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Abstract

In this work, a centralised robust model predictive control (CRMPC) algorithm is proposed for reentry vehicles to track
reference attitude trajectories subject to state/input constraints and uncertainties. In contrast to most designs that apply a
cascade control structure for the two-timescale attitude dynamical systems, the proposed control scheme utilises a centralised
structure to avoid additional controller development and parameter turning. By designing a nonlinear feedback law and
tightening the system constraints, robust constraint satisfaction can be ensured for all admissible uncertainties. In addition,
to guarantee the recursive feasibility and closed-loop stability of the proposed CRMPC, a terminal controller, along with a
terminal region, is introduced. The validity of using the proposed approach to solve the considered problem is confirmed by
executing several experimental studies, which were compared against two other established methods.
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1 Introduction

Attitude control system development for aerospace ve-
hicles (e.g., unmanned aerial vehicles, reentry vehicles,
and reusable rockets) has long been recognised as a pop-
ular research area owing to its extensive applications
in numerous engineering problems such as the reentry
flight [22], rendezvous and docking [4, 6], and satellite
formation flying [19], among others. Commonly, the
main objective of developing an attitude control sys-
tem is to provide the vehicle with reference tracking or
attitude stabilisation capabilities. By investigating the
spacecraft control process, it is evident that the corre-
sponding attitude dynamics can be characterised by a
multi-timescale system. This is because the angular-rate
variables typically undergo faster changes than angular
variables. A widely acceptable strategy for the control
of such a multirate system is to resort to the timescale
separation technique. Specifically, the spacecraft atti-
tude system is divided into two interacting subsystems:
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a slow outer angular subsystem and a fast inner angular-
rate subsystem. Then, robust controllers are designed
for these two subsystems. Previous studies have verified
that certain advantages can be acquired from employ-
ing this hierarchical control structure [16]. For example,
provided that the inner loop is typically faster than the
outer loop, the entire system tends to be more effec-
tive at responding to disturbances. More importantly,
it has the potential to reduce the degree of variability
within the process. Some studies focused on developing
multirate controllers for spacecraft attitude tracking
problems have been published in recent years [14, 20].
Among these contributions, the application of sliding
mode control (SMC) appears to be a popular choice and
is highly regarded by researchers. For example, Tian et
al.[20] addressed the problem of reusable launch vehicle
reentry attitude tracking by applying a double-layered
second-order SMC algorithm. In their follow-up re-
search [14], the possibility of utilising a double-layered
fuzzy-disturbance observer-based adaptive SMC algo-
rithm to track desired attitude signals was explored.
Although simulation results demonstrated that the
attitude-tracking task can be successfully accomplished,
how to balance the high-frequency chattering effects
and the control accuracy remains an open issue. Apart
from this algorithm-related drawback, there are some
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concerns regarding the structure of the controllers
[10, 21]. Because most of these aforementioned works
employ a cascaded two-level design, additional mea-
surement of the inner-loop variables is required, which
eventually doubles the instrumentation costs. Besides,
the control strategy tends to become more complex, as
additional controller development is required for the in-
ner loop. Furthermore, to achieve a satisfactory control
performance, an additional parameter-tuning process is
necessary for the inner and outer controllers.

To avoid these drawbacks, centralised robust controllers
have been proposed by some researchers [3, 7, 25]. A
resilient attitude-control scheme was developed by [3],
who utilised a nonlinear observer to reject the effect
caused by disturbances such that the tracking perfor-
mance can be improved. Similarly, Zhang et al. (2019)
developed a disturbance observer along with an inte-
gral SMC method [7] to form a centralised attitude con-
troller. Although using these centralised controllers al-
lows for acceptable attitude-tracking performance, the
system constraints such as the state/input limitations
were not fully considered, which may have non-negligible
impacts on engineering practices. In this paper, we de-
scribe our attempt to design a robust model predictive
control (RMPC)-based attitude-tracking control scheme
so as to generate tracking control actions for reentry ve-
hicles in the presence of constraints and external un-
certainties. RMPC is a widely-engaged process-control
strategy owing to its guaranteed constraint handling
ability and enhanced anti-disturbance performance. It
has been applied in various industrial applications in-
cluding smart grids [17], intelligent transport systems
[18], space explorations [13], and robotics [15]. In the
context of aerospace vehicle motion or attitude control,
several RMPC-oriented contributions have been made
during the last decade [2, 9, 12, 23]. For instance, [12] in-
vestigated the tube technique and developed an RMPC
scheme to regulate the linearised CubeSat attitude sys-
tem during an Earth observationmission. [23] considered
the attitude control problem for spacecraft with single
gimbal control moment gyros by combining model pre-
dictive control (MPC) with the H∞ technique to form a
dual-mode control law. One advantage of such a design
is that the resulting control action has an extra degree of
freedom to compensate for the negative effect caused by
the uncertainties. In addition, a robust three-axis space-
craft attitude-tracking problem was considered by [2],
who combined SMC and linear MPC to produce the op-
timal tracking control profiles. Based on the obtained
simulation results, the authors verified that such a com-
pound control scheme is able to steer the attitude mo-
tion to follow the desired references. However, more ef-
fort is required to develop the additional controllers and
tune the algorithm-related parameters. In addition, the
actual control performance can be easily affected owing
to poor treatment of these additional processes. In terms
of its structure, the proposed CRMPC scheme is cen-
tralised without separating the two-timescale-attitude

dynamical systems, thus simultaneously determining all
the manipulated variables. Compared to some of the ex-
isting designs (e.g., [2, 14, 20, 24]), the proposed scheme
has simplified the structure of the controller. Only one
optimisation-based control loop is required instead of a
double-layered control framework. Hence, controller de-
velopment and parameter tuning for the fast inner layer
(i.e., angular rate system) can be avoided. More specif-
ically, the main contributions of this work can be sum-
marised as follows. First, a new CRMPC algorithm is
established for reentry vehicles to track desired angular
profiles in the presence of state/input constraints and
uncertainties; second, we made progress towards devel-
oping a nonlinear feedback law, tightened system con-
straints, and a terminal controller with corresponding
terminal region such that robust constraint satisfaction
can be achieved, thereby confirming the recursive feasi-
bility and input-to-state stability (ISS) of the proposed
CRMPC. Third, experiments were performed to validate
the effectiveness of the proposed attitude-tracking con-
troller. The performances of other well-developed multi-
rate controllers were compared to evaluate the merit of
our centralised design.

2 Description of System Equations

Notation: The real space and n-dimensional Eu-
clidean space are denoted as R and R

n, respectively.
diag{a1, ..., an} represents the diagonal matrix, where
a1, ..., an are its elements. Define a = [a1, ..., an]

T as

a vector, then |a| = [|a1|, ..., |an|]T , ‖a‖ =
√
aTa and

‖a‖P =
√
aTPa, in which P is a positive definite

matrix. Let M ∈ R
n×n, then its 2-norm is defined

as ‖M‖ =
√

λmax(MTM), in which λmax represents
the maximum eigenvalue. Similarly, λmin is the min-
imum eigenvalue. Let A ⊂ R

n and B ⊂ R
n denote

two sets, then A ⊕ B = {m + n|m ∈ A, n ∈ B} and
A⊖ B = {z ∈ R

n|{z} ⊕ B ⊂ A}.

2.1 Rotational Equations of Motion

The rotational motion of the reentry vehicle can be de-
scribed by the following matrix representation [5, 8, 20]:

{

Θ̇ =Rω +∆f

ω̇ =− I
−1ΩIω + I

−1m+∆m

(1a)

(1b)

where the matrix termsR, I , and Ω ∈ R
3×3 are given by

R =











− cosα tanβ 1 − sinα tanβ

sinα 0 − cosα

− cosα cosβ − sinβ − cosβ sinα











. (2)

I =











Ixx −Ixy −Ixz

−Iyx Iyy −Iyz

−Izx −Izy Izz











,Ω =











0 −ν q

ν 0 −p

−q p 0











. (3)
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In (1)-(3),Θ = [α, β, σ]T denotes the attitude-angle vec-
tor in the earth-fixed coordinate frame. Because reen-
try vehicles are the intended application, Θ consists of
the angle of attack α, sideslip angle β and bank angle
σ. ω = [p, q, ν]T represents the angular-rate vector in
the body-fixed coordinate frame, where the roll rate is p,
pitch rate is q, and yaw rate is ν, respectively. The con-
trol moment vector is denoted as m = [mx,my,mz]

T .
mi, i = (x, y, z) represents the roll, pitch, and yaw mo-
ment, whilst Iij , (i, j = x, y, z) is the roll, pitch, and
yaw moment of inertia. ∆f , ∆m ∈ R

3×1 are considered
as additive disturbances owing to environmental uncer-
tainties and model simplification.

If we redefine the system state and control variable as
x = [xΘ,xω]

T ∈ R
6×1 and u = RI

−1m ∈ R
3×1, with

xΘ = Θ and xω = Rω+∆f , then system (1) is rewrit-
ten as follows:

{

ẋΘ =xω

ẋω =Ṙ(Θ)ω −R(Θ)I−1Ω(ω)Iω + u+∆

(4a)

(4b)

with ∆ = ∆̇f +R∆m.

Some preliminary assumptions are made to develop the
proposed optimisation-based tracking controller.

Assumption 1 The attitude angle Θ, angular rate ω,
and control variables m are assumed to be measurable.

Assumption 2 The disturbance terms ∆f , ∆m to-
gether with their first-order derivatives are bounded.
Moreover, it is supposed that there exist upper bounds on
∆, that is, ‖∆‖ ≤ ∆̄.

Assumption 3 The attitude-angle references, together
with their first- and second-order derivatives, are con-
sidered to be smooth and bounded, i.e., ‖Θr‖ ≤ Θ̄0,

‖Θ̇r‖ ≤ Θ̄1, and ‖Θ̈r‖ ≤ Θ̄2.

Assumption 4 The inertia matrix I and its inverse
matrix are assumed to be bounded, i.e., ‖I‖ ≤ Ī and

‖I−1‖ ≤ Ī
′

.

Assumption 2 is widely applied in designing attitude
controller for reentry vehicles [8, 14, 20]. Specifically,
based on the expressions of∆f and∆m (see e.g., Eq. (8)
of [8]), one can observe that all their elements and first-
order derivatives can be bounded in a real flight scenario.
Hence, Assumption 2 is reasonable. For space reasons,
the expressions of ∆f and ∆m are omitted here. Inter-
ested readers can refer to [8] for more details.

2.2 Tracking Error Dynamics

If we further define the attitude-tracking error vector as
E = [Eθ,Eω]

T ∈ R
6×1, in which Eθ = Θ − Θr and

Eω = Rω − Θ̇r, then it can model the tracking error
dynamics in the form of

{

Ėθ =Eω

Ėω =Ṙ(Θ)ω −R(Θ)I−1Ω(ω)Iω + u− Θ̈r +∆

(5a)

(5b)

Hence, the primary objective of the tracking controller
becomes steering the actual angle profiles to track the
references, while simultaneously guaranteeing the vari-
able constraints xω ∈ Xω and u ∈ Um. Here, the vari-
able admissible sets Xω and Um are defined as follows:

Xω = {xω ∈ R3×1 : ‖xω‖ ≤ x̄ω}
Um = {u ∈ R3×1 : ‖u‖ ≤ ū}

(6)

in which x̄ω > 0 and ū > 0 denote the bounds of xω
and ū. A nominal form of the system dynamics (4) is
obtained when the external disturbances are omitted,
which can be described as follows:

{

˙̃xΘ =x̃ω

˙̃xω =Ṙ(Θ̃)ω̃ −R(Θ̃)I−1Ω(ω̃)I ω̃ + ũ

(7a)

(7b)

Here, Θ̃ and ω̃ are the nominal attitude angle and
angular-rate vectors, respectively.

The nominal tracking error dynamics can then be writ-
ten as







˙̃
Eθ =Ẽω

˙̃
Eω =Ṙ(Θ̃)ω̃ −R(Θ̃)I−1Ω(ω̃)I ω̃ + ũ− Θ̈r

(8a)

(8b)

The next lemma reveals that with proper specification
of variable ranges, some basic properties hold true for
R, R−1, I , and Ω.

Lemma 1 For any β ∈ (−π
2 ,

π
2 ) and bounded ω, there

exist upper and lower bounds for the 2-norm of R, R−1,
Ṙ, and Ω, that is, r0 ≤ ‖R(Θ)‖ ≤ r̄0, r1 ≤ ‖Ṙ(Θ)‖ ≤
r̄1, r

′

0 ≤ ‖R−1(Θ)‖ ≤ r̄
′

0, and ‖Ω(ω)‖ ≤ Ω̄.

PROOF. The 2-norm ofR(Θ) is defined as ‖R(Θ)‖ =
√

λmax(R
T
R). According to the Sylvester’s determi-

nant theorem [1],RR
T andR

T
R have the same nonzero

eigenvalues. By solving |λI3 − RR
T | = 0, it is found

that λ1 = tan2 β + 1, λ2 = λ3 = 1. Here I3 denotes the
3×3 identity matrix. Consequently, for any |β| 6= π

2 , the

bounds of ‖R(Θ)‖ are r0 = 1 and r̄0 =
√

tan2 β + 1,

respectively. For Ṙ, its expression is derived as

dR(Θ)
dt

=










α̇ tanβ sinα− β̇ cosα
cos2 β

0 −α̇ cosα cosβ − β̇ sinα
cos2 β

α̇ cosα 0 α̇ sinα

α̇ sinα cosβ −β̇ cosβ −α̇ cosα cosβ + β̇ sinα sinβ
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Denoting A1 = dR
dt

(

dR
dt

)T
, it is calculated that

A1 = diag{a11, a22, a33}, where a11 = sec2 β(α̇2 sin2 β+

β̇2 secβ), a22 = α̇2 and a33 = α̇ cos2 β+ β̇2, respectively.
As ‖R‖, ω are bounded and |β| 6= π

2 , the bounds of

‖Ṙ‖ =
√

λmax(A1), exist and can be determined corre-

spondingly. In addition, from (2),R−1 can be written as

R
−1(Θ) =











− sinβ cosα cosβ sinα − cosβ cosα

cos2 β 0 − sinβ

− sinα cosβ sinβ − cosα − cosβ sinα











To calculate its 2-norm (e.g.,
√

λmax((R
−1)T )R−1), we

solve the equation |λI3−(R−1)TR−1| = 0. It is obtained

that λ1 = cos2 β, λ2 = λ3 = 1, resulting in r
′

0 = r̄
′

0 =

1. Last, for matrix Ω, by calculating |λI − ΩTΩ| = 0,
we find that λ1 = λ2 = ν2 + p2 + q2, and λ3 = 0.
Hence, for bounded ω, we have ‖Ω‖ ≤ Ω̄, where Ω̄ =
√

argmax(ν2 + p2 + q2), which completes the proof.

Remark 1 In Lemma 1, R and Ṙ turn out to be sin-
gular when β = ±π

2 . Because the purpose of this work is
attitude control of reentry vehicles, which usually move
in the denser air closer to the Earth than what is com-
monly recognised as space, maintaining a zero sideslip
angle β during the entire flight mission becomes impor-
tant. Hence, the cases β = ±π

2 are excluded.

In following sections, for simplicity, we abbrevi-
ate systems (4) and (7) as ẋ = f(x(t),u(t)) and
˙̃x = f(x̃(t), ũ(t)), respectively.

3 CRMPC Control Scheme

In this section, a novel CRMPC control algorithm is con-
structed. The designed MPC scheme does not separate
the two-timescale attitude dynamical system (1a) and
(1b). Alternatively, it employs a centralised structure,
thereby determining all themanipulated variables simul-
taneously. Before describing the CRMPC algorithm, the
primary objectives of the controller are specified.

3.1 Control Objectives

This study aims to construct a centralised optimisation-
based controller for the reentry-vehicle attitude system
(4) such that the following two individual objectives can
be fulfilled:

• The actual attitude-angle profiles should track the de-
sired reference trajectoriesΘr = [αr, βr, σr]

T with the
consideration of unknown disturbances ∆.

• The angular-rate variables ω, together with the con-
trol moments m, should stay within their admissible
sets during the entire tracking process.

The present paper only considers unknown disturbances
∆m appearing in the control channel, i.e, ∆f = 0. The
extension of CRMPC for the reentry vehicle subject to
unmatched disturbances can be addressed in future re-
search.

3.2 CRMPC Optimization Model

In the proposed CRMPC, attitude tracking is fulfilled
by executing two steps. First, an open-loop optimisation
model established on the nominal system is iteratively
addressed. Subsequently, the resulting optimized state
and control pairs are applied to determine the actual
control input. To construct the optimisation model, a
cost function measuring the tracking performance over
the time period [tk, tk + T ] is designed as follows:

JΦ(Ẽ(tk), Ũe(tk)) =gΦ(Ẽ(tk + T |tk))
∫ tk+T

tk

LΦ(Ẽ(τ |tk), Ũe(τ |tk))dτ
(9)

with Ũe in the form of

Ũe = ˙̃
Eω

= Ṙ(Θ̃)ω̃ −R(Θ̃)I−1Ω(ω̃)I ω̃ + ũ− Θ̈r

In (9), T stands for the prediction horizon. The terminal

cost is given by gΦ = ‖Ẽ(tk+T |tk)‖2G, while the process

cost is defined byLΦ = ‖Ẽ(τ |tk)‖2P+‖Ũe(τ |tk)‖2Q. Here,

G,P ∈ R
6×6, Q ∈ R

3×3 are positive definite weighting
matrices. Then, an optimisation model established on
the nominal model can be written as

Find x̃
∗ = x̃(τ |tk), ũ∗ = ũ(τ |tk)

minimize JΦ(Ẽ(tk), Ũe(tk))

subject to ∀τ ∈ [tk, tk + T ]

x(tk) ∈ x̃(tk|tk)⊕ Oe

˙̃x(τ) = f(x̃(τ), ũ(τ))

x̃(τ) ∈ Xtube
ω

ũ(τ) ∈ Utube
m

Ẽ(tk + T |tk) ∈ Ωtube
Φ

(10)

in which Oe stands for the state-variation tube region,
where X

tube
ω = {x̃ω : ‖x̃ω‖ ≤ x̄tube

ω } and U
tube
m = {ũ :

‖ũ‖ ≤ ūtube} are the tightened state and input con-

straints, respectively. Ωtube
Φ is a terminal invariant set.

Its definition is stated below.

Definition 1 Ωtube

Φ and ũ
f are recognised as the termi-

nal invariant set and the corresponding terminal control
law for the nominal tracking-error system (8), if condi-
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tions (11a)-(11c) can be satisfied when Ẽ enters Ωtube

Φ :















x̃(τ |tk) ∈ X
tube

ω

ũ
f (τ |tk) ∈ U

tube

m

LΦ(Ẽ(τ |tk), Ũe(τ |tk)) + ġΦ(Ẽ(τ |tk)) ≤ 0

(11a)

(11b)

(11c)

The tightened constraint/variable regions (e.g., Xtube
ω ,

U
tube
m and Oe), along with the terminal invariant set

Ωtube
Φ , can all be specified offline, which will be detailed

in the next subsection.

3.3 Robust Control Law and Offline Parameter Designs

The next lemma (Lemma 2) gives the design of the termi-

nal invariant set Ωtube
Φ and the corresponding terminal

controller ũ
f for the reentry-vehicle attitude-tracking

system.

Lemma 2 Define Ωtube

Φ and ũ
f in the form of (12) and

(14)

Ωtube

Φ = {Ẽ : ‖Ẽ‖R ≤ ǫ}, ǫ = min{ǫ1, ǫ2} (12)

with







ǫ1 =
√

λmin(G)(x̄tube
ω − Θ̄1)

ǫ2 =
√

λmin(G)(
ūtube−(r̄0 Ī

′

Ω̄Īr̄
′

0−r̄1)x̄
tube

ω
−Θ̄2

‖K̃‖
)

(13)

and

ũ
f = −Ṙ(Θ̃)ω̃ +R(Θ̃)I−1Ω(ω̃)Iω̃ + K̃Ẽ+ Θ̈r (14)

where K̃ = [K̃1, K̃2] ∈ R
3×6 with K̃1 = diag{k̃i1}3i=1,

k̃i1 < 0, K̃2 = diag{k̃i2}3i=1, k̃i2 < 0 and k̃2i2 + 4k̃i1 > 0.

If G and K̃ are selected such that (15) holds true, then

Ωtube

Φ and ũ
f can be recognised as the terminal invariant

set and terminal control law, respectively, for the nominal
reentry-vehicle attitude-tracking-error system (8).

ATG+GA+ K̃TQK̃+P ≤ 0 (15)

and the nominal attitude-tracking-error system (8) can
be written as

˙̃
E = AẼ

Here, A is given by

A =

[

03×3 I3

K̃1 K̃2

]

∈ R
6×6

PROOF. The proof contains three parts. First, based
on the definition of Ẽθ and Ẽω, we have x̃θ = Ẽθ +Θr

and x̃ω = Ẽω + Θ̇r. When the nominal state variable x̃
enters Ωtube

Φ , the following inequality holds true

‖x̃ω‖ =‖Ẽω + Θ̇r‖ ≤ ‖Ẽω‖+ ‖Θ̇r‖

≤‖Ẽ‖+ Θ̄1 ≤ ‖Ẽ‖G
√

λmin(G)
+ Θ̄1 ≤ x̄tube

ω

(16)

Hence, it is obvious that x̃ ∈ X
tube
ω .

Next, attention is given to ũ
f . By analysing its norm

bound, we have

ũ
f =‖R(Θ̃)I−1Ω(ω̃)I ω̃‖ − ‖Ṙ(Θ̃)ω̃‖+ ‖K̃Ẽ‖+ ‖Θ̈r‖

≤(r̄0Ī
′

Ω̄Ī r̄
′

0 − r̄1)x̄
tube
ω + Θ̄2 + ‖K̃‖ ‖Ẽ‖G

√

λmin(G)
≤ ūtube

(17)

which implies that ũf (τ |tk) ∈ U
tube
m is satisfied.

Finally, differentiating (9), one has

LΦ(Ẽ, Ũe) +
dgΦ(Ẽ)

dt

= LΦ(Ẽ, K̃Ẽ) + ġΦ(Ẽ)

= ‖Ẽ‖2P + ‖K̃Ẽ‖2Q + ˙̃
ETGẼ+ ˙̃

EGẼT

= ẼTPẼ+ ẼT K̃TQK̃Ẽ+ ˙̃
ETGẼ+ ˙̃

EGẼT

= ẼT
(

ATG+GA+ K̃TQK̃+P
)

Ẽ

(18)

Note that in (18), K̃Ẽ is obtained by substituting ũ
f

back into Ũe. The term ũ
f is not substituted for Ẽω,

as the control only appears in the derivative of Ẽω.
The characteristic polynomial of the transcribed nomi-
nal attitude-tracking-error system can be written as

λ2
A − k̃i2λA − k̃i1, i = {1, 2, 3}

Providing that k̃i1, k̃i2 < 0, and k̃2i2 + 4k̃i1 > 0, the

eigenvalues of A satisfy λA =
k̃i2±

√
k̃2
i2
+4k̃i1

2 < 0. More-

over, if ATG + GA + K̃TQK̃ + P ≤ 0, then we have
LΦ+ ġΦ ≤ 0. Consequently, based on Definition 1,Ωtube

Φ

and ũ
f given by (12) and (14) are the terminal invariant

set and terminal control law for (8), respectively.

To ensure robust constraint satisfaction for all admissi-
ble uncertainties (e.g., actual system variables can sat-
isfy (6)), a nonlinear feedback law should be designed.
Let us define the deviation between the actual and nom-
inal state variable as Oe(τ) = x(τ)− x̃(τ). Differentiat-
ing Oe(τ) results in

Ȯe(τ) =ẋ(τ)− ˙̃x(τ)

=











xω − x̃ω

Ṙ(Θ)ω −R(Θ)I−1Ω(ω)Iω + u+∆− Ṙ(Θ̃)ω̃+

R(Θ̃)I−1Ω(ω̃)I ω̃ − ũ











(19)
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After obtaining the optimised solution (x̃∗, ũ∗) at tk,
the actual control command u(τ), τ ∈ [tk, tk +1] can be
designed in the form of

u(τ) =KOe +R(Θ)I−1Ω(ω)Iω − Ṙ(Θ)ω + Ṙ(Θ̃
∗
)ω̃∗

−R(Θ̃
∗
)I−1Ω(ω̃∗)I ω̃∗ + ũ

∗
(20)

Similar to the expression of K̃, K is defined as K =
[K1,K2] ∈ R

3×6 withK1 = diag{ki1}3i=1, ki1 < 0,K2 =
diag{ki2}3i=1, ki2 < 0 and k2i2 + 4ki1 > 0. In addition, B
is defined as

B =

[

03×3 I3

K1 K2

]

∈ R
6×6.

Then, Lemma 3 can be established to provide indica-
tions on how to choose the tightened constraint/variable
regions for the optimisation model (10) offline. It also
shows that by using the feedback control law (20), the
actual system variable can account (6) for all admissible
uncertainties.

Lemma 3 Given x̄tube
ω and ūtube in the form of























x̄tube
ω = x̄ω −

√
3∆̄c̄, c̄ = max{c̄i}

c̄i = Gi

(

ln(λi2/λi1)
λi1−λi2

)

, Gi(τ) =
eλi2τ−eλi1τ

√

k2
i2

+4ki1

ūtube = ū− 2r̄0Ī
′

Ω̄Ī r̄
′

0x̄ω +
√
3∆̄c̄(r̄1r̄

′

0 + r̄0Ī
′

Ω̄Ī r̄
′

0)

(21)

where λB = {λi1, λi2}3i=1 denotes the eigenvalues of ma-
trix B. If the feedback control law u(τ) is applied to
steer the actual reentry attitude dynamical system over
τ ∈ [tk, tk+1), then we obtain the following properties:

(1) The actual attitude variables can stay within a tube
region x(τ) ∈ x̃

∗(τ |tk)⊕Oe;
(2) The actual attitude variables and control inputs can

be constrained to their tolerable regions, i.e., x ∈ Xω

and u ∈ Um.

PROOF. Substituting the feedback control law (20)
into (19) results in

Ȯe(τ) =BOe(τ) +∆(τ) (22)

Integrating (22) with initial condition Oe(τ) = 0, one
can obtain the following inequality:

Oe(τ) =

∫ t

0
eB(t−τ)∆(τ)dτ

≤B−1|∆(τ)|
∫ t

0
|eB(t−τ)|dτ

(23)

It is easy to calculate that

B−1 =

[

03×3 I3

K
′

1 K
′

2

]

∈ R
6×6

in whichK
′

1 = diag{1/ki1}3i=1 andK
′

2 = diag{−ki2/ki1}3i=1.
To calculate the eigenvalue of B, one has

|λBI6 −B| =
∣

∣

∣

∣

∣

B1 B2

B3 B4

∣

∣

∣

∣

∣

= 0

Here, B1 = diag{λB , λB , λB}, B2 = diag{−1,−1,−1},
B3 = diag{−ki1}3i=1 andB4 = diag{λB−ki2}3i=1. Since
B1B3 = B3B1, we have

|B1B4 −B2B3|

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

λ2
B − k12λB − k11 0 0

0 λ2
B − k22λB − k21 0

0 0 λ2
B − k32λB − k31

∣

∣

∣

∣

∣

∣

∣

∣

∣

resulting in λB = {λi1,2}3i=1=

{

ki2±

√
k2
i2
+4ki1

2

}3

i=1

. Sub-

sequently, (23) can be further written as

|Oe(τ)| ≤∆̄ · [{Fi}3i=1, {Gi}3i ]T (24)

with

Fi(τ) =
(eλi1τ − 1)λi2 − (eλi2τ − 1)λi1

ki1

√

k2i2 + 4ki1
(25)

By analysing the derivative of Fi(τ), one obtains
∂Fi(τ)

∂τ > 0, indicating that max(Fi)(τ) = lim
τ→∞

Fi(τ) =

− 1
ki1

. ForGi(τ), it can be verified thatGi(0) = Gi(∞) =

0. Based on Rolle’s theorem, a maximum value of Gi(τ)

can be achieved at the stationary point τ = ln(λi2/λi1)
λi1−λi2

.

Therefore, (24) is further written as

|Oe(τ)| ≤∆̄ ·
[

{−1/ki1}3i=1, {c̄i}3i=1

]T (26)

Then, the proof of (1) can be fulfilled by defining
the state tube region as Oe = {Oe ∈ R

6 : |Oe| ≤
∆̄[{−1/ki1}3i=1, {c̄i}3i=1]

T }.

To prove (2), the definition of Oe(τ) is recalled:

‖xω(τ)‖ =‖Oω(τ) + x̃
∗
ω(τ |tk)‖

≤‖Oω(τ)‖+ ‖x̃∗
ω(τ |tk)‖

≤x̄tube
ω +

√
3c̄∆̄ = x̄ω

(27)

where Oω(τ) = xω(τ) − x̃ω(τ) ∈ R
3×1. (27) implies

that the actual state constraint can be satisfied. That is,
xω ∈ Xω. For the actual input constraint, let us define
two new variables

{

û
∗ = u

∗ + Ṙ(Θ∗)ω∗ −R(Θ∗)I−1Ω(ω∗)Iω∗

û
m = u+ Ṙ(Θ)ω −R(Θ)I−1Ω(ω)Iω

(28a)

(28b)

Note that ω = G(Θ)xω. From (20) and (28), it is clear
that

û
a = û

∗ +BOe (29)
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Two sets are further defined as







Û
tube
m = {û∗ : ‖u∗‖ ≤ ūtube + r̄1r̄

′

0x̄
tube
ω + r̄0Ī

′

Ω̄Ī r̄
′

0x̄
tube
ω }

Ûm = {ûm : ‖ûm‖ ≤ ū+ r̄1r̄
′

0x̄ω − r̄0Ī
′

Ω̄Ī r̄
′

0x̄ω}
(30a)

(30b)

By analysing Oe, we have BOe ⊂ {o ∈ R
3 : ‖o‖ ≤√

3∆̄āc}, in which āc = argmax
i

(1−ki2c̄i). Based on the

tightened bounds, it holds true thatBOe⊕ Û
tube
m ⊂ Ûm.

Furthermore, by analysing the norm bound of (28), it

can be obtained that û∗ ∈ Û
tube
m and û

m ∈ Ûm. Conse-
quently, one can conclude that u ∈ Um, which completes
the proof.

Remark 2 The terminal invariant setΩtube

Φ can be con-
structed in accordance with the definition of x̄tube

ω and
ūtube provided in (21). It is noteworthy that by setting
physically sensible constraint bounds (e.g., x̄ω and ū),
both ǫ1 and ǫ2 in (13) can become non-negative.

4 Main Theoretical Results

This section presents the main theoretical findings of the
designed CRMPC-based attitude control algorithm.

4.1 Recursive Feasibility

In Theorem 1, the recursive feasibility of the proposed
CRMPC optimisation process is established.

Theorem 1 Given the attitude-tracking-error systems
in the form of (5), if there exists a feasible control so-
lution for the optimisation model (10) at time tk, then
the optimisation model will be recursively feasible for any
tk+1 > tk.

PROOF. To begin with, attention is given to the
attitude-tracking-error system (5) and the optimization
model (10). Suppose it is able to find an optimized con-
trol solution ũ

∗(τ |tk) by solving the optimization model
(10). Then, the actual attitude dynamical system is
steered via the robust control law (20) until τ reaches
tk+1. Now, our goal becomes to prove the existence of at
least one candidate solution for the optimization model
(10) at tk+1. By combining the tail of ũ

∗(τ |tk) and
the terminal control law designed in Lemma 2, we can
construct a candidate control sequence in the form of

ũ(τ |tk+1) =







ũ
∗(τ |tk) if τ ∈ [tk+1, tk + T )

ũ
f (τ |tk) if τ ∈ [tk + T, tk+1 + T )

(31)

Note that ũ(τ |tk+1) can be a feasible control solution for
the optimization model (10) at time instant tk+1. This

is because according to Lemma 3, we have x(tk+1) ∈
x̃
∗(tk+1|tk) ⊕ Oe, implying that x̃(tk+1) = x̃

∗(tk+1|tk)
is a feasible initial system state vector for the optimiza-
tion model (10) at tk+1. Moreover, it is clear that ap-

plying ũ(τ |tk+1) can steer Ẽ(τ |tk+1) into Ωtube
Φ for τ ∈

[tk+1, tk+T ) without violating the state and control tube

constraints. According to Lemma 2, we have Ẽ(τ |tk+1) ∈
Ωtube

Φ under the terminal control ũ(τ |tk+1) over [tk +
T, tk+1 + T ), indicating that x̃ω(τ |tk+1) ∈ X

tube
ω and

ũ(τ |tk+1) ∈ U
tube
m . As a consequence, ũ(τ |tk+1) is a fea-

sible solution for (10) at tk+1. By induction, the entire
proof can be completed.

Remark 3 The initial feasibility of the optimisation
problem (10) must be carefully considered. Note that

once the terminal region constraint Ẽ(tk +T |tk) ∈ Ωtube

Φ
is constructed via (12) and (13), a proper value of pre-
dictive horizon T should then be assigned. A small T
can decrease the computational time required for the
optimisation process, while a large predictive horizon T
can be applied to enlarge the region of attraction, thereby
ensuring the optimisation model is feasible at tk = 0.
However, this will inevitably result in high computa-
tional load. Therefore, a balanced T should be determined
offline for practical applications.

4.2 ISS stability

Theorem 2 illustrates the ISS of using the proposed
CRMPC scheme to steer the reentry-vehicle attitude-
tracking system.

Theorem 2 At time point tk, if the optimisation model
(10) is feasible, then using the proposed CRMPC control
scheme to steer the reentry-vehicle attitude-tracking sys-
tem is ISS.

PROOF. Let us chose Vφ = JΦ(Ẽ
∗(tk), Ũ

∗
e(tk)) as the

Lyapunov function for the attitude-tracking-error sys-
tem. By analysing the difference of Vφ at tk+1 and tk,
one can obtain the following inequality:

Vφ(tk+1)− Vφ(tk)

= JΦ(Ẽ
∗(tk+1), Ũ

∗
e(tk+1))− JΦ(Ẽ

∗(tk), Ũ
∗
e(tk))

≤ JΦ(Ẽ(tk+1), Ũe(tk+1))− JΦ(Ẽ
∗(tk), Ũ

∗
e(tk))

= ‖Ẽ(tk+1 + T |tk+1)‖2G − ‖Ẽ∗(tk + T |tk)‖2G

−
∫ tk+T

tk

(‖Ẽ∗(τ |tk)‖2P + ‖Ũ∗
e(τ |tk)‖2Q)dτ

+

∫ tk+1+T

tk+1

(‖Ẽ(τ |tk+1)‖2P + ‖Ũe(τ |tk+1)‖2Q)dτ

= ‖Ẽ(tk+1 + T |tk+1)‖2G − ‖Ẽ∗(tk + T |tk)‖2G

+

∫ tk

tk+1

(‖Ẽ∗(τ |tk)‖2P + ‖Ũ∗
e(τ |tk)‖2Q)dτ

+

∫ tk+1+T

tk+T
(‖Ẽ(τ |tk+1)‖2P + ‖Ũe(τ |tk+1)‖2Q)dτ

(32)
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In (32), JΦ(Ẽ(tk+1), Ũe(tk+1)) can be recognized as the
objective value of ũ(τ |tk+1) established in (31). From

Lemma 2, one can obtain ġΦ(Ẽ)+LΦ(Ẽ, Ũe) ≤ 0. Then,
by integrating this equation over the time period [tk +
T, tk+1+T ] and substituting the resulting equation into
(32), it is easy to verify that Vφ(tk+1)− Vφ(tk) ≤ 0. Ac-

cordingly, Ẽ will asymptotically converge to the origin,
implying that there exists a K function such that for
any t > 0, ‖Ẽ∗(t)‖ ≤ K(E∗(0), t). As Oe(t) ∈ Oe, there
also exists a K∞ function such that ‖Oe(t)‖ ≤ K∞(∆).
Hence, we have for any t > 0, ‖E(t)‖ ≤ K∞(∆) +
K(E∗(0), t), which means the actual attitude tracking
error system is input-to-state stable. This completes the
proof.

5 Performance Verification

5.1 Parameter/Experiment Specification

This section validates the effectiveness of using the
designed CRMPC scheme to address the noise-
perturbed attitude-tracking-control problem. Reentry-
dynamics-related parameters are assigned as follows.
The components of I are Ixx = 588791kg · m2,
Ixz = 24242kg · m2, Iyy = 1303212kg · m2, and
Izz = 1534163kg · m2. The initial conditions of the
reentry vehicle are set to Θ = [7.5◦, 10◦,−30◦]T , and
ω = [0◦/s, 0◦/s, and0◦/s]T . System state and control
constraints are specified as ω ∈ {ω : ‖ω‖ ≤ 5◦/s} and
m ∈ {m : ‖m‖ ≤ 1.356 × 105N-m}. ∆ is considered as
the white noise bounded by |∆| ≤ 2◦/s.

Furthermore, it is assumed that the inertia matrix has
some uncertainties. Therefore, we set I = I +∆I with
∆I = 5%I . A nonlinear attitude tracking scenario is
considered in the test where Θr = [αr, βr, σr]

T is given
by βr = 0 and:

αr(t) =







10 + 2.5 sin( t
2
), if t ≤ 25;

10 + 0.5 cos( t
4
), if t > 25.

σr(t) =







−30 + 5 cos( t
2
), if t ≤ 25;

−30 + 0.5 sin( t
4
), if t > 25.

Regarding the weighting matrices, P and Q are
chosen as P = diag{50, 50, 50, 50, 50, 50} and Q =

diag{10, 10, 10}. K̃=[K̃1, K̃2] and K=[K1,K2], where

K̃1, K̃2 = diag {−5,−5,−5},K1,K2 = diag{−5,−5,−5},

respectively. According to Lemma 2, G is assigned as

G =





















80 0 0 30 0 0

0 80 0 0 30 0

0 0 80 0 0 30

30 0 0 36 0 0

0 30 0 0 36 0

0 0 30 0 0 36





















Other parameters of CRMPC are specified as r̄0 =
1.0846, r̄1 = 0.0873, r̄

′

0 = 1, Ω̄ = 0.1511, Ī · Ī ′

= 2.6094,
c̄ = 0.0835, ǫ1 = 0.2096, and ǫ2 = 0.0770, respectively.

To conduct the experimental tests, a hardware-in-the-
loop (HIL) platform is employed and visualised in Fig. 1.
The working principle of the HIL platform is demon-
strated in Fig. 2. The experimental platformmainly con-
sists of three components:

• A reentry-vehicle model simulator (NI PXI-6723 D/A con-
verting module, NI PXIe-8820 2.2 GHz Celeron 1020E
Dual-Core and PXI-6224 A/D converting module);

• A controller unit (PCI-1723-BE D/A converting module
and ADVANTECH 610L with I5-8500/4G/1TB);

• An inertial measurement unit (IMU) and a 3-axis rotating
platform.

PXI-6224

Connector Block

(SCB-68A) 
3-Axis Rotation 

Platform

PXI Real Tile

Simulator

(PXIe-8820) 

PXI-6723

Connector Block

(SCB-68A) 

ADC Card

PCI Card and 

Connector Block

(PCI-1716)

Controller Unit 

ADVANTECH 

610L

(I5-8500/4G/1TB)

PXI ADC Card

(PXI-6224) 

ADC Card

PCI Card and 

Connector Block

(PCI-1723)

PXI ADC Card

(PXI-6723) 

IMU

Fig. 1. Experimental platform.

Controller Unit

ADVANTECH 610L

I5-8500/4G/1TB

Realtime Simulator

(NI PXIe-8820 2.2 GHz 

Celeron 1020E Dual-Core)

D/A Converting Module

(8-ch Analog Output PCI 

Card PCI-1723-BE)

D/A Converting Module

32-ch Analog Output 

PXI Card  NI PXI-6723

A/D Converting Module

32-ch Analog Input PXI 

Card  PXI-6224

MPC Controller

System Model

3-Axis rotating 

platform 

Signal filter
RS232

adxl345 adxrs453mag3110

9-axis fusion algorithms

IMU

Least square ellipsoid fitting

Fig. 2. Working principle of the HIL platform.

As shown in Fig. 2, the attitude dynamical model of the
reentry vehicle runs on the NI PXI real-time controller
with NI LabVIEW real-time module version 8.0. The
D/A converting module is applied by the controller to
drive the 3-axis rotating platform. The attitude variables
(angle of attack, sideslip and bank angles, and roll, pitch,
and yaw angular rates) obtained via the IMU are pro-
vided to the controller unit to generate the proposed con-
trol law via RS232. Note that for aerospace-scale practi-
cal verification, it is necessary to consider measurement
noises in the experiments, whilst some signal processing
should be performed with respect to the sensor outputs.
Specifically, we first apply a low-pass signal filter to the
sensor outputs. Subsequently, the least-squares ellipsoid-
fitting calibration algorithm, followed by a nine-axis fu-
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sion method [11] will be triggered such that the negative
effects caused by measurement noise can be alleviated.

Two experiments analysing other attitude tracking con-
trol algorithms were performed as a comparison against
the proposed method. The first method was the stan-
dard linear quadratic regulator (LQR), which can be re-
garded as an unconstrained version of MPC. The second
method analysed was a multirate MPC design proposed
in [2]. For simplicity, we denote this double-layered ap-
proach as DLMPC in this section. Both DLMPC and
CRMPC belong to the class of MPC-oriented tracking
control strategies. However, the main reason for select-
ing this multirate controller for the comparison was that
the results and analysis presented by [2] confirmed that
the DLMPC has the capability to produce promising
attitude-tracking results in the presence of external dis-
turbances, whilst maintaining an acceptable real-time
performance.

The DLMPC controller is defined by first separating
the attitude dynamical system into two subsystems: an
attitude-angle subsystem and an angular-rate subsys-
tem. Then, it employs a compound double-layered con-
trol strategy, including an outer MPC-based attitude-
angle control loop and an inner terminal sliding-mode
control (TSMC)-based angular-rate control loop. Hence,
the entire control process of this approach is sepa-
rated into two different timescales, while the proposed
CRMPC determines all the manipulated variables in
a single control loop. Compared to the CRMPC, four
additional parameters (i.e., [q, p,Γ, ρ]=[5, 5, 0.15, 0.7])
are included in the DLMPC to form the nonsingular
continuous sliding manifold. The notations of these ad-
ditional algorithm-related parameters follow the same
definition as in the original paper, and their determina-
tion is mainly based on the designer’s experience and
experimental trials. The prediction horizon for CRMPC
is set to T = 20s, and the sampling period is 0.2 s (5
Hz). As for the multirate controller, the outer layer is
executed at a relatively slow control frequency to opti-
mise the attitude-angle tracking performance, whereas
the inner layer is subjected to a relatively fast frequency
to achieve the tracking of angular rate commands. More
precisely, the control frequency and prediction horizon
are set to 0.2 s (5 Hz) and To = 20 s for the outer layer.
For the inner layer, a 0.04 s (25 Hz) control frequency
and Ti = 30 s prediction horizon are used.

5.2 Attitude-Tracking Results and Discussion

Fig. 3 presents the angular tracking trajectories as well
as the tracking-error-evolution profiles. The angular rate
profiles are depicted in Fig. 4, whilst the corresponding
control moment results are shown in Fig. 5.

It can be seen from Fig. 3 5 that the proposed CRMPC
algorithm is able to fulfill the tracking task in the pres-
ence of system constraints, uncertainties, and sensor
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Fig. 3. Angular tracking and tracking error profiles obtained
via DLMPC [2], CRMPC and LQR.
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Fig. 6. CRMPC results: State deviation profiles for cases 1
and 2.

noises. Specifically, the actual angular profile Θ can
follow the desired reference Θr with ω and m always
staying within their allowable regions (indicated by
the red dashed lines in Fig. 4 and Fig. 5). This can be
attributed to the application of tightened state/input
constraints in the optimisation model and the designed
robust nonlinear feedback law.

According to Lemma 3, the deviation between the
nominal and actual attitude-angle trajectories Θe =
[αe, βe, σe]

T should lie in a tube region. To clearly
present this point, we design a case study by setting
Kcase 1 = [diag{−5,−5,−5}, diag{−5,−5,−5}] and
Kcase 2 = [diag{−10,−10,−10}, diag{−10,−10,−10}],
respectively. The corresponding tube regions are as
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follows:

{

Θcase 1
e ∈ R3 : |Θcase 1

e | ≤ [0.2, 0.2, 0.2]
}

{

Θcase 2
e ∈ R3 : |Θcase 2

e | ≤ [0.1, 0.1, 0.1]
}

Fig. 6 illustrates the evolution trajectories of Θe, in
which it is obvious that CRMPC is capable of keeping
the deviation value between the lower and upper tube
bounds. Consequently, the effectiveness of applying the
proposed CRMPC to track the desired attitude-angle
signals can be verified.

As for the comparative experiments, the trajectory
tracking results together with the control solutions are
presented in Figs. 3-5. From these figures, we observe
that although DLMPC can offer feasible tracking solu-
tions, the corresponding tracking trajectories are rela-
tively uneven with more oscillations. These phenomena
become more noticeable in the angular rate and con-
trol profiles owing to the implementation of the inner
TSMC controller. On the other hand, the proposed
CRMPC method is able to achieve a better tracking
performance in comparison to its counterpart, as the
desired attitude-angle profiles can be smoothly tracked
in a shorter time. In addition, CRMPC is able to rapidly
steer the tracking error Eθ closer towards the origin
in the presence of uncertainties. In addition, as shown
in Fig. 3, the tracking performance of LQR is poorer
than that of CRMPC. This performance degradation
can be attributed to the negative effects caused by the
disturbances. More importantly, constraint violations
are detected from the angular rate and control moment
profiles (see e.g., Fig. 4 and Fig. 5), which means the
tracking results produced by LQR cannot be recognised
as feasible solutions.

To quantify the attitude-tracking performance of using
DLMPC and CRMPC, two indicators are defined:

EMS(Eθ(t)) =

√

√

√

√
1

Ne

Ne
∑

k=1

‖Eθ(tk)‖2

CMS(m(t)) =

√

√

√

√
1

Ne

Ne
∑

k=1

‖m(tk)

M̄
‖2

whereNe denotes the total execution step. We apply the
tracking error-mean-square (EMS) value EMS(Eθ(t))
and CMS(m(t)) to evaluate the trajectory-tracking per-
formance as well as the required control efforts. Note
that when calculating CMS(m(t)), the control moment
m at each time step is scaled by its upper bound value.

Table 1
Assessment of the two methods

DLMPC [2] CRMPC

EMS(Eθ(t)) 1.8193 1.6055 (↓11.75%)

CMS(m(t)) 0.5399 0.3552 (↓34.21%)

The obtained results are tabulated in Table I, which
further confirms that CRMPC is able to achieve a bet-
ter trajectory tracking performance than DLMPC. As
evidence, the EMS and CMS values obtained using
the CRMPC method are remarkably lower than those
obtained using the DLMPC method (by 11.75% and
34.21%, respectively).

Fig. 7. Execution time distribution: (a) DLMPC [2]; (b)
CRMPC.

As an important indicator to reflect the computational
complexity, the time required for addressing the MPC
optimisation model at each sample time is recorded and
used to compare the two MPC-based attitude-tracking
schemes. The average execution time texe resulting from
CRMPC is calculated to be 0.1168 s, which is much lower
than that of DLMPC (0.1527 s). The corresponding fre-
quency distribution is illustrated in Fig. 7, where it is
obvious that with the application of CRMPC, an unex-
pectedly high execution time is less likely to occur.

6 Conclusion

With a centralised structure, the proposed CRMPC
scheme for tracking reference attitude trajectories of
reentry vehicles successfully avoids additional con-
troller development and parameter tuning of the inner
angular-rate control loop. A nonlinear feedback law,
together with the constraint-tightening strategy, has
been developed so as to guarantee robust satisfaction of
state/input constraints against external uncertainties.
Meanwhile, by establishing a terminal controller and a
corresponding terminal region, both recursive feasibility
and input-to-state stability of the CRMPC algorithm
are ensured. According to the HIL experimental results,
we have found that by applying the proposed CRMPC
scheme, a stable and convergent attitude-tracking pro-
cess can be obtained. Furthermore, the merits of the
proposed CRMPC strategy in comparison to two other
typical control methods have been testified.
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