



Abstract— Reinforcement learning tree-based planning
methods have been gaining popularity in the last few years due
to their success in single-agent domains, where a perfect
simulator model is available, e.g., Go and chess strategic board
games. This paper pretends to extend tree search algorithms to
the multi-agent setting in a decentralized structure, dealing with
scalability issues and exponential growth of computational
resources. The N-Step Dynamic Tree Search combines forward
planning and direct temporal-difference updates, outperforming
markedly state-of-the-art algorithms such as Q-Learning and
SARSA. Future state transitions and rewards are predicted with
a model built and learned from real interactions between agents
and the environment. As an extension of previous work, this
paper analyses the developed algorithm in the Hunter-Pursuit
cooperative game against intelligent evaders. The N-Step
Dynamic Tree Search aims to adapt the most successful single-
agent learning methods to the multi-agent boundaries and
demonstrates to be a remarkable advance compared to
conventional temporal-difference techniques.

I. INTRODUCTION

Machine Learning (ML) field has been expanding over the
last decades because of its wide range of application.
Typically, a learning process can be classified in three main
groups: supervised [1][2], unsupervised [3][4] and reward-
based learning methods [5]. Addressing single-agent and
multi-agent domains often entail partial or no information
about the boundary conditions and a high degree of
uncertainty. Thus, the problem becomes untreatable through
input/output driven data structures. Moreover, the inherent
complexity demands feedback to solve and optimize the
problem, i.e., unsupervised techniques are usually not enough.
Reward-based learning has demonstrated to be a natural fit in
this area due to the capability of generating unique solutions
with reinforcements and data restrictions.

 Under the reward-based umbrella, stochastic search
directly learns policies without appealing value functions (i.e.,
estimates of successor states or state-action pairs), an efficient
technique for small state spaces. Darwinian models of
evolution are used to refine populations of candidate behaviors
in evolutionary computation. Genetic Programming (GP) [6]
and Coevolutionary Algorithms (CEAs) [7][8][9] are solid
contenders within this field. On the other side, Reinforcement

*Research supported by Engineering and Physical Sciences Research

Council (EPSRC) and BAE Systems under the project reference no. 2454254.
Marc Espinós Longa is a PhD Researcher in the School of Aerospace,

Transport & Manufacturing at Cranfield University, Bedfordshire, MK43
0AL, United Kingdom (e-mail: marc.espinos-longa@cranfield.ac.uk).

Antonios Tsourdos is an AIAA Senior Member, Head of Center and
Director of Research in the School of Aerospace, Transport & Manufacturing

Learning (RL) uses value functions under a Markov Decision
Process (MDP) framework, considering every state and action
taken at every iteration step. This fact often leads to rigorous
policies that, despite the increasing demand of computational
resources, achieve greater performance in large search spaces.

When training agents under an MDP, the RL spectrum
encompasses many design aspects that can be explored. From
one-step updates in sample temporal-difference (TD) methods
[10][11][12][13] to n-step algorithms that wait a variable or
fixed number of MDP transitions before recomputing state-
action values [14][15]. As a result of bootstrapping (estimates
as a function of future value estimates), TD strategies provide
faster learning rates at the penalty of higher bias. In contrast,
Monte Carlo methods, which are the most extreme form of n-
step algorithms, delay updates until the end of the episode,
removing any bias and significantly increasing the variance of
the optimization process. As Fig. 1 [16] states, the type of
update constitutes the wide dimension of the sample-based
learning map. Expectations [17] contemplate all potential
trajectories, weighting value estimates at a higher
computational cost.

Planning is another powerful tool to accelerate learning by
alternating direct RL updates from real-world interactions with
simulated trajectories, which can be derived from agent
experience using replay buffers [18][19] or already-built
environment models [20]. After defeating the 18-time world
champion Go player in 2016 [21], AlphaGo raises tree search
single-agent methods to the next level. Forward planning
through an existing model is used to make predictions and
optimize action selection mechanisms. Monte Carlo Tree

at Cranfield University, Bedfordshire, MK43 0AL, United Kingdom (e-mail:
a.tsourdos@cranfield.ac.uk)

Gokhan Inalhan is AIAA Associate Fellow, BAE Systems Chair and
Deputy Head of Center in the School of Aerospace, Transport &
Manufacturing at Cranfield University, Bedfordshire, MK43 0AL, United
Kingdom (e-mail: inalhan@cranfield.ac.uk)

Swarm Intelligence in Cooperative Environments: N-Step
Dynamic Tree Search Algorithm Extended Analysis

 Marc Espinós Longa, Antonios Tsourdos, and Gokhan Inalhan
Cranfield University, Bedfordshire, MK43 0AL, United Kingdom

Fig. 1 Simplified map of sample-based learning methods

h.binning
Text Box

h.binning
Text Box
© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works

h.binning
Text Box
In: 2022 American Control Conference (ACC), Atlanta, 8-10 June 2022
DOI: 10.23919/ACC53348.2022.9867171

Search (MCTS) [16] becomes a standard in this collective, and
recently inspires many powerful algorithms such MuZero
developed by DeepMind, validated and tested with
superhuman performance across a large variety of Atari games
[22].

Transitioning from single-agent to multi-agent framework
is no trivial task. Even from a team learning perspective [5]
where agents are treated as a master individual and single-
agent techniques apply, big issues emerge related to enormous
state spaces (curse of dimensionality problem) that grow
exponentially to the number of agents. Furthermore, like any
other centralized system, team learning requests full swarm
connectivity and is reliant on a critical leading node. On the
other hand, concurrent learning [5] utilizes a distributed
network of agents to handle multiple learning processes
simultaneously [23][24]. Thus, co-adaption through
reinforcements is required to achieve optimal cooperation. The
credit assignment problem involves allocating efficient
incentives to individuals and remains a difficult endeavor in
the Multi-Agent Reinforcement Learning (MARL) problem.
Similarly, communication is crucial to enhance the learning
process. While some techniques use direct communication to
share TD-updates, policies or even full episodes [25], others
opt for indirect bio-inspired mechanisms [26][27].

This study aims to apply the most successful single-agent
RL algorithms to the multi-agent domain as a decentralized
system. Inspired by MCTS and n-Step Tree Backup updates
[16], the N-Step Dynamic Tree Search (NSDTS) algorithm
combines forward planning with direct RL, achieving a major
performance breakthrough over traditional TD techniques like
Q-Learning. Action selection mechanisms are improved by
using a neural network model, built from agent experience, to
perform forward tree search. To guarantee system robustness,
communication has been disregarded and left for future work;
thence, individuals assume best play of agents to carry out
future predictions. Agents are completely independent, have
their own q tables (tabular setting) and learn entirely from their
individual environment readings. Expected updates are
utilized to weight state-action value estimates, and agents are
reinforced with hybrid rewards (individual and global
incentives).

As an extension of previous work [28], the developed
algorithm is tested and validated in the hunter-prey pursuit
environment against Q-Learning, Expected SARSA and
SARSA temporal-difference methods. The pursuit game,
which involves a number of learning agents cooperating to
capture one or more evaders, has been a reference to MARL
nearly since its inception [25][29][30][31][32][33][34]. This
work conceives a grid world with two learning hunters and an
intelligent prey that tries to escape from chasers given their
position.

The remainder of the paper is structured as follows:
theoretical foundation in MARL is provided in Section II,
including MDPs, TD methods and the NSDTS algorithm.
Section III presents an overview of the established system, and
a description of the tree search models. Section IV formulates
the hunter-prey pursuit problem, considering environment
features, game rules, and reward function. Results and
discussion of hyperparameter analysis and algorithm
performance experimentation are presented in Section V.
Concluding marks and future work suggestions are given in
Section VI.

II. THEORETICAL BACKGROUND

NSDTS and TD methods comprise common RL elements
and are built in an MDP framework. This section offers a brief
introduction to RL, including concepts such as MDP, return
or state-action value estimates. Thereafter, N-Step Dynamic
Tree Search algorithm is addressed.

A. Markov Decision Process

MDPs are mathematical formalisms that codify the
problem of one or more agents interacting with the
environment. Nonetheless, there are minor differences
between single-agent and multi-agent frames. In the MARL
configuration, for a given time t and a set of n agents in

St = (St
0, St

1, …, St
n–2, St

n–1) joint states, after executing

At = (At
0, At

1, …, At
n–2, At

n–1) actions through some action
selection mechanism, the environment transitions all agents

to the next MDP state St+1 = (St
0, St+1

1 , …, St+1
n–2, St+1

n–1) and gives
Rt+1 joint rewards to every learning agent. Each cycle
represents an MDP step, and episodes are a collection of step
sequences such as < S0, A0, R1, S1, A1, …, RT-1, ST-1 > that at
time t = T reach a terminal joint state.

The goal of RL agents is to maximize long-term rewards.
Thus, a balance between instant gratification and protracted
implications of acts must be kept. A common approach to
solving this dilemma is to use the expected discounted sum of
future rewards (1), also referred as return

 Gt ≐ Rt+1 + γRt+2 + γ2Rt+3 + … = � γkRt+k+1

∞

k=0

; (1)

with Gt expected return at time step t and γdiscount factor
affecting future terms. It is worth noting that (1) is a finite
geometric progression if 0 ≤ γ ≤ 1.

MDP features are defined by problem conditions. Sensor
constraints, environmental circumstances or simply
experimental settings prevent agents from fully noticing joint
states in Partially Observable Markov Decision Processes
(POMDPs) [25]. Factored MDPs (FMDPS) promote parallel
processing via state aggregation and abstraction [35]. As
states in Section IV Problem Formulation, the
experimentation in this paper is based on a fully-observable
MDP, i.e., agents have complete knowledge all current states
without restrictions.

B. Temporal-Difference Methods

TD techniques are contained in the sample-based learning

gamut. State-action value estimates Qi(St, At
i) are used to

numerically quantify the execution of certain action At
i in St

joint states at t time step by any i agent. Each intelligent agent
computes, stores, updates and uses its own estimates in tables
(tabular setting) to improve decision making.

 Qi�St, At
i� ← Qi�St, At

i� + α �G� t
i
 – Qi�St, At

i�� (2)

Commonly represented in sample-based learning, the

incremental update rule (2) uses G� t
i
 return estimate as the

target of the update, from which the old state-action value is
subtracted forming the TD error. Notice that α step size
parameter, also known as learning rate, moderates the
influence of the error in the equation.

Each TD method uses a specific target for its state-action
update rule. For a given policy πi, Expected SARSA return is

G� t
i
 = Rt+1

i + γ ∑ πi(a'|s')Qt, π
i (s', a')a' , being Rt+1

i the next

reward, and the summatory term the expectation of next state-
action values. Differently, SARSA employs the next visited

state-action value Qt, π
i (St+1, At+1

i), and Q-Learning1 exploits

the next maximum state-action value max Qi(St+1, a'). Off-
policy methods such as Expected SARSA and Q-Learning
can adopt exploratory behaviors without affecting state-action
value updates, a powerful technique to balance exploration
and exploitation. On-policy methods instead, require specific
policies like ε-greedy [16] to achieve that equilibrium.

C. N-Step Dynamic Tree Search

As a tree search algorithm, NSDTS incorporates forward
planning mechanisms and direct updates. Let model-based
learning be decomposed in two submodules: a probabilistic
behavior model and an environment model. The first is
responsible for forecasting future evader movement patterns
based on current joint states St. The latter determines St+1 joint

states transition by greedily selecting action At
i assuming best

play of team agents. Following Fig. 2 [16], after N future
samples, updates are backpropagated until the root node of the
tree. The estimated return for N forward steps is presented in
(3).

G�τ:τ+N
i

 = Rτ+1
i + γ � πi(a|Sτ+1)Q

τ+N–1
i (Sτ+1, a)

a≠Aτ+1
i

+ γπi�Aτ+1
i �Sτ+1�G�τ+1:τ+N

i

(3)

Note the difference between real time t and forward
fictitious time τ. According to TD incremental update rule in

(2), Qi table is first refreshed at τ + N – 1 time step, thence the
subscript. Furthermore, for τ + 1 = N and τ + 1 = T special
cases, where τ = min (T, t + [0, 1, …, N – 1]), the estimated
return is computed either as an expected TD update

1 Note that Expected SARSA is a generalization of Q-Learning since both

expressions are equivalent if πi is a greedy policy.

 G�τ
i
 = Rτ+1

i + γ� πi(a|Sτ+1)Qi(Sτ+1, a)

a

, (4)

or just G� τ
i
 = RT

i respectively. Equation (4) coincides with
Expected SARSA return; therefore, state-action values are
counterbalanced with πi probability distribution. Note that (3)
is the multi-step version of (4).

Once model-learning stage ends, agent i gains experience
through the enhanced policy πi. The full NSDTS algorithm is
disclosed step by step in Table 1. The N-Step Dynamic Tree
Search improves agent policies and learning rates by
integrating future sample trajectories and direct updates.

III. SYSTEM ARCHITECTURE

The architecture of the deployed system is presented in
Fig. 3. Agents can access, check, or update values within their
decentralized Q tables to either execute forward planning or
simply select a greedy action. The MDP is fully observable,
i.e., each agent detects all joint state transitions from the
environment. However, actions taken by team agents are
individually assumed and hence may differ from actual
behaviors. Despite the apparent imbalances, these
assumptions imply system robustness (no communication
between agents).

The probabilistic behavior model consists of a neural
network that predicts the evader’s next action given St joint

Fig. 2 3-Step Tree-Backup update

Table 1 N-Step Dynamic Tree Search algorithm for ε-greedy policy πi

Initialize Qi(s, a) for i ∈ [1, n] learning agents, s ∈ S joint states and
a ∈ A(s)
Initialize net(s) probabilistic behavior model and Model(s, a)
environment model
Algorithm parameters: step size α ∈ (0, 1], small ε > 0 for policy πi,
planning steps N
Loop for each episode (t = 0, 1, …, T – 1):
 Initialize and store S0 joint states (not terminal)
 Loop for n agents (i = 0, 1, …, n – 1):
 Loop for N planning steps (τ = t + [0, 1, …, N – 1]):
 Predict aτ prey action with net(Sτ)

 Aτ
i , Rτ+1

i , Sτ+1 ← Model(Sτ, aτ) assuming best play

 Store Aτ
i , Rτ+1

i , Sτ+1
 Break loop if τ + 1 = T
 if τ + 1 = T:

 Gτ
i ← RT

i
 else:

 Gτ
i ← Rτ+1

i + γ ∑ πi(a|Sτ+1)Qi(Sτ+1, a)a

 Qi�Sτ, Aτ
i� ← Qi�Sτ, Aτ

i� + α�Gτ
i – Qi�Sτ, Aτ

i��

 Loop for k = τ down to t + 1:

 Gk–1
i ← Rk

i + γ ∑ πi(a|Sk)Qi(Sk, a)
a≠Ak

i +γπi�Ak
i �Sk�Gk

i

 Qi�Sk–1, Ak–1
i � ← Qi�Sk–1, Ak–1

i � + α�Gk–1
i – Qi�Sk–1, Ak–1

i ��

 Select At
i following πi

 Observe and store Rt+1, St+1
 Loop for n agents (i = 0, 1, …, n – 1):
 if t + 1 < T – 1:

 Gt
i ← Rt+1

i + γ ∑ πi(a|St+1)Qi(St+1, a)a
 else:

 Gt
i ← Rt+1

i

 Qi�St, At
i� ← Qi�St, At

i� + α�Gt
i – Qi�St, At

i��

states. Network configuration is depicted in Fig. 3. The
approximator has twice as many input neurons as joint MDP
states, corresponding to the cartesian decomposition of the
environment. The number of hidden neurons u remains a
hyperparameter, while the output layer is constituted by the
available actions k that an agent can execute.

As aforementioned, this model forecasts next prey actions
based on a resulting probability distribution. This can also be
thought as a classifier problem, with an assortment of MDP
states as the input, and several action classes the output.
Thereupon, the error of prediction is computed through a
cross-entropy function. Optimization is implemented via
backpropagation2 using ADAM [36]. This upgraded version
of Stochastic Gradient Descent (SGD) leverages adaptive
vector step sizes, ergo, greater learning rates for parameters
with higher errors, and low-order moments that progressively
boost weight gradients towards constant directions.
Altogether, these techniques improve approximator learning
processes reaching global or local minimums faster.

IV. PROBLEM FORMULATION

The hunter-prey pursuit problem has been a benchmark in
MARL for years. Continuous state spaces [32][34], grid
domains [24][25] and obstacles [23] are some environmental
traits considered by authors. This section contains key aspects
and fundamental rules that characterize the experimentation
setup.

2 Technique that computes the gradient of the loss function (error) with

respect to the function approximation parameters.

Fig. 4 reveals an 8 by 8 grid world with an evader and two
intelligent pursuers, totaling 1,310,729 MDP states in the
given representation. The prey is placed in the center of the
grid at the start of each episode, whereas hunters are randomly
assigned to non-terminal states. Pursuers must capture the
evader without colliding. Individual captures occur when a
hunter and a prey occupy the same cell, while cooperative
captures arise when two or more pursuers are in the evader’s
closest adjacent cells. To encourage cooperation, captures
involving multiple team agents receive higher rewards.

Collisions, on the other hand, happen either when two or
more hunters occupy the same cell, or if a hunter on the grid’s
edge conducts an action towards the wall. Anyhow, agents
engaged in a crash are penalized. Furthermore, to encourage
hunting efficiency, pursuers are given a negative
compensation each time step. Each agent can move up, right,
down, and given the occasion, stay on the same cell.

Following part of the future work presented in [28], this
paper presents and evaluates the performance of hunters
against an intelligent prey that, following an ε-greedy policy,
moves away from hunters given their position. If the evader
is cornered and no possible escape actions are available, the
agent randomly selects an action.

V. EXPERIMENTAL RESULTS AND DISCUSSION

This section compares NSDTS, Q-Learning, Expected
SARSA and SARSA in the presented setup. Since algorithm
performance is deeply dependent on α learning rate, a
hyperparameter analysis is carried out first to tune α for each
method. Table 2 summarizes the setup configuration adopted
for the study. Note that all algorithms use an ε-greedy policy.
A hybrid reward structure, i.e., a combination of individual
and global rewards, has been carefully designed to approach
the credit assignment problem, where nc refers to the number
of pursuers involved in the cooperative capture.

Hyperparameter analysis results in Fig. 5 already remark
the difference between NSDTS and the rest of TD methods.
After 25,000 episodes, for a learning rate α = 0.080, 5-Step
Dynamic Tree Search overall performance is more than 50
times better than the rest, which represents an improvement
greater than 5,000%. Additionally, performance based on the
averaged sum of rewards demonstrates that tree search
achieves greater learning rates. After 10,000 episodes, 5SDTS
nearly converged to the optimal policy, while conventional
TD methods fail to reach a suboptimal policy in 25,000
episodes. Introducing an intelligent evader significantly

Fig. 3 NSDTS system overview from an individual agent perspective
(3a), probabilistic behavior model (3b)

(3a)

(3b)

Fig. 4 Hunter-prey pursuit game environment

increases the complexity of the problem and search space.
Therefore, algorithms such as Q-Learning require more
training to converge.

It is worth noting that at the end of the performance
analysis, NSDTS develops successfully cooperative policies
due to the remarkable high reward. Nevertheless, it takes
more steps to reach a terminal state. The combination of
expected updates and forward planning allow agents to avoid
collisions and choose actions conservatively, resulting in
higher rewards at expense of longer episodes. Likewise,
higher number of forward planning steps result in greater
cumulative rewards. Longer tree search reasoning allows
agents to learn at faster rates and avoid complex states that
heavily compromise agent performance, i.e., situations where
collisions can easily arise without communication. For the
given environment, few forward steps are required to reach
optimal performance after convergence. However, an
increasing problem complexity may require additional
planning steps to reach optimal policies.

VI. CONCLUSION AND FUTURE WORK

N-Step Dynamic Tree Search evaluates future joint states
based on an inferred model learned from real-world
interactions, achieving not only a striking performance, but
also incredibly high learning rates. NSDTS presents an
improvement superior to 5,000% with respect to Expected
SARSA, Q-Learning and SARSA, both after policy
convergence and as overall performance. Thus, this paper
consolidates NSDTS as a significant advance in the multi-
agent domain compared to conventional MARL techniques.

The experimentation in this work is carried out within the
hunter-prey pursuit framework, under a decentralized tabular
setting and without information exchange between team
agents. Future work includes transitioning from tabular to
function approximation domain to scale up the experiment,
adding complexity to the environment with more agents
(evaders and pursuers) and bigger continuous worlds with
obstacles. Communication and reward optimization may as
well be considered.

Fig. 5 Learning rate hyperparameter analysis (5a), and performance
based on averaged sum of rewards (5b) and averaged steps (5c).
Likewise, impact of forward planning steps displayed in (5d) and (5e).

Table 2 Hyperparameter analysis configuration

Algorithm Parameters
Discount factor (γ) 1.00
Exploring parameter (ε) 0.10
Model and Optimizer Features
Input units 6
Hidden units 8
Output units 5
Neural network learning rate 10–3
Weight decay (λ) 10–3
Mean moment update parameter (β

m
) 9∙10–2

Second moment update parameter (β
v
) 9.99∙10–2

Batch size 500
Training samples 25,000,000
Testing samples 5,000,000
Model accuracy 81.4 %
Hybrid Reward Function
Colliding with boundaries or other agents –100
Each step –1
Individual captures +10
Cooperative captures +100 x nc

(5a)

(5b)

(5d)

(5c)

(5e)

REFERENCES

[1] Cunningham, P., Cord, M. and Delany, S. J. (2008) ‘Supervised
Learning’, in Cord, M. and Cunningham, P. (eds) Machine Learning
Techniques for Multimedia: Case Studies on Organization and Retrieval.
Berlin, Heidelberg, pp. 21–49. doi: 10.1007/978-3-540-75171-7_2.

[2] Geng, J., Fan, J., Wang, H., Ma, X., Li, B. and Chen, F. (2015) ‘High-
Resolution SAR Image Classification via Deep Convolutional
Autoencoders’, IEEE Geoscience and Remote Sensing Letters. IEEE, 12(11),
pp. 2351–2355. doi: 10.1109/LGRS.2015.2478256.

[3] Solan, Z., Horn, D., Ruppin, E. and Edelman, S. (2005)
‘Unsupervised learning of natural languages’, Proceedings of the National
Academy of Sciences, 102(33), pp. 11629–11634. doi:
10.1073/pnas.0409746102.

[4] Sivakumar, S. and Chandrasekar, C. (2012) ‘Lung Nodule
Segmentation through Unsupervised Clustering Models’, Procedia
Engineering, 38, pp. 3064–3073. doi: 10.1016/j.proeng.2012.06.357.

[5] Panait, L. and Luke, S. (2005) ‘Cooperative Multi-Agent Learning:
The State of the Art’, Autonomous Agents and Multi-Agent Systems, 11(3),
pp. 387–434. doi: 10.1007/s10458-005-2631-2.

[6] Haynes, T., Wainwright, R., Sen, S. and Schoenefeld, D. (1995)
‘Strongly Typed Genetic Programming in Evolving Cooperation Strategies.’,
in Proceedings of the 6th International Conference on Genetic Algorithm, pp.
271–278.

[7] Potter, M. A. and De Jong, K. A. (1994) ‘A cooperative
coevolutionary approach to function optimization’, in Davidor, Y., Schwefel,
H.-P., and Männer, R. (eds) Parallel Problem Solving from Nature. Berlin,
Heidelberg: Springer Berlin Heidelberg, pp. 249–257. doi: 10.1007/3-540-
58484-6_269.

[8] Ficici, S. G. and Pollack, J. B. (2000) ‘A Game-Theoretic Approach
to the Simple Coevolutionary Algorithm’, in Schoenauer, M., Deb, K.,
Rudolph, G., Yao, X., Lutton, E., Merelo, J. J., and Schwefel, H.-P. (eds)
Parallel Problem Solving from Nature. Berlin, Heidelberg: Springer Berlin
Heidelberg, pp. 467–476. doi: 10.1007/3-540-45356-3_46.

[9] Miconi, T. (2003) ‘When Evolving Populations is Better than
Coevolving Individuals: The Blind Mice Problem’, in Proceedings of the
18th International Joint Conference on Artificial Intelligence.

[10] Claus, C. and Boutilier, C. (1998) ‘The Dynamics of Reinforcement
Learning in Cooperative Multiagent Systems’, in Proceedings of the
Fifteenth National/Tenth Conference on Artificial Intelligence/Innovative
Applications of Artificial Intelligence. USA: American Association for
Artificial Intelligence (AAAI ’98/IAAI ’98), pp. 746–752. doi:
10.5555/295240.295800.

[11] Tesauro, G. (2003) ‘Extending Q-Learning to General Adaptive
Multi-Agent Systems’, in Proceedings of the 16th International Conference
on Neural Information Processing Systems. Cambridge, MA, USA: MIT
Press (NIPS’03), pp. 871–878. doi: 10.5555/2981345.2981454.

[12] Watkins, C. J. C. H. and Dayan, P. (1992) ‘Technical Note: Q-
Learning’, Machine Learning, 8(3), pp. 279–292. doi:
10.1023/A:1022676722315.

[13] Sałustowicz, R. P., Wiering, M. A. and Schmidhuber, J. (1998)
‘Learning Team Strategies: Soccer Case Studies’, Machine Learning, 33(2),
pp. 263–282. doi: 10.1023/A:1007570708568.

[14] Al-Dabooni, S. and Wunsch, D. C. (2020) ‘Online Model-Free n-
Step HDP With Stability Analysis’, IEEE Transactions on Neural Networks
and Learning Systems, 31(4), pp. 1255–1269. doi:
10.1109/TNNLS.2019.2919614.

[15] De Asis, K., Hernandez-Garcia, J., Holland, G. and Sutton, R.
(2018) ‘Multi-Step Reinforcement Learning: A Unifying Algorithm’,
Proceedings of the AAAI Conference on Artificial Intelligence, 32(1 SE-
AAAI Technical Track: Machine Learning). Available at:
https://ojs.aaai.org/index.php/AAAI/article/view/11631.

[16] Sutton, R. S. and Barto, A. G. (2018) Reinforcement Learning : An
Introduction.

[17] Seijen, H. van, Hasselt, H. van, Whiteson, S. and Wiering, M.
(2009) ‘A theoretical and empirical analysis of Expected Sarsa’, in 2009
IEEE Symposium on Adaptive Dynamic Programming and Reinforcement
Learning, pp. 177–184. doi: 10.1109/ADPRL.2009.4927542.

[18] Foerster, J., Nardelli, N., Farquhar, G., Afouras, T., Torr, P. H. S.,
Kohli, P. and Whiteson, S. (2017) ‘Stabilising Experience Replay for Deep
Multi-Agent Reinforcement Learning’, in Precup, D. and Teh, Y. W. (eds)
Proceedings of the 34th International Conference on Machine Learning.
PMLR (Proceedings of Machine Learning Research), pp. 1146–1155.
Available at: http://proceedings.mlr.press/v70/foerster17b.html.

[19] Zhang, S. and Sutton, R. S. (2017) ‘A Deeper Look at Experience
Replay’, CoRR, abs/1712.0. Available at: http://arxiv.org/abs/1712.01275.

[20] Kaiser, L., Babaeizadeh, M., Milos, P., Osinski, B., Campbell, R.
H., Czechowski, K., Erhan, D., Finn, C., Kozakowski, P., Levine, S., Sepassi,
R., Tucker, G. and Michalewski, H. (2019) ‘Model-Based Reinforcement
Learning for Atari’, CoRR, abs/1903.0. Available at:
http://arxiv.org/abs/1903.00374.

[21] Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang,
A., Guez, A., Hubert, T., Baker, L., Lai, M., Bolton, A., Chen, Y., Lillicrap,
T., Hui, F., Sifre, L., van den Driessche, G., Graepel, T. and Hassabis, D.
(2017) ‘Mastering the game of Go without human knowledge’, Nature,
550(7676), pp. 354–359. doi: 10.1038/nature24270.

[22] Schrittwieser, J., Antonoglou, I., Hubert, T., Simonyan, K., Sifre,
L., Schmitt, S., Guez, A., Lockhart, E., Hassabis, D., Graepel, T., Lillicrap,
T. and Silver, D. (2019) ‘Mastering Atari, Go, Chess and Shogi by Planning
with a Learned Model’. doi: 10.1038/s41586-020-03051-4.

[23] Yu, C., Dong, Y., Li, Y. and Chen, Y. (2020) ‘Distributed multi‐
agent deep reinforcement learning for cooperative multi‐robot pursuit’, The
Journal of Engineering. Institution of Engineering and Technology (IET),
2020(13), pp. 499–504. doi: 10.1049/joe.2019.1200.

[24] Ho, J. and Wang, C.-M. (2020) ‘Explainable and Adaptable
Augmentation in Knowledge Attention Network for Multi-Agent Deep
Reinforcement Learning Systems’, in 2020 IEEE Third International
Conference on Artificial Intelligence and Knowledge Engineering (AIKE).
IEEE, pp. 157–161. doi: 10.1109/AIKE48582.2020.00031.

[25] Tan, M. (1997) ‘Multi-Agent Reinforcement Learning: Independent
vs. Cooperative Agents’, in Readings in Agents. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., pp. 487–494. doi:
10.5555/284680.284934.

[26] Corne, D., Reynolds, A. and Bonabeau, E. (2012) ‘Swarm
Intelligence’, in Handbook of Natural Computing, pp. 1599–1623.

[27] Espinós Longa, M., Tsourdos, A. and Inalhan, G. (2022) ‘Human-
Machine Network through Bio-inspired Decentralized Swarm Intelligence
and Heterogeneous Teaming in SAR Operations’, Journal of Intelligent and
Robotic Systems (submitted).

[28] Espinós Longa, M., Inalhan, G. and Tsourdos, A. (2022) ‘Swarm
Intelligence in Cooperative Environments: Introducing the N-Step Dynamic
Tree Search Algorithm’, in AIAA SCITECH 2022 Forum. Reston, Virginia:
American Institute of Aeronautics and Astronautics, pp. 1–13. doi:
10.2514/6.2022-1839.

[29] Abed-alguni, B. H., Chalup, S. K., Henskens, F. A. and Paul, D. J.
(2015) ‘A multi-agent cooperative reinforcement learning model using a
hierarchy of consultants, tutors and workers’, Vietnam Journal of Computer
Science. Springer Science and Business Media LLC, 2(4), pp. 213–226. doi:
10.1007/s40595-015-0045-x.

[30] Duman, E., Kaya, M. and Akin, E. (2005) ‘A multi-agent fuzzy-
reinforcement learning method for continuous domains’, in Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), pp. 306–315. doi:
10.1007/11559221_31.

[31] Huang, J., Yang, B. and Liu, D.-Y. (2005) ‘A Distributed Q-
Learning Algorithm for Multi-Agent Team Coordination’, in Machine
Learning and Cybernetics, pp. 108–113. doi:
10.1109/ICMLC.2005.1526928.

[32] Ishiwaka, Y., Sato, T. and Kakazu, Y. (2003) ‘An approach to the
pursuit problem on a heterogeneous multiagent system using reinforcement
learning’, Robotics and Autonomous Systems, 43(4), pp. 245–256. doi:
10.1016/S0921-8890(03)00040-X.

[33] Kuremoto, T., Tsurusaki, T., Kobayashi, K., Mabu, S. and
Obayashi, M. (2013) ‘An improved reinforcement learning system using
affective factors’, Robotics. MDPI AG, 2(3), pp. 149–164. doi:
10.3390/robotics2030149.

[34] Wang, Y., Dong, L. and Sun, C. (2020) ‘Cooperative control for
multi-player pursuit-evasion games with reinforcement learning’,
Neurocomputing. Elsevier B.V., 412, pp. 101–114. doi:
10.1016/j.neucom.2020.06.031.

[35] Daoui, C., Abbad, M. and Tkiouat, M. (2010) ‘Exact Decomposition
Approaches for Markov Decision Processes: A Survey’, Advances in
Operations Research. Edited by I. Kacem. Hindawi Publishing Corporation,
2010, p. 19. doi: 10.1155/2010/659432.

[36] Kingma, D. P. and Ba, J. (2014) ‘Adam: A Method for Stochastic
Optimization’, 3rd International Conference on Learning Representations,
ICLR 2015 - Conference Track Proceedings, pp. 1–15. Available at:
http://arxiv.org/abs/1412.6980.

Cranfield University

CERES https://dspace.lib.cranfield.ac.uk

School of Aerospace, Transport and Manufacturing (SATM) Staff publications (SATM)

2022-09-05

Swarm intelligence in cooperative

environments: N-step dynamic tree

search algorithm extended analysis

Espinós Longa, Marc

IEEE

Espinós Longa M, Tsourdos A, Inalhan G. (2022) Swarm intelligence in cooperative

environments: N-step dynamic tree search algorithm extended analysis. In: 2022 American

Control Conference (ACC), 8-10 June 2022, Atlanta, GA, USA. pp. 761-766

https://doi.org/10.23919/ACC53348.2022.9867171

Downloaded from Cranfield Library Services E-Repository

