HEV 
energy management considering battery aging [22]. For PHEVs, fuel economy and battery solid-electrolyte interphase 
(SEI) layer growth were balanced in the EMS using a stochastic DP (SDP) [23]. Moreover, SDP and particle swarm 
optimization (PSO) were jointly leveraged for balancing power split and battery aging for a plug-in hybrid electric city 
bus [24]. Further, a shortest path SDP was put forward to coordinate fuel economy and battery health [25]. The convex 
optimization was also proposed to simultaneously optimize the powertrain component size, state-of-health (SOH), and 
energy management strategy [26]. For a pure electric bus equipped with an automatic mechanical transmission (AMT), 
a gear-shifting strategy considering battery aging effect was constructed [27]. Also, for a hybrid energy storage system 
comprising batteries and ultra-capacitors, the battery durability was integrated into the development of its power 
distribution law [28]. 

It is noteworthy that the battery discharging traces (SOC profile) for charging-sustaining HEVs and plug-in HEVs 
are totally different. The SOC profiles of HEVs almost fluctuate around a stable level over the whole trip [19-20], 
whereas those of PHEVs decline from an initial value to a preset lower boundary level, e.g., 0.3 [6, 14], featuring a 
sloping tendency to the distance traveled. When including battery aging in the EMS, the SOC traces of HEVs are 
relatively stable without significant variations [19-20, 22]. For PHEVs, however, due to the clear conflict of fuel 
economy and battery aging, a lower boundary value of battery SOC designated in advance cannot certainly ensure 
minimizing the total cost; that is, a heuristically preset DOD may not guarantee the lowest total cost of ECC and EBLLC. 
As a result, the determination of an optimal battery DOD is critical. 

Although the aforementioned EMSs of PHEVs involving battery aging take battery aging factors into account, e.g., 

temperature, DOD, and C-rate, they are implemented based on upper and lower boundary SOC levels assigned a priori. 

This treatment is mainly because the final SOC boundary is a prerequisite for solving most of the optimization 

algorithms, such as the conventional DP and PMP methods [5-7], where the battery DOD must be predefined. An 

apparent disadvantage of such a treatment is that it cannot achieve the optimal total cost of fuel economy and battery 

aging. Therefore, to achieve the lowest sum of ECC and EBLLC, this paper develops an EMS for PHEVs based on an 

optimal DOD. First, the optimal DOD targeting the minimal total cost of the energy consumption and equivalent battery 

aging loss is identified using PMP and a shooting method. Second, based on the optimal DOD, the SOC reference is 

established, and a model predictive control is further implemented to realize an online EMS. Finally, real-world speed 

profiles are used to examine the proposed method, and a systematic comparison with global optimization methods 

including DP and PMP, as well as the rule-based charging-depleting and charging-sustaining (CD-CS) method, is 

conducted to further demonstrate the enhanced computational accuracy and efficiency of the proposed method. 

The rest of this paper is organized as follows. The PHEV modeling is formulated in Section 2, and the battery 
modeling is described in Section 3. The framework of the EMS is outlined in Section 4. Section 5 details the approach of 
determining the optimal battery DOD. Then, a model predictive control based energy management strategy is introduced 
in Section 6. The results and discussion are presented in Section 7, and main conclusions are drawn in Section 8. 

2 PHEV Modeling 

2.1 Powertrain Description 

This paper considers a 12-meter long prototype plug-in hybrid electric city bus with a series configuration 

powertrain [14, 29], as shown in Fig. 1. The integrated starter generator (ISG) and a natural gas engine are mechanically 

coupled to form an engine-generator-unit (EGU). Figure 2 shows the brake specific fuel consumption (BSFC) of the 

engine, and Fig. 3 presents the efficiency map of the generator. The equivalent energy conversion efficiency of EGU can 

be calculated by combining the engine BSFC and ISG efficiency. Two electrical machines (EMs) connected with a 

two-level-gear reducer independently drives the wheel on either side to form a two-motor-independent system; such a 

system shortens the driveline and has more space available for passengers. Figure 4 shows the efficiency map of the 
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electric motor, which can work as a motor during driving or as a generator during braking. The maximum regenerative 

braking power of the motor is limited to 30 kW to avoid the extreme current impetus to the battery system. Table 1 

summarizes the main specifications of the powertrain. 

 

Fig. 1 (a) Prototype of the plug-in hybrid electrical bus [29]. 

 

Fig. 1 (b) PHEV powertrain architecture [29]. 

 

Fig. 2 BSFC of the engine [29]. 
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Fig. 3 Efficiency of generator [29]. 

 
Fig. 4 Efficiency of electrical motor [29]. 

Table 1 Parameters of powertrain [29] 

Item Parameter Value 

Vehicle 
Mass/kg 14500 

Final drive ratio 13.9 

Electrical 
Motor 

Peak power/kW 150 

Peak torque/Nm 650 

Peak speed/rpm 6000 

Generator 
Peak power/kW 130 

Peak torque/Nm 500 

Peak speed/rpm 6000 

Engine 

Displacement/L 4.2 

Peak power/kW 88 

Peak speed/rpm 2800 

2.3 Vehicle dynamics 

For the PHEV, the power balance equation can be written as follows: 13600 (𝑚𝑔𝑓𝑣 + 𝐶𝑑𝐴21.15 𝑣3 + 𝜁𝑚𝑑𝑣𝑑𝑡 𝑣) = 𝑃𝑚1𝜂𝑚1𝑠𝑖𝑔𝑛(𝑇𝑚1) + 𝑃𝑚2𝜂𝑚2𝑠𝑖𝑔𝑛(𝑇𝑚2) (1) 
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𝑃𝑏 + 𝑃𝑒𝑔𝑢 = 𝑃𝑚1 + 𝑃𝑚2 + 𝑃𝑎𝑢𝑥 (2) 

where 𝑚 is the vehicular curb mass, 𝑓 is the rolling resistance coefficient; 𝐶𝑑 is the air resistance coefficient, and 𝐴 is 
the front area; 𝑣 is the speed; 𝜁 is the equivalent mass inertia; 𝑃𝑚1and 𝑃𝑚2 are the power consumption of the left and 
right motors; 𝜂𝑚1 and 𝜂𝑚2 are electric efficiencies of the left and right motors; 𝑇𝑚1 and 𝑇𝑚2 are the torques of both 
motors. As both motors receive the same control command from the vehicular controller, we assume that they have the 
same output torque and electrical efficiency. 𝑃𝑒𝑔𝑢  is the EGU output power, and 𝑃𝑎𝑢𝑥  is the auxiliary power 
consumptions, e.g., the electrical steering system. 

3 Battery Modeling 

3.1 Battery Equivalent Electrical Circuit 

The energy storage system is a lithium iron phosphate battery with a nominal capacity of 120 Ah and a total voltage 
of 537.6 V; Fig. 5 shows the equivalent electric circuit for modeling the battery dynamics. In the simulation, the open 
circuit voltage and equivalent internal resistance are expressed as a function of battery SOC, given that the temperature 
effect on battery properties is neglected [30]. For each cell, the open circuit voltage and internal resistance with respect 
to the SOC are shown in Fig. 6. 

 

Fig. 5 Equivalent electric circuit of battery. 

 
Fig. 6 Open circuit voltage and equivalent internal resistance for battery cell [29]. 

The power balance equation of the battery system is 𝑃𝑏𝑎𝑡 = 𝑃𝑏 + 𝑃𝑙 = 𝑃𝑏 + 𝐼𝑏2𝑅𝑏 (3) 

where 𝑃𝑏𝑎𝑡 is the total battery power, 𝑃𝑏 is the electrical load at the terminals, and 𝑃𝑙 is the internal loss power of the 
battery; 𝐼 is the electrical current, and 𝑅𝑏 is the equivalent internal resistance. 

According to the power balance, the battery dynamics can be described as 

𝑆𝑂𝐶̇ = 𝑓(𝑆𝑂𝐶) = −𝑈oc − √𝑈𝑜𝑐2 − 4𝑅𝑏𝑃𝑏2𝑄𝑏𝑅𝑏  (4) 

where 𝑄𝑏 is the battery capacity, and 𝑈𝑜𝑐 is the open circuit voltage. 
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3.2 Battery life model 

This study adopts a semi-empirical battery aging model. According to the Ah-throughput model assumption, the 
battery nominal life is defined as in [31] 𝛤 = ∫ |𝐼𝑛𝑜𝑚(𝑡)|𝑑𝑡𝐸𝑂𝐿

0  (5) 

where 𝛤 is the nominal battery life, 𝐼𝑛𝑜𝑚 is the nominal current, and 𝐸𝑂𝐿 is the battery end of life. 
Also, a severity factor to quantify the battery aging relative to nominal Ah-throughput is defined as [22] 

𝜎 = 𝛤𝛾 = ∫ |𝐼𝑛𝑜𝑚(𝑡)|𝑑𝑡𝐸𝑂𝐿0∫ |𝐼𝑏(𝑡)|𝑑𝑡𝐸𝑂𝐿0  (6) 

where 𝜎 is the severity factor, and 𝛾 is the Ah-throughput under working conditions. 
Meanwhile, a general battery capacity loss model can be described as [32] 𝑄𝑙𝑜𝑠𝑠 = 𝐵𝑒𝑥 𝑝 (−𝐸𝑎 𝑅𝑇 ) (𝐴𝑕)𝑧 (7) 

where 𝑄𝑙𝑜𝑠𝑠 is the capacity loss in percentage, 𝐵 is the pre-exponential factor, 𝐸𝑎 is the activation energy (J.mol-1), and 𝑅 is the gas constant (J.mol-1.K), 𝑇 is the absolute temperature of lump cells (Kelvin), 𝐴𝑕 is the Ah-throughput, and 𝑧 is 
the power law factor. 

By assuming that twenty percentage of capacity loss indicates the end of battery life, the nominal battery life 𝛤 can 
be rewritten as [18-19] 

𝛤 = [ 20𝐵𝑒𝑥𝑝 (−31700 + 163.3𝐼𝑐,𝑛𝑜𝑚𝑅𝑇𝑛𝑜𝑚 )]
1𝑧
 (8) 

where 𝐼𝑐,𝑛𝑜𝑚 and 𝑇𝑛𝑜𝑚 are nominal battery C-rate and temperature, respectively. 
Accordingly, the battery life under real load conditions can be expressed as [18] 

𝛾 = * 20𝐵𝑒𝑥𝑝 (−31700 + 163.3𝐼𝑏𝑅𝑇 )+
1𝑧 . (9) 

According to Equation (9), the temperature is one of factors on battery aging. Given that the thermal management 
system now has become a standard unit to cool and heat a battery pack, this study assumes a constant battery temperature 
of 25 °C. 

4 Research Framework 

The framework of the research is shown in Fig. 7. First, based on speed profiles along a city bus route, the optimal 
DOD can be determined by means of PMP and shooting method. Moreover, an enhanced artificial neural network 
forecasts the speed sequence; the network supplies the demanded power sequence and also figures out the predicted 
distance over the horizon for constructing the SOC reference (the justification of using this network is substantiated in 
comparisons with existing counterparts in Section 6.1). Then, with the optimal DOD and short-time predicted speed, the 
SOC reference is iteratively established, providing the battery discharging reference trace throughout the moving 
horizon. Finally, the DP is leveraged to acquire the local optimization solution in the preview horizon, thereby forming 
the model predictive control. 
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Fig. 7 Schematic of research framework.  

5 Derivation of Optimal DOD 

In this section, the optimal battery DOD is determined using PMP and the shooting method, so as to provide a 
carefully considered lower SOC boundary for the reference SOC of MPC. 

5.1 PMP 

The EMS concerning the battery life model seeks to minimize the sum of ECC and EBLLC. The objective function 
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J is defined as 

𝐽 = 𝐸𝐶𝐶 + 𝐸𝐵𝐿𝐿𝐶 = ∫ 𝐿(∙)𝑡𝑓0 𝑑𝑡 = ∫ ,(𝑐𝑓𝑚̇𝑓 + 𝑐𝑒 𝑃𝑏𝑎𝑡3600⏟          𝐸𝐶𝐶̇ + 𝜑𝜎 |𝐼𝑏|3600𝛤⏟      𝐸𝐵𝐿𝐿𝐶̇ )-𝑑𝑡𝑡𝑓0  (10) 

where 𝐿(∙) is the instantaneous total cost, and 𝑡𝑓  is the duration of the trip; 𝑐𝑓 and 𝑐𝑒  are prices of fossil fuel and 

electricity, respectively; 𝑚̇𝑓 is the equivalent fuel rate of EGU. The battery purchase cost 𝜑 is the product of the total 
battery capacity and its unit price. It is worth stressing that the battery purchase cost defines EBLLC; the battery residual 
value is neglected when the battery reaches its end of life. 

Then the Hamiltonian function 𝐻 can be written as 𝐻 = (𝑐𝑓𝑚̇𝑓 + 𝑐𝑒 𝑃𝑏𝑎𝑡3600) + 𝜑𝜎 |𝐼𝑏|3600𝛤 + 𝜆𝑆𝑂𝐶̇  (11) 

where 𝜆 is the co-state variable. 
Accordingly, the normal equation and co-state are given as 

𝜆̇ = − 𝜕𝐻𝜕𝑆𝑂𝐶 = −𝜆 𝜕𝑆𝑂𝐶̇𝑆𝑂𝐶  (12) 

and 

𝑆𝑂𝐶̇ = 𝜕𝐻𝜕𝜆 . (13) 

When minimizing the Hamiltonian function, the constraints of the SOC upper and lower boundaries should be met: 

{𝑆𝑂𝐶 = 𝑆𝑂𝐶0𝑆𝑂𝐶 = 𝑆𝑂𝐶𝑓 (14) 

where 𝑆𝑂𝐶 and 𝑆𝑂𝐶 are the initial and final SOC values in the whole trip or a moving horizon. 

Additionally, the physical limitations imposed by the power components are respected by 

{ 
 𝑃𝑏𝑎𝑡,𝑚𝑖𝑛  𝑃𝑏𝑎𝑡(𝑡)  𝑃𝑏𝑎𝑡,𝑚𝑎𝑥𝑃𝑒𝑔𝑢,𝑚𝑖𝑛  𝑃𝑒𝑔𝑢(𝑡)  𝑃𝑒𝑔𝑢,𝑚𝑎𝑥𝑇𝑚,𝑚𝑖𝑛  𝑇𝑚(𝑡)  𝑇𝑚,𝑚𝑎𝑥𝑛𝑚,𝑚𝑖𝑛  𝑛𝑚(𝑡)  𝑛𝑚,𝑚𝑎𝑥  (15) 

where 𝑚 𝑥 and 𝑚 𝑛 represent the maximum and minimum values of the corresponding terms. 

5.2 Shooting Method 

This paper uses the shooting method to obtain the numerical solution of the PMP algorithm. Unlike a deterministic 

lower SOC boundary in [33], here the lower SOC boundary is designed to be a variable to acquire a spectrum of sums of 

the ECC and EBLLC for different DODs. For this purpose, the initial co-state value in each shooting changes as 𝜆𝑖 = 𝜆𝑖−1 + 𝛿;   = 2,3,⋯ (16) 

where   is the shooting time; 𝜆𝑖 is the initial co-state value, and 𝛿 is the increment of the initial co-state value in each 
shooting. 
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Fig. 8 Flowchart of shooting method. 

Based on the shooting method, the detailed algorithmic flowchart is illustrated in Fig. 8, where   is the shooting 

sequence, and   is the time step of the trip with its maximum of  𝑚𝑎𝑥. 

5.3 Optimal DOD 

This paper considers a 70 km round-trip bus route in Xi’an, China, as a case study. Seven different speed profiles 
(No. 1 - No. 7) are selected randomly from the speed profiles dataset (see Fig. 9) to present the approach of capturing 
optimal DOD. Among them, the first six profiles (No. 1 - No. 6) are used to determine the optimal DOD, and the last one 
to examine the proposed method (see Section 7). These bus cycles were used in our previous work [14]. 
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Fig. 9 Speed profiles along a city bus route [14]. 

The main parameters for the numerical solution of the PMP method are specified as follows. The prices of the 
natural gas and electricity are set to 3.8 CNY.L-1 and 0.8 CNY.kWh-1, respectively. The battery unit purchase cost is 
assumed to be 1400 CNY.kWh-1, so that the total purchase cost of the battery system is approximately 90300 CNY. The 
initial co-state value 𝜆0 and the increment 𝛿 are set to -1.6 and 0.1, respectively; 𝑁𝑠, which controls the shooting times, 
is set to 20 to guarantee a sufficient number of points to accurately identify the optimal DOD. According to [19], the gas 
constant 𝑅 is set to 8.31 J.mol-1.K, T is set to 298.16 K, the power exponent 𝑧 is specified as 0.57, and the pre-coefficient 𝐵 is approximately set to 4650. 

The speed profile No.1 is taken as an example to demonstrate the process of determining the optimal DOD. By 
using the shooting method with a free lower SOC boundary, the SOC profiles can be yielded accordingly (see Fig. 10), 
where each battery DOD determines ECC and EBLLC, and thus a total cost. Figure 11 shows the curve of the total cost 
with respect to DOD. The total cost features an approximate upward Para-curve, where lower or higher DODs lead to an 
increased total cost. Clearly, when DOD reduces from its optimal value to lower levels, e.g., 0.2, to pursue improved fuel 
economy, the total cost grows at a faster pace. In this way, the optimal DOD corresponding to the minimum total cost can 
be achieved; the initial co-state value is shown in Fig. 12 accordingly. 

 

Fig. 10 SOC profiles in the shooting method. 
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Fig. 11 Total cost versus the battery DOD. 

 
Fig. 12 Initial co-state values over the shooting sequence. 

Table 2 summarizes the calculated fuel consumption (FC), electricity consumption (EC), EBLLC, total cost, and 
optimal DOD for the six speed profiles. The optimal DOD maintains around 0.51, with slight differences among 
different trips. This behavior can be explained by considering that despite relatively stable traffic environment for the 
city bus route, the speed profiles still deviate from one another due to many random factors, resulting in a minor 
difference of the optimal DOD. Nonetheless, the optimal DOD, overall, still can be specified to a fixed value, i.e., the 
mean level (0.51) for the running cycles (No. 1 - No. 6). 

Table 2 Results of different speed profiles 

Speed profile number FC(L) EC(kWh) EBLLC(CNY) Total cost(CNY) Optimal DOD 

No.1 8.85 24.23 20.81 73.82 0.5184 

No.2 8.37 24.23 20.27 71.46 0.5194 

No.3 9.63 23.86 20.02 75.71 0.5243 

No.4 9.13 23.71 20.50 74.16 0.5265 

No.5 8.64 25.37 20.37 73.50 0.5019 

No.6 9.08 24.97 20.32 74.80 0.5072 
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6 MPC 

With the optimal DOD, this section develops a model predictive control based EMS, in which the local 
optimization is solved in the moving horizon to trade-off the battery aging and fuel economy. 

6.1 Speed Forecasting 

To optimize the power distribution over the moving horizon, a short-time speed sequence should first be forecast to 
obtain the power sequence. Here a back-propagation artificial neural network (BPANN) is used to realize the speed 
forecasting. To explore the potential of the speed forecasting method, BPANN with a single input (speed sequence), 
BPANN with two inputs (both speed and acceleration sequences), and a Markov chain model are comprehensively 
compared. The forecasting accuracy and computational time are summarized in Table 3. It is evident that BPANN with 
both speed and acceleration sequences as inputs has the best accuracy among the three methods, despite a reduction of 
computational efficiency. In order to improve the accuracy of the controller, the BPANN with two inputs is chosen as the 
speed predictor, without a sacrifice of real-time implementability. Figure 13 presents the architecture of a common 
three-layer neural network that includes the input layer, hidden layer, and output layer. The inputs of BPANN are the 
historical speed and acceleration sequences vh=[vk+1, vk+2, …, vk+n] and ah=[ak+l, ak+2, …, ak+n], and the output is the 
future short-time speed sequence vp=[vk+l+1, vk+l+2, …, vk+l+n]. Here, No. 1 - No. 6 speed profiles are used once again for 
the neural network training while No. 7 is used for the neural network examination. All the calculations are conducted on 
a desktop computer with the CPU main frequency of 3.4 GHz and a memory of 16 GB. Table 4 summarizes the neural 
network properties. 

Table 3 Comparison of different speed forecasting methods 

Preview 
horizon 

length (l) 

BPANN (single input) BPANN (two inputs) Markov chain model 
RMSE 

(km.h-1) 
Computational time 

per horizon (s) 
RMSE 

(km.h-1) 
Computational time 

per horizon (s) 
RMSE 

(km.h-1) 
Computational time 

per horizon (s) 
5s 2.02 0.0108 1.33 0.0109 1.87 0.0005 

10s 4.70 0.0111 3.90 0.0114 4.63 0.0016 

15s 7.00 0.0118 5.90 0.0127 6.53 0.0038 

Note: RMSE means the root-mean-square error of the forecast speed. 

 

Fig. 13 Structure of artificial neural network. 

Table 4 Neural network properties 

Item Value 

Number of hidden layer nodes 10 

Iterative times 10 

Learning ratio 0.1 

Learning target 0.00004 

Activation function  (1 − 𝑒−𝑥)−1 

 Input Output

Input
 layer

Middle 
layer

Output
layer

Trained network

Velocity sequence
vh=[vk+1, vk+2 … vk+n] Future velocity sequence

vp=[vk+l++1, vk+l+2 ... vk+l+n]
Acceleration sequence
ah=[ak+1, ak+2 … ak+n]
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The investigation considers three preview time horizon lengths of 5, 10 and 15 s. Figure 14 compares the forecast 
and real speeds within a time interval 2.36 - 2.64 h for the three time horizons. It is clear that the forecast speed matches 
well the reference for the preview horizon of 5 s, with a RMSE of 1.33 km.h-1. RMSEs for the preview horizons of 10 
and 15 s increase to 3.90 and 5.90 km.h-1, respectively, due to a weak causal link between the input historical and 
forecasting sequences over a longer preview horizon. 

 
Fig. 14 Comparison between real and forecasting speeds. 

6.2 SOC Reference 

For the MPC based EMS, to solve the local optimization over the moving horizon, a SOC reference with the lower 
and upper boundary SOCs have to be carefully specified in each prediction horizon for implementing the optimization 
algorithm. Here an iterative SOC reference is chosen [14], 

{   
  
   𝐷( ) =∑𝑣(𝑡) 𝑡  𝑡

0𝐷( +  ) = ∑ 𝑣𝑝(𝑡) 𝑡(  𝑙) 𝑡
  𝑡𝑆𝑂𝐶 𝑒𝑓( +  ) = 𝑆𝑂𝐶( ) − 𝐷( +  )𝐷𝑡𝑜𝑡𝑎𝑙 − 𝐷( ) (𝑆𝑂𝐶( ) − 𝑆𝑂𝐶𝑜𝑝𝑡)

 (17) 

where   is the time index, and   is the preview horizon length; 𝑣 and 𝑣𝑝 are real and forecasting speeds, respectively; 𝐷( ) is the distance travelled up to the kth step, and 𝐷( +  ) is the forecasted driving distance in the preview horizon;  𝑡 = 1 s is the  time interval. 𝐷𝑡𝑜𝑡𝑎𝑙 is set to 71 km. Meanwhile, 𝑆𝑂𝐶𝑜𝑝𝑡 corresponds to the optimal DOD and is specified 
to 0.51 as indicated in Section 5.3. 

6.3 Dynamic Programming in Moving Horizon 

This paper uses the DP method to solve the local optimization over the preview horizon, for the sake of simplicity 
and efficacy. In the kth predictive horizon the discrete DP can be formulated as: 

{𝐽 ∗(𝑆𝑂𝐶𝑕) = 𝑚 𝑛𝑖∈𝐼 [𝐿(𝑆𝑂𝐶𝑕, 𝑃𝐸𝐺𝑈,𝑖) + 𝜑(𝑆𝑂𝐶𝑕)]𝐽 ∗(𝑆𝑂𝐶𝑕) = 𝑚 𝑛𝑖∈𝐼 [𝐿(𝑆𝑂𝐶𝑕, 𝑃𝐸𝐺𝑈,𝑖) + 𝐽  1∗ ] ( =  )( =  − 1,  − 2,⋯ ,1) (18) 
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where 𝐽 is the cost-to-go value,   is the prediction horizon length, 𝑆𝑂𝐶𝑕 is hth discrete element in its allowable set, and 𝑃𝐸𝐺𝑈,𝑖 is ith delivered EGU power in the allowable set I. Further, 𝜑(𝑆𝑂𝐶𝑕) is a penalty function imposed to restrain an 
excessive discharge of the battery, which has the form of [5], 

𝜑(𝑆𝑂𝐶𝑕) = { 0𝛼(𝑆𝑂𝐶𝑕 − 𝑆𝑂𝐶 𝑒𝑓 )2 𝑆𝑂𝐶𝑕 ≥ 𝑆𝑂𝐶 𝑒𝑓 𝑆𝑂𝐶𝑕 < 𝑆𝑂𝐶 𝑒𝑓  (19) 

where 𝛼 is a constant, which is set to 105, and 𝑆𝑂𝐶 𝑒𝑓  is the lower boundary of SOC reference determined by (17). 

Meanwhile, for the local optimization problem, the physical constraints for the power components described as in (15) 
must be satisfied. 

7 Results and Discussion 

For common EMSs with a preset DOD, the lower SOC boundary is expected to reach a lower allowable target, e.g., 
0.2, to improve fuel economy, because the battery electrical energy can yield less expensive propulsion than fossil fuels. 
Therefore, the proposed method with the optimal DOD and cases with a preset lower SOC boundary (0.2), are compared 
to further evaluate the proposed approach. 

As described in Section 6.1, speed profiles from No. 1 - No. 6 are used for speed forecasting, and No. 7 is used to 
validate the proposed method. The conventional DP and PMP methods that can produce a global optimal solution, as 
well as the rule-based CD-CS strategy, are also used to examine the MPC. Table 5 summarizes the results of different 
methods. 

For the methods related to the DP algorithm, i.e., the conventional DP method and MPC with the DP algorithm 
acquiring local solution in each prediction horizon, the computational accuracy and expense are affected by the SOC 
discretization scale, due to considerable interpolation calculations to estimate the cost-to-go. Higher discretization scale 
can improve the solution accuracy to some degree, but unavoidably increase the computational time. For a fair 
comparison with other methods, the number of discrete SOC points in each horizon for MPC is set to 10, and for the 
conventional DP over the whole trip is set to 300. 

The results highlight that the methods using a battery life model induce smaller total costs than those without it. 
Precisely, MPC schemes with a battery life model cut the total cost down by 1.23, 0.96, and 1.02 CNY or 1.65%, 1.29% 
and 1.38% for the preview horizons of 5, 10, and 15 s, respectively, compared to MPCs unaware of battery aging. 
Moreover, a comparison between the two types of MPCs suggests that the one including battery life model consumes 
almost 230% more fossil fuel and 44% less electric energy, resulting in a smaller EBLLC for battery longevity. On the 
contrary, MPCs unaware of battery aging consume more electricity and less fossil fuel, leading to a higher EBLLC. 

Compared to the global methods (DP and PMP) that produce virtually the same total cost, MPCs have a slightly 
increased total cost, because they essentially base a local optimization solution over moving horizons. Also, compared to 
the CD-CS strategy, the proposed MPCs cut down the total cost by more than 10.1 CNY or 12.2%. 

As for computational burden, Table 5 reveals that the rule-based CD-CS method has the best time efficiency. For 
both global methods, the DP method is more time-consuming than the PMP method. For MPCs, a growing preview 
horizon length expands the computational time, because the local optimization solved by the DP method over a longer 
prediction horizon needs heavier calculation expense. Moreover, while the MPC-15s is most time-consuming among the 
three MPCs, its average computational time per preview horizon is less than 0.086 s, which satisfies the requirement of 
real-time applications. 

Table 5 Results of different methods with and without the battery life model 

Method Battery life model FC 

(L) 
EC 

(kWh) 
EBLLC 

(CNY) 
Final  
SOC 

Total cost 
(CNY) 

Time per 
drive cycle (s) 

MPC-5s 

With 

8.67 25.94 20.94 0.5097 74.64 590 

MPC-10s 8.77 25.45 20.78 0.5171 74.47 1249 

MPC-15s 8.56 25.77 21.02 0.5121 74.16 1867 
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PMP 8.95 25.57 20.36 0.5138 74.01 58 

DP 8.91 24.69 20.39 0.5283 74.03 2312 

MPC-5s 

Without 

2.62 46.95 28.36 0.1892 75.87 570 

MPC-10s 2.70 46.10 28.29 0.2022 75.43 1239 

MPC-15s 2.50 46.30 28.64 0.1992 75.18 1853 

PMP 3.27 44.10 27.11 0.2010 74.83 59 

DP 2.77 45.99 27.82 0.2036 75.14 2189 

CD-CS 5.50 43.33 29.20 0.2449 84.76 18 

 

Fig. 15 SOC profiles of different methods. 

Figure 15 plots the SOC profiles of the foregoing methods. The slope of SOC profiles with the battery life model is 
not as steep as those without the battery life model, indicating the influence of the battery aging model. Also, the SOC 
profiles of MPCs are close to those of the DP and PMP methods, which reveals similar electric energy consumption. For 
the rule-based strategy, the charging-depleting state first takes place, followed by the charging-sustaining state with the 
SOC fluctuating between 0.2 and 0.3, which induces the largest total cost. 

As the city bus route features low average speeds and demanded power, the advantage of the proposed EMS 
considering battery longevity is not fully displayed. In scenarios with higher average speed, accompanied by larger 
electric current fluxes in and out of the battery frequently, the battery life model will be used more to protect the battery 
aging and lead to more obvious decrease of the total cost, compared to EMSs without battery health perception. 

8 Conclusions 

This paper proposes a novel predictive energy management scheme of PHEVs considering the optimal battery 
DOD to minimize the total cost related to both fuel economy and equivalent battery life loss. The PMP and shooting 
method are used to show the trend of the total cost for different SOC boundary values, and a knee point corresponding to 
the minimum total cost can be found to determine the optimal DOD. Based on the optimal DOD, a SOC reference is 
prepared for the moving horizon optimization, and then the MPC is implemented with real speed profiles. The proposed 
method is compared with the DP, PMP, as well as the rule-based CD-CS method, in terms of computational accuracy and 
time. The results indicate that the proposed MPC can significantly reduce the equivalent battery life loss cost and thus 
the total cost, compared to counterparts without a battery aging model. Moreover, quantitative results reveal that the 
proposed MPC reduces the total cost by 1.65%, 1.29% and 1.38%, respectively, for three preview horizons (5, 10 and 15 
s), in contrast to cases unconscious of battery aging. And the MPC with a battery aging model can decrease the total cost 
by more than 12.2% for the three preview horizons, compared to the CD-CS method. The average computational time 
per a moderate preview horizon (e.g., 5s) is less than 0.086 s, displaying a great potential of real-time implementation.  
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The future research will extend the methodology of identifying the optimal depth of battery discharge for electrified 
vehicles in the context of the vehicle-to-vehicle and vehicle-to-infrastructure. 
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