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31 Abstract

32 This review mainly determines novel and advance physical, chemical, physico–chemical, 

33 microbiological and nanotechnology–based pretreatment techniques in lignocellulosic biomass 

34 pretreatment for bio–H2 production. Further, aim of this review is to gain the knowledge on the 

35 lignocellulosic biomass pretreatment and its priority on the efficacy of bio–H2 and positive 

36 findings. The influence of various pretreatment techniques on the structure of lignocellulosic 

37 biomass have presented with the pros and cons, especially about the cellulose digestibility and 

38 the interference by generation of inhibitory compounds in the bio–enzymatic technique as such 

39 compounds is toxic. The result implies that the stepwise pretreatment technique only can ensure 

40 eventually the lignocellulosic biomass materials fermentation to yield bio–H2. Though, the 

41 mentioned pretreatment steps are still a challenge to procure cost–effective large–scale 

42 conversion of lignocellulosic biomass into fermentable sugars along with low inhibitory 

43 concentration.

44
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63 1. Introduction

64 The lignocelluloses have been originated from both the edible and non–edible industries 

65 and are sustainable as well as promising materials for the productivity of second generation bio–

66 fuels, which mainly include bio–ethanol, bio–H2, biogas, bio–methane, synthetic bio–fuels, bio–

67 diesel etc. Lignocellulosic biomass is a renewable resource and an interesting alternative for 

68 fossil fuels since it consists of large amounts of energy as well as organic compounds. Further, 

69 lignocelluloses are a basic components of plant materials and has widely been utilized by 

70 biorefinery, cosmetic, food and pharmaceutical industries, as well (Ashokkumar et al., 2022; 

71 Kumar et al., 2019; Ponnusamy et al., 2019). In the way, such materials obtained from flowers, 

72 energetic willow, grasses, miscanthus, poplar trees, and stems, are functioning as fillers in the 

73 fabrication of beauty masks, curative chows and thermoplastic composite materials. Some other 

74 significant sources of the lignocellulosic  biomass materials are the residual forms procured from 

75 agricultural wastes, cereal, corn straw, corncob, forest, paper industry, potato haulms, rapeseed 

76 oil pressing, sawmills, sugar beets, sunflowers,  waste paper industries and other waste fragments 

77 of plants as well as firewood (Azbar et al., 2009). The biomass structure only defines the kind of 

78 pretreatment techniques, required. The bio–H2 that is procured from lignocelluloses via 

79 fermentation is an alternative to petro–derived fuel itself as it is eco– friendly since there is no 

80 emission of GHGs (greenhouse gases), mainly CO2 (carbon dioxide) while its combustion 

81 (Moreno and Dufour, 2013). Further, bio–H2 is a basic molecule in a range of chemicals as well 

82 as petro–chemical processes, like production of ammonia, integrated circuits and optical fibers, 

83 methanol, methane, nitrobenzene derived aniline from nitrobenzene, polymers syn–gas, 

84 hydrogenation derived olefins, etc. Bio–H2 is also used in the petro–chemical processes of 

85 hydro–amination, hydro–cracking and hydro–conversion (Gómez et al., 2011). Beyond from the 

86 lignocellulosic bio–energy source, the bio–H2 can crucially be generated with energetic 

87 potentiality by means of gasification from coal & coke, reforming process of steam methane as 

88 well as water gas from crude oil derived hydrocarbons, electrolysis of water and water gas shift. 

89 All such processes not only need a high input of electrical power and fossil fuels utilization but 

90 also depletion of green environment by means of air pollution. So, bio–resources have been 

91 considered for larger scale production of bio–H2 (Goryunov et al., 2016). In such a way the 

92 biomasses can be an alternative option to produce sustainable bio–H2 energy to achieve short–
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93 term emission reductions (Balat, 2011). In the Europe, about 67% of preliminary energy has 

94 been procured primarily from biomass renewable resources with nearly about 14–19 MJ/kg 

95 calorific value and further the produced total bio–energy electricity is about 370 TWh, initially 

96 from the year of 2012. According to IEA (International Energy Academy), it occupies absolutely 

97 1.5% of the generation of world electricity (Sun and Cheng, 2002). The lingo–cellulosic 

98 materials biorefinery yield nearly 48 % of the biomass–derived energy under favorable 

99 circumstances (Sun and Cheng, 2002). The main by–products of bio–refineries apart from the 

100 bio–H2 are the biomaterials and certain bio–chemicals viz. bio–ethanol and furan are very 

101 important for environmental energy security as it possesses socio–economic advantages 

102 associated with biodiversity, food security, reduction of greenhouse gases emission, and 

103 sustainable bio–energy development (Balat, 2011; Sun and Cheng, 2002). The generation of 

104 energy/power forecasts that the produced energy has been raised from 200 TWh by the year of 

105 2006 to 380 TWh by the year of 2016, globally and it has reached 600 TWh in 2020 (IEA, 2015). 

106 The limitation of lignocellulosic derived bio–H2 via fermentation is the formation sugar 

107 intermediates during hydrolysis. Thereby, it requires a proper lignocellulosic pretreatment in 

108 bio–H2 productivity. The aim of the pretreatment technique includes change in the rigid 

109 lignocellulosic by means of digestion to increase the accessibility of a range of hydrolytic 

110 reagents/factors like suitable chemicals, enzymes, etc., for the decomposition of organic matters. 

111 These can be metabolized by fermentation process with the support of microorganisms. The 

112 lignocellulosic biomass derived bio–H2 production necessitates the development in commercially 

113 and eco–friendly technologies towards the pretreatment process (Hendriks and Zeeman, 2009). 

114 In this concern, the lignocellulosic biomass pretreatment techniques on its structure have 

115 highlighted herein with the pros and cons of each technique, especially about the cellulose 

116 digestibility. This review mainly focuses on novel and advances physical, chemical, physico–

117 chemical, microbiological and nanotechnology based pretreatment techniques towards 

118 lignocellulosic biomass pretreatment for bio–H2 production via fermentation. 

119

120 2. Lignocelluloses and pretreatments

121 The lignocellulosic biomass recalcitrance is mainly depend upon the complex plant cell 

122 wall, heterogeneous crystalline cellular components, and the extent of lignification, further these 
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123 are all the key facts to make the cell resistant/accessible to chemical and bio reagents. Thereby, 

124 the recalcitrance of lignocellulosic biomass materials has been done eventually by means of the 

125 pretreatment techniques as they hold a prominent role in the utilization of those biomass 

126 materials towards industrial applications. Before the downstream process of disintegration of 

127 complex lignin structure, using the suitable pretreatment techniques can be employed for 

128 reducing the crystallinity and solubilization of hemicellulose content. Thereby, the accessibility 

129 of reagents/enzymes and enhancement of their activity over the surface has been increased 

130 towards the lignocellulosic biomass materials (Abraham et al., 2020). The suitable pretreatment 

131 mainly offers the digestion of cellulose, hemicellulose and lignin moieties of lignocellulosic 

132 materials, consequently followed by reduction in size of the lignocellulosic particles. Thus, there 

133 is a way to enrich the available surface areas for efficient reagent/enzymatic processes, which 

134 can obviously lead to effective conversion /degradation / digestibility of the complex 

135 polysaccharides of the lignocellulosic materials into simple monomers and are easily 

136 metabolizable / easily producing fermentable sugars to yield bio–H2. There is further conversion 

137 of valuable bio–H2 while the hydrolytic process with low energy consumption, accompanied by 

138 the formation of non–toxic enzyme inhibitors, etc (Abraham et al., 2020; Dharmaraja et al., 

139 2019; Mankar et al., 2021; Usmani et al., 2020). Recently, various pretreatment techniques have 

140 been employed for dissimilar lignocellulosic materials and each technique possesses its own pros 

141 and cons. There are five kinds of pretreatment techniques (Fig. 1) viz. (i) physical, (ii) chemical, 

142 (iii) physico–chemical / thermo–chemical (iv) biological and (v) nanotechnology based

143 pretreatment techniques (Anu et al., 2020; Ashokkumar et al., 2022; Dharmaraja et al., 2019; 

144 Kucharska et al., 2018; Singh et al., 2018), which all are widely been employed for the 

145 lignocellulosic materials pretreatment processes. Each technique follows its own characteristic 

146 experimental conditions to break the complex structure of lignocellulose materials to yield bio–

147 H2 and a range of value added products, besides.

148

149

150

151

152



6

153

154
155 Fig. 1. Various pretreatment methods for lignocellulosic biomass materials.

156



157 3.1. Lignocellulosic pretreatment by physical methods

158

159 The pretreatment by physical processes strongly enhances the hydrolytic efficacy and 

160 the decomposition of biomass anaerobically not only to liquid as well as gaseous bio–fuels 

161 but also some other value added bio–products (Chandel et al., 2022; Sinha and Pandey, 

162 2011). Abbasi and Abbasi (Abbasi and Abbasi, 2010), has shown the bio–H2 productivity by 

163 means of fermentation possibly increases during mechanical/physical pretreatment. Further, it 

164 can be observable that pretreatment by mechanical processes may raise the temperature of 

165 biomass materials to about 70 oC. Physical methods for lignocellulosic complex structure 

166 mainly include mechanical shredding (grinding via chipping, milling); steam explosion & 

167 AFEX (Ammonia fiber/freeze expansion), pyrolysis, radiation energy-based microwaves, 

168 pulsed electric field and ultrasound techniques. 

169

170 3.1.1. Mechanical shredding and Pyrolysis 

171 Mechanical shredding (grinding via chipping, milling) for soft biomass at a 

172 temperature of about 50–70 oC) leads to rupture the lignocellulosic fibers and thereby reduces 

173 the period of time duration to digest the materials upto about 23–59% for further treatment to 

174 yield fermentative bio–H2 (Guo et al., 2012; Singh et al., 2022). The fractionation of the 

175 shredded materials by means of sieves system makes the particles finer then it consequently 

176 leads to an effective hydrolytic process. Further, it can provide nonchemical, green route 

177 towards the lignocellulosic pretreatment with no production of unwanted products that assists 

178 simultaneously the downstream conversion and processing of the lignocellulosic components 

179 (Martin–Sampedro et al., 2012). Though such an overall mechanical pretreatment process is 

180 energy–intensive and, thereby one should bring its application for a reasonable raise in the 

181 output of final energy only. Pyrolysis is an alternative pretreatment technique for biomass 

182 materials but not to produce bio–H2, instead a mixture of syn–gas and bio–oil (Karimi and 

183 Taherzadeh, 2016; Singh et al., 2022). It mainly consists of the thermo–chemical 

184 disintegration of biomass materials. Such kind of decomposition begins at about 200 oC. 

185

186 3.1.3. Irradiation processes

187 Microwave is a new pretreatment option to deconstruct the lignocellulosic 3D 

188 complex structure using microwaves to yield bio–H2 after suitable fermentation of the 

189 biomass. Microwaves applied can be suspended in an acidic (1%, 2% / 3% H2SO4 (sulfuric 

7
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190 acid) or alkaline solution NaOH (sodium hydroxide) that results in an effective increase in the 

191 extent of delignification of about 12–30 % (Diaz et al., 2013; Singh et al., 2022). The 

192 application of microwave radiation for 5 min on sugarcane bagasse with water (distilled), 

193 acid of phosphorus (H3PO3: pH=3.0) and glycerol of about 10 % indicates that 5.4 % (w/w) 

194 fractions of lignin and 11.3 % (w/w) fractions of xylan are disintegrated. In addition, after 24 

195 h of incubation the sugarcane bagasse can be treated with microwaves to achieve a high yield 

196 by means of the enzymatic hydrolysis of hemicelluloses (22.4 %) and celluloses (40.2 %) 

197 (Singh et al., 2022). The pulsed electric field in the form of   radiation possesses highly 

198 penetrating power (Kortei and Wiafe–kwagyan, 2014; Singh et al., 2022). Thereby, it can be 

199 applied to thick materials, and it results in the biomass degradation to overcome biomass 

200 recalcitrance, followed by solubility increase and decrease in mechanical strength. 

201 Conversely, this technique has not been applied in industrial scale, owing to its costs and 

202 environmental as well as some safety issues. Among the non–thermal technologies pulsed 

203 electric fields (PEF) is an emerging one though that has not been extensively studied. It is 

204 owing to the fact that the precise mechanisms by pulsed electric fields are not well 

205 understood. However, to achieve many of these processes require very high treatment 

206 intensities, and duration from microseconds to milliseconds may cause temporary effects only 

207 (Kortei and Wiafe–kwagyan, 2014; Singh et al., 2022). Moreover, inactivating pulsed electric 

208 field is the safety measure as per the International guidelines and national safety standards for 

209 electromagnetic fields, which are developed on the basis of the current scientific knowledge. 

210 Ι−γrradiation has high potential, though its development and commercialization has been 

211 obstructed in the favor of public perceptions. Furthermore, the employment of ultrasonication 

212 of frequency 20–40 kHz for biomass pretreatment obviously results in decomposition of the 

213 lignocellulosic biomass structures by means of loosening, swelling, and rupturing of fibrils 

214 via breaking of inter molecular hydrogen linkages (Kucharska et al., 2018) for producing 

215 fermentative bio–H2, more effectively. Conversely, the economic viability on the 

216 fermentation to yield bio–H2 obviously can be led by mechanical pretreatment, correlated to 

217 high energy operations for the mechanical biomass chipping fragmentation (Kucharska et al., 

218 2018). 

219

220

221

222
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223 3.2. Chemical Pretreatment for Lignocellulosic Biomass

224 Generally, the chemical pretreatment for lignocellulosic biomass (LCB) materials 

225 processes are more widely utilized than other physical or biological methods, since, they are 

226 more effective as well as enhance the biodegradation of complex LCB materials to yield 

227 bio–H2. The common chemicals such as H2SO4, HCl, HNO3, H3PO4, HCOOH, CH3COOH, 

228 NaOH, KOH, Ca(OH)2, NH3(aqu), H2O2, etc., are widely utilized in this pretreatment process.

229

230 3.2.1. Acid pretreatment

231 In acid pretreatment method, when the lignocellulosic biomass materials are 

232 pretreated with inorganic and organic acids such as HCl, H2SO4, HNO3, H3PO4, formic acid, 

233 oxalic acid, maleic acid, etc., generate the hydrogen (H+) ions, which breakdown the 

234 glucosidic chain bonds present between long cellulose and hemicellulose chain into simple 

235 sugar units (Ashokkumar et al., 2022; Baruah et al., 2018; Sahoo et al., 2018; Solarte–Toro et 

236 al., 2019). Generally, the acid pretreatment involves either the addition of concentrated acids 

237 (30–70 % at < 100 oC) or dilute acids (0.2 – 2.5 w/w % or 0.5 – 10 % v/v at 120 – 250 oC) to 

238 the LCB materials (Badiei et al., 2014). Dilute H2SO4 pretreatment is commonly used for 

239 poplar, switch grass, spruce, and corn stover feedstocks. The conc. acid pretreatment can 

240 accelerate a high sugar conversion rate (> 90 %) and these acids are more toxic as well as 

241 corrosive in nature. Also, the utilization of conc. acids causes the undesired cellulose 

242 degradation that is leading to produce huge amount of inhibitory products such as furfurals, 

243 aldehydes, 5–hydroxymethyl furfural and phenolic acids. Also, the recovery of acids after 

244 hydrolysis process leads to the further treatment process (Amin et al., 2017). Hence, the 

245 effective acid pretreatment process involves the selection of acids as mild or dilute acids can 

246 be utilized to breakdown the LCB materials into high conversion rate of sugar unit in an 

247 economical as well as environmental friendly manner with low generation of inhibitors 

248 (Baruah et al., 2018; Ravindran and Jaiswal, 2016; Sahoo et al., 2018; Zheng et al., 2014). 

249 Sahoo et al., (Sahoo et al., 2018) reported the effect of dilute H2SO4 (0.4 %) and NaOH (1 %) 

250 pretreatment on wild rice grass (Zizania latifolia) for enzymatic hydrolysis and showed 163 

251 and 92 mg sugar g–1 respectively. This study proves the dilute mineral acids pretreatment 

252 process is more effective than alkali methods. Furthermore, the organic acids such as oxalic, 

253 maleic, citric and formic acids are more efficient than dilute mineral acids for LCB 

254 pretreatment for efficient industrial scale fermentative production of bio–H2 (Baruah et al., 

255 2018). 
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256 3.2.2. Alkaline pretreatment 

257 Alkaline or base pretreatment involves the addition of alkaline reagents or bases (such 

258 as NaOH, KOH, Ca(OH)2, NH4OH, etc) to lignocellulosic biomass materials leading to an 

259 increase of internal surface by swelling, decrease of cellulose crystallinity & polymerization, 

260 destruction of chemical links between lignin and other polymer units i.e., cleavage of ester 

261 and other linkages between lignin and hemicellulose or other carbohydrate moieties, lignin 

262 breakdown, solvation of hemicellulose etc (Amin et al., 2017; Ashokkumar et al., 2022; Kim 

263 et al., 2016; Nahak et al., 2022), as a result a high conversion hydrolysis rate of cellulose into 

264 fermentable sugar units either by enzymatic or microorganisms hydrolysis. Generally, the 

265 alkaline pretreatment is more effective for hardwood, agricultural residues, herbaceous crops, 

266 etc with low content of lignin. However, the excessive use of NaOH may cause inhibition of 

267 anaerobic digestion (AD) process, especially by methanogenesis and also leads to soil 

268 salination as well as water pollution (Kumari and Singh, 2018). Yuan et al. (Yuan et al., 

269 2018), investigated the NaOH and Na2CO3 pretreatments on wheat straw at 0 oC for 6 h and 

270 showed a solid dissolution efficiency of 86.7 and 91.1 %, respectively. They also showed an 

271 improved lignin solubilization as well as hydrolysis of cellulose and hemicellulose that 

272 obviously leads to increase the biogas generation. Shen et al., (Shen et al., 2017) reported that 

273 NaOH pretreatment on vinegar residue (VR) showed an increased CH4 yield (205.86 mL g−1 

274 at 3% NaOH), that is 54 % higher than the untreated VR. Zhu et al.,(Zhu et al., 2010) 

275 reported that over 37 % of biogas can be produced from corn stover by NaOH pretreatment 

276 than untreated ones. Shah and Tabassum (Shah and Tabassum, 2018) investigated the lime 

277 [Ca(OH)2] pretreatment on corn cob residue accelerates the digestion process followed by 

278 removal of lignin and enhances the biogas productions to 2 times higher than the untreated 

279 ones. The major benefit of alkaline pretreatment is efficient for removal of hemicellulose and 

280 lignin, to increase the surface area for further hydrolysis process, but this pretreatment causes 

281 several issues, especially long process time, difficult reclamation of salt formation, the black 

282 liquor and high energy input for hydrolysis (Ashokkumar et al., 2022; Shirkavand et al., 

283 2016; Vu et al., 2020). Effects of acidic and alkaline pretreatments on bio–H2 production are 

284 given in Table 1.

285

286

287

288
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Effects of acid and alkali on bio–H2 production through inoculum pretreatment [Adopted from modified Ref. (Bundhoo et al., 

2015)].

289 Table 1. 

290

291

Inoculum pretreatment Pretreatment Conditions Yield of bio–H2 References

Substrate: Glucose

Acid: 2.0 M HCl

pH: 3.0 (24 h)

Control: 1.54 meq mol–1 glucose

Treated: 3.00 meq mol–1 glucose

Yield : +  94.80 %

Anaerobic inoculum

Substrate: Glucose

Alkali: 3.0 M NaOH

pH: 11.0 (24 h)

Control: 1.54 meq mol–1 glucose

Treated: 2.80 meq mol–1 glucose

Yield : +  81.80 %

(Chaganti et al., 2012)

Substrate: Glucose

Acid: 1 M HCl

pH: 3.0 (24 h)

Control: 0.38 mol mol–1 glucose

Treated: 1.51 mol mol–1 glucose

Yield : + 297.40 %

Activated sludge

Substrate: Glucose

Alkali: 1 M NaOH

pH: 10.0 (24 h)

Control: 0.38 mol mol–1 glucose

Treated: 1.34 mol mol–1 glucose

Yield : + 252.60 %

(S. Chang et al., 2011)

Anaerobic inocula Substrate: Glucose

Acid: HClO4

pH: 2.0 (10 min)

Without pre–acidification

Control: 60.5 ml

Treated: 311.0 ml

Yield : +  414.0 %

(Cheong and Hansen, 2006)
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With Pre–acidification (10 M HCl)

Control: 32.6 ml

Treated: 320.2 ml

Yield : + 882.20 %

Substrate: Glucose

Acid: 1 N HCl

pH: 3.0 (24 h, 4 oC)

Control: 0.7 mol mol–1 glucose

Treated: 1.11 mol mol–1 glucose

Yield : +  58.60 %

Substrate: Glucose

Alkali: 1 N NaOH

pH: 10.0 (24 h, 4 oC)

Control: 0.7 mol mol–1 glucose

Treated: 0.68 mol mol–1 glucose

Yield : – 2.90%

(Elbeshbishy et al., 2010)

Substrate: Corn stover hydrolysate

Acid: 1.0 M HCl

pH: 3.0 (24 h)

Control: 2.7 mmol g–1 sugar used

Treated: 3.21 mmol g–1 sugar used

Yield : + 18.90 %

Sludge

Substrate: Corn stover hydrolysate

Alkali: 1.0 M NaOH

pH: 12.0 (24 h)

Control: 2.7 mmol mmol g–1 sugarused

Treated: 4.45 mmol mmol g–1 sugarused

Yield : + 64.80 %

(Zhang et al., 2011)

Methanogenic granules Substrate: Glucose

Acid: 0.1 N HCl

pH: 3.0 (24 h)

Control: 0.42 ml g–1 glucose

Treated: 0.00 ml g–1 glucose

Yield : – 100.00 %

(Hu and Chen, 2007)

Sewage sludge Substrate: Glucose Control: 124.99 ml g–1 glucose (Hu and Chen, 2007)
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Acid: 0.1 N HCl

pH: 3.0 (24 h)

Treated: 89.01 ml g–1 glucose

Yield : – 28.80 %

Substrate: Glucose

Acid: 1 M HCl

pH: 3.0 (10 min, 12 h acclimation)

Control: 0.2 mol mol–1 glucose

Treated: 0.86 mol mol–1 glucose

Yield : + 330.00 %

Marine intertidal sludge

Substrate: Glucose

Acid: 1 M NaOH

pH: 12.0 (10 min, 12 h acclimation)

Control: 0.2 mol mol–1 glucose

Treated: 0.11 mol mol–1 glucose

Yield : – 45.00 %

(Liu et al., 2009)

Substrate: Cassava stillage

Acid: 2.0 N HCl

pH: 3.0 (24 h)

Batch system

Control: 65.3 ml g–1 volatile solids (VS)

Treated: 46.5 ml g–1 VS

Yield : – 28.80 %

Substrate: Cassava stillage

Alkali: 2 N NaOH

pH: 12.0 (24 h)

Batch System

Control: 65.3 ml g–1 volatile solids (VS)

Treated: 59.0 ml g–1 VS

Yield : – 9.60 %

(Luo et al., 2010)Anaerobic sludge

Substrate: Palm oil mill effluent

Acid: 6.0 N HCl

pH: 3.0 (24 h)

Control: 0.12 mmol g–1 chemical 

oxygen demand (COD)

Treated: 0.32 mmol g–1 COD

Yield : + 166.70 %

(Mohammadi et al., 2011)
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Substrate: Palm oil mill effluent

Alkali: 6.0 N NaOH

pH: 12.0 (24 h)

Control: 0.12 mmol g–1 COD

Treated: 0.37 mmol g–1 COD

Yield : + 208.30 %

Substrate: Glucose

Acid: 1.0 M HCl

pH: 3.0 (24 h, 25 oC)

Control: 178.6 ml

Treated: 227.2 ml

Yield : +  27.20 %

Substrate: Glucose

Alkali: 1.0 M NaOH

pH: 10.0 (24 h, 25 oC)

Control: 178.6 ml

Treated: 402.6 ml

Yield : + 125.40 %

(Yin et al., 2014)

Substrate: Palm oil mill effluent

Acid: 6.0 N HCl

pH: 3.0 (24 h)

Control: 11.31 mL g–1 COD

Treated: 16.38 mL g–1 COD

Yield : + 44.8%

Anaerobic granulated 

sludge

Substrate: Palm oil mill effluent

Alkali: 6.0 N NaOH

pH: 12.0 (24 h)

Control: 11.31 mL g–1 COD

Treated: 17.81 mL g–1 COD

Yield : + 57.50 %

(Mohammadi et al., 2012)

Anaerobic digested sludge Substrate: Sucrose

Acid: 1.0 M HCl

pH: 3.0–4.0 (24 h)

First batch

Control: 0.14 mol mol–1 hexose

Treated: 0.43 mol mol–1  hexose

Yield : + 207.10 %

Second batch

(O–Thong et al., 2009)
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Control: 0.3 mol mol–1 hexose

Treated: 0.65 mol mol–1 hexose

Yield : + 116.70 %

Substrate: Sucrose

pH: 12.0 (24 h)

First batch

Control: 0.14 mol mol–1 hexose

Treated: 0.3 mol mol–1 hexose

Yield : + 114.30 %

Second batch

Control: 0.3 mol mol–1 hexose

Treated: 0.51 mol mol–1 hexose

Yield : +  70.00 %

Substrate: Glucose

Acid: 2.0 N HCl

pH: 3.0 (24 h)

Control: 0.14 mol mol–1  glucose

Treated: 1.10 mol mol–1 glucose

Yield : +  685.70 %

Granular anaerobic culture

Substrate: Glucose

Alkali: 3.0 M KOH

pH: 12.0 (24 h)

Control: 0.14 mol mol–1 glucose

Treated: 0.83 mol mol–1 glucose

Yield : + 492.90 %

(Pendyala et al., 2012)

Flocculated anaerobic 

culture

Substrate: Glucose

Acid: 2.0 N HCl

pH: 3.0 (24 h)

Control: 1.3 mol mol–1  glucose

Treated: 1.59 mol mol–1  glucose

Yield : + 22.30 %

(Pendyala et al., 2012)
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Substrate: Glucose

Alkali: 3.0 M KOH

pH: 12.0 (24 h)

Control: 1.3 mol mol–1  glucose

Treated: 1.41 mol mol–1  glucose

Yield : + 8.50 %

Substrate: Sucrose

Acid: 1.0 N HCl

pH: 3.0 (24 h)

Control: 1.0 mol mol–1 sucrose

Treated: 2.0 mol mol–1 sucrose

Yield : + 100.00 %

Sludge from 

slaughterhouse

Substrate: Sucrose

Acid: 1.0 N HCl

pH: 3.0 (24 h)

Control: 0.7 mol mol–1 sucrose

Treated: 1.0 mol mol–1 sucrose

Yield : + 42.90 %

(Penteado et al., 2013)

Substrate: Glucose

Acid: 1.0 N HCl

pH: 3.0 (24 h)

Control: 180.4 ml

Treated: 51.9 ml

Yield : – 71.20 %

Mixed microbial culture

Substrate: Glucose

Alkali: 1.0 N NaOH

pH: 11.0 (24 h)

Control: 180.4 ml

Treated: 134.1 ml

Yield : – 25.70 %

(Ren et al., 2008)

Substrate: Residual glycerol from biodiesel 

synthesis

Acid: 1.0 M HCl

pH: 3.0 (24 h)

Control: 1.20 % mol g–1 glycerol

Treated: 0.49 % mol g–1 glycerol

Yield : – 59.20 %

Anaerobic sludge 

consortium

Substrate: Residual glycerol from biodiesel Control: 1.20 % mol g–1 glycerol

(Rossi et al., 2011)
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synthesis

Alkali: 1.0 M NaOH

pH: 10.0 (24 h)

Treated: 0.03 % mol g–1 glycerol

Yield : – 97.50 %

Anaerobic mixed 

microflora

Substrate: Dairy wastewater

Acid: H3PO4

pH: 3.0 (24 h)

Control: 0.0018 mmol g–1 COD

Treated: 0.0079 mmol g–1 COD

Yield : + 338.90 %

(Venkata Mohan et al., 

2008)

Substrate: Glucose

Acid: 1.0 M HCl

pH: 3.0 (24 h)

Control: 65.7 ml

Treated: 96.8 ml

Yield : + 47.30 %

Digested sludge

Substrate: Glucose

Alkali: 1.0 M NaOH

pH: 10.0 (24 h)

Control: 65.7 ml

Treated: 125.9 ml

Yield : + 91.60 %

(Wang and Wan, 2008)

292

293

294

295

296

297

298

299

300
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301 3.2.3. Organosolv pretreatment 

302 The most effective and promising organosolv or organic solvent pretreatment method 

303 is performed by the aqueous organic solvents such as alcohols (methanol, ethanol, butanol), 

304 acetone, phenol, ethylene glycol, tetrahydrofurfuryl alcohol, etc with / without addition of a 

305 small amount of inorganic acid catalyst (H2SO4, HCl, oxalic acid) for stimulating the 

306 pretreatment efficiency of lignocellulosic biomass materials at specified temperature and 

307 pressure (Ashokkumar et al., 2022; Capolupo and Faraco, 2016; Khan et al., 2022; Naik et 

308 al., 2021; Ravindran and Jaiswal, 2016). This pretreatment completely removes or solubilizes 

309 the hemicellulose and lignin moieties in the LCB but the cellulose fraction remains 

310 unaffected during this process i.e., to cleave the linkage of lignin and hemicellulose fractions, 

311 which can increase the pore volume and accessible surface area of cellulose. As a result, the 

312 lignin moieties are dissolved in the organic solvent phase, while cellulose is recovered as 

313 solid (Amiri et al., 2014). In general, lower EtOH / H2O ratios favor the hemicellulose 

314 hydrolysis and enzymatic degradability of pretreated LCB since EtOH inhibits the 

315 performance of hydrolytic enzymes. The ethanosolv pretreatment with H2SO4 on 

316 saccharification of poplar biomass has released upto 78 % of the polysaccharides (Chu et al., 

317 2021). Koo et al., (Koo et al., 2011) investigated the aqueous EtOH (50 % v/v) with 1 % 

318 NaOH on Liriodendron tulipifera (Tullip tree) at 150 oC for 50 min and showed an increased 

319 bioethanol production (after hydrolysis and fermentation steps) significantly to 96 %. Sarkar 

320 et al., utilized birch sawdust to pretreat at 200     ◦C within time duration 15 min. In an air–

321 heated reactor, they mixed the sawdust in 60% ethanol and 1% H2SO4 (w/w biomass). The 

322 pretreated contents then were separated by means of vacuum filtration from the slurry. 

323 Consequently, washed with 1.1 L 60% of v/v ethanol/water mixture and finally dried in an 

324 oven at 50 oC, overnight. The collected filtrate was used to produce acidogenic fermentative 

325 green bio–H2 (121.4 mL/gVS) (Sarkar et al., 2022). By comparing with other pretreatments, 

326 organosolv pretreatment process has many advantages such as ease of recovery of solvents by 

327 distillation, low environmental impact, and recovery of high quality lignin as high value 

328 added by–product.

329

330 3.2.4. Ozonolysis pretreatment 

331 In this pretreatment method, the powerful oxidant say ozone (O3) is sparged into LCB 

332 materials, the lignin and hemicellulose contents are degraded but the cellulose fraction is not 

333 at all affected (Bensah and Mensah, 2013; Kucharska et al., 2018). The lignin is now 
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334 oxidized into soluble low molecular weight carboxylic acid compounds such as AcOH, 

335 HCOOH, etc. The efficiency of enzymatic hydrolysis treatment of LCB by O3 has enhanced 

336 upto 5–folds and also forms no toxic hydrolysis end–products. Silverstein et al., (Silverstein 

337 et al., 2007) studied the ozone pretreatment of cotton stalk (10 5 w/v; Temp. 4 oC; Time 30–

338 90 min) showed the reduced lignin content of 11.97–16.60 % and the solubilization of xylan 

339 (1.9–16.7 %) and glucan (7.2–16.6 %), which is comparatively lower by this treatment than 

340 alkali NaOH process. The great merit for this pretreatment method is no generation of 

341 inhibitors i.e., any toxic residues are not generated, however, this method is more expansive 

342 than the others. García–Cubero et al., (García–Cubero et al., 2009) reported the improved 

343 enzymatic hydrolysis yields of wheat and rye straw upto 89% and 57% respectively, while 

344 for the untreated wheat and rye straw the enzymatic hydrolysis yields were 29 % and 16 % 

345 respectively.

346

347 3.2.5. Oxidation pretreatment 

348 In this method, the powerful oxidizing agents like hydrogen peroxide (H2O2) or 

349 alcoholic solution of peracidic acid are widely being employed for the pretreatment of LCB 

350 materials i.e., the oxidant completely dissolves the lignin and amorphous cellulose, while 

351 hemicellulose fractions undergo dissolution but the crystalline cellulose content is not 

352 dissolved in it (Kucharska et al., 2018). The LCB materials with H2O2 generate OH radicals, 

353 which vigorously oxidize as well as degrade lignin fraction. The optimal dosage of H2O2 is 

354 2.15 % (v/v) at 35 oC and showed effective hydrolysis of LCB materials (Kucharska et al., 

355 2018). The wet oxidation pretreatment of lignocellulosic biomass is done at 195 °C for 10–20 

356 min (Anu et al., 2020) with the help of an oxidizer. This pretreatment method is a rapid and 

357 effective processes but the formation of inhibitors during fermentation process is its main 

358 demerit. The whole hemicellulose and ~ 50 % of lignin fractions present in the LCB materials 

359 have been solubilized by treatment with 1–2 % H2O2 at temperature of 25–30 oC. Pedersen 

360 and Meyer (Pedersen and Meyer, 2009) studied the pretreated of wheat straw with wet 

361 oxidation method and showed the yield of 400 and 200 g/kg dry matters for glucose and 

362 xylose fractions, respectively followed by enzymatic hydrolysis at 50 oC after 24 h.

363

364 3.2.6. Ionic liquids (ILs) pretreatment 

365 Ionic liquids (ILs) are thermally stable organic salts composed of cations (such as 

366 imidazolium, aliphatic ammonium, pyridinium, alkylated phosphonium, sulfonium ions, etc) 
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367 and anions (such as acetate, chloride, bromide, sulphate, methanoate, nitrate, sulphate, 

368 triflate, etc) in the liquid state with lower melting point (< 100 oC) and low vapour pressure, 

369 as well (Baruah et al., 2018; Behera et al., 2014; Bensah and Mensah, 2013; Brandt et al., 

370 2013; Yoo et al., 2017). ILs is also act as green solvents (GSs) because they possess low 

371 vapour pressure, melting point, non–volatility, non–toxicity, high thermal and chemical 

372 stability, etc (Yoo et al., 2017). During the ILs pretreatment process, both anions and cations 

373 form a strong inter– and intramolecular hydrogen bonding with cellulose and other 

374 carbohydrate hydroxyl groups in the LCB materials. As a result, the cellulose moiety 

375 dissolution increases in presence of electron–withdrawing groups in the alkyl chains of IL 

376 cations, hence, the cellulose moiety can undergo precipitation and the lignin can be dissolved 

377 in ILs (Chen et al., 2017; Yoo et al., 2017). Some of the ILs like 1–ethyl–3–

378 methylimidazolium diethyl phosphate–acetate, 1–butyl–3–methylimidazoliumacetate, 1–

379 butyl–3–methylimidazoliumchloride, 1–butyl–3–methylimidazoliumacetate, 1–benzyl– 3–

380 methylimidazoliumchloride, 1–butyl–3–methylimidazoliummethylsulfate, 1–ethyl–3–

381 methylimidazoliumgroups, 1,3– dimethylimidazolium groups, cholinium amino acids, 

382 cholinium acetate, 1–allyl–3–methylimidazolium chloride, etc., are widely utilized for the 

383 treatment of rice husk, water hyacinth, rice straw, kenaf powder, poplar wood, wheat straw, 

384 and pine (Behera et al., 2014; Brandt et al., 2013; Kucharska et al., 2018; Shirkavand et al., 

385 2016). The most popular IL is imidazolium–based salts namely Amimcl (1–allyl–3–

386 methylimidazolium chloride) and Bmimcl (1–butyl–3–methylimidazolium chloride), which 

387 may be effectively applied for cellulose dissolution when the temperature is < 100 oC (Baruah 

388 et al., 2018; Kucharska et al., 2018). Zhi–Guo and Hong–Zhang (Zhang Zhi–guo, 2012) 

389 studied the pretreatment of wheat straw with Amim–Cl and showed 100 % increase in 

390 glucose yield, when the temperature was increased from 125 to 150 oC at 2 h. Das et al., (Das 

391 et al., 2021) reported the enzymatic hydrolysis and ethanol fermentation of several wood 

392 materials with two different ionic liquids namely cholinium lysinate [Ch][Lys] and 

393 ethanolamine acetate [EOA] [OAc] generated 24–84 % of glucose and 14–80 % of xylose. 

394 Rahim et al., (Rahim et al., 2020) investigated the combination of ultrasound irradiation and 

395 three different ILs [Emim][OAc], [Emim] [Cl], [Emim][HSO4] pretreatment of bamboo 

396 provided 63.99 % of cellulose and 14.99 % of lignin.

397

398

399
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400 3.2.7. Metal salts pretreatment 

401 The metal salts pretreatment of LCB materials requires a high pressure reactor i.e., the 

402 biomass materials are loaded in the reactor along with the metal chlorides such as ZnCl2, 

403 FeCl3, FeCl2, CrCl2, MnCl2, AlCl3, etc and then heated to 170–180 oC for 20–30 min 

404 (Ravindran and Jaiswal, 2016). In addition, the pretreated excess metal salts and other solids 

405 are removed by superfine filtration process. Chen et al., (Chen et al., 2014) studied the 

406 pretreatment of bagasse with metal chlorides in dilute acidic medium followed by enzymatic 

407 hydrolysis and showed a decrease in the total mass of the substrate and most of the sugar 

408 moieties are degraded in the acid environment and a major share of them can be appeared in 

409 the effluent. Wang et al., (Wang et al., 2014) investigated the hydrolysis of bamboo biomass 

410 by dil. HCl in the presence of 1–butyl–3–methylimidazolium chloride with Cu2+ ion showed a 

411 maximum sugar yield of 67.1 % at 100 oC.

412

413 3.2.8. Co–solvent enhanced lignocellulosic fractionation (CELF) 

414 In this CELF method, a mixture of tetrahydrofuran (THF) and H2O is utilized as a 

415 monophasic solvent system. This pretreatment process involves the delignification followed 

416 by conversion of glucose–rich LCB materials into high value–added fuels, including 5–

417 hydroxymethyl furfural (5–HMF), furfural and levulinic acid (LA) (Ashokkumar et al., 

418 2022).  Patri et al., 2021 (Patri et al., 2021) studied the THF co–solvent with mineral H2SO4 

419 (act as catalyst) on enzymatic hydrolysis of switchgrass biomass, yielded approximately 90 % 

420 glucose at 160 oC. 

421

422 3.3. Physico–chemical pretreatment

423 Among physico–chemical pretreatments such as steam explosion (SE), liquid hot 

424 water (LHW), subcritical water (SCW) and ammonia–based methods are promising to 

425 breakdown the recalcitrant structure of LCB materials. The liquid hot water and steam 

426 explosion processes release very high concentrations of degradation compounds viz. furfural, 

427 5–hydroxymethylfurfural, acetic acid, formic acid and phenolic compounds that can inhibit 

428 enzymes as well as fermentative microorganisms (Anu et al., 2020; Ravindran and Jaiswal, 

429 2016). The steam explosion (SE) or autohydrolysis is one of the oldest and effective methods 

430 for enzymatic hydrolysis of LCB materials; the LCB materials are pretreated to a high steam 

431 pressure (0.7–4.8 MPa) and temperature (160–206 oC) for 1–20 min. At very high 

432 temperature and pressure, the steam explosion as well as AFEX (ammonia fiber explosion) 
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433 can easily disintegrate the cellular components by means of lignocellulosic biomass digestion 

434 to yield valid fermentable sugars (Banoth et al., 2017). The main demerit of this steam 

435 explosion is the partial degradation of hemicelluloses and thereby producing toxic products. 

436 Similar way, the AFEX technique has been considered as efficient process with low content 

437 of lignin that is the drawback of this pretreatment process (Sun et al., 2002). Baral and Shah 

438 (Baral and Shah, 2017) reported the steam explosion pretreatment of corn stover to produce 

439 113.5 million liters butanol per year. Barbanera et al., (Barbanera et al., 2015) investigated 

440 the glucose yield on olive tree prunes through steam explosion method, the maximum glucose 

441 yield, up to  86 % was achieved at experimental conditions (Temp.: 201 oC, Pressure: 0.86 

442 MPa; Time: 15 min). Vivekanand et al., (Vivekanand et al., 2014) reported the combined 

443 sequential SO2 with steam explosion methods, followed by enzymatic hydrolysis that showed 

444 more effective polysaccharide conversion upto of 81 %. The LHW pretreatment is an ideal 

445 method for the lignocellulose substrates where the addition of chemicals for delignification 

446 can result in effective utilization of the biomass. The process is performed only in the 

447 customized high pressure reactor. This method is similar to the steam explosion method and 

448 this method does not require corrosion resistant reactors or any chemicals and there is no 

449 formation of toxic components (Jiang et al., 2015; Ravindran and Jaiswal, 2016). Muharja et 

450 al. (Muharja et al., 2018) studied the combined green process of subcritical water (SCW) and 

451 enzymatic hydrolysis for bio–H2 fermentation from coconut husk and the maximum bio–H2 

452 yield, up to 0.279 mol/mol by consumption of sugar, which is lower than the other works. 

453 Further, ammonia (NH3) is an effective agent for the pretreatment of LCB materials. There 

454 are three different ammonia–based methods namely (i) ammonia fiber explosion (AFEX), (ii) 

455 ammonia recycled percolation (ARP) and (iii) soaking aqueous ammonia (SAA). The AFEX 

456 method is a novel advancement technology for the production of fermentable simple sugar 

457 units from LCB materials over conventional alkaline processes (Naik et al., 2021; Raj et al., 

458 2022; Ravindran and Jaiswal, 2016). Also, the AFEX pretreatment is most appropriate 

459 method for preventing cellulase adsorption to lignin. The AFEX process can be efficiently 

460 employed for low–lignin LCB materials like switchgrass, corn stover, Miscanthus, etc., 

461 showed > 90 % of glucose yield, during simultaneous saccharification and fermentation 

462 process. After the completion of pretreatment, the vaporized NH3 has been collected, 

463 recycled and reused again. Jin et al (Jin et al., 2016) reported that the Great Lakes Bioenergy 

464 Laboratories in the US have demonstrated the AFEX pretreatment method for cellulosic 

465 ethanol production, which reduced enzyme loading by 66 % and also increased EtOH 
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466 productivity by 129 %. In an ARP pretreatment process, the poplar wood is soaked in 15 % 

467 of NH3 (aqu.) for 1 h at 40 oC and the pressure was increased to 20 bar. After increasing the 

468 temperature upto 180 oC, more liquid extracting was percolated at the rate of 3 ml/min for 90 

469 min. In this ARP method, the removal of lignin has been achieved 87 % (Naik et al., 2021). 

470 The SAA method also reduces or partially eliminates the lignin fraction from LCB materials.

471

472 3.4. Biological pretreatment

473 Biological pretreatment process is more superior to the other methods (Anu et al., 

474 2020) because this method offers numerous advantages such as low energy, low capital cost, 

475 decreases in the dependence on chemicals, etc., but main disadvantage is the low hydrolysis 

476 rate. During the biological pretreatment of LCB materials, the microorganisms such as 

477 bacteria, fungi, enzymes, metabolites from enzymes, etc are playing a vital role before the 

478 enzymatic hydrolysis of LCB components (Dey et al., 2022; Hassan et al., 2018). The key 

479 biological processes are delignification and saccharification. Generally, the microorganisms, 

480 such as brown, white, and soft rot fungi have widely been utilized to degrade the LCB 

481 materials to produce fermentative bio–H2 (Dey et al., 2022; Hassan et al., 2018). Certain 

482 microorganisms are present in nature, which exhibit cellulolytic and hemicellulolytic 

483 abilities. White rot is able to degrade lignin moieties, present in the LCB materials, which is 

484 due to the presence of lignin degrading enzymes like peroxidases and laccases. Brown rot 

485 commonly attacks the cellulose content, whereas white as well as soft rot target both lignin 

486 and cellulose contents of LCB. Furthermore, the soft rot fungi are efficiently degrading the 

487 wood polysaccharides however; the alteration of lignin is limited extent only. The commonly 

488 utilized white rot fungi like Cyathus stercoreus, Phanerochaete chrysosporium, Pleurotus 

489 ostreatus, Ceriporiopsis subvermispora, Ceriporia lacerata, Pycnoporus cinnabarinus, 

490 Cyathus stercolerus, Cyathus cinnabarinus, Ceriporia lacerata, Ceriporiopsis 

491 subvermispora, Pycnoporus cinnabarinus, Pleurotus ostreatus, Trametes pubescens, etc., are 

492 frequently applied to degrade lignin because these species contain lignin degradation 

493 enzymes, including peroxidase and laccase (Anu et al., 2020; Hassan et al., 2018). In addition 

494 to some Basidiomycetes species, such as Bjerkandera adusta, Irpex lacteus, Fomes 

495 fomentarius, and Trametes versicolor are widely utilized for breaking down of the 

496 lignocellulosic materials (Peng et al., 2012). The degradation of lignin by lignolytic enzymes, 

497 such as lignin peroxidase, manganese peroxidase and versatile peroxidase, are generated from 

498 various microorganisms, which also degrading the lignin structure completely by increasing 



24

499 the phenolic compounds (Baruah et al., 2018; Raj et al., 2022). Suhara et al.,(Suhara et al., 

500 2012) studied the pretreatment of the bundles of bamboo with Punctularia sp. and showed an 

501 enhanced in the total sugar upto 60.3 % at the same time the lignin content was also reduced. 

502 Chang et al., (K. L. Chang et al., 2011) investigated the enzymatic hydrolysis of rice straw 

503 with xylanase and cellulase showed a high hydrolysis yield of 84 % with productivity of 

504 371.91 g glucose/kg of dry rice straw. Recently, the isolated thermophilic 

505 Thermoanaerobacterium sp. strain F6 produced 1822.6 and 826.3 mL H2/L of hydrogen 

506 using corn cob and sugarcane bagasse respectively (Jiang et al., 2019).

507

508 3.5. Nanotechnical  pretreatment

509 Nanotechnology–based pretreatment on lignocellulosic biomass structures is an 

510 important methodology to yield bio–H2. Since the reagents can be easily recycled and 

511 reutilized, so it reduces the cost of the process (Chandel et al., 2022). The type of acid–

512 functionalized magnetic nanoparticles (AMNPs) is applicable to the pretreatment of LCB. 

513 The AMNPs utilization to enzymatic immobilization, functionalization by means of 

514 microbes/chemicals is an alternative to the traditional pretreatment techniques for 

515 lignocellulosic biomass. Reusable nature of AMNPs and enzymes obviously is the cost–

516 effective and eco–friendly systems. Nano–sized shear hybrid alkaline (NSHA) catalysts also 

517 often utilized for pretreatment techniques for lignocellulosic biomass. The nano–sized metal 

518 particles enter into the lignocellulosic cell wall, thereby interaction with biomass component 

519 molecules to generate carbohydrates (Abdul Razack et al., 2016; Amin et al., 2017).

520

521 3.5.1. AMNPs pretreatment

522 AMNPs possess higher affinity for hydrolyzed lignocellulosic biomass materials, 

523 these are also named as solid acid nanocatalysts. Their reusability with strong magnetic 

524 nature has added beneficial role in chemical techniques (Peña et al., 2014). By the year of 

525 2011, sulfonated MNPs were synthesized to hydrolyse the lignocellulosic biomass structure. 

526 Similarly, such functionalized MNPs significantly possess better stability and enhance the 

527 catalysis process for bio–fuel production (Wang et al., 2020) .

528

529 3.5.2. NSHA pretreatment

530 NSHA catalysts mainly involve in a nano range application, thereby a high shearing 

531 of lignocellulosic biomass materials can be performed to remove the lignin molecules for 
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532 degradation. It has been suggested that NSHA system plays an important role in both 

533 saccharification and refineries. Functionalization of NSHA system can be enhanced with 

534 certain additives namely PDAC [Poly(diallyldimethylammonium chloride)] and are utilized 

535 in the degradation of  lignocellulosic biomass constituents. Such kind of produced charged 

536 components function as polyelectrolytes to modify surface of the cellulose and thereby 

537 stabilization of the lignin occurs. It has been shown that there is generation of globular 

538 complexes with lignin components by means of PDAC, and it can alter the biomass cell wall 

539 morphology. Further, the PDAC polyelectrolyte reduces utilization of chemical reagents 

540 necessitated by the pretreatment of lignocellulosic biomass constituents (Dey et al., 2022).

541

542 3.6. Role of nano–materials in bio–H2 production 

543 Production of bio–H, using nano–materials in the bio–fuel industry is very attractive 

544 owing to its effective recovery of products (Dey et al., 2022). In such case, the reactions can 

545 be performed by metal nano particles (NPs) like Ni(nickel)/Fe(iron) materials. These nano–

546 materials can act as cofactors (like hydrogenase), consequently reduces the exchange of 

547 H(+)(protons) (Dey et al., 2022). The function of the microbes has been greatly influenced by 

548 increasing the metal NPs concentration to yield bio–H. Such a nano–approach improves the 

549 rate of e (–) (electron) transfer that suitably improves the metabolic activity of the micro–biota. 

550 It has also been demonstrated that the metal NPs can improve the production of bio–H2 in 

551 acidic pH, moreover the substrate concentration increases with decrease of bio–H2 

552 production, i.e., inverse effect. It was found that the metal oxide NPs can increase 4.5 times 

553 of the bio–H2 production, as compared to normal synthetic processes. Similar way with iron 

554 NPs (0.2 g/L), nearly a 33% increase in the bio–H2 production was observed in sugar 

555 (sucrose) medium (Han et al., 2016). Further, 260% conversion of sugar composition by 

556 means with a combination of lignocellulosic substrates and Ti(titanium) NPs. Though, the 

557 impact on dark fermentation of bio–H2 production by means of nano–material is still not 

558 known clearly (Dey et al., 2022). Further, the main disadvantage of valuable nano–materials 

559 assisted technique is its slow rate of yield. It was found that nearly about 35% of 

560 lignocellulosic components only converted effectively to bio–H2 and the residues produce 

561 some other by–products. Thereby, there a necessity is to upgrade the technique for industrial 

562 production of bio–H2 by lignocellulosic substrates via improvement/introduction of suitable 

563 strain as well as nano–materials.

564
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Production of bio–H2 by NPs from lignocellulosic materials (Adopted 

and modified from Ref. (Dey et al., 2022).

565 Table 2. 

566

567

Nanomaterials Microbes / Natural substrate or

enzyme used

Bio–Hydrogen 

production

References

Enterobacter sp. and Clostridium sp. /  

Grass

80.70 ml / h,

73.10 %

(Yang and Wang, 2018)

Mesophilic culture / Starch 200.00 % (Taherdanak et al., 2016)

Anaerobic sludge / Sugarcane bagasse 69.00 % (Reddy et al., 2017)

Enterobacter aerogenes / Cassava 

starch

92.00 % (Lin et al., 2016)

Anaerobic sludge bacteria / Molasses 

waste

43.00 % (Gadhe et al., 2015)

Thermophillic anaerobic mixed 

culture / Glucose 

53.60 % (Engliman et al., 2017)

Anaerobic mixed bacteria / Glucose 33.70 % (C. Jia et al., 2017; 

J. Jia et al., 2017)

Enterobacter cloacae / Glucose 130.00 % (Nath et al., 2015)

Clostridium butyricum / Sucrose 32.64 % (Han et al., 2011)

Iron

Rhodobacter sphaeroides / malate 19.40 % (Bao et al., 2013)

Bacillus anthracis / Palm oil mill 

eluent

151.00 % (Mishra et al., 2018)

Nickel Anaerobic sludge bacteria / Molasses 

waste pH =5.6,  T=30–35 oC with 

0.0567 wt % of Ni NPs / glucose

24.00 %

22.00 %

2.54 mol

(Gadhe et al., 2015; 

Mullai et al., 2013)

Anaerobic mixed bacteria / Glucose 

(Composite type of carbon)

33.70 % (C. Jia et al., 2017; J. Jia 

et al., 2017)

Anaerobic sludge/ Glucose (nanotube 

form of carbon)

50.00 % (Singh et al., 2018)

Anaerobic sludge / Sucrose (activated 

carbon)

62.50 % (Wimonsong and 

Nitisoravut, 2015)

Carbon

Anaerobic sludge / Sucrose (nano 70.00 % (Bhatia et al., 2021; 
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activated carbon) Wimonsong and 

Nitisoravut, 2014)

Silver NPs with Clostridium 

butyricum / Glucose

67.50 % (Zhao et al., 2013)

Gold NPs with Anaerobic sludge / 

Acetate

– (Khan et al., 2013)

Noble metals

Silver with Clostridium butyricum/ 

Glucose

38.00 % (Beckers et al., 2013; 

Singhvi and Kim, 2020)

Palladium Mixed culture / Glucose 9.00 % (Mohanraj et al., 2014)

Titanium Anaerobic sludge / Sugarcane bagasse 127.00 % (Jafari and Zilouei, 

2016)

568

569 The outcomes of Table 2 in the view of production of bio–H2 by means of NPs and 

570 different lignocellulosic components mainly are depending on the kind of inter–activity 

571 between the biomass material components and nano–catalyst. Further, the rate of electron 

572 transfer improves the commercial bio–H2 yield by making high availability of active surface 

573 area with NPs for acceleration of reaction kinetics. Thereby, unwanted oxygen molecules can 

574 be removed from the reaction mixture, simultaneously (Dey et al., 2022). Fe(iron)–NPs can 

575 play as primary cofactor that can eventually be utilized for the production of bio–H2 (73%) as 

576 the main component for hydrogenase possibly was formed by such a nano system, since it has 

577 been associated with the enzymes ferredoxin as well as hydrogenase of the electron transport 

578 chain.  Some other significant nano system has been formed by Ag(silver), Au(gold), 

579 Cu(copper), Pd(palladium), etc., to enhance production of bio–H2 by means of dark 

580 fermentation technique. 

581

582 4. Research needs Perspectives and Future Directions

583 The physical pretreatment methods lead to reduce the size of lignocellulosic biomass 

584 components, cellulose crystalline index, and raise the availability of the catalytically active 

585 sites. This method includes the application of either mechanical shredding via grinding 

586 (milling and chipping), steam explosion, ammonia based pretreatments (AFEX) or radiation–

587 based techniques via ultrasonication, , electron beam and microwave radiations (Mankar et 

588 al., 2021). In chemical pretreatment, the degradation/decomposition of lignocellulosic 

589 biomass components in aquatic phase by means of chemical reactions viz. acidic hydrolysis, 
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590 alkaline hydrolysis, organo–solvent and inorganic salt via alkaline salt, metal salt, ionic liquid 

591 (IL) and deep eutectic solvent (DES) methods. The eco–friendly and energy efficient green 

592 bio–pretreatment processes  include the microorganisms viz. bacterial, fungal and enzymes to 

593 selectively decompose/degrade hemicellulose and lignin moieties, consequently results in an 

594 enhanced enzymatic saccharification (Kumar et al., 2020). Though, the application of various 

595 kinds of chemical and physical pretreatments possesses their own issues in the bio–

596 conversion of lignocellulosic biomass components. So, introduction of the physico–chemical 

597 pretreatment (combination of physical and chemical methods) processes is necessary for 

598 industrial applications. Further, these pretreatment processes enhance the solubility of 

599 hemicellulose and lignin content for destructuralization of lignocellulose moieties to improve 

600 the accessible specific surface on lignocellulosic biomass for enzymes, while with certain 

601 slight environmental impacts. The major physico–chemical pretreatment techniques consists 

602 of EA: Extractive ammonia and SAA: Soaking aqueous ammonia, supercritical fluid:SCF 

603 like ScCO2: Supercritical carbon dioxide: ScH2O: Supercritical water and ScNH3: 

604 Supercritical ammonia explosion, liquid hot water :LHW, hydrothermolysis, uncatalyzed 

605 solvolysis, aquasolv and aqueous fraction processes, microwave assisted chemcial and 

606 SPORL a sulfite pretreatment: (Sulfite pretreatment to overcome recalcitrance of 

607 lignocellulose), hydrothermal (HT) explosion and wet air oxidation to overcome recalcitrance 

608 of lignocellulose processes (Akhtar et al., 2015; Kumari and Singh, 2018). 

609 The exiting challenges in the case of bio–conversion of lignocellulose materials into 

610 fermentable sugar moieties and their consequent conversion into high value added bioenergy 

611 as well as by–products through various pretreatment approaches. Some of the pretreatment 

612 approaches have been utilized in large scale industrial stage, but till now some significant 

613 challenges fall in the category of intensively energy requirement, low process efficiency, 

614 generation of toxic or environmentally hazardous wastes/inhibitors, perturbation in the 

615 overall yield on fermentable sugar moieties, degradation of partial cellulose and 

616 lignocellulosic structure, etc. (Chauhan, 2020). Now, there is an emerging need for an 

617 environmental friendly technology that utilizes the solution of all above challenges i.e., the 

618 need of green solvents, low consumption of energy and chemicals, minimization of the water 

619 usage, operation with reduced or small particle size, etc. The following factors are to be 

620 surely considered in order to make LCB (lignocellulose biomass) pretreatment processes 

621 efficient as well as effective, they are (i) utilization of large sized LCB particles to minimize 

622 the energy application, (ii) operation at very high concentrations of LCB materials to reduce 
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623 the usage of water as well as energy sources and (iii) operation of integrated process to use 

624 the excess heat or steam from other processes of the pretreatment steps. In most of the 

625 chemical pretreatment process, the usage of catalysts (both acid, alkali or other chemicals), 

626 which are easily miscible in water and the recovery of catalysts from waste water streams are 

627 more energy intensive and expensive process i.e., using phosphoric acid pretreatment process 

628 results in the formation of very high digestible amorphous cellulose content, but the recovery 

629 of acid from aqueous medium is more difficult and expensive process. Further, in some 

630 pretreatment processes, the neutralization of chemicals by the additions of acid or base, 

631 generate some salts or compounds which cause an additional cost for recovering and 

632 recycling with water from consequent processing steps because another major challenges 

633 (Janusz et al., 2020, 2017). The LCB pretreatment processes include mechanical processing, 

634 microwave irradiation processing, wet oxidation, ozonolysis, hot water and supercritical CO2 

635 and H2O techniques, no catalysts or expensive chemicals are utilized. So there is no recovery 

636 of chemicals or compounds during the processing, but the above techniques need high 

637 expensive reactor units (Balan, 2014). Till now, the challenge for the effective enzymatic 

638 digestibility of LCB materials is unclear in biological pretreatment process, which is due to 

639 the employed complicated structural unit present in the microbes or enzymes. Hence, each 

640 pretreatment technology must be upgraded with effective reactor systems with capable of 

641 performance at high solid concentrations with large particles and different variety of LCB 

642 types and need low energy and water expensive process. So, the utilization of enzyme based 

643 LCB pretreatment process overcomes the above challenges more efficiently and effectively 

644 than the other technologies (Ponnusamy et al., 2019; Testa and Tummino, 2021).

645 Pretreatment steps for lignocellulosic biomass materials to fermentable sugars are a 

646 challenge in the case of large–scale conversion for procuring cost–effective and competitive 

647 technically derived products along with very low inhibitory concentration. Agricultural 

648 residues have been utilized for industrial bio–fuel production via steam explosion, as it is an 

649 important technology. This steam explosion in a 50 m3 industrial reactor with corn–stover 

650 was performed, to yield 80% of hemicelluloses and then by hydrolysis more than 90 % of 

651 celluloses were recovered (Kucharska et al., 2018). Pretreatment with dil. acids is 

652 encouraging the production of bio–fuels, as of the biomass possesses high efficiency for the 

653 conversion of most of the hemicelluloses into soluble sugars, whereas this process forms 

654 furfural like inhibitors compounds. The efficacy of acid hydrolysis enhances the pretreatment 

655 via optimization of reaction conditions and certain operational parameters viz. dosage of acid, 



656 pressure, time of retention, solid:liquid ratio and temperature. Silva et al., (Silva and Reis, 

657 2016) studied three pretreatment techniques with dil. acids, liquid hot water and AFEX for 

658 the production of commercial bio–fuel. Techno–economic analysis has shown that the 

659 pretreatment process using LHW turned as a commercial one. The novel approach to lessen 

660 the technical issues with the performed pretreatment processes in a single operation, is 

661 concerned to combination of those processes via mechanical (crushing)–chemical, –electron 

662 beam– chemical (alkali), –microwave–chemical, –chemical–steam explosion and physical–

663 biological processes (Chen et al., 2017). The combination of such techniques depends on kind 

664 of the biomass feed that integrates the advantage of the concern pretreatment technique. As 

665 well, in turn the combination of such processes can considerably progress the effectiveness of 

666 enzyme hydrolysis. Binod et al., (Binod et al., 2012) employed a combination of microwave–

667 chemical (–acid and –alkali) pretreatment in place of conventional acid/alkaline pretreatment. 

668 The results reveal that the combined treatment enhances the fermentable sugar yield within a 

669 short period of time duration. Lai et al., (Lai and Idris, 2016) has suggested low–energy 

670 ultrasound–chemical (–alkali) pretreatment for the enhancement of biodegradable nature of 

671 lignocellulosic biomass feed. The combination of Ionic liquid–ultrasound process on bagasse, 

672 using cholinium IL is biocompatible, showing 80 % of the cellulose and 72% of 

673 hemicellulose saccharification along with a little inhibitory effect on enzyme cellulose 

674 activity (Ninomiya et al., 2015, 2012). The integration of bioprocesses for the industries to 

675 achieve coherent energy efficiency mainly involves the partly bioconversion of spent cooking 

676 oil into bio–fuels/cellulose products. Due to the overall cost of production on the 

677 lignocellulosic biomass biofuels by fermentation, the wastewater management has given to 

678 importance as the biorefinery stillage contains a range of dissolved and unutilized 

679 fermentable sugars mainly lignin of about 74.1–79.0 wt. % of the total biomass (Trinh et al., 

680 2013). Consequently, this lignin has been utilized for the production of high–value added 

681 products/by direct combustion to supply sufficient energy for the industrial processes. In this 

682 regard, fast pyrolysis is currently attracting the interest of researchers since it has the 

683 potentiality for the efficient conversion of lignin to high commercially value products like as 

684 bio–oil, bio–char, etc. (Trinh et al., 2013). But for the production of gaseous bio–fuels 

685 towards the industrial application, a specific approach is required to comprehensively analyze 

686 the overall operating costs. The production of biogas by anaerobic digestion usually is a 

687 heat/energy generating integrated process. Thereby, integrated technologies for the 

688 production of bio–H2 are taken into consideration because utilization of value added products 

30
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689 and energy that can be cogenerated, simultaneously as the pretreatment techniques of 

690 lignocellulosic biomass is performed before the saccharification, enzymatically. In the case of 

691 bio–H2, high cost and low yields along with comparatively low concentration of fermentation 

692 broth are still some major challenges.

693 The chemical pretreatment conventionally is utilizing acids and bases and it can be 

694 regarded as a cost–effective process. The by–products formed in this process should be 

695 purified and reused in the form of value–added products. Such kind of technique is 

696 commercially viable to treat the lignocellulosic biomass feed for bioconversion processes, 

697 while bio–fuels and other value added bio–products are derived. The recent familiar 

698 pretreatment techniques are generally energy–intensive. Thereby, the development on 

699 resourceful and cost–effective pretreatment processes is given significance in an industrial 

700 point of view. There, a popular industrial chemical pretreatment technique offers highly 

701 digestible biomass feed. Then, the recycling, recovery and utilization of liquids and solids 

702 productivity from the wastewater are also accessible, though those processes could be utilized 

703 and optimized mainly for bio–ethanol production (Kucharska et al., 2018). The pretreatment 

704 technologies for improving production of bio–H2 from the DF process can be categorized 

705 according to their pretreated inoculums/substrates. They can be classified into physical, 

706 chemical, physico–chemical, biological and nano–technical pretreatments, based on the 

707 biomass used. Amongst, the dissimilar technologies reviewed, acid pretreatments are the 

708 mostly studied techniques for the substrates and inoculums. The most suitable emerging 

709 techniques over different studies, the hybrid/combined technologies have been given 

710 maximum yield. In addition, many pre–techniques have been employed for substrates 

711 pretreatment that may eventually form inhibitory compounds thereby can decrease bio–H2 

712 production. As a result, the research needs to find out the best technique for both the 

713 substrates and inoculums in industrial scale while a simultaneous consideration towards both 

714 energy consumption and technical feasibility in economic aspect. In the case of substrates, 

715 most studies have been focused on biomass residues from barley straw, corn stover, wheat 

716 straw, etc., food wastes, sludge, and wastewater stream to yield maximum. It has been 

717 concluded that among the various pretreatments investigated for such kind of wastes, 

718 ultrasound, combined and biological pretreatments have been utilized/employed to procure 

719 positive results.

720

721
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722 5.

723

Conclusions

Effective pretreatment technologies for improving production of bio–H2 via 

724 fermentation from lignocellulosic biomass materials are highly desirable for both energy 

725 consumption and technical feasibility towards economic aspect. In addition, utilization of 

726 other value–added products viz. lignin derived molecules are highly recommended. This type 

727 of biorefinery approach is unavoidable for commercialization of lignocellulosic biomass 

728 materials.
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