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A Unifying Framework for Finite Wordlength
Realizations

Thibault Hilaire, Philippe Chevrel, and James F. Whidborne, Member, IEEE

Abstract—A general framework for the analysis of the finite
wordlength (FWL) effects of linear time-invariant digital filter
implementations is proposed. By means of a special implicit system
description, all realization forms can be described. An algebraic
characterization of the equivalent classes is provided, which
enables a search for realizations that minimize the FWL effects
to be made. Two suitable FWL coefficient sensitivity measures
are proposed for use within the framework, these being a transfer
function sensitivity measure and a pole sensitivity measure. An
illustrative example is presented.

Index Terms—Coefficient sensitivity, digital filter implementa-
tion, digital filter wordlength effects, finite wordlength (FWL) ef-
fects, implicit systems, optimal realization.

I. INTRODUCTION

WHEN digital filters are implemented, they are imple-
mented with finite precision due to the finite wordlength

(FWL) of the representation of numbers within the computing
machine. There are two FWL effects. The first is the addition of
noise into the system resulting from the rounding of variables
before and after each arithmetic operation—the “roundoff
noise.” The second is the degradation in the performance
and/or the stability resulting from rounding of the filter coef-
ficients—the “coefficient sensitivity.” The FWL problem is
hence to analyze the effects to ensure that they do not cause
significant deterioration in the performance of an implemented
filter. The effects are obviously dependent upon the chosen
wordlength and on the chosen arithmetic format (floating-point,
fixed-point, etc.). Slightly less obvious is the fact that the FWL
effects are very dependent upon the particular realization,
(direct form, cascade, etc.), and upon the chosen operator (shift
operator, operator, etc.). Thus, in seeking to alleviate the FWL
effects, the realization must also be considered.

The FWL effects have been studied for many years. Although
many of the early works were motivated by problems in control
systems [1], [2], the analysis of the effects were often considered
in the open loop. See [3] for a comprehensive review of early
work. Further reviews can be found in [4]–[6]. There has been
a large amount of work that considers the problem of roundoff
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noise (e.g., [7]–[9]), however the emphasis of this paper is on
the coefficient sensitivity problem.

Early consideration of the transfer function sensitivity to
rounding errors in the coefficients can be found in [10], [11].
The work of Thiele [12]–[14] is particularly important in
defining a norm on the input–output sensitivity that is tractable.
This sensitivity measure provides the foundation for much of
the subsequent work. Solutions for other similar measures can
be found in [5], [15] and further developed in, for example,
[16]–[18]. A related measure using a statistical analysis of
the input–output sensitivity has been developed [19]. An ex-
tension to the multivariable system case is provided in [20].
The closed-loop control case has also been considered, for
example in [21]. Methods for the simultaneous minimization
of a sensitivity measure with roundoff noise [22] and subject to
scaling requirements [23] have also been developed recently.

The sensitivity of the poles (and zeros) is also a commonly
used measure of the coefficient rounding effect. An early anal-
ysis appears in [24]. Mantey [25] showed that the poles/eigen-
values are dependent on the state-space realization. It is well-
known that an eigenvalue sensitivity is minimized if the system
is normal [26]. However Gevers and Li [5] subsequently de-
termined the realization that would minimize a pole sensitivity
measure combined with a zero sensitivity measure proposed in
[27]. Much subsequent work (see [28]–[31], for example) has
considered various similar eigenvalue sensitivity measures for
closed-loop control systems.

Most of the significant results have expressed the filter in the
state space form. Although most realizations can be transformed
into the state-space form, this form is not completely general
and has several limitations. Firstly, the analysis of the rounding
effect of a specific coefficient in a particular realization form
can become very difficult after transformation to the state space
form. Secondly, many realization forms require the computa-
tion of intermediate variables that cannot be expressed in the
state-space form. Furthermore, the state space form is specific
to the chosen operator. In reality all implementable operators
are actually implemented using the shift operator. For example,
a realization expressed in the form of a -operator is actually
implemented using a shift operator in combination with an in-
termediate variable.

Thus, a description that includes intermediate variables is re-
quired. This paper proposes a particular implicit state-space de-
scription that is not subject to these limitations. The proposed
specialized implicit form provides a generalized description of
any realization in a form that allows a straightforward analysis
of the FWL effects as will be shown later in this paper. The
description is macroscopic in that it does not require coding
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details and is platform independent but gives a direct relation-
ship between the description and the implementation algorithm.
Note that the idea of representing the intermediate variables in
the description has been considered previously [32] (see also
[33], [34]), but the description form is less general than the im-
plicit form considered in this paper. For example, -realizations
cannot be described using this form.

The paper is organized as follows. In the next section, the spe-
cialized implicit form is proposed, and a number of definitions
given. The idea of a set of structured realizations, or structura-
tion is introduced and several examples of structurations pro-
vided. In Section III, the equivalence classes of a realization in
the specialized implicit form are provided. This is necessary to
enable the determination of realizations that are relatively im-
pervious to FWL effects. In Section IV, several coefficient sen-
sitivity measures are proposed for use with the specialized im-
plicit form. Some examples are given in Section V. Note that
although the emphasis in this paper is on the coefficient sensi-
tivity problem, the proposed implicit form can be just as useful
to the analysis and solution of the roundoff noise problem, and
this will be done in future works.

II. UNIFYING FRAMEWORK

A. Specialized Implicit Form

To show the utility of the implicit realization, we consider an
example of the implementation of a -operator state-space real-
ization. It is well-known [5], [35], [36] that the -operator is nu-
merically superior to the usual shift operator generally resulting
in less sensitive implementations with less rounding noise.

For a realization expressed with the -operator, the input/
output relation is

(1)

with , where is a strictly positive constant and
is the delay operator [5]. This is equivalent, in infinite precision,
to the classical state-space realization

(2)

with , , and .
With these two equivalent realizations, the parametrization is

different, therefore when the parameters are subjected to FWL
rounding, the two realizations are no longer equivalent, and the
impact of the quantization is different. In addition, in order to
implement the -operator, intermediate variables are necessary.
These are also subject to FWL quantization. So the following
algorithm:

(3)

implements (1) where is an intermediate variable vector.
There are many other possible implementation forms, such

as direct form I or II, cascade/parallel decomposition, lattice fil-
ters, mixed , etc., and many of these also require interme-
diate variables. In order to consider all of them within a general

unifying framework, we propose a description, in a single equa-
tion, of the filter implementation. The equation provides an ex-
plicit description of the parametrization, and allows the analysis
of the FWL effects, but is still a macroscopic description. Fur-
thermore, the description is given within a formalism such that
the description takes the form of an implicit state-space system.
This specialized implicit form is given by

(4)
where the following are true.

• , , , , ,
, , , ,

, , and .
• Matrix is lower triangular with 1’s on the diagonal, i.e.

...
. . .

...
(5)

• is the intermediate variable in the calculations
of step (the column of 0’s in the second matrix shows
that is not used for the calculation at step —this
characterizes the concept of an intermediate variable).

• is the stored state-vector ( is effectively
stored from one step to the next, in order to compute

at step ).
and form the descriptor-vector:

is stored from one step to the next, while is computed
and used within one time step.

It is implicitly assumed throughout the paper that the com-
putations associated with the realization (4) are executed in row
order giving the following algorithm:

[i]

[ii]

[iii]

Note that in practice, steps [ii] and [iii] could be exchanged to
reduce the computational delay. Also note that because the com-
putations are executed in row order and is lower triangular
with 1’s on the diagonal, there is no need to compute . The
example in Section V-B shows how to exploit this particularity
that gives an extra degree of freedom (49).

This form is a special case of the generalized implicit form
[37]

(6)

but it is not singular. Equation (4) is equivalent in infinite preci-
sion to the classical state-space form

(7)
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with , , and where

(8)

(9)

Note that (7) corresponds to a different parametrization than (4).
The system transfer function is given by

(10)

B. Definitions

To complete the framework, the following definitions are re-
quired.

Definition 1: A realization, , is defined by the specific set
of matrices , , , , , , , , and used to describe a
realization with the implicit form of (4):

(11)

Remark 1: can also be defined by the matrix

(12)

and the dimensions , , and , so could be defined by
.

Definition 2: denotes the set of realizations with transfer
function . These realizations are said to be equivalent.

In order to encompass realizations with some special struc-
ture ( -operator state-space, -operator state-space, direct form,
cascade, lattice filters, etc.), we define a set of realizations that
possess a particular structure.

Definition 3: A structuration1 is a set of realizations
having a common structure: some coefficients or some dimen-
sions are fixed a priori.

Some examples of common structurations are given in the
next section.

Definition 4: is the set of equivalent structured realiza-
tions. Realizations from are structured according to and

have a transfer function . Hence, .
Definition 5: A parametrization of a realization is the set

of coefficients of that are significant for the realization.
For example, with the -operator state-space realization of

(2), the parametrization is given by the matrices , ,
and . But for the -operator state-space realization of (1), the
parametrization is given by the matrices , , , and the
parameter . We will see in the next section that the -operator
state-space realization includes some additional parameters that
are always set to unity or zero. These are not ‘significant coef-
ficients’ and hence are not included in the parametrization.

1This is a useful French word that we have purloined. It is also used in the
field of social sciences. Here it means the set of structured realizations.

Fig. 1. Cascade form.

C. Some Examples

The -realization given by (1) is equivalent, in both finite and
infinite precision, to algorithm (3). So this corresponds to the
following specialized implicit form:

(13)
So, the -structuration is formally defined by

(14)

The cascade form is a common realization for filter imple-
mentation. It generally has good FWL properties compared to
the direct forms. For cascade form, the filter is decomposed
into a number of lower order (usually first- and second-order)
transfer function blocks connected in series. For the next ex-
ample, we consider two standard -operator filter blocks con-
nected in series as shown in Fig. 1.

If the two state-space realizations and are defined
by and , then cascading
with leads to the following realization:

(15)

from which definition of the structuration immediately fol-
lows. The output of is computed in the intermediate vari-
able, and used as the input of .

The main point is that if we consider the equivalent state-
space realization, with parameters

(16)

the parametrization is not the one used in the computations.
Remark 2: The cascade structuration can be easily extended

to a series of specialized implicit forms and to general multiple
cascaded systems.

For a given form, it is generally straightforward to define the
structuration. A number of other examples are given in [38] and
[39].
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III. EQUIVALENT CLASSES

In order to exploit the potential offered by the specialized
implicit form in improving implementations, it is necessary, to
describe sets of equivalent system realizations. However, non-
minimal realizations may provide better implementations (the
-form can be seen as a nonminimal realization when expressed

in the implicit state-space form with the shift operator. Hence,
the notion of equivalence needs to be extended so that the system
state dimension does not need to be preserved. The Inclusion
Principle, introduced by Šiljak and Ikeda [40], [41] in the con-
text of decentralized control, is useful here as it allows the for-
malization of the equivalence and inclusion relations between
two system realizations.

Definition 6: Consider two systems and , with state di-
mension and respectively, described in classical state-
space form by matrices , , ,

, and . System is said to
be included in system (denoted by ) if there exists

such that and, for any initial
state of and any input , the choice of
the initial state of implies

(17)

Remark 3: Equation (17) implies that system contains all
the necessary information to describe the behavior of .

The principle is extended here to the specialized implicit form
in order to characterize equivalence classes. An equivalence
class is defined by a certain minimal realization and all the re-
alizations that include this realization. They can be built using
the following proposition:

Proposition 1: Consider a realization
with dimensions .

A realization that includes can be constructed as follows.
• Choose and such that .
• Choose such that ,

such that and
such that .

• Choose complementary matrices2 ,

, , , ,
, , and

such that, if we denote ,
, , ,

, , ,
, and,

then , ,
,

and are satisfied.

2These matrices are called complementary matrices.M is complementary
in that it fills the gap between ~X and the similarity onX : ~X = T XT +M .

If so, the realization in-
cludes the realization .

Proof: The proof can be derived directly from the charac-
terization of the Inclusion Principle [40], [42], [43]. The details
are omitted here but can be found in [38].

Although this proposition gives the formal description of
equivalent classes, it is of practical interest to consider real-
izations of the same dimensions ( and ) where
transformations from one realization to another is only a simi-
larity transformation.

Proposition 2: Consider a realization .
All the realizations with

(18)

and , , are nonsingular matrices, are equivalent to .
It is also possible to just consider a subset of similarity trans-

formations that preserve a particular structure, say cascade or
delta. For example, if an initial -structured realization

is given, the subset of equivalent -structured
realization is defined by

nonsingular
(19)

In addition to a description of the various existing realizations
with the exact parametrization, this formalism gives an algebraic
characterization of equivalent classes. These classes can be used
to search for an optimal structured realization (see Section V-A).

IV. SENSITIVITY MEASURES

In order to be able to accurately assess the suitability of a par-
ticular realization in the specialized implicit form, some mea-
sure of the coefficient sensitivity are required. The measures
need to be computationally tractable but also need to account
for the fact that common structured realizations (e.g., ) contain
many coefficients that are either zero or unity and hence do not
contribute to the FWL effects. Such coefficients are known as
trivial parameters. Furthermore, it is useful if the measures can
take into account the choice of arithmetic format (floating point
or fixed point) of the coefficients’ representation.

A. Coefficient Quantization

A coefficient’s quantization depends both on their value and
their representation.

Firstly if the value of a coefficient is such that it will be
quantized without error, then that parameter makes no contribu-
tion to the overall coefficient sensitivity. Hence, we introduce
weighting matrices to (and also ) respectively as-
sociated with matrices to of a realization, such that

if is exactly implemented
otherwise.

(20)
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Secondly, different representation schemes may be considered.
Here, we consider both fixed-point and floating-point represen-
tations of coefficients expressed using bits.

A fixed-point coefficient is represented by ,
where , is an integer coded with bits and an
integer (not stored in the representation) such that

. The quantized of is such that .
A floating-point coefficient is represented by

where (or for a normalized floating-point
representation) and is an integer coded with bits3

. The quantized of is, in this
case, such that .

The choice of and can be unique for each coefficient
( and , where is
the ceiling operator). Alternatively, and are defined for a
group of coefficients (in order to reduce the required bit-shifts
and the subsequent computational cost). This defines the block-
fixed-point and block-floating-point schemes. Following [44],
we introduce the generalized dynamic range bit (
or ) and the precision bit length ( or ).

Usually, the blocks used in block-representation correspond
to the matrices to , but there is no necessity for this, and
blocks can be chosen at will. To define the blocks of a realization

, we introduce the matrix such that

the largest absolute value of
the block in which resides (21)

This allows a completely general definition of the blocks.
Thus, there could be just a single unique block, or every block
could consist of only one coefficient. For example, denoting

as a matrix of 1’s and

(22)

then using a block-representation corresponding to the matrices
to gives

With a single unique block for we get
, and for one block per coeffi-

cient we get .
Proposition 3: During the quantization process, is per-

turbed to where

for fixed-point representation
for floating-point representation

(23)

is a matrix dependant on the precision bit length, and
denotes the Schur product. If is the precision bit-length of

, then .
Remark 4: With this formalism for the different representa-

tion schemes, note that the choice of the scale parameter ( or
) is defined for each coefficient ( and

3The difference with fixed-point is that e is coded with � bits and can be
changed. With fixed-point, � is fixed and implicit.

) and that it is also possible to de-
fine the minimum bit length to code each coefficient without
overflow or underflow [38].

B. Transfer Function Sensitivity Measure

The sensitivity measure proposed here extends the measure
proposed by Gevers and Li [5] to the specialized implicit state-
space form as well as accounting for trivial parameters and the
coefficient representation.

Let denote the transfer function per-
turbed by the quantization process. Then, in the single-input
single-output (SISO) case, :

(24)

Then

(25)

where is the -norm. It is easy to see that

(26)

and so (25) leads to the following transfer function sensitivity
measure:

Definition 7 (SISO Transfer Function Sensitivity): Consider
a realization with an associated matrix .
The sensitivity of the realization’s transfer function with re-
spect to all the nontrivial coefficients of , is defined in the
SISO case by

(27)

Remark 5: The measure differs from the measure pro-
posed by Gevers and Li [5] for SISO classical state-space fixed-
point realizations which is defined by

(28)

For the definition of , the term is ignored
because it is invariant to the possible realization. However, for
the specialized implicit form, and so the sen-
sitivity of the direct feed-through term, , is dependent
on the realization.

This measure can be extended to the multiple-input multiple
output (MIMO) case. However it is also useful to be able to con-
sider the contribution of each coefficient to the overall sensi-
tivity. The transfer function sensitivity matrix, denoted by ,
is the matrix of the -norm of the sensitivity of the transfer
function with respect to each coefficient . It is defined by

(29)
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and allows the evaluation of the overall impact of each coeffi-
cient. It can be used to evaluate the overall sensitivity. From the
properties of the -norm, we have

(30)

where is the Frobenius norm.
Definition 8: The MIMO transfer function sensitivity is de-

fined by

(31)

Next, we introduce a new operator that simplifies the subse-
quent expressions for and the transfer function sensitivity
matrix.

Definition 9: The operator is defined by

(32)

where and and where is the
classical operator that transforms a matrix to a column vector.
So .

Lemma 1: Consider two matrices (or transfer functions),
and , that are assumed to be independent of a

matrix . Then

(33)

and

(34)

Proof: The proof can be found in [38] and comes from

(35)

Proposition 4:

(36)

where

and the dimensions of the transfer functions to are ,
, and respectively.

Proof: From the application of Lemma 1 with (8) and (9)
to (10). Details are given in [38].

Proposition 5: Consider a matrix and three transfer func-
tion matrices , and of appropriate dimensions such that

(37)

The sensitivity matrix is given by

(38)

Proof: The proof is straightforward and can be found in
[38].

C. Pole Sensitivity Measure

The transfer function sensitivity does not explicitly con-
sider the stability of the system. To ensure that the imple-
mentation is stable, the sensitivity of the poles needs to be
considered. Let denote the poles of a realization

. These poles are perturbed during the
quantization process to with

(39)

Clearly, this expression provides a means by which the min-
imum bit-length to preserve stability can be determined a priori.
This is explored in [38] and [45].

We can define the following pole sensitivity measure.
Definition 10: Consider a realization

and associated quantization description matrix . The pole sen-
sitivity measure of is defined by

(40)

The following lemma is required prior to providing a means
of evaluating .

Lemma 2: ([28]) Consider a differentiable function
, and two matrices and .

Let , and be constant matrices with appropriate
dimensions, then the following results hold.

• If , then

• If , then

Proposition 6:

(41)

Proof: Apply Lemma 2 to (8).
The term can be evaluated using the following

lemma.
Lemma 3: Let be diagonalisable. Let

be its eigenvalues, and the corre-

sponding right eigenvectors. Denote and

. Then

(42)
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and

(43)

where denotes the conjugate operation, the real part and
the transpose conjugate operator.

Proof: The procedure for the proof can be found in [30].
Remark 6: In a similar manner to the transfer function sensi-

tivity matrix, (29), a pole sensitivity matrix can be constructed
to evaluate the overall impact of each coefficient. Let de-
note the pole sensitivity matrix defined by

(44)

The pole sensitivity measure is then given by

(45)

V. ILLUSTRATIVE EXAMPLE

A. Optimal Realization Problem

The problem of determining the best realization can be posed
as follows:

Problem 1 (Optimal Realization Problem): Consider a
transfer function and a sensitivity measure . The optimal
design problem is to find the best realization with transfer
function according to the criteria , that is

(46)

Due to the size of , this problem cannot be solved prac-
tically. Indeed, a solution may even have infinite dimension.
Hence, the following problem is introduced to restrict the search
to a particular structuration.

Problem 2 (Optimal Structured Realization Problem): The
problem to find the optimal structured realization , that is

(47)

The Inclusion Principle (Propositions 1 and 2) provides
the means to search over the structured realizations set .
Since the measure could be nonsmooth and/or nonconvex,
the Adaptive Simulated Annealing (ASA) [46] method has
been chosen to solve Problem 2. This method has worked
well for other optimal realization problems [30]. The resulting
optimal sensitivities for the measures proposed in Section IV
are presented next.

B. Example

To illustrate the use of the proposed measures and the optimal
design problem, we consider a sixth-order narrowband low-pass
filter from [27] given by

TABLE I
MEASURES FOR DIFFERENT REALIZATIONS

. The poles are
,

and (all the computations are
performed with double floating-point precision, but the results
are quoted only to 4 significant digits). The weighting matrix

is constructed according to (20) (only 0, 1 are considered
as exactly implemented). Note that the optimizations are per-
formed using the pole sensitivity measure , but could also be
done using the transfer function sensitivity measure or a mixed
measure.

The following realizations are considered.

Direct form II with shift-operator : it corresponds
to a canonical state-space form: the transfer function
coefficients directly appear in .

Balanced classical state-space realization.

-optimal classical state-space realization: the set of
equivalent classical state-space realizations is searched
using (48), shown at the bottom of the next page, where

is one classical state-space realization
of and is a nonsingular matrix.

-optimal implicit state-space realization: we consider
all the equivalent realizations described by (49), shown
at the bottom of the next page, where is a lower
triangular matrix [as for in (5)]. This can be described
in the implicit state-space framework by (50), shown at
the bottom of the next page, and equivalent realizations
can be searched with the similarity shown in (51) at
the bottom of the next page, where is a nonsingular
matrix and is chosen so that is still lower
triangular (in practice, the coefficients of the new matrix

are chosen by the optimization algorithm, and is
then deduced).

-optimal state-space -realization : the
-structured equivalent set [see (19)] is searched,

with an initial realization given as for (13).

The values of the sensitivity measures for the various realiza-
tions are given in Table I. Note that the balanced realization
has the best transfer function sensitivity. This is not surprising
since it is known that balanced realizations are optimal in an-
other transfer function sensitivity sense [5]. The pole sensitivity
of is fairly good, but is not minimal and can be reduced by a
factor of 4 by using the state-space realization. However, real-
izations , and have a poor transfer function sensitivity.
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Fig. 2. Transfer function frequency response after quantization (11 bits fixed-
point with natural blocks).

This is because only pole sensitivity measure has been mini-
mized. This indicates that minimizing the pole sensitivity alone
is not good enough for this application, and some weighted com-
bination of both sensitivities would be preferable.

Fig. 2 shows the a posteriori degradation of the transfer func-
tion frequency response when implemented in fixed-point, with
natural blocks and with 11 bits, for the realizations and
(compared to the initial transfer function ). It shows the very
poor sensitivity of the direct form, . This realization is actu-
ally unstable, and in Table II the a posteriori perturbation of the
transfer function poles are shown. Poles and are highly
sensitive for the direct form and have moved onto the real axis.

TABLE II
POLES DISPLACEMENT AFTER QUANTIZATION (11 bits FIXED-POINT WITH

NATURAL BLOCKS)

VI. CONCLUSION

A unifying framework for describing FWL implementations
is presented. The tools for utilizing this framework to obtain
optimal realizations are provided. The characterization of the
equivalent classes provides the means for searching over equiv-
alent structurations. Previously proposed measures are extended
to the framework and these enable the coefficient sensitivity to
be analyzed and minimized in a unified way. Of course there
is no guarantee that one particular structuration will result in a
better implementation than another, but the framework allows
the systematic comparison of realizations with different struc-
tures.

The problem for closed-loop control systems has been studied
[38], [47] but there is still further work to be done. Consideration
of the quantization noise remains, as does consideration of the
sparseness and the dynamic range. The optimization problem is
hard, and although the ASA method works well, there are no
guarantees that the globally optimal realization is found.

(48)

=AX(k)+BU(k)
=CX(k)+DU(k)

(49)

(50)

(51)
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