
  


 

Abstract— Reinforcement learning tree-based planning 
methods have been gaining popularity in the last few years due 
to their success in single-agent domains, where a perfect 
simulator model is available, e.g., Go and chess strategic board 
games. This paper pretends to extend tree search algorithms to 
the multi-agent setting in a decentralized structure, dealing with 
scalability issues and exponential growth of computational 
resources. The N-Step Dynamic Tree Search combines forward 
planning and direct temporal-difference updates, outperforming 
markedly state-of-the-art algorithms such as Q-Learning and 
SARSA. Future state transitions and rewards are predicted with 
a model built and learned from real interactions between agents 
and the environment. As an extension of previous work, this 
paper analyses the developed algorithm in the Hunter-Pursuit 
cooperative game against intelligent evaders. The N-Step 
Dynamic Tree Search aims to adapt the most successful single-
agent learning methods to the multi-agent boundaries and 
demonstrates to be a remarkable advance compared to 
conventional temporal-difference techniques. 

I. INTRODUCTION 

Machine Learning (ML) field has been expanding over the 
last decades because of its wide range of application. 
Typically, a learning process can be classified in three main 
groups: supervised [1][2], unsupervised [3][4] and reward-
based learning methods [5]. Addressing single-agent and 
multi-agent domains often entail partial or no information 
about the boundary conditions and a high degree of 
uncertainty. Thus, the problem becomes untreatable through 
input/output driven data structures. Moreover, the inherent 
complexity demands feedback to solve and optimize the 
problem, i.e., unsupervised techniques are usually not enough. 
Reward-based learning has demonstrated to be a natural fit in 
this area due to the capability of generating unique solutions 
with reinforcements and data restrictions.  

   Under the reward-based umbrella, stochastic search 
directly learns policies without appealing value functions (i.e., 
estimates of successor states or state-action pairs), an efficient 
technique for small state spaces. Darwinian models of 
evolution are used to refine populations of candidate behaviors 
in evolutionary computation. Genetic Programming (GP) [6] 
and Coevolutionary Algorithms (CEAs) [7][8][9] are solid 
contenders within this field. On the other side, Reinforcement 
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Learning (RL) uses value functions under a Markov Decision 
Process (MDP) framework, considering every state and action 
taken at every iteration step. This fact often leads to rigorous 
policies that, despite the increasing demand of computational 
resources, achieve greater performance in large search spaces. 

When training agents under an MDP, the RL spectrum 
encompasses many design aspects that can be explored. From 
one-step updates in sample temporal-difference (TD) methods 
[10][11][12][13] to n-step  algorithms that wait a variable or 
fixed number of MDP transitions before recomputing state-
action values [14][15]. As a result of bootstrapping (estimates 
as a function of future value estimates), TD strategies provide 
faster learning rates at the penalty of higher bias. In contrast, 
Monte Carlo methods, which are the most extreme form of n-
step algorithms, delay updates until the end of the episode, 
removing any bias and significantly increasing the variance of 
the optimization process. As Fig. 1 [16] states, the type of 
update constitutes the wide dimension of the sample-based 
learning map. Expectations [17] contemplate all potential 
trajectories, weighting value estimates at a higher 
computational cost.  

Planning is another powerful tool to accelerate learning by 
alternating direct RL updates from real-world interactions with 
simulated trajectories, which can be derived from agent 
experience using replay buffers [18][19] or already-built 
environment models [20]. After defeating the 18-time world 
champion Go player in 2016 [21], AlphaGo raises tree search 
single-agent methods to the next level. Forward planning 
through an existing model is used to make predictions and 
optimize action selection mechanisms. Monte Carlo Tree 
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Fig. 1 Simplified map of sample-based learning methods 
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Search (MCTS) [16] becomes a standard in this collective, and 
recently inspires many powerful algorithms such MuZero 
developed by DeepMind, validated and tested with 
superhuman performance across a large variety of Atari games 
[22]. 

Transitioning from single-agent to multi-agent framework 
is no trivial task. Even from a team learning perspective [5] 
where agents are treated as a master individual and single-
agent techniques apply, big issues emerge related to enormous 
state spaces (curse of dimensionality problem) that grow 
exponentially to the number of agents. Furthermore, like any 
other centralized system, team learning requests full swarm 
connectivity and is reliant on a critical leading node. On the 
other hand, concurrent learning [5] utilizes a distributed 
network of agents to handle multiple learning processes 
simultaneously [23][24]. Thus, co-adaption through 
reinforcements is required to achieve optimal cooperation. The 
credit assignment problem involves allocating efficient 
incentives to individuals and remains a difficult endeavor in 
the Multi-Agent Reinforcement Learning (MARL) problem. 
Similarly, communication is crucial to enhance the learning 
process. While some techniques use direct communication to 
share TD-updates, policies or even full episodes [25], others 
opt for indirect bio-inspired mechanisms [26][27]. 

This study aims to apply the most successful single-agent 
RL algorithms to the multi-agent domain as a decentralized 
system. Inspired by MCTS and n-Step Tree Backup updates 
[16], the N-Step Dynamic Tree Search (NSDTS) algorithm 
combines forward planning with direct RL, achieving a major 
performance breakthrough over traditional TD techniques like 
Q-Learning. Action selection mechanisms are improved by 
using a neural network model, built from agent experience, to 
perform forward tree search. To guarantee system robustness, 
communication has been disregarded and left for future work; 
thence, individuals assume best play of agents to carry out 
future predictions. Agents are completely independent, have 
their own q tables (tabular setting) and learn entirely from their 
individual environment readings. Expected updates are 
utilized to weight state-action value estimates, and agents are 
reinforced with hybrid rewards (individual and global 
incentives).  

As an extension of previous work [28], the developed 
algorithm is tested and validated in the hunter-prey pursuit 
environment against Q-Learning, Expected SARSA and 
SARSA temporal-difference methods. The pursuit game, 
which involves a number of learning agents cooperating to 
capture one or more evaders, has been a reference to MARL 
nearly since its inception [25][29][30][31][32][33][34]. This 
work conceives a grid world with two learning hunters and an 
intelligent prey that tries to escape from chasers given their 
position. 

The remainder of the paper is structured as follows: 
theoretical foundation in MARL is provided in Section II, 
including MDPs, TD methods and the NSDTS algorithm. 
Section III presents an overview of the established system, and 
a description of the tree search models. Section IV formulates 
the hunter-prey pursuit problem, considering environment 
features, game rules, and reward function. Results and 
discussion of hyperparameter analysis and algorithm 
performance experimentation are presented in Section V. 
Concluding marks and future work suggestions are given in 
Section VI. 

II. THEORETICAL BACKGROUND 

NSDTS and TD methods comprise common RL elements 
and are built in an MDP framework. This section offers a brief 
introduction to RL, including concepts such as MDP, return 
or state-action value estimates. Thereafter, N-Step Dynamic 
Tree Search algorithm is addressed. 

A. Markov Decision Process 

MDPs are mathematical formalisms that codify the 
problem of one or more agents interacting with the 
environment. Nonetheless, there are minor differences 
between single-agent and multi-agent frames. In the MARL 
configuration, for a given time t and a set of n agents in 
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Rt+1 joint rewards to every learning agent. Each cycle 
represents an MDP step, and episodes are a collection of step 
sequences such as < S0, A0, R1, S1, A1, …, RT-1, ST-1 > that at 
time t = T reach a terminal joint state. 

The goal of RL agents is to maximize long-term rewards. 
Thus, a balance between instant gratification and protracted 
implications of acts must be kept. A common approach to 
solving this dilemma is to use the expected discounted sum of 
future rewards (1), also referred as return 

 Gt ≐ Rt+1 + γRt+2 + γ2Rt+3 + … = � γkRt+k+1

∞

k=0

; (1) 

with Gt expected return at time step t and γdiscount factor 
affecting future terms. It is worth noting that (1) is a finite 
geometric progression if 0 ≤ γ ≤ 1. 

MDP features are defined by problem conditions. Sensor 
constraints, environmental circumstances or simply 
experimental settings prevent agents from fully noticing joint 
states in Partially Observable Markov Decision Processes 
(POMDPs) [25]. Factored MDPs (FMDPS) promote parallel 
processing via state aggregation and abstraction [35]. As 
states in Section IV Problem Formulation, the 
experimentation in this paper is based on a fully-observable 
MDP, i.e., agents have complete knowledge all current states 
without restrictions. 

B. Temporal-Difference Methods 

TD techniques are contained in the sample-based learning 

gamut. State-action value estimates Qi(St, At
i) are used to 

numerically quantify the execution of certain action At
i in St 

joint states at t time step by any i agent. Each intelligent agent 
computes, stores, updates and uses its own estimates in tables 
(tabular setting) to improve decision making. 
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incremental update rule (2) uses G� t
i
 return estimate as the 



  

target of the update, from which the old state-action value is 
subtracted forming the TD error. Notice that α step size 
parameter, also known as learning rate, moderates the 
influence of the error in the equation. 

Each TD method uses a specific target for its state-action 
update rule. For a given policy πi, Expected SARSA return is 

G� t
i
 = Rt+1

i  + γ ∑ πi(a'|s')Qt, π
i (s', a')a' , being Rt+1

i  the next 

reward, and the summatory term the expectation of next state-
action values. Differently, SARSA employs the next visited 

state-action value Qt, π
i (St+1, At+1

i ), and Q-Learning1 exploits 

the next maximum state-action value max Qi(St+1, a'). Off-
policy methods such as Expected SARSA and Q-Learning 
can adopt exploratory behaviors without affecting state-action 
value updates, a powerful technique to balance exploration 
and exploitation. On-policy methods instead, require specific 
policies like ε-greedy [16] to achieve that equilibrium. 

C. N-Step Dynamic Tree Search 

As a tree search algorithm, NSDTS incorporates forward 
planning mechanisms and direct updates. Let model-based 
learning be decomposed in two submodules: a probabilistic 
behavior model and an environment model. The first is 
responsible for forecasting future evader movement patterns 
based on current joint states St. The latter determines St+1 joint 

states transition by greedily selecting action At
i assuming best 

play of team agents. Following Fig. 2 [16], after N future 
samples, updates are backpropagated until the root node of the 
tree. The estimated return for N forward steps is presented in 
(3). 
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Note the difference between real time t and forward 
fictitious time τ. According to TD incremental update rule in 

(2), Qi table is first refreshed at τ + N – 1 time step, thence the 
subscript. Furthermore, for τ + 1 = N and τ + 1 = T special 
cases, where τ = min (T, t + [0, 1, …, N – 1]), the estimated 
return is computed either as an expected TD update 

 
1 Note that Expected SARSA is a generalization of Q-Learning since both 

expressions are equivalent if πi is a greedy policy. 

 G�τ
i
 = Rτ+1

i  + γ� πi(a|Sτ+1)Qi(Sτ+1, a)

a

, (4) 

or just G� τ
i
 = RT

i  respectively. Equation (4) coincides with 
Expected SARSA return; therefore, state-action values are 
counterbalanced with πi probability distribution. Note that (3) 
is the multi-step version of (4). 

Once model-learning stage ends, agent i gains experience 
through the enhanced policy πi. The full NSDTS algorithm is 
disclosed step by step in Table 1. The N-Step Dynamic Tree 
Search improves agent policies and learning rates by 
integrating future sample trajectories and direct updates. 

III. SYSTEM ARCHITECTURE 

The architecture of the deployed system is presented in 
Fig. 3. Agents can access, check, or update values within their 
decentralized Q tables to either execute forward planning or 
simply select a greedy action. The MDP is fully observable, 
i.e., each agent detects all joint state transitions from the 
environment. However, actions taken by team agents are 
individually assumed and hence may differ from actual 
behaviors. Despite the apparent imbalances, these 
assumptions imply system robustness (no communication 
between agents).  

The probabilistic behavior model consists of a neural 
network that predicts the evader’s next action given St joint 

 
Fig. 2 3-Step Tree-Backup update 

Table 1 N-Step Dynamic Tree Search algorithm for ε-greedy policy πi 

Initialize Qi(s, a) for i ∈ [1, n] learning agents, s ∈ S joint states and 
a ∈ A(s) 
Initialize net(s) probabilistic behavior model and Model(s, a) 
environment model 
Algorithm parameters: step size α ∈ (0, 1], small ε > 0 for policy πi, 
planning steps N  
Loop for each episode (t = 0, 1, …, T – 1): 
    Initialize and store S0 joint states (not terminal) 
    Loop for n agents (i = 0, 1, …, n – 1): 
        Loop for N planning steps (τ = t + [0, 1, …, N – 1]): 
            Predict aτ prey action with net(Sτ) 

            Aτ
i , Rτ+1

i , Sτ+1 ← Model(Sτ, aτ) assuming best play 

            Store Aτ
i , Rτ+1

i , Sτ+1 
            Break loop if τ + 1 = T 
        if τ + 1 = T: 

            Gτ
i  ← RT

i   
        else: 

            Gτ
i  ← Rτ+1

i  + γ ∑ πi(a|Sτ+1)Qi(Sτ+1, a)a  

        Qi�Sτ, Aτ
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        Select At
i following πi 

    Observe and store Rt+1, St+1 
    Loop for n agents (i = 0, 1, …, n – 1): 
        if t + 1 < T – 1: 

            Gt
i ← Rt+1

i  + γ ∑ πi(a|St+1)Qi(St+1, a)a  
        else: 

            Gt
i ← Rt+1

i  

        Qi�St, At
i� ← Qi�St, At

i� + α�Gt
i – Qi�St, At

i��  



  

states. Network configuration is depicted in Fig. 3. The 
approximator has twice as many input neurons as joint MDP 
states, corresponding to the cartesian decomposition of the 
environment. The number of hidden neurons u remains a 
hyperparameter, while the output layer is constituted by the 
available actions k that an agent can execute.  

As aforementioned, this model forecasts next prey actions 
based on a resulting probability distribution. This can also be 
thought as a classifier problem, with an assortment of MDP 
states as the input, and several action classes the output. 
Thereupon, the error of prediction is computed through a 
cross-entropy function. Optimization is implemented via 
backpropagation2 using ADAM [36]. This upgraded version 
of Stochastic Gradient Descent (SGD) leverages adaptive 
vector step sizes, ergo, greater learning rates for parameters 
with higher errors, and low-order moments that progressively 
boost weight gradients towards constant directions. 
Altogether, these techniques improve approximator learning 
processes reaching global or local minimums faster. 

IV. PROBLEM FORMULATION 

The hunter-prey pursuit problem has been a benchmark in 
MARL for years. Continuous state spaces [32][34], grid 
domains [24][25] and obstacles [23] are some environmental 
traits considered by authors. This section contains key aspects 
and fundamental rules that characterize the experimentation 
setup.  

 
2 Technique that computes the gradient of the loss function (error) with 

respect to the function approximation parameters. 

Fig. 4 reveals an 8 by 8 grid world with an evader and two 
intelligent pursuers, totaling 1,310,729 MDP states in the 
given representation. The prey is placed in the center of the 
grid at the start of each episode, whereas hunters are randomly 
assigned to non-terminal states. Pursuers must capture the 
evader without colliding. Individual captures occur when a 
hunter and a prey occupy the same cell, while cooperative 
captures arise when two or more pursuers are in the evader’s 
closest adjacent cells. To encourage cooperation, captures 
involving multiple team agents receive higher rewards.  

Collisions, on the other hand, happen either when two or 
more hunters occupy the same cell, or if a hunter on the grid’s 
edge conducts an action towards the wall. Anyhow, agents 
engaged in a crash are penalized. Furthermore, to encourage 
hunting efficiency, pursuers are given a negative 
compensation each time step. Each agent can move up, right, 
down, and given the occasion, stay on the same cell. 

Following part of the future work presented in [28], this 
paper presents and evaluates the performance of hunters 
against an intelligent prey that, following an ε-greedy policy, 
moves away from hunters given their position. If the evader 
is cornered and no possible escape actions are available, the 
agent randomly selects an action. 

V. EXPERIMENTAL RESULTS AND DISCUSSION 

This section compares NSDTS, Q-Learning, Expected 
SARSA and SARSA in the presented setup. Since algorithm 
performance is deeply dependent on α learning rate, a 
hyperparameter analysis is carried out first to tune α for each 
method. Table 2 summarizes the setup configuration adopted 
for the study. Note that all algorithms use an ε-greedy policy. 
A hybrid reward structure, i.e., a combination of individual 
and global rewards, has been carefully designed to approach 
the credit assignment problem, where nc refers to the number 
of pursuers involved in the cooperative capture. 

Hyperparameter analysis results in Fig. 5 already remark 
the difference between NSDTS and the rest of TD methods. 
After 25,000 episodes, for a learning rate α = 0.080, 5-Step 
Dynamic Tree Search overall performance is more than 50 
times better than the rest, which represents an improvement 
greater than 5,000%. Additionally, performance based on the 
averaged sum of rewards demonstrates that tree search 
achieves greater learning rates. After 10,000 episodes, 5SDTS 
nearly converged to the optimal policy, while conventional 
TD methods fail to reach a suboptimal policy in 25,000 
episodes. Introducing an intelligent evader significantly 

 
 

 

Fig. 3 NSDTS system overview from an individual agent perspective 
(3a), probabilistic behavior model (3b) 

(3a) 

(3b) 

 
Fig. 4 Hunter-prey pursuit game environment 



  

increases the complexity of the problem and search space. 
Therefore, algorithms such as Q-Learning require more 
training to converge.  

It is worth noting that at the end of the performance 
analysis, NSDTS develops successfully cooperative policies 
due to the remarkable high reward. Nevertheless, it takes 
more steps to reach a terminal state. The combination of 
expected updates and forward planning allow agents to avoid 
collisions and choose actions conservatively, resulting in 
higher rewards at expense of longer episodes. Likewise, 
higher number of forward planning steps result in greater 
cumulative rewards. Longer tree search reasoning allows 
agents to learn at faster rates and avoid complex states that 
heavily compromise agent performance, i.e., situations where 
collisions can easily arise without communication. For the 
given environment, few forward steps are required to reach 
optimal performance after convergence. However, an 
increasing problem complexity may require additional 
planning steps to reach optimal policies.  

VI. CONCLUSION AND FUTURE WORK 

N-Step Dynamic Tree Search evaluates future joint states 
based on an inferred model learned from real-world 
interactions, achieving not only a striking performance, but 
also incredibly high learning rates. NSDTS presents an 
improvement superior to 5,000% with respect to Expected 
SARSA, Q-Learning and SARSA, both after policy 
convergence and as overall performance. Thus, this paper 
consolidates NSDTS as a significant advance in the multi-
agent domain compared to conventional MARL techniques. 

The experimentation in this work is carried out within the 
hunter-prey pursuit framework, under a decentralized tabular 
setting and without information exchange between team 
agents. Future work includes transitioning from tabular to 
function approximation domain to scale up the experiment, 
adding complexity to the environment with more agents 
(evaders and pursuers) and bigger continuous worlds with 
obstacles. Communication and reward optimization may as 
well be considered.  

 
Fig. 5 Learning rate hyperparameter analysis (5a), and performance 
based on averaged sum of rewards (5b) and averaged steps (5c). 
Likewise, impact of forward planning steps displayed in (5d) and (5e). 

Table 2 Hyperparameter analysis configuration 

Algorithm Parameters 
Discount factor (γ) 1.00 
Exploring parameter (ε) 0.10 
Model and Optimizer Features 
Input units 6 
Hidden units 8 
Output units 5 
Neural network learning rate 10–3 
Weight decay (λ) 10–3 
Mean moment update parameter (β

m
) 9∙10–2 

Second moment update parameter (β
v
) 9.99∙10–2 

Batch size 500 
Training samples 25,000,000 
Testing samples 5,000,000 
Model accuracy 81.4 % 
Hybrid Reward Function  
Colliding with boundaries or other agents –100 
Each step –1 
Individual captures +10 
Cooperative captures +100 x nc 
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