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Abstract: The identification of a reliable and accurate post-mortem interval (PMI) is a major challenge
in the field of forensic sciences and criminal investigation. Several laboratory techniques have recently
been developed that offer a better contribution to the estimation of PMI, in addition to the traditional
physical or physico-chemical (body cooling, lividity, radiocarbon dating, rigor mortis), chemical
(autolysis), microbiological (putrefaction), entomological, as well as botanical parameters. Molecular
biology (degradation pattern of macromolecules such as proteins, DNA, RNA), biochemical analysis
of biological fluids (such as blood, cerebrospinal fluid, and vitreous humor), and immunohistochem-
istry are some of the most recent technological innovations. A systematic review of the literature
was performed with the aim of presenting an up-to-date overview on the correlation between the im-
munohistochemical (IHC) expression of specific antigenic markers at different PMIs. The systematic
review was performed according to PRISMA guidelines. Scopus and PubMed were used as search
engines from January 1, 1998 to March 1, 2022 to evaluate the effectiveness of immunohistochemistry
in estimating PMI. The following keywords were used: (immunohistochemical) OR (immunohis-
tochemistry) AND (time since death) OR (post-mortem interval) OR (PMI). A total of 6571 articles
were collected. Ultimately, 16 studies were included in this review. The results of this systematic
review highlighted that IHC techniques, in association with traditional methods, add, in Bayesian
terms, additional information to define a more accurate time of death and PMI. However, current
IHC results are numerically limited and more data and studies are desirable in the near future.

Keywords: immunohistochemical (IHC); immunohistochemistry; post-mortem interval; time since
death; PMI; forensic pathology

1. Introduction

Determining the time since death is one of the most important aspects in the field
of forensic sciences and criminal investigation [1–3]. The identification of a reliable and
accurate post-mortem interval (PMI) is a major challenge for forensic pathologists, due
to the relevant civil and criminal implications [4–7]. An erroneous PMI estimation can
falsify the outcome of forensic investigations in the event of homicides, suicides, and
unintentional deaths [8,9]. The term PMI refers to the time elapsed between the time of
death and the discovery and examination of the body [1,2,4,10]. The estimation of the PMI
can be an extremely complicated process, as it can be influenced by various endogenous
and exogenous factors (environmental temperature or humidity, or health status at the
time of death) [4,6]. Considering that a diverse range of variables alter the body in the
post-mortem period, this research field remains challenging [7,11].
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Thanatology is a science that evaluates all the macro- and microscopic post-mortem
changes that occur in the human body due to lack of oxygen, anabolic processes, and cellular
degradation [8,12]. PMI is usually estimated through an external and physical examination
of the body, evaluating the degree of body cooling, hypostasis, rigor mortis, autolysis, and
putrefaction [4,8]. As the PMI increases, it becomes more difficult to accurately estimate
the time since death [8]. The post-mortem period can be classified by some authors
and practitioners into early and late [2,6,10,13]: the early post-mortem period is usually
estimated through physical examination of the corpse [2,7,10,14] and ends when soft tissue
decomposition begins [6], commonly within the first 24 h of death [2,10]. Unfortunately,
these parameters depend on the examiner’s subjective assessment [15]. The late post-
mortem period ranges from one day to months or years after death; in such cases the
estimation of a limited PMI range cannot be accurate [13], as the physical examination of
the corpse, the evaluation of the state of decomposition, the radiometric dating of skeletal
remains, and entomological studies are highly influenced by individual and environmental
factors [2,7,8,10].

Several laboratory techniques have recently been developed that offer a better con-
tribution to the estimation of PMI, in addition to traditional physical or physico-chemical
(body cooling, lividity, rigor mortis), chemical (autolysis), microbiological (putrefaction),
entomological, radiocarbon dating, and botanical parameters [4,10,13,16].

Molecular biology (degradation pattern of macromolecules such as proteins, DNA,
RNA), biochemical analysis of biological fluids such as blood, cerebrospinal fluid, vitreous
humor [5,6,8,17–19], and immunohistochemistry are some of the most recent technological
innovations [2,4,10,20] but still have their challenges and require further validation [21].

Further innovative techniques for the estimation of the PMI involve the use of real-
time quantitative polymerase chain reaction for the study of nucleic acids, the investigation
of the human thanatotranscriptome [2,4,10], infrared microscopic imaging techniques of
human skeletal remains, chemiluminescence tests, radiocarbon techniques, spectroscopical
analysis, macroscopic UV fluorescence, and detection of various radionuclides [22–26]. One
of the most studied fields to define the time since death is immunohistochemistry. Many
authors have recently performed immunohistochemical (IHC) tests on human samples to
evaluate the morphological changes to soft tissue that occur after death, with an attempt
to identify the expression of specific markers useful for the determination of PMI [27–30].
Barrios Mello et al. [30] reported that different IHC stains could be very useful in estimating
the age at death, by evaluating the preserved bone collagen fibers and endothelial cells.
Intriguingly, Khalaf et al. [29] applied IHC techniques in an animal model to determine
wound age and vitality.

Considering the great advances in recent years, a systematic review of the literature
was performed with the aim of presenting an up-to-date overview on the correlation
between the expression of specific antigenic markers at different PMIs. In this way, this
overview may serve as a guide to the forensic pathologist when establishing the time
since death.

2. Materials and Methods

A systematic literature review was undertaken according to PRISMA guidelines [31],
but the manuscript was not registered because the application is not human health but foren-
sic sciences. Scopus and PubMed were used as search engines for publications between
January 1, 1998 to May 1, 2022 to search for journal articles relating to the effectiveness of
immunohistochemistry in estimating PMI. This was to summarize the main data published
in the last 25 years. The following keywords were used: (immunohistochemical) OR (im-
munohistochemistry) AND (time since death) OR (post-mortem interval) OR (postmortem
interval) OR (post mortem interval) OR (PMI).
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2.1. Inclusion and Exclusion Criteria

The exclusion criteria used were: (1) not relevant publication (not related to the topic),
(2) reviews, (3) letters or editorials, (4) articles in a language other than English, (5) animal
studies. The inclusion criteria were: (1) original article, (2) articles in English, (3) human
studies, (4) analysis of PMI, (5) forensic pathology report.

2.2. Quality Assessment and Data Extrapolation

Authors G.C. and I.R. evaluated all articles, excluding 5738 that from the title or
abstract analysis were judged to be not relevant to the study. In cases of discrepancy of
opinion between the inclusion or exclusion of articles, these were submitted to authors S.R.
and M.E. who read the article and evaluated the criteria. In order to evaluate the degree of
agreement between the studies, Kappa’s statistical test was applied [32] showing a high
value (κ = 0.88). A consensus process resolved disagreements concerning eligibility.

2.3. Characteristics of Eligible Studies

A total of 6571 articles were collected. Of these, 83 were duplicates. Of the articles that
were excluded 428 concerned animals, 71 were reviews, and 5738 were not relevant (by
title or abstract) to PMI; 16 studies were included in this review (Figure 1).
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2.4. Risk of Bias

Of the 16 articles included, only 8 described the methods of preservation of the corpse.
In most cases, once the subject died, the body was taken to the mortuary and stored there
at a variable temperature (between 0 and 4 ◦C) for a maximum period of 4 days. The state
of decomposition was not always described by the authors and may have influenced some
of the results.

3. Results

The summary of all 16 articles included in this systematic review is shown in Table 1.
All cases concerned deceased persons with a PMI known through circumstantial

evidence. In some studies, the method of preservation of the corpse was described, with
cadavers being stored between 0 ◦C and 4 ◦C in mortuary refrigerators.
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Table 1. Summary of the results of the systematic review.

Reference n. of Cases
(Cause of Death) Sample Marker PMI Findings

Chow et al., 1998 [33]

5
(cerebral infarction,

nasopharyngeal carcinoma,
cerebral infarction, carcinoma of

esophagus, malignant
lymphoma)

Heart

Protein gene product (PGP),
Dopamine β-hydroxylase

(DBH),
Tyrosine hydroxylase (TH),

Neuropeptide Y (NPY)

From 3 days to 6 days Reduction of the IHC expression of TH

From 4 days to 7 days Reduction of the IHC expression of NPY

From 4 days to 8 days Reduction of the IHC expression of DBH

From 7 days to 11 days Reduction of the IHC expression of PGP

From 6 days to 11 days Absence of detection of TH

From 7 days to 11 days Absence of detection of NPY

From 8 days to 11 days Absence of detection of DBH

11 days PGP is reduced to about one third of the initial value

Wehner et al., 1999 [34] 128 Pancreas Insulin

From 1 day to 12 days Positive immunoreaction in all cases

From 13 days to 29 days Variable situation concerning the immunoreaction. Some
cells are positive others negative

From 30 days to 46 days Always negative immunostaining

Wehner et al., 2000 [35] 147 Thyroid Thyroglobulin

From 1 day to 5 days The thyroid gland colloid and follicular cells present a
positive immunoreaction in all cases

From 6 days to 12 days Variable situation concerning the immunoreaction. Some
cells are positive, others negative

From 13 days to 22 days Always negative immunostaining

Wehner et al., 2001 [36] 136 Thyroid Calcitonin

From 1 day to 4 days The thyroid gland c-cells are positive in all cases

From 5 days to 12 days Variable situation concerning the immunoreaction. Some
cells are positive, others negative

From 13 days to 22 days Always negative immunostaining

Wehner et al., 2001 [37] 214 Pancreas Glucagon

From 1 day to 6 days Positive immunoreaction in all cases

From 7 days to 13 days Variable situation concerning the immunoreaction. Some
cells are positive others negative

From 14 days to 22 days Always negative immunostaining
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Table 1. Cont.

Reference n. of Cases
(Cause of Death) Sample Marker PMI Findings

Wehner et al., 2006 [38] 500 Pancreas
and brain

Somatostatin and anti-glial
fibrillary acidic protein (GFAP)

From 1 day to 2 days Positive somatostatin immunoreaction in all subjects

From 1 day to 3 days Positive GFAP immunoreaction in all subjects

From 3 days to 10 days Variable positive somatostatin immunoreaction

From 4 days to 13 days Variable positive GFAP immunoreaction

From 11 days to 24 days Negative immunoreaction to somatostatin in all subjects

From 14 days to 24 days Negative immunoreaction to GFAP in all subjects

Tao et al., 2006 [39]
47

(39 traumatic brain injury -TBI, 8
non-traumatic)

Brain
Caspase-3 (p20) and NF-κB

(p65)

0 h A few positive cells in NF-kB (p 65) IHC staining after TBI.
A few positive neurons in caspase-3 (P20) IHC after TBI

12 h
A few positive cells in NF-kB (p 65) IHC staining after TBI.
Much more positive neurons in caspase-3 (P20) IHC after

TBI

24 h Caspase-3 (p20) positivity became darker after TBI

48 h
Most neurons are positive for caspase-3 (p20). Reduction
in the number of caspase-3 (P20) immunohistochemistry

positive cells after TBI

72 h Increased immunoreaction to caspase-3 of neurons and
especially of glial cells after TBI

168 h Strong positive NF-kB (p 65) IHC staining after TBI

264–480 h
Increases the cellular IHC expression of caspase-3 after

TBI. The endothelium of all groups showed a positivity to
caspase-3

480 h Almost all cells are NF-kB (p 65) positive after TBI

Boehm et al., 2012 [40]

96
(cardiovascular, metabolic or respiratory
failure, septic shock, trauma, intoxication,

cancer and 22 control cases)

Bone
Marrow

Tartrate-resistant acid
phosphatase (TRAP)

<7 days Positive immunostaining in osteoclasts

>7 days Usually negative immunostaining

Ceausu et al., 2016 [41] 4 Skeletal
muscle

CD56, CD117 and CD34
From 1 day to 6 days Staining positive for CD56, CD117 and CD34

8 or more days Absent immunostaining
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Table 1. Cont.

Reference n. of Cases
(Cause of Death) Sample Marker PMI Findings

Lesnikova et al., 2018 [42] 120 Liver, lung, and
brain

KL1 (bile duct epithelium),
S100 (glial cells and myelin),

vimentin (cerebral endothelial
cells), and CD45 (pulmonary

lymphocytes)

From 1 day to 3 days Strong positive staining in several tissues with all
antibodies

From 3 day to 7 days Slight decrease in staining rates of vimentin in brain tissue
and absence of PCK immunoreaction in liver tissue

From 7 day to 14 days Significant decreased staining rates of all antibodies in
several tissues

14 days or more IHC positivity for CD45 lung antigen only

Fais et al., 2018 [14]
13

(10 traumatic and 3 control
cases)

Gingival tissue HIF 1-alfa

From 1 day to 3 days Immunostaining was peaked in traumatic group and
absent in control group

From 4 days to 5 days Immunostaining gradually declined in traumatic group

From 8 days to 9 days Immunostaining gradually declined in traumatic group

Mazzotti et al., 2019 [27] 10 Gingival tissues Type I and type III collagen

From 1 day to 3 days Strong positive immunostaining of both proteins

From 4 days to 6 days Slight increase in IHC expression of type I collagen.
Immunoreaction of type III collagen is stable

From 7 days to 9 days
Marked reduction of cellular IHC expression of type I

collagen (no signal detected in the extracellular matrix)
and slight reduction of type III collagen

Elazeem et al., 2021 [43]

70 autopsies
(20 non cardiac, 24 stab firearm

cardiac injury, 26 firearm
cardiac injury)

Heart C5b-9 and cTnC

From 9 h to 24 h In all groups, mild positive immunoreaction of both
markers, especially cTnC

From 24 h to 48 h In all groups, moderate positive immunoreaction of both
markers, especially of C5b-9 in the stab wound group

More than 48 h
In all groups, severe diffuse positive immunoreaction of

both markers, especially of C5b-9 in the stab wound group
and in firearm injury group and cTnC in stab wound

El-Din et al., 2021 [44] 40 cadavers Skin HMGB1

From 0 h to 3 h Weak positive immunoreaction in few keratinocytes

From 3 h to 6 h Mild positive immunoreaction in numerous keratinocytes

From 7 h to 12 h Moderate positive immunoreaction in numerous
keratinocytes

From 12 h to 24 h Strong positive reaction in numerous keratinocytes

Zadka et al., 2021 [45]
24

(8 sudden death, traffic
accident and 16 control cases)

Colonic mucosa CD45, CD4, CD8, CD3 From 0 day to 7 days Progressive and significant reduction of IHC expression of
CD4 and especially of CD8
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Table 1. Cont.

Reference n. of Cases
(Cause of Death) Sample Marker PMI Findings

Olkhovsky, et al. 2021 [46]
48

(42 miscellaneous, 6 control
cases)

Uterus Actin

From 24 h to 48 h Slight decrease in IHC expression

From 49 h to 72 h Decreased IHC expression. In few fields of view, absence
of expression

From 73 h to 96 h Sharply decreased IHC expression

From 97 h to 120 h Only a few muscle cells are positive for immunostaining

From 121 h to 144 h
Single smooth muscle cells were positive for

immunoreaction. In a significant number of smooth
muscle cells, the immunostaining was not detected

More than 144 h The expression of smooth muscle actin was not
determined
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The number of cases for each article varied, with a minimum of four cases described
by Ceausu et al. [41] and a maximum number of 500 described by Wehner et al. [38]. The
cause of death varied, with most cases related to sudden cardiac death, traumatic brain
injury, and neoplastic disease. The PMI in the studies ranged from 0 h to a maximum of
45 days [34].

The samples used to estimate the PMI came from different organs, such as brain [38,39,42],
thyroid [35,36], pancreas [34,37,38], gingival tissue [14,27], skin [44], heart [33,43], large
intestine [45], female genital system [46], bone marrow [40], skeletal muscle [41], as well as
lung and liver [42]. For these tissues, the various authors used different markers, without
any overlap or repetition (Figure 2).
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Figure 2. This picture summarizes the results of this review: the IHC results depend on tissue
and type of immunostaining, which varies depending on the PMI. For each tissue is reported the
related marker; moreover, in each box, there is an arrow: the green color indicates the interval
time with positivity result, while the red color indicates the time when the marker became negative.
List of abbreviations: IHC, immunohistochemical; PMI, post-mortem interval; PGP, Protein gene
product; DBH, Dopamine β-hydroxylase; TH, Tyrosine hydroxylase; NPY, Neuropeptide Y; GFAP,
glial fibrillary acidic protein; TRAP, Tartrate-resistant acid phosphatase; HIF 1-alfa, Hypoxia-inducible
factor 1-alpha; cTnC, cardiac Troponin C; HMGB1, High-mobility group box-1; KL1, Cytokeratin 1.
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Lesnikova et al. [42] published the only study in which the expression of different mark-
ers in several tissues was evaluated simultaneously. Bile duct epithelium, pulmonary lym-
phocytes, endothelial cells of cerebral blood vessels, glial cells, and myelin of 120 corpses
were stained with anti-KL1, anti-CD45, anti-vimentin, and anti-S100 antibodies, detecting a
clear positivity of all these antibodies in all tissues up to 3 days PMI. With a PMI greater
than 3 days, a gradual decrease in staining rates in all tissues was observed. In brain
and lung tissues, IHC staining was reliable up to 7 days. After 14 days, the only positive
immunoreaction was found for the CD45 lung antigen.

Tao et al. [39] analyzed caspase-3 (p20) and nuclear factor kappa B (NF-κB) (p65) in
brain nerve cells of 47 corpses (35 died following traumatic brain injury (TBI), and 8 control
cases) with a PMI from 0 to 20 days. In the TBI group, caspase-3 immunostaining increased
12 h after death, concomitantly with positivity in NF-κB IHC staining. Starting from 7 days
after death, the positivity of NF-κB began to increase, reaching the highest immunoreaction
positivity after 20 days.

In 2006, Wehner et al. [38] published the study in which the highest number of samples
was evaluated. The authors evaluated changes in IHC expression in pancreatic and brain
tissue of 500 corpses through anti-somatostatin and anti-glial-acid fibrillar protein (GFAP)
antibodies with a PMI between 1 and 24 days. In the pancreas, a positive somatostatin
immunoreaction was detected in all cases within the first 2 days after death, while it was
always negative after a PMI longer than 11 days. In brain tissue, GFAP staining was always
positive within 3 days after death, becoming negative in all cases with a PMI of 14 days.

Two further important IHC studies of pancreas tissue have been reported, using anti-
glucagon and anti-insulin antibody markers. Wehner et al. [37] discovered that a positive
immunoreaction to glucagon was always present in bodies with a PMI earlier than 6 days,
while it was always negative with PMIs exceeding 14 days. The same authors [34] showed
that insulin positive IHC staining occurred in all cases up to 12 days after death and was
always negative after 30 days.

Wehner et al. [36] also studied the IHC expression of the thyroid gland in 136 cadavers
through anti-calcitonin antibodies, demonstrating a positive immunoreaction of this marker
up to 4 days after death in all subjects and a negative immunoreaction starting from
13 days PMI.

Finally, the same researchers [35] used anti-thyroglobulin antibodies in thyroid tissue
of 147 subjects, showing in all cases a positive immunoreaction to thyroglobulin in a PMI
up to 5 days after and the absence of staining with PMIs longer than 13 days.

Two IHC studies focused on gingival tissue. Mazzotti et al. [27] used antibody markers
directed against type I and type III collagen protein in gingival tissue, detecting a strong and
widely distributed signal in the group with PMIs between 1 and 3 days. In the “medium”
PMI sample group (4–6 days after death), the type I collagen protein signal was higher
than in the earlier group, while type III collagen positivity was less intense. In the last PMI
group (7–9 days), type I collagen positivity was greatly reduced, while type III was weak,
suggesting that collagen I and III positivity indicated a short and medium PMI, respectively.

Fais et al. [14] evaluated the IHC expression of the Hypoxia-Inducible Factor (HIF)1-
alpha protein in 13 subjects (10 traumatic deaths and 3 control cases) at PMIs ranging
between 0 and 9 days. In the traumatic deaths, the immunoreaction reached its peak
positivity in the first 3 days, progressively decreasing after that. The staining was always
negative in the control cases.

Other studies [33,43] have focused on the histochemical study of the heart.
Elazeem et al. [43] performed IHC staining using anti-C5b-9 and anti-cardiac Troponin
C (cTnC) antibodies on 70 corpses (20 from non-cardiac related fatalities and 50 deaths
from firearms or stabbings resulting in heart trauma). A mild reaction to both markers
was detected in all cases within 24 h after death. Between 24 and 48 h after death, there
was a progressive increase in the expression of both markers, especially in the stab wound
sub-group. After 48 h there was a strong positive immunoreaction, especially in the group
that had cardiac lesions from violent related deaths.
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Chow et al. [33] analyzed four additional antigenic myocardial markers using an
anti-protein gene product (PGP), anti-dopamine β-hydroxylase (DBH), anti-tyrosine hy-
droxylase (TH), and anti-neuropeptide Y (NPY) in five corpses without cardiovascular
disease. PGP showed a reduction in IHC expression starting on the seventh day after death,
until it was reduced to about one third of the initial sample on the eleventh day. DBH
began to decline on the fifth day after death, becoming progressively weaker and no longer
detectable on the ninth day. The IHC expression of TH and NPY began to decline on the
third and fourth days after death, respectively, and was no longer detectable on the seventh
and eighth days, respectively.

El-Din et al. [44] evaluated the expression of the antigenic marker High-mobility
group box-1 (HMGB1) in skin tissue up to a 24 h PMI, noting a weak positive reaction
in the cytoplasm of few keratinocytes within 3 h after death and a progressive increase
in immunostaining in the following hours. A strong positive reaction was present in the
cytoplasm of several keratinocytes 24 h after death.

Zadka et al. [45] found that a significant reduction in the antigenic expression of
CD4 and especially CD8 lymphocyte T markers occurred in the intestinal mucosa of eight
cadavers with a PMI between 2 and 7 days. However, IHC expression of CD3 and CD45
did not show statistically significant changes in their study.

Olkhovsky et al. [46] showed that the IHC expression of actin in myofibroblasts,
smooth muscle cells, and vessels of uterine tissue gradually decreased as the PMI increased.
Immunostaining was always negative 6 days after death.

Ceausu et al. [41] evaluated the progressive changes in IHC expression of CD 56, CD
117, and CD34 in striated muscle tissue of four corpses with increasing PMI, observing that
there was a positive immunostaining prior to 6 days after death, which became negative
for all markers after 8 days PMI.

Further work on 74 subjects was conducted by Boehm et al. [40], who evaluated
the chronological variation of the expression of the antigenic marker Tartrate-resistant
acid phosphatase (TRAP) in bone marrow. They reported that TRAP was detectable in
osteoclasts with a constant intensity until the seventh day after death, after which there
was a sudden and total negativity of the immunoreaction.

4. Discussion

The IHC analysis of tissues represents one of the main methods available in the last
few decades used to evaluate the PMI, especially in cadavers with a long PMI. Conversely,
traditional forensic pathology methods for estimating the time since death are mainly useful
for the first few hours after death [9]. Thus, it is important to evaluate the different IHC
markers that can be available to forensic pathologists to assist in the identification of the
deceased and that can be used, where appropriate, in criminal investigations. Indeed, the
estimation of time since death, or alternatively the age at death, could be useful information
to be provided to the investigators [5,30]. The interest in immunohistochemistry for the
estimation of the PMI has increased in recent years and various antigenic markers have
been tested. However, despite the recent advances in IHC techniques in estimating PMI,
the published scientific data is scarce and few reports with positive detection have been
published. Nevertheless, the data compiled in this study show promising results.

IHC changes and post-mortem decomposition of human tissues are dependent on the
PMI and on the type of tissue analyzed, as summarized in Table 2. As previously discussed,
although some authors have performed IHC studies on the same organs or tissues, it is
difficult to compare the results because of the heterogeneity correlated with the different
antibody markers that bind to structures, which degrade at different rates. The analysis of
the 16 studies included in this systematic review showed that the different authors have
evaluated and studied the microscopic tissue changes that develop with increasing PMI in
9 human tissues, using 18 different antibody markers. Most of the publications included in
this systematic literature review predominantly used brain tissue, followed by pancreas,
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heart, thyroid, and gum. Other authors also studied additional tissues such as lung, skeletal
muscle, liver, skin, bone marrow, colon, and uterus [47–51].

Table 2. IHC markers in relation to the presumed PMI. Each antigenic marker undergoes changes in
IHC expression associated with the PMI. After estimation of the time since death through traditional
methods, it is necessary to use the most suitable IHC markers to estimate the PMI as accurately as
possible. An IHC analysis can be performed for any suspected PMI, especially in the first 2 weeks
after death. Abbreviations: PGP, Protein gene product; DBH, Dopamine β-hydroxylase; TH, Tyrosine
hydroxylase; NPY, Neuropeptide Y; GFAP, glial fibrillary acidic protein; NF-κB, nuclear factor kappa
B; TRAP, Tartrate-resistant acid phosphatase; HIF 1-alfa, Hypoxia-inducible factor 1-alpha; cTnC,
cardiac Troponin C; HMGB1, High-mobility group box-1.

Presumed PMI Tissue IHC Marker
(Staining + or −)

1–2 days Pancreas Somatostatin (+)

1–3 days

Brain GFAP (+)
Bile duct epithelium KL1 (+)

Glial cells and myelin S100 (+)
Cerebral endothelial cells Vimentin (+)
Pulmonary lymphocytes CD45 (+)

1–4 days Thyroid Calcitonin (+)

1–5 days Thyroid Thyroglobulin (+)

1–6 days Pancreas Glucagon (+)
Skeletal muscle CD56, CD117 and CD34 (+)

1–7 days Bone marrow TRAP (+)

1–12 days Pancreas Insulin (+)

>6 days Heart TH (−)
Uterus Actin (−)

>7 days Heart NPY (−)
Bone marrow TRAP (−)

>8 days Heart DBH (−)
Skeletal muscle CD56, CD117 and CD34 (−)

>11 days Pancreas Somatostatin (−)

>13 days Thyroid Calcitonin (−)
Thyroglobulin (−)

>14 days

Pancreas Glucagon (−)

Brain GFAP (−)

Bile duct epithelium KL1 (−)

Glial cells and myelin S100 (−)

Cerebral endothelial cells Vimentin (−)

>30 days Pancreas Insulin (−)

The microscopic changes of IHC expression are based on the fact that the tertiary
structure of the protein antigens changes with an increase of the PMI and immunostain-
ing becomes negative due to protein denaturation [9,34,38,52–58]. The development of
proteolytic processes is the prerequisite for the changes in the expression of antigenic
markers and greatly depends on several non-individual factors such as the environmental
temperature [38] and the increase in PMI [52]. In fact, it is known that the decomposition
and catabolic processes of proteins are more rapid in the hottest months of the year or in
deaths from sepsis [38]. In such cases, the IHC staining can be negative at an earlier stage.
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The main IHC data is derived from the work undertaken by Wehner and colleagues [34]
who studied the IHC expression in the post-mortem period of various antigens including
thyroglobulin and calcitonin (in thyroid tissue), insulin, glucagon, and somatostatin (in
pancreatic tissue), and GFAP (in brain tissue). Specifically, through the use of anti-insulin
antibodies, the authors provided important information on the microscopic changes that
occur in the pancreas up to 45 days after death [34]. In pancreatic beta cells, a positive
immunoreaction to insulin occurred in all cases with a PMI less than 12 days, while it was
always negative with a PMI greater than 30 days. Based on this information, it can be
assumed that the PMI is greater than 12 days if the immunological reaction is negative and
that death occurred within 29 days in the case of positive immunoreaction.

Two years later, the same research group published two IHC studies on thyroid tissue,
using anti-calcitonin [36] and anti-thyroglobulin [35] antibodies as markers; and a study
on pancreatic tissue using anti-glucagon antibodies, obtaining useful results up to 14 days
after death.

In the thyroid, colloidal, and follicular cells, all cases showed a positive immunoreac-
tion to thyroglobulin up to 5 days after death and a negative immunoreaction starting from
the thirteenth day. According to Wehner et al. [35], therefore, an immunoreaction can be
negative if the PMI is greater than 5 days and can be positive if the PMI is less than 13 days.
Similar results were also reported using anti-glucagon antibodies in pancreatic tissue [37].

The use of anti-calcitonin antibodies also appears to give useful indications regarding
the time of death [36], considering that the immunoreaction in thyroid C cells is always
positive within the first 4 days after death and always negative with PMIs greater than
12 days.

In 2006, Wehner et al. [38] improved the IHC study of pancreatic tissue with anti-
somatostatin antibodies, obtaining microscopic results that can be useful in the determina-
tion of PMI up to 11 days after death. In fact, a negative immunostaining to somatostatin
can indicate that death occurred more than 3 days before, whilst a positive result indicates
a maximum PMI of 10 days.

Brain tissue is the organ on which the greatest number of IHC studies have been per-
formed. Wehner and Lesnikova discovered IHC antigenic patterns that could guide forensic
pathologists in PMI determination up to 14 days, through the expression of GFAP [38],
vimentin, and S100 [42]. In cases of negative immunostaining to GFAP, it can be interpreted
that the PMI is greater than 4 days, and, on the contrary, it is possible to extend the PMI up
to 13 days when the immunoreaction is positive. On the other hand, Tao [39] examined the
microscopic features of brain tissue up to 20 days after death in subjects with head trauma.

Chandana et al. [59] evaluated the changes in the IHC expression of GFAP, synapto-
physin, and neurofilament (NF) between 4 and 18 h after death in nerve tissue from the
frontal cortex, cerebellum, caudate nucleus, and the substantia nigra of nine corpses. Unlike
Wehner’s results, an increase in the expression of GFAP and NF was seen in the substantia
nigra as the PMI increased. The IHC analysis of areas other than the substantia nigra did
not differ from Wehner’s results and did not appear to be susceptible to significant IHC
changes with increasing PMI. Such changes seem to be limited exclusively to the substantia
nigra, possibly due to the dopaminergic profile of this area [59].

El-Din et al. [44] demonstrated that the skin expression of the HMGB1 protein can play
an important role in estimating the PMI, because of a gradual increase in the IHC expression
of the HMGB1 protein in the skin. Therefore, the detection of a strong immunoreaction to
the HMGB1 antigen demonstrates that the PMI is greater than 12 h, as confirmed in both
humans and rat models.

Elias et al. [60] carried out an important analysis of the changes in the IHC expression
of the p53 and bcl-2 proteins that occur in the skin tissue, at different PMIs. The authors
highlighted a noticeable increase in the expression of the p53 protein in the skin that reached
its maximum 6 h after death, and a slow reduction of the Bcl-2 protein due to the alteration
of cellular membrane proteins resulting from the high amount of free radicals.
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Similar results to those published by Elias et al. [60] on the IHC expression of the p53
protein were reported by Mohamed et al. [61] and Khalifa et al. [62] in studies conducted
on the brain tissue of rabbits and on liver, pancreatic, skin, and kidney tissues. Other work
on animal models include an IHC study on dogs, where IHC staining of T cells and B cells
in the cervical and bronchial lymph nodes appeared to be related with PMIs up to 23 days
after death [63].

Lee et al. [55] performed an IHC study on mice, evaluating the degradation of glycogen
synthase and caspase-3 in relation to PMI through the respective antibodies levels in the
kidney and iliopsoas muscle [64]. The study found that it was not possible to detect
glycogen synthase 48 h after death and caspase-3 after 96 h. Tao et al. [39] found that
caspase-3 immunoreaction had a different pattern of expression in an animal model from
that found in human brain tissue. A reduction in the IHC expression of caspase-3 in the
medullary, cerebral, cardiac, and renal tissue of rats was also described by Khater [65], who
carried out studies with PMI between 0 and 48 h. The results of this latest study were also
in line with those reported by Lee et al. [64].

Elgawish [66] evaluated the IHC degradation of prostatic type III collagen to estimate
the PMI in 40 male rats. A gradual reduction in the IHC expression of type III collagen
was observed within 20 to 24 h after death, and was completely negative in a PMI of
60–72 h [66]. These results matched those obtained by Mazzotti et al. [27] from human
gingival tissue, where the negativization of the immunostaining of type III collagen fibers
was slower to develop. On the contrary, when El-Din et al. [44] performed a similar IHC
study on human and mouse models, it was not clear whether the IHC changes after death
observed in animals were equivalent to those seen in humans. Despite the fact that animal
models are crucial for initial scientific experimentation, extrapolation of data to human
models is not always fully applicable due to differences between the two species in terms
of anatomical, physiological, biochemical, and genetic diversity [59,67–71].

Regarding the correlation between PMI and other variables, some authors highlighted
that the IHC changes of tissues can also be influenced by individual factors and by the cause
of death. Indeed, Tao [39], Elazeem [43], and Fais [14] have shown that the IHC changes
that develop after death are different in trauma-induced deaths, when compared to control
cases. Cho et al. described specific markers to estimate the PMI in cases of drowning in
murine models [72] with a PMI from 1 to 7 days, demonstrating that the IHC expression of
the mRNA receptor of Advanced Glycation End Products (RAGE) gradually decreases as
the PMI increases.

Studies correlating IHC expression changes and PMI are often performed under
constant temperature and well-established conditions. A limitation of the studies reported
in the literature could therefore be the lack of variable environmental conditions on the
degradation rate of different tissues. Furthermore, most of the studies carried out never
exceeded a PMI of more than 45 days. In light of these considerations, future research
should aim to fill this gap by performing studies exploring different environmental/burial
conditions. Considering the importance of PMI estimation, it would be ideal if future
studies combined IHC techniques with promising postmortem proteomics tools in order to
discover sensitive and specific biomarkers that can be used for forensic applications. Recent
data provide strong evidence in favor of the applicability of a protein degradation-based
PMI estimation method in routine forensic practice [8]. In particular, different proteins,
such as eEF1A2 and GAPDH, seem to be valuable markers [73]. Nevertheless, a significant
limiting factor is the ability to stop the tissue degradation process at the time of sampling.
One way to circumvent this limitation is by snap-freezing and storing the samples in
liquid nitrogen, but this procedure is impractical for routine application [74]. Further
studies are thus needed to evaluate the applicability of these new techniques for day-to-day
forensic cases.

The main strengths of this review include the high value for the Kappa’s statistical
test based on the agreement between the studies, the search methodology, and a flowchart
describing in detail the study selection process. On the other hand, several limitations
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may be attributed to this review, including: the selected keywords may have influenced
the search strategy; despite the application of several countermeasures, this review may
suffer from the influence of the authors’ personal viewpoints; the presence of gaps in
literature searching practices that may be related to the use of the selected databases; and
the difficulty in summarizing IHC data biased by the pathologist’s interpretation.

5. Conclusions

In the last few years, many authors have performed IHC tests on human samples to
evaluate the morphological changes that occur after death, trying to identify the expression
of specific markers useful for the determination of the PMI. The results of this systematic
literature review highlighted that IHC techniques, in association with traditional methods,
add, in Bayesian terms, further information useful to define a more accurate time of
death and PMI. Immunohistochemistry can estimate the time since death and the PMI
more accurately when compared with traditional methods, which could be dependent on
examiner bias, a PMI that is too large, or contradictory results. However, it is important
to perform further studies on IHC analysis, particularly with well-defined experimental
conditions. In fact, the IHC results are different according to the PMI and depend on the
antibody used. It appears that some antigens become negative after a few hours, and others
after several days. To estimate the PMI, it is useful to evaluate the degree of antigenic
expression of the tissues to the different markers. Current IHC results are numerically
limited and more data and studies are clearly needed. In the future, researchers should
further test antibodies capable of consolidating data already acquired as well as providing
additional information, especially in cadavers that have a late PMI and, moreover, paying
careful attention to the various individual and environmental variables, and to the manner
of death.
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