
Vol.:(0123456789)

Swarm Intelligence (2022) 16:233–260
https://doi.org/10.1007/s11721-022-00213-0

1 3

Sample greedy based task allocation for multiple robot
systems

Hyo‑Sang Shin1 · Teng Li1 · Hae‑In Lee1 · Antonios Tsourdos1

Received: 4 March 2021 / Accepted: 18 July 2022 / Published online: 13 August 2022
© The Author(s) 2022

Abstract
This paper addresses in-schedule dependent task allocation problems for multi-robot sys-
tems. One of the main issues with those problems is the inherent NP-hardness of combina-
torial optimisation. To handle this issue, this paper develops a decentralised task allocation
algorithm by leveraging the submodularity concept and a sampling process of task sets.
Our theoretical analysis reveals that the proposed algorithm can provide an approximation
guarantee of 1/2 of the optimal solution for the monotone submodular case and 1/4 for the
non-monotone submodular case, both with polynomial time complexity. To examine the
performance of the proposed algorithm and validate the theoretical analysis, we introduce
two task allocation scenarios and perform numerical simulations. The simulation results
confirm that the proposed algorithm achieves a solution quality which is comparable to
state-of-the-art algorithms in the monotone case and much better quality in the non-mono-
tone case with significantly lower computational complexity.

Keywords Task allocation · Multi-robot system · Approximation guarantee ·
Submodularity · Sampling greedy

1 Introduction

This paper addresses ID [ST, SR, TA] multi-robot task allocation (MRTA) problems,
according to the taxonomy of MRTA problems defined by Gerkey and Matarić (2004) and
Korsah et al. (2013). In-schedule dependent (ID) problems mean that the utility, or gain
that is obtained by performing some tasks, of each robot depends on a robot’s own sched-
ule and the other tasks that the robot has already performed. The problem is to find the
time-extended assignment (TA) of a set of single-robot (SR) tasks to a group of single-task
(ST) robots. Each robot can perform one task at a time, and one task cannot be performed
by multiple robots. The well-known travelling sales man problem and many multi-robot
coordination problems also belong to this category of MRTA. The issue is that the MRTA

 * Hyo-Sang Shin
 h.shin@cranfield.ac.uk

1 School of Aerospace, Transport and Manufacturing, Cranfield University, Cranfield MK43 0AL,
UK

https://extranet.cranfield.ac.uk/,DanaInfo=orcid.org+0000-0001-9938-0370
https://extranet.cranfield.ac.uk/dialog/,DanaInfo=crossmark.crossref.org+?doi=10.1007/s11721-022-00213-0&domain=pdf

234 Swarm Intelligence (2022) 16:233–260

1 3

problems in this category are known to be NP-hard, requiring extensive computational cost
to find the exact solution.

The task allocation algorithm under consideration in this paper exploits an approxima-
tion approach, and the algorithm is fully decentralised. Approximation approaches can
balance the optimality of a solution and computational cost by approximating the MRTA
problem. Moreover, they typically provide a mathematical guarantee on the quality of solu-
tion and computational complexity if the problem satisfies certain conditions. Note that
the centralised solution of the task allocation problem involves having to communicate all
the robots and environment data to a centralised entity. This may not be possible in some
realistic scenarios because relying on a central entity could remove resilience, or the band-
width to communicate all the information may not be available. Employing a decentral-
ised algorithm can improve resilience and relieve communication requirements compared
with a centralised algorithm, and thus enabling decentralisation could be more practical for
multi-robot operations.

Decentralised approximation approaches have been frequently applied to solve MRTA
problems. Choi et al. presented the Consensus-Based Bundle Auction (CBBA) algorithm,
which is the first decentralised approximate algorithm that provides a solution guaranteed
to be within a constant factor of the optimal (Choi et al., 2009). By assuming that the util-
ity functions of the robots are monotone non-decreasing and submodular, their algorithm
is proven to provide a solution with a guarantee of at least 50% of the value of the optimal
solution.

Submodularity is a property commonly required in approximate approaches to obtain
a mathematical guarantee. The marginal gain that a robot obtains by executing an extra
task diminishes as the number of tasks that need to be carried out by the robot increases.
Williams et al. (2017) investigated a surveillance mission in an urban environment apply-
ing decentralised Sequential Greedy Algorithm (SGA) considering multiple matroid
constraints. Sun et al. (2019) solved a target covering problem using distributed SGA in
an environment with obstacles and provided a tighter optimality bound by analysing the
curvature of submodularity. To improve the efficiency, Qu et al. (2015), Qu et al. (2019)
developed a Distributed Greedy Algorithm (DGA) for a large group of Earth-observing
satellites to automatically assign locations based on local information and communication.
DGA introduces the concept of admissible task set, which is valid for spatially station-
ary robots, but difficult to apply to mobile robots. Decentralised approximation approaches
were also used in search and localisation (Ding & Castanón, 2017), and sensor networks
(Kumar et al., 2017; Corah & Michael, 2018) to efficiently solve MRTA problems.

The issue with the aforementioned algorithms is that they can provide approximation
guarantees only for monotone submodular objective functions: they cannot provide any
approximation guarantee for maximising non-monotone objective functions. The objec-
tive functions are not necessarily monotone, e.g., if concentrating too many tasks to one
robot is not beneficial due to battery constraints, then the objective functions could become
non-monotone.

This paper aims to develop a decentralised task allocation algorithm that can be imple-
mented in practice for large-scale multi-robot systems (MRS) based on submodular maxi-
misation. The focus is to provide guarantees on optimality not only for monotone submod-
ular functions, but also for non-monotone ones with low computational complexity. The
main contribution of our work is summarised in the following:

This paper introduces a sampling process of task sets to the main concepts of SGA
which sequentially allocates tasks in a greedy manner considering all tasks available.

235Swarm Intelligence (2022) 16:233–260

1 3

The proposed algorithm is named DSTA (Decentralised Sample-based Task Allo-
cation). In DSTA, each robot randomly selects tasks with a uniform probability of
p ∈ (0, 1] from the task set. Then, DSTA runs decentralised SGA based on the task
samples randomly selected. The DSTA algorithm offers three advantages. First, the
algorithm achieves approximation guarantees in expectation for both monotone and
non-monotone submodular functions. Second, the computational complexity can be
reduced as the algorithm considers only sampled tasks, not all tasks in the greedy
selection phase. Third, DSTA is able to balance the approximation guarantee and
computational complexity by adjusting the sampling probability p.

To examine the advantages of the proposed algorithm, we conduct a theoretical analysis.
The analysis focuses on the expected approximation guarantee and variance of the solution
and the computational complexity. To the best of our knowledge, this is the first attempt to
theoretically investigate the variance of the solutions in any randomised SGAs.

We consider two simple surveillance mission scenarios for the validation of the pro-
posed algorithm through Monte Carlo simulations. Using simulations, we investigate the
performance of the proposed algorithm, i.e., optimality and variance of the solution and
computational complexity. The simulation results confirm the theoretical analysis. For rig-
orous validation, the performance of the proposed algorithm is compared with that of state-
of-the-art algorithms such as Genetic Algorithm (GA) (Kotwal & Dhope, 2015), CBBA
(Choi et al., 2009), and DGA (Qu et al., 2019).

The rest of this paper is organised as follows. Section 2 presents preliminaries and back-
grounds. Section 3 describes our task allocation algorithm, and its analysis is detailed in
Sect. 4. The performance and validity of the analysis are investigated through numerical
simulations in Sect. 5. Section 6 offers conclusions and discusses future research directions.

2 Preliminaries and backgrounds

Following the general definition of the task allocation problems from (Dias et al., 2006),
the particular instance of the task allocation problems under consideration is defined as
follows:

Definition 1 (Task allocation) Given a set of tasks T , a set of robots A , and a utility func-
tion fa ∶ 2T → ℝ

+ for each robot a ∈ A , find a non-overlapping allocation, S ∈ A × T ,
that maximises an objective function f ∶ 2A×T

→ ℝ
+ defined as f (S) =

∑
a∈A f (Sa) where

f (Sa) ∶= fa(Ta) and Sa denotes the allocation subset for Robot a. Here, S = ∪a∈ASa and Ta
is the task subset allocated to Robot a.

The task-robot pair for Robot a and Task j is denoted as uaj ∶= (a, j) . Then, Sa can be
expressed as Sa = {uaj ∶ ∀j ∈ Ta} . In the rest of this paper, we use the term “pair" to refer
to “task-robot pair" for simplicity. The non-overlapping allocation implies that one task
cannot be allocated to more than one robot, i.e., the sets {Ta}a∈A are disjoint, but one robot
can take more than one task.

236 Swarm Intelligence (2022) 16:233–260

1 3

Definition 2 (Marginal gain value (mgv) (Krause & Golovin, 2014)) For a set function
f ∶ 2N → ℝ , S ⊂ N and u ∈ N , the marginal gain value (mgv) of f at S with respect to u
is defined as

This paper assumes that the utility function for each robot is submodular. The definition
of submodularity follows.

Definition 3 (Submodularity (Krause & Golovin, 2014)) Let N be a finite set. A real-
valued set function f ∶ 2N → ℝ is submodular if, for all X, Y ⊆ N ,

Equivalently, ∀ A ⊆ B ⊂ N and u ∈ N�B,

We use “ ∖ ” as the subtraction operation of two sets. The submodular functions consid-
ered are normalised (i.e., f (�) = 0) and non-negative (i.e., f (S) ≥ 0 for all S ⊆ N).

Submodularity is an intuitive notion, meaning that the mgv that a robot obtains by exe-
cuting an extra task diminishes, as the number of tasks carried out by the robot increases.
We believe that submodularity is a good modelling tool in designing utility functions for
task allocation problems. In the machine learning community, there has been a great effort
spearheading this idea: finding suitable submodular models to solve inherently discrete
tasks, such as summarising documents, scene segmentation, or pattern discovery (Song
et al., 2014; Mirzasoleiman et al., 2016). Task allocation is an inherently discrete problem,
and thus “submodularising” task allocation problems should yield useful applications of
efficient MRS cooperation.

Equation 3 is known as diminishing returns, which is one of the core properties of sub-
modular functions (Krause & Golovin, 2014). Diminishing returns mean that the mgv of
a given element u will never increase as more elements have already been added into the
set S. The range of applications holding this property is wide (Choi et al., 2009), e.g., a
surveillance mission in which the available time for a robot to monitor an additional point
decreases as a given robot is assigned more points to monitor.

Definition 4 (Monotonicity (Krause & Golovin, 2014)) A set function f ∶ 2N → ℝ is
monotone if, ∀ A ⊆ B ⊆ N , f (A) ≤ f (B).

Developing an algorithm that works with non-monotone submodular utility functions
could be of significant importance since non-monotonicity is a feature that arises naturally
in many practical scenarios. For example, in a multi-robot surveillance mission, if a robot
is assigned too many targets to track, it might end up spending its time travelling between
targets and not gathering enough useful information at the targets’ locations. Therefore,
adding tasks to a robot’s assignment could reduce the final utility. Monotone submodular
functions are structurally ill-suited to model such a scenario since, by definition, they do
not contemplate reduction in the utility. Therefore, this paper considers both monotone and
non-monotone submodular functions.

(1)�f (u|S) ∶= f (S ∪ {u}) − f (S).

(2)f (X) + f (Y) ≥ f (X ∩ Y) + f (X ∪ Y).

(3)�f (u|A) ≥ �f (u|B).

237Swarm Intelligence (2022) 16:233–260

1 3

The non-overlapping constraint in Definition 1 can be classified as a partition matroid
constraint. The definition of matroid is given next.

Definition 5 (Matroid (Badanidiyuru & Vondrák, 2014)) A matroid M is a pair of N and
I , i.e., M = (N, I) where N is a finite set, called ground set, and I ⊆ 2N is a collection of
independent sets, satisfying:

• � ∈ I

• A ⊆ B,B ∈ I ⇒ A ∈ I

• A,B ∈ I, |A| < |B| ⇒ ∃ b ∈ B�A such that A ∪ {b} ∈ I .

where | ⋅ | is the cardinality operator.
Representative examples of matroid constraints are uniform and partition matroid con-

straints. For the uniform matroid constraint, which is also called cardinality constraint,
any subset S ⊆ N satisfying |S| ≤ k is independent, i.e., S ∈ I . The partition matroid con-
straint means that an independent subset S can contain at most a certain number of ele-
ments from each partition of N .

For the task allocation problem under consideration, we define the ground set as
N ∶= {uaj ∶ ∀a ∈ A,∀j ∈ T} , i.e., the set of all pairs, and define I as the collection of all
possible non-overlapping allocation solutions. Then the ground set N can be divided into
|T| partitions with respect to the tasks j ∈ T , as shown in Fig. 1. According to the non-
overlapping constraint in Definition 1, a valid allocation solution S can contain at most one
pair from each partition. For example, if we have already selected the pair ua1j1 from Parti-
tion 1 which contains available pairs corresponding to Task j1 , then we cannot select any
other task-robot pairs from Partition 1. This implies that the non-overlapping constraint in
our task allocation problem is a partition matroid constraint.

This paper considers a bidirectional communication graph in which any robot can com-
municate with its neighbouring robots. The definition of neighbouring robot is provided in
Definition 6. For ease of analysis, we assume that the communication network is strongly
connected and all communication links are stable. Under the assumption, it is proven that
the convergence of the max-consensus protocol is guaranteed (Giannini et al., 2016). The
communication error and the specific communication techniques are out of the scope of
this work.

Fig. 1 Demonstration of task-robot pairs grouped by different partitions

238 Swarm Intelligence (2022) 16:233–260

1 3

Definition 6 (Neighbouring robots (Macal & North, 2010; Shin et al., 2020)) For Robot a
in a communication network, the robots that have a direct bidirectional communication link
with Robot a are termed as neighbouring robots of Robot a.

A simple communication graph is illustrated in Fig. 2. Two robots build a bidirectional
communication link and become neighbouring robots if their physical distance is within
the transmission range of their onboard communication equipment. Robot a4 and Robot
a2 are not neighboring robots because they have no direct communication link with each
other. However, Robot a3 can transmit the information of Robot a4 to Robot a2.

Definition 7 (Consensus step) In a connected network, a consensus step is one round
of communication after which each robot share the information of all other robots in the
network.

The following theorem adapted from (Buchbinder et al., 2014) will be used as the math-
ematical foundation to analyse the approximation guarantee of the proposed task allocation
algorithm. This shows the bound of expectation of h(S), i.e., �[h(S)] with respect to the the
utility of an empty set, h(�) for all submodular functions h(⋅) . Please refer to (Buchbinder
et al., 2014) for the proof of Theorem 1.

Theorem 1 ((Buchbinder et al., 2014)) Let h ∶ 2N → ℝ≥0 be a submodular function, and
let S be a random subset of N where each element appears with probability at most p (not
necessarily independently). Then, �[h(S)] ≥ (1 − p)h(�).

3 Algorithm

As summarised in Algorithm 1, DSTA consists of two phases: the sampling phase (Algo-
rithm 1, lines 1 – 6) and the allocation phase (Algorithm 1, lines 7 – 20).

In the sampling phase, the ground set Na containing all pairs that are related to Robot
a is generated. Then, Robot a randomly samples pairs from Na with a uniform probability
p ∈ (0, 1] to form its own sample set, Ra (Algorithm 1, lines 3 – 6). This means that the
probability of a pair uaj being added into the sample set Ra is p.

Fig. 2 Illustration of a commu-
nication graph with bidirectional
links

239Swarm Intelligence (2022) 16:233–260

1 3

In the allocation phase, each robot selects a pair and negotiates with other robots in a
greedy manner. Robot a selects a pair that provides the maximum mgv from its own sample
set Ra (Algorithm 1, lines 8 – 9). Then, Robot a uses the information of the selected pair
to negotiate with other robots through the MaxCons function (Algorithm 1, line 10). The
notation “==” in line 11 is used to judge whether the two elements have the same value.
“ a∗ == a ” means that Robot a provides the globally largest mgv and wins the auction in
the current iteration. Robot a adds its pair um

aj
 to its selection set and removes the pair from

its sample set (Algorithm 1, lines 11 – 13). Otherwise, if Robot a has the pair uaj∗ in its
sample set, the robot removes uaj∗ from its Ra (Algorithm 1, lines 15 – 17). Robots repeat
this procedure until there is no more task to allocate.

MaxCons in line 10 of Algorithm 1 is the max-consensus function, which represents the
negotiation among all robots. For the max-consensus, Robot a sends its current best mgv,
i.e., �m

a
 together with the corresponding robot id a and task id jm to its neighbours. At the

same time, each robot receives the same information from all its neighbours. Robots keep
transferring the information they have received until reaching global consensus. Finally,
the MaxCons function returns the corresponding robot id a∗ and the task id j∗ of the pair
that provides the globally largest mgv.

Algorithm 1 DSTA for Robot a
Input: f : 2A×T → R+, T ,A, p.
Output: A set Sa ⊆ {uaj : ∀j ∈ T }.

1: Ra ← ∅, Sa ← ∅
2: Na ← {uaj : ∀j ∈ T }
3: for uaj ∈ Na do
4: with probability p,
5: Ra ← Ra ∪ {uaj}
6: end for
7: while ∃ uaj ∈ Ra s.t. ∆f(uaj |Sa) > 0

do
8: jm, um

aj ← argmax
j∈T ,uaj∈Ra

∆f(uaj |Sa)

9: ωm
a ← ∆f(um

aj |Sa)

10: a∗, j∗ ← MaxCons(a, jm, ωm
a ,A)

11: if a∗ == a then
12: Sa ← Sa ∪ {um

aj}
13: Ra ← Ra\{um

aj}
14: else
15: if uaj∗ ∈ Ra then
16: Ra ← Ra\{uaj∗}
17: end if
18: end if
19: end while
20: return Sa

Remark 1 Thanks to sampling, each robot in DSTA is required to evaluate function values
only for a portion of entire pairs, i.e., only for those sampled. This should accelerate the
task allocation process by some degree, which depends on the sampling probability p.

Remark 2 Developing a max-consensus protocol is beyond the scope of this study. There
are many max-consensus algorithms available in the existing literature. Also, the conver-
gence characteristics of such algorithms are well studied considering various practical
aspects of communication, e.g. dynamic networks, asynchronous communication, and time
delay (Cortés, 2008; Giannini et al., 2016; Iutzeler et al., 2012; Olfati-Saber & Murray,
2004). For the application of the proposed DSTA algorithm, one can select an efficient
consensus protocol considering the practical aspects.

240 Swarm Intelligence (2022) 16:233–260

1 3

Algorithm 2 An Equivalent View of DSTA
Input: f : 2A×T → R+, T ,A, p.
Output: Sets Sa ⊆ {uaj : ∀j ∈ T },∀a ∈ A.

1: for a ∈ A do
2: Ra ← ∅, Sa ← ∅
3: Na ← {uaj : ∀j ∈ T }
4: for uaj ∈ Na do
5: with probability p,
6: Ra ← Ra ∪ {uaj}
7: end for
8: end for
9: while ∃ uaj ∈ Ra s.t. ∆f(uaj |Sa) > 0

do
10: a∗, j∗ ← argmax

a∈A,j∈T ,uaj∈Ra

∆f(uaj |Sa)

11: for a ∈ A do
12: if a∗ == a then
13: Sa ← Sa ∪ {uaj∗}
14: Ra ← Ra\{uaj∗}
15: else
16: if uaj∗ ∈ Ra then
17: Ra ← Ra\{uaj∗}
18: end if
19: end if
20: end for
21: end while
22: return Sa,∀a ∈ A

An equivalent view of DSTA is demonstrated in Algorithm 2, which handles task
allocation procedures of all robots in one algorithm framework. The lines 1 – 8 of
Algorithm 2 describe the sampling process of DSTA for all robots. The greedy selec-
tion and MaxCons (Algorithm 1, lines 8 – 10) are represented by the line 10 of Algo-
rithm 2. This line finds the robot id a∗ and task id j∗ corresponding to the pair that can
provide the globally largest mgv among all robots in the current iteration. Then, in
lines 11 – 20 of Algorithm 2, the winner Robot a∗ puts its selected pair to its allocation
set Sa . Next, all robots remove the pairs related to the corresponding task j∗ from their
sample sets to avoid conflicts.

Remark 3 It is possible that some tasks are not allocated to any robot due to random sam-
pling, especially when the number of robots is small. If coverage of tasks is critical, we can
increase the sampling probability. Nonetheless, as indicated in Definition 1, allocating all
tasks is not required in the task allocation problem considered in this paper. This is natu-
ral as we consider not only monotone, but also non-monotone cases where the algorithm
should be terminated when a marginal gain value becomes negative. In addition, for some
repetitive missions such as a multi-target surveillance mission, it is unnecessary to cover
all targets every time when there are too many targets compared with the number of robots.

Remark 4 CBBA algorithm (Choi et al., 2009) is used as a benchmark algorithm as it is
widely used and is developed based on the decentralised SGA. Each robot with CBBA
first constructs a task bundle by continually adding tasks in a greedy manner. Then, CBBA
applies a sophisticated consensus strategy to enable convergence on the list of winning
bids and robots. The task bundles help CBBA to reduce communication burden but incur
dramatic increase in the computational complexity. The reason is that if a task j in a bundle
of a robot is allocated to another robot during one consensus step, the robot must release
all the tasks that are added to the bundle after the task j, and reconstruct the bundle in the
next iteration. Reconstructing the bundle requires additional function evaluations and thus
increases the computational complexity.

241Swarm Intelligence (2022) 16:233–260

1 3

4 Analysis

This section analyses the performance, especially optimality and computational complex-
ity, of the DSTA algorithm. As discussed in Sect. 3, for ease of analysis, it is assumed that
the communication network is strongly connected and stable. Under the assumption, it is
well known that the convergence of the max-consensus is established (Cortés, 2008; Gian-
nini et al., 2016; Iutzeler et al., 2012; Olfati-Saber & Murray, 2004) and thus the decentral-
ised algorithm can be understood in an equivalent view shown in Algorithm 2.

4.1 Algorithm analysis

For the convenience of analysing the theoretical performance of the proposed decen-
tralised DSTA, we transform Algorithm 2 to an equivalent version, Algorithm 3, which
first samples the task-robot pairs and then performs a greedy algorithm for the sam-
pled set. We define the ground set N as a set containing all task-robot pairs, i.e.,
N ∶= {uaj ∶ ∀a ∈ A,∀j ∈ T} = ∪a∈ANa . I is defined as the collection of all independent
sets of task-robot pairs. An independent set of task-robot pairs means that this set can contain
at most one task-robot pair from each partition determined by each task as described in Fig 1.

According to Definition 1, the sets {Ta}a∈A are disjoint, i.e., ∪a∈ASa ∈ I . Also, from
Definition 1, S = ∪a∈ASa and f (∪a∈ASa) =

∑
a∈A f (Sa) . Denoting the ith robot as ai , we

have:

We can thus represent the DSTA algorithm with respect to S, instead of Sa , in a centralised
view under the assumption of the consensus convergence. The resulting algorithm given in
Algorithm 3 is equivalent to the sampling greedy algorithm for submodular maximisation
subject to a partition matroid constraint. Note that the while loop condition ∃ uaj ∈ Ra in
Algorithm 2 is replaced by ∃ uaj ∈ Ns�S s.t. S ∪ {uaj} ∈ I in Algorithm 3. The rationale
behind this replacement is that, if the allocated tasks are subtracted from Ra for all robots,
the solution set S should satisfy S ∪ {uaj} ∈ I thanks to the partition matroid properties.
The line 8 of Algorithm 3 is to find the globally best task-robot pair.

Algorithm 3 Sample Greedy
Input: f : 2A×T → R+, T ,A, I, p.
Output: A set S ∈ I.

1: Ns ← ∅, S ← ∅
2: N ← {uaj : ∀a ∈ A,∀j ∈ T }
3: for uaj ∈ N do
4: with probability p,
5: Ns ← Ns ∪ {uaj}
6: end for

7: while ∃ uaj ∈ Ns\S s.t. S ∪ {uaj} ∈ I
and ∆f(uaj |S) > 0 do

8: u∗
aj ← argmax

uaj∈Ns\S
∆f(uaj |S)

9: S ← S ∪ {u∗
aj}

10: end while
11: return S

(4)

�f (uaj�S) = f
�
uaj ∪

�
∪ai∈A

Sai

��
− f

�
∪ai∈A

Sai

�
= f (uaj ∪ Sa) +

∑
ai∈A,ai≠a

f (Sai) −
∑

ai∈A
f (Sai)

= f (uaj ∪ Sa) − f (Sa)

= �f (uaj�Sa)

242 Swarm Intelligence (2022) 16:233–260

1 3

This paper considers Algorithm 3 as the baseline algorithm for the performance analy-
sis. Note that (Feldman et al., 2017) provides a good analysis scheme for the sample greedy
for k-extendable systems, especially for the approximation guarantee. Since the partition
matroid constraint is a special case of k-extendable systems, we can borrow the analysis
scheme in Feldman et al. (2017) for the analysis of the proposed DSTA algorithm. There-
fore, we follow the analysis scheme in Feldman et al. (2017), but make necessary modifica-
tions to facilitate the partition matroid constraint to examine the expected approximation
guarantee. To further investigate properties, we derive the upper bound of the variance of
the solution in the proposed DSTA algorithm. Note that this is the first attempt to examine
the variance of any randomised greedy algorithm.

Algorithm 4 Equivalent Sample Greedy
Input: f : 2N → R≥0,N , I, p.
Output: A set S ∈ I.

1: Ns ← ∅, S ← ∅, R ← N , C ← ∅, Q ←
OPT , Ku = ∅ for all u ∈ N

2: for u ∈ N do
3: with probability p,
4: Ns ← Ns ∪ {u}
5: end for
6: while ∃ u ∈ R s.t. S ∪ {u} ∈ I and

∆f(u|S) > 0 do
7: c ← argmax

u∈R
∆f(u|S)

8: Sc ← S
9: C ← C ∪ {c}
10: R ← R\{c}
11: if c ∈ Ns then

12: S ← S ∪ {c}
13: Q ← Q ∪ {c}
14: Let Kc ⊆ Q\S be the smallest

set s.t. Q\Kc ∈ I
15: else
16: if c ∈ Q then
17: Kc ← {c}
18: else
19: Kc ← ∅
20: end if
21: end if
22: Q ← Q\Kc

23: end while
24: return S

Following (Feldman et al., 2017), we present Algorithm 4, which results in the output
S equivalent to Algorithm 3, but contains a few auxiliary variables. Algorithm 4 allows us
to ease the performance analysis. To derive the theoretical approximation guarantee in the
average sense, it is necessary to take all task-robot pairs into account, even those that are
not in the sample set. Then, in line 11 of Algorithm 4, we check whether the current con-
sidered pair c is in the sample set. If c is in Ns , it means that c has been sampled and should
be put into the solution set S. In this way, we can analyse the theoretical performance of the
random sampling in the average sense. Note that Algorithm 4 introduces a few auxiliary
variables, such as R, OPT, C, Sc , Q, and Kc , which are highlighted in magenta. These vari-
ables have no effect on procedures of generating S and hence on the output S, but are used
for the convenience of analysis. Therefore, Algorithm 4 is equivalent to Algorithm 3.

Let us briefly discuss the meanings and roles of the auxiliary variables. The set R in
Algorithm 4 is for remaining pairs, i.e., R = N�C , and OPT is the optimal solution. There
is no need to know the exact value of OPT because it is introduced only for the theoretical
analysis.

The variable C is a set that contains all pairs that have already been considered by Algo-
rithm 4 regardless of whether they are added to S or not.

Sc is a set that contains the selected pairs at the beginning of the current iteration. At the
end of the current iteration, S = Sc ∪ {c} if c is added into S and Q, otherwise S = Sc.

243Swarm Intelligence (2022) 16:233–260

1 3

Q is an independent set introduced to help to prove the relationship between the
expected function utility of the solution set S of DSTA and that of the optimal solution set
OPT.

Kc is a set that is introduced to ensure Q remains independent even as c is added. Fol-
lowing the matroid properties, Kc is removed from Q to ensure the independence of Q.
Before c is added, Q is independent and thus satisfies the partition matroid constraint at
each iteration. Once c is added, Q could have at most two common elements within one
partition. This implies that the set Kc is either an empty set or a singleton, i.e., |Kc| ≤ 1.

The variables with subscript in Algorithm 4, e.g. Kc and Sc , are not single variables, but
they have a distinct value for each c ∈ C . On the other hand, variables denoted without any
subscript, e.g. S or Q, are single variables.

4.2 Performance analysis

The main characteristics of the approximation guarantee and computational complexity of
the proposed DSTA algorithm are summarised in Theorem 2.

Theorem 2 Suppose the max-consensus in Algorithm 1 assures convergence. Then, the
DSTA algorithm achieves the following expected approximation guarantees, Ga , for sub-
modular objective functions:

with an expected total computational complexity of O(pnr) and individual complexity of
O(pr2) for each robot, where p is the sampling probability, r is the number of tasks, i.e.,
r = |T| , and n is the number of pairs, i.e., n = |T| × |A|.

The computational complexity of DSTA can be easily proven. As shown in Algo-
rithm 2, there are at most r rounds of auctions. In each round, each robot requires func-
tion evaluations at most pr times on average. Since there are |A| number of robots, the
total number of utility function evaluations in each auction is O(pn). Therefore, the
average total time complexity is O(pnr). For each robot, the average individual time
complexity is equivalent to the average total complexity divided by the number of
robots, i.e., O(pr2).

Let us now investigate the approximation guarantee of DSTA through Algorithm 4. To
prove the approximation guarantee given in Theorem 2, we first show the bound of expec-
tation of f(S), i.e., �

[
f (S)

]
 , with respect to �[f (S ∪ OPT)] in Lemma 3. Lemmas 1 and 2 will

be required to prove the bound of �
[
f (S)

]
 in Lemma 3.

Lemma 1 �[|Ku|] ≤ max(p, 1 − p) for all u ∈ N .

Proof See Appendix A. ◻

Lemma 2 �[f (S)] =
∑

u∈N p�
�
�f (u�Su)

�
.

Proof See Appendix B. ◻

(5)Ga =

{ p

p+max(p,1−p)
for monotone

p(1−p)

p+max(p,1−p)
for non-monotone

244 Swarm Intelligence (2022) 16:233–260

1 3

Now, let us derive the lower bound of �
[
f (S)

]
 with respect to �[f (S ∪ OPT)] based on

the results of Lemmas 1 and 2.

Lemma 3 �[f (S)] ≥ p

p+max(p,1−p)
�[f (S ∪ OPT)].

Proof According to the evolution of Q in Algorithm 4, Q is independent at the end of each
iteration, i.e., Q ∈ I . S is a subset of Q i.e., S ⊆ Q , since every element c that is added to S
is also in Q. Therefore, from Definition 5, we have S ∪ {q} ∈ I ∀q ∈ Q�S . By the termina-
tion condition of Algorithm 4, �f (q|S) ≤ 0 ∀q ∈ Q�S . Hence, at the termination of Algo-
rithm 4, it holds that

Let Q�S = {q1, q2,… , q|Q�S|} , then

If u ∈ C , it implies that the mgv of u is no less than any other element from Ku∖S at that
iteration, i.e.,

Additionally, any pair can be removed from Q at most once. In other words, the pair that
is contained in Ku at one iteration is always different from other iterations when Ku is not
empty. Hence, the sets in the sequence {Ku�S}u∈N are disjoint. According to the definition
and evolution of Q, Q can be expressed as

Note that if u ∉ C , then Ku = � and Su = � by convention. Denoting N as {u1,… , u|N|} ,
we define Qi

u
 as:

where Ni = {u1,… , ui} . Then, it is clear that Su ⊆ S ⊆ Qi
u
 . From Eq. (7), we obtain

where Ki
u
 and Si

u
 denote Ku and Su corresponding to ui , respectively.

∑
q∈Q�S

�f (q|S) ≤ 0.

f (S) = f (Q) −
∑|Q�S|

i=1
�f (qi|S ∪ {q1,… , qi−1})

≥ f (Q) −
∑|Q�S|

i=1
�f (qi|S) (submodularity)

≥ f (Q)

(6)�f (u|Su) ≥ �f (q|Su), ∀q ∈ Ku�S.

(7)Q = (S ∪ OPT)� ∪u∈N (Ku�S).

(8)Qi
u
∶= (S ∪ OPT)� ∪u∈Ni

(Ku�S)

f (Q) = f (S ∪ OPT) −
∑|N|

i=1
�f (Ki

u
�S|Qi

u
)

(submodularity)≥ f (S ∪ OPT) −
∑|N|

i=1
�f (Ki

u
�S|Si

u
)

(Eq. (6))≥ f (S ∪ OPT) −
∑

u∈N
|Ku�S|�f (u|Su)

≥ f (S ∪ OPT) −
∑

u∈N
|Ku|�f (u|Su)

245Swarm Intelligence (2022) 16:233–260

1 3

By taking an expectation over f(S), we have

The result is clear by rearranging the above inequality. ◻

We are now ready to complete the proof of Theorem 2. We denote the objective func-
tion f as fm and fn for the monotone and non-monotone cases, respectively.

Proof of Theorem 2 To obtain the approximation guarantees for both monotone and non-
monotone submodular utility functions, we need to analyse the relationship between
f (S ∪ OPT) and f(OPT). If f is monotone, then

From Lemma 3 and Eq. (9), it is clear that

For the non-monotone case, we define a new submodular function h ∶ 2N → ℝ≥0 as
h(X) = fn(X ∪ OPT) ∀X ⊆ N . Since S contains every element with probability at most p,
Theorem 1 yields

Hence, we have

 ◻

Corollary 1 The trade-off between approximation guarantee and computational complex-
ity can be controlled by adjusting the sampling probability p. When p = 0.5 , the solution
given by DSTA is lower-bounded by 1

2
 and 1

4
 of the optimal solution for the monotone and

non-monotone cases, respectively.

Proof Recalling that p is the sampling probability and p ∈ (0, 1] , we have

�[f (S)] ≥ �[f (Q)]

≥ �[f (S ∪ OPT)] − �[|Ku|] ⋅ �
[∑

u∈N
�f (u|Su)

]

(Lemma 1)≥ �[f (S ∪ OPT)] −max(p, 1 − p) ⋅
∑

u∈N
�[�f (u|Su)]

(Lemma 2)= �[f (S ∪ OPT)] −max(p, 1 − p) ⋅
1

p
�[f (S)].

(9)fm(S ∪ OPT) ≥ fm(OPT).

�[fm(S)] ≥
p

p +max(p, 1 − p)
⋅ �[fm(S ∪ OPT)] (Lemma 3)

≥
p

p +max(p, 1 − p)
⋅ fm(OPT).

�[fn(S ∪ OPT)] = �[h(S)] ≥ (1 − p)h(�) = (1 − p)fn(OPT).

�[fn(S)] ≥
p(1 − p)

p +max(p, 1 − p)
⋅ fn(OPT).

246 Swarm Intelligence (2022) 16:233–260

1 3

Therefore, in the monotone case, the expected approximation ratios are obtained as:

In the non-monotone case,

As shown in Eqs. (10) and (11), for p ∈ (0.5, 1] , the lower bound of the expected approxi-
mation ratio becomes stagnated in the monotone case and decreasing in the non-monotone
case. Moreover, it is clear that the computational complexity increases as the sampling
probability increases. On the other side, for p ∈ (0, 0.5] , the sampling probability provides
trade-off capability between the approximation ratio and computational complexity. As the
probability increases for p ∈ (0, 0.5] , the expected approximation ratios improve for both
monotone and non-monotone cases, but the computational complexity also increases. From
Eqs. (10) and (11), the best expected approximation guarantees can be readily obtained,
when p = 0.5 , as:

 ◻

Now, let us investigate another key property of the DSTA algorithm, that is the vari-
ance of the functional value of the solution.

Theorem 3 Suppose the max-consensus in Algorithm 1 assures convergence. Then, the
variance of the converged objective function is bounded as:

Proof f 2(S) can be obtained as:

where Si ≜ Ni ∩ S . Its expectation is obtained as:

max(p, 1 − p) =

{
1 − p for p ∈ (0, 0.5]

p for p ∈ (0.5, 1].

(10)�[fm(S)] ≥

{
p ⋅ fm(OPT) for p ∈ (0, 0.5]

1∕2 ⋅ fm(OPT) for p ∈ (0.5, 1] .

(11)�[fn(S)] ≥

{
p(1 − p) ⋅ fn(OPT) for p ∈ (0, 0.5]

(1 − p)∕2 ⋅ fn(OPT) for p ∈ (0.5, 1] .

�[f (S)] ≥

{
1∕2 ⋅ f (OPT) if f is monotone

1∕4 ⋅ f (OPT) if f is non-monotone .

(12)Var(f (S)) ≤

(
1

p
− 1

)
f 2(OPT) + p ⋅ Var

(∑
u∈N

�f (u|Su)
)
.

(13)
f 2(S) =

(∑
u∈S

�f (u|Su)
)2

=
∑
u∈S

�f 2(u|Su) + 2
∑
ui∈S

∑
uj∈S

i

�f (ui|Sui)�f (uj|Suj),

247Swarm Intelligence (2022) 16:233–260

1 3

Hence, the variance of f(S) is bounded as:

 ◻

Remark 5 Theorem 3 shows that the upper bound of the variance of f(S) depends on the
sampling probability p and variance of the summation of the marginal gain values. It is
clear that the first term on the right-hand side of Eq. (14) is exponentially diminishing
as the sampling probability increases. For the monotone case, the variance of the random
variable Su becomes smaller, approaching zero, as p increases. This implies that the var-
iance of the summation of the marginal gain values decreases, converging to zero, as p
increases to one. Therefore, it is expected that the upper bound of the variance decreases
as the sampling probability increases. For the non-monotone case, the variance of Su would
not become smaller even if p increases since the DSTA algorithm will be terminated when
�f (u|S) becomes negative. Note that negative marginal gain value is possible not in the
monotone case, but only in the non-monotone case. This means that the second term on
the right-hand side of Eq. (14) and consequently the variance could become larger as p
increases for the non-monotone cases.

5 Numerical simulations

In this section, we validate the theoretical analysis and examine the performance of the
DSTA algorithm. For rigorous validation, we consider two application scenarios of a multi-
target surveillance mission. In the first scenario, we use unmanned aerial vehicles (UAVs)
and compare DSTA with the benchmark algorithms. The first benchmark algorithm is a
widely accepted decentralised task allocation algorithm, CBBA (Choi et al., 2009). The
second benchmark algorithm is a state-of-the-art task allocation algorithm denoted as GA
(Kotwal & Dhope, 2015) that is based on a genetic algorithm. A simple demonstration of

�[f 2(S)] = p ⋅ �

��
u∈N

�f 2(u�Su)
�
+ 2p2 ⋅ �

⎡
⎢⎢⎣
�
ui∈N

�
uj∈Ni

�f (ui�Sui)�f (uj�Suj)
⎤
⎥⎥⎦

≤ p�

⎡
⎢⎢⎣

��
u∈N

�f (u�Su)
�2⎤

⎥⎥⎦

(Lemma 2)=
1

p
(�[f (S)])2 + p ⋅ Var

(∑
u∈N

�f (u|Su)
)
.

(14)

Var(f (S)) = �[f 2(S)] − (�[f (S)])2

≤

(
1

p
− 1

)
(�[f (S)])2 + p ⋅ Var

(∑
u∈N

�f (u|Su)
)

≤

(
1

p
− 1

)
f 2(OPT) + p ⋅ Var

(∑
u∈N

�f (u|Su)
)
.

248 Swarm Intelligence (2022) 16:233–260

1 3

the multi-target surveillance mission can be found in the literature (Li et al., 2019). While
in the second scenario, we compare DSTA with the state-of-the-art algorithm DGA (Qu
et al., 2019) using spatially static Earth-observing satellites as robot platforms. Both mono-
tone and non-monotone objective functions are considered for each scenario.

The computational complexity of task allocation algorithms is measured by the number
of function evaluations (objective function queries), which is independent from the com-
puter status. Since DSTA requires global consensus among robots, we count the number
of consensus steps to measure the communication complexity. Note that the maximum
number of consensus steps is equal to the number of tasks. To investigate the variances of
DSTA performance, we run 1000 rounds of DSTA in each case. The results are depicted
in bar graph to also indicate the variances. For comparison, we run CBBA (Choi et al.,
2009) or DGA (Qu et al., 2019) for one round in each case because they are deterministic
algorithms.

5.1 Scenario 1: Surveillance mission using UAVs

In this scenario, we assess the performance of DSTA and compare it with CBBA (Choi
et al., 2009) and GA (Kotwal & Dhope, 2015) based on a monotone submodular objective
function (Case 1) and a non-monotone submodular objective function (Case 2). Then, we
examine the trade-off performance of DSTA with respect to different sampling probabili-
ties (Case 3).

We assume that a group of UAVs needs to perform 60 tasks (waypoint targets). Tasks
are randomly located on a W ×W 2D space (W = 10 km). In Case 1 and Case 2, the sam-
pling probability is fixed to 0.5. In Case 3, we fix the number of UAVs to 15 and increase
the sampling probability from 0.1 to 0.9 with a step of 0.1.

Case 1: Monotone submodular objective function
We adapt a monotone submodular utility function from (Segui-Gasco et al., 2015)

which is a coverage-type function for the surveillance mission. Different tasks are marked
with a task value factor vj according to their values. Assume that UAVs are equipped with
different sensors that are suitable for different tasks. The task-robot fitness factor maj rep-
resents the match fitness between the capabilities of Robot a and the requirements of Task
j. The utility of executing the tasks j ∈ Ta is measured as the sum of the product of maj
and vj . For the tasks j ∉ Ta , we add an exponentially decaying term related to the shortest
distance between Task j and tasks in Ta which is denoted as dmin(j, Ta) . When Robot a is
carrying out a task at the location of this task, it can partially serve another one nearby. The
objective function for Robot a is

where d0 is a reference distance. The overall objective function of the surveillance mission
is obtained by combining Eq. (15) and Definition 1:

(15)f (Sa) =
∑
j∈Ta

majvj +
∑
j∉Ta

majvje
−

dmin (j,Ta)

d0 ,

(16)f (S) =
∑
a∈A

[∑
j∈Ta

majvj +
∑
j∉Ta

majvje
−

dmin (j,Ta)

d0

]
.

249Swarm Intelligence (2022) 16:233–260

1 3

In the simulations, the task value factors are uniformly random numbers vj ∈ [0.6, 1.0] .
Each task-robot fitness factor is set as a uniformly random number maj ∈ [0.5, 1.0] . The
reference distance is set as d0 = 1 km.

Figure 3 demonstrates the simulation results comparing the performance of DSTA
with CBBA. On the one hand, as shown in Fig. 3a, the function utilities achieved by
CBBA and DSTA increase with a decreasing increment rate as the number of robots
increases. The nonlinearity of increment is attributed to the submodularity of the objec-
tive function. The proposed DSTA algorithm achieves a comparable quality of solu-
tions, i.e., comparable values of the utility function, to CBBA. On average, the quality
of the DSTA solution increases from 90% to 98% with CBBA as a baseline as shown
in Fig. 3d. On the other hand, Figure 3b shows that the computational complexity of
CBBA and DSTA increases linearly as the number of robots increases. As shown in
Fig. 3 b and d, the computational time of the DSTA algorithm is significantly lower
compared with that of CBBA (less than 10%). It is worth noting that as the size of
the problem increases, the difference between the two algorithms on the function value
becomes tighter, but the difference in computational time becomes more significant.
Overall, DSTA has minor variations in terms of function utilities, computational com-
plexity, and consensus steps in the monotone case.

One advantage of CBBA is that it requires fewer consensus steps than DSTA does,
especially when there are small numbers of UAVs, as shown in Fig. 3c. Therefore,
CBBA has lower potential communication complexity. However, UAVs communicate

(a) Solution quality represented by objective

function utilities.

(b) Computational complexity measured by

numbers of function evaluations.

(c) Communication complexity measured by

numbers of consensus steps.

(d) Percentages of performance of DSTA with

CBBA as a baseline.

Fig. 3 Performance comparison of DSTA and CBBA in the monotone case

250 Swarm Intelligence (2022) 16:233–260

1 3

using task bundle information with CBBA while using single task information with
DSTA. This means that more information needs to be transferred in each consensus step
with CBBA. In addition, the number of consensus steps required by CBBA gets closer
to that required by DSTA as Na goes up. When there are fewer UAVs, some tasks could
be more likely ignored by all UAVs due to random sampling. This is the reason why
DSTA requires fewer consensus steps and shows larger spreads when Na is small as
shown in Fig. 3c.

Next, we compare the performance of DSTA with that of GA (Kotwal & Dhope,
2015). The number of robots is fixed as 15. For GA, the size of the population is set as
20. In each iteration, we store the largest function utility among the population of 20. In
order to avoid the local optima, we set the mutation probability to 0.5. We set the maxi-
mum number of iterations to 8000.

Figure 4 reports the simulation results. The number of function evaluations of GA
is proportional to the number of iterations. According to Fig. 4, the maximum utility
achieved by GA is around 131. DSTA achieves an average utility of about 129 which is
98.5% of GA. On average, DSTA executes 13.6 × 103 function evaluations. In contrast,
GA executes more function evaluations than DSTA to achieve the same function utility.

Case 2: Non-monotone submodular objective function
A non-monotone submodular objective function is designed by modifying the mono-

tone objective function. Assume that tasks with high importance are usually difficult to
execute. Allocating many difficult tasks to one robot could exceed the capability of the
robot and cause mission failure. Therefore, it is risky to allocate many important tasks
to one robot, but only a few to others. We introduce an inter-task effect factor xij as a
penalty to the concentration of important tasks for each robot.

The overall objective function in the non-monotone case is modelled as

where �x is a scaling parameter of the penalty term. The model uses xij = evivj to discourage
the concentration of important tasks in one robot. Note that the task allocation algorithms
will stop once the mgvs of all remaining tasks become negative.

It is assumed that there are Na special tasks that are more important and difficult
than others. We set the importance factors of these tasks as uniformly random numbers
vj ∈ [5.0, 6.0] . For these tasks, the match fitness factors maj are set to be 0.2 for certain
UAVs and 0.1 for others. The importance factors of other tasks are uniformly distributed
over [0.6, 1.0] and the match fitness factors related to these tasks are uniformly distributed
over [0.5, 1.0]. To examine the variance of the performance of DSTA, we fix the values of

(17)f (S) =
∑
a∈A

[∑
j∈Ta

majvj − 𝜆x

∑
i,j∈Ta ,i<j

xij

]
,

Fig. 4 Performance comparison
of DSTA and GA in the mono-
tone case

251Swarm Intelligence (2022) 16:233–260

1 3

these importance factors and match fitness factors once they are assigned at the beginning
of the algorithm. We set the scaling factor of the penalty term to �x = 0.01.

The simulation results are reported in Fig. 5. The results confirm that the proposed
DSTA achieves better average function values and is still significantly faster than CBBA.
Figure 5a shows that the average utilities achieved by DSTA are higher than the utilities
achieved by CBBA. Compared with the monotone case in Fig. 3a, the spreads in Fig. 5a are
larger. This is because whether the special tasks are selected or not has a significant impact
on the results of DSTA and consequently its variation. When the special tasks are sampled,
DSTA is most likely to select them greedily at the beginning, considering their relatively
large mgvs. Unlike in the monotone case, this could quickly make the mgv, �f (u|S) , nega-
tive and terminate the algorithm. Nonetheless, as shown in Fig. 5a, even the worst cases
of the function values achieved by DSTA are comparable to those of CBBA. The potential
attribute of the relatively poor performance of CBBA is that robots greedily select more
important tasks at early iterations. If robots select more tasks in later iterations, the total
function values could start to decrease due to the non-monotonicity of the utility function.
Hence, CBBA gets trapped in local optima with a few allocated tasks per robot. Note that
CBBA only has constant approximation guarantee for monotone submodular functions.
By contrast, it may exhibit arbitrarily poor performance with non-monotone utility func-
tions, which is confirmed by the simulation results. However, the sampling procedure in
the proposed DSTA might enable abandoning the special tasks with a certain probability
and hence utilising most of the available tasks to find solutions without getting trapped in
local optima.

(a) Solution quality represented by objective

function utilities.

(b) Computational complexity measured by

numbers of function evaluations.

(c) Communication complexity measured by

numbers of consensus steps.

(d) Percentages of performance of DSTA with

CBBA as a baseline.

Fig. 5 Performance comparison of DSTA and CBBA in the non-monotone case

252 Swarm Intelligence (2022) 16:233–260

1 3

Then, we compare the performance of DSTA with that of GA (Kotwal & Dhope, 2015)
using the same parameter settings as before. According to Fig. 6, DSTA achieves an aver-
age utility of 37 and executes 13.2 × 103 function evaluations on average. In contrast, the
maximum utility achieved by GA is only 8. Moreover, GA executes much more function
evaluations than DSTA. This is because GA tends to allocate more tasks to each robot.
However, in the non-monotone case, adding too many tasks likely decreases the over-
all utility due to the negative marginal gain caused by the penalty term. On the contrary,
DSTA will allocate a proper number of tasks to each robot. In other words, the DSTA
algorithm will terminate once the largest mgv of the remaining tasks becomes negative.
The simulation result indicates that DSTA can still work well in extreme cases where the
objective function has significant non-monotonicity, but the benchmark algorithms (CBBA
and GA) fail to provide a satisfactory solution.

Case 3: Trade-offs with respect to different sampling probabilities
To validate the trade-off analysis in Sect. 4, we run another set of simulations with

respect to different sampling probabilities. Parameters related to the monotone and non-
monotone objective functions have the same settings as in Case 1 and Case 2, respectively,
except the number of robots and the sampling probability. Simulation results for the mono-
tone and non-monotone cases are demonstrated in Figs. 7 and 8, respectively.

Figure 7 shows that the average function utility, computational complexity, and commu-
nication complexity increase as the sampling probability p increases in the monotone case.
As shown in Fig. 7a and c, the increment rates of the functional utility and the number of
consensus steps decrease for the fixed increase in the sampling probability. This feature is
attributed to the fact that the utility function given in Eq. (16) and the task-robot pair cover-
age by random sampling are submodular. Figure 7a shows that the variation of the func-
tional utility decreases as p increases, which confirms the analysis results in Theorem 3
and Remark 5. Figure 7b indicates that the average computational complexity is linearly
increasing, which is coherent with the relevant theoretical result described in Theorem 2.

Simulation results in the non-monotone case are reported in Fig. 8. As shown in Fig. 8a,
the average function utility achieved by DSTA initially increases and then decreases as
the sampling probability increases, which demonstrates the non-monotone submodularity.
Similarly, the average communication complexity shown in Fig. 8c also first increases and
then decreases as p goes up from 0.1 to 0.9. This is because when p ≤ 0.5 , robots can cover
more tasks with larger sampling probability, which means that they require more consensus
steps. However, with larger sampling probability when p > 0.5 , the task allocation process
can get trapped easier by the special tasks. Figure 8b shows the tendency of the average
computational complexity which is linearly increasing.

Now, let us examine the variation of the functional utilities in the non-monotone case.
As shown in Fig. 8a, the spread of the error bars is bigger than that in the monotone case

Fig. 6 Performance comparison
of DSTA and GA in the non-
monotone case

253Swarm Intelligence (2022) 16:233–260

1 3

depicted in Fig. 7a. This is attributed to the difference in the nature of marginal gain val-
ues. In the monotone case, considering more tasks is always beneficial with respect to the
functional utility as mgvs are always non-negative. In the non-monotone case, adding more
tasks is not always beneficial since it might produce negative mgvs. Therefore, the task
allocation process could provide poor solution quality when increasing the sampling proba-
bility. The global consensus stops once the task allocation process gets trapped. Therefore,
the large spreads shown in Fig. 8a and c are resulted from the fact that the task allocation
algorithm is likely to be trapped in local optimal solutions. Nevertheless, as demonstrated
in Fig. 8a, DSTA provides better functional utility values in most of the cases and compa-
rable values in the very worst case, compared with CBBA, unless p is significantly small.

It is worthwhile to note that the variation of the functional values is small around 0.5
and 0.6. Then, the variation becomes larger as p further increases. Beyond certain prob-
ability, as more task-robot pairs are sampled, the chance to be trapped in poor solutions
increases. The variation of the functional values becomes even larger than lower probabil-
ity cases as p gets closer to 1 in the non-monotone case. This is aligned with the analysis
results of Theorem 3 and Remark 5.

It is expected that the more significant the importance of special tasks becomes, the big-
ger the variation might become. This is because more significant importance implies more
significant mgv, compared with other tasks. When mgvs of tasks are much bigger than the
others, the greedy selection procedure in the algorithm could increase the chance of being

(a) Solution quality represented by objective

function utilities.

(b) Computational complexity measured by

numbers of function evaluations.
(c) Communication complexity measured by

numbers of consensus steps.

Fig. 7 Performance of the DSTA algorithm with respect to different sampling probabilities in the monotone
case N

a
= 15 (red lines denote the values of CBBA, which are invariant with respect to the sampling prob-

ability)

254 Swarm Intelligence (2022) 16:233–260

1 3

trapped in local solutions. For validation of the argument, we removed the special tasks
from the non-monotone case and conducted Monte-Calro simulations. Figure 9 shows the
results on the functional utility. As shown in the figure, median functional values keep
increasing and the increment decreases as the sampling probability increases. Decreases in
the functional values are not present and thus it is expected that the chance of being trapped
in poor quality solutions is low. This implies that the variance of the functional values will
decrease as p increases, which is confirmed in the simulation results illustrated in Fig. 9.

5.2 Scenario 2: Surveillance mission using satellites

We conducted a further comparison between DSTA and a state-of-the-art algorithm,
DGA (Qu et al., 2019). The work in Qu et al. (2019) uses the concept of admissible task
sets which means that the tasks are constrained to different admissible task sets for each
robot. For a fair comparison, the proposed DSTA also adopts the concept of admissible
task sets. Thus, the main difference between DSTA and DGA in the comparison is the
task sampling procedure. We denote the admissible task set for Robot a as Na . DGA
was developed and proved for stationary robots, unlike CBBA and DSTA. Hence, this
paper adopts a new scenario with satellites from (Qu et al., 2019) in which the benefits
of DGA can be well presented.

(a) Solution quality represented by objective

function utilities.

(b) Computational complexity measured by

numbers of function evaluations.
(c) Communication complexity measured by

numbers of consensus steps.

Fig. 8 Performance of the DSTA algorithm with respect to different sampling probabilities with special
tasks in the non-monotone case N

a
= 15 (red lines denote the values of CBBA, which are invariant with

respect to the sampling probability)

255Swarm Intelligence (2022) 16:233–260

1 3

Like in Qu et al. (2019), it is assumed that all satellites face vertically downwards to
the ground. The operation range of each robot is a cone with a circle of radius ro = 20
km on the ground. The mission area is assumed to be the plane of a local approximation
of observation of the earth. Each task is a way-point ground target to be observed by
satellites. The vertical projections of robots and the positions of targets are stationary
and randomly located in the mission area which is a W ×W 2D plane (W = 60 km). The
tasks that are located in the operation circle of Robot a are contained in the admissible
task set Na . We set the number of targets as 100 and increase the number of satellites
from 4 to 20 which is denoted as Na . The sampling probability for DSTA is fixed to 0.5.

We model the objective functions for the monotone and non-monotone cases as simi-
lar functions in the first scenario. The variables in this scenario have the same meanings
as those described in Scenario 1, except that the robots are satellites instead of UAVs.

Case 1: Monotone submodular objective function
The overall objective function in the monotone case is modelled as

The parameters have the same settings as those in Scenario 1 Case 1. The simula-
tion results are reported in Fig. 10. DSTA achieves lower function utilities and displays
lower computational and communication complexity compared to DGA, as shown in
Fig. 10 a, b, and c. According to Fig. 10 d, the quality of the DSTA solution increases
from 60.3% to 85.1%, and the running time of DSTA increases from 31.7% to around
44.9% on average with DGA as a baseline. In other words, when Na = 20 , DSTA
achieves 55.1% of computational complexity reduction by sacrificing 14.9% of function
utility on average compared with DGA. The reason why the number of consensus steps
of DSTA is smaller than that of DGA is that DSTA has selected fewer tasks due to ran-
dom sampling.

Case 2: Non-monotone submodular objective function
Similarly to Scenario 1 Case 2, the objective function in the non-monotone case in

Scenario 2 is modelled as

(18)f (S) =
∑
a∈A

[∑
j∈Ta

majvj +
∑

j∈Na�Ta

majvje
−

dmin (j,Ta)

d0

]
.

(19)f (S) =
∑
a∈A

[∑
j∈Ta

majvj − �x

∑
i,j∈Ta ,i≠j

xij

]
.

Fig. 9 Function utility of the
DSTA algorithm with respect to
different sampling probabilities
without special tasks in the non-
monotone case N

a
= 15

256 Swarm Intelligence (2022) 16:233–260

1 3

We use the same parameter settings as those in Scenario 1 Case 2, except the number
of tasks and the range of mission area. The simulation results are reported in Fig. 11.
As shown in Fig. 11a and b, DSTA’s runtimes are approximately half with respect to
DGA’s, and DSTA achieves significantly better solution quality. The reason for the rel-
atively poor performance of DGA in terms of solution quality is that DGA greedily
selects those important special tasks at early iterations. As robots select more tasks,
the mgvs could become negative. Hence, DGA gets trapped in local optima with only a
few tasks selected. With the help of the sampling procedure, DSTA avoids those special
tasks with a certain probability. Hence, robots cover more tasks and achieve better func-
tion values without getting trapped in local optima. This is also the reason why DSTA
requires more consensus steps than DGA as shown in Fig. 11c.

6 Conclusions and future work

This paper presents an efficient decentralised task allocation algorithm for MRS. Since task
allocation problems can be considered as optimisation of a set function subject to a matroid
constraint, we have leveraged the submodular maximisation method to solve the task
allocation problems for theoretical tractability. The CBBA algorithm (Choi et al., 2009),
which is one of the most applied and practical task allocation algorithms, also utilises the
submodularity concept and hence provides an approximation guarantee. The issue is that
it provides an approximation guarantee only for monotone submodular utility functions.

(a) Solution quality represented by objective

function utilities.

(b) Computational complexity measured by

numbers of function evaluations.

(c) Communication complexity measured by

numbers of consensus steps.

(d) Percentages of performance of DSTA with

DGA as a baseline.

Fig. 10 Performance comparison of DSTA and DGA in the monotone case

257Swarm Intelligence (2022) 16:233–260

1 3

To overcome this issue, this paper utilises a sampling process, i.e., drawing task samples
from the set of all tasks. Consequently, the proposed task allocation algorithm achieves
an expected approximation guarantee not only for monotone submodular utility functions
but also for general non-monotone submodular utility functions. Moreover, the computa-
tional complexity of the proposed algorithm can be further reduced and adjusted as the
introduction of the sampling process allows reduction of function evaluations: it requires to
evaluate function values for only task samples, not for all the tasks. The performance of the
proposed task allocation algorithm is investigated through theoretical analysis. The results
of numerical simulations confirm the validity of the theoretical analysis.

A future research direction would be improving the approximation ratio for both monotone
and non-monotone submodular utility functions. There are some gaps between the theoreti-
cally achievable approximation guarantee and the actual performance of our algorithm. The
key challenge will be how to improve the approximation guarantee for both monotone and
non-monotone cases while maintaining reasonable computational complexity. Applying dif-
ferent sampling probabilities for different tasks could better overcome the local minima issue
which is subject to our future study. Also, it would be worth to modify CBBA with a ran-
dom sampling procedure and analyse its performance improvement in the non-monotone case.
Another research direction would be further reducing the computational complexity while
achieving the same or similar approximation guarantee. In our opinion, this could be achieved
by introducing the lazy greedy concept (Minoux, 1978) to the proposed algorithm.

(a) Solution quality represented by objective
function utilities.

(b) Computational complexity measured by
numbers of function evaluations.

(c) Communication complexity measured by
numbers of consensus steps.

(d) Percentages of performance of DSTA with
DGA as a baseline.

Fig. 11 Performance comparison of DSTA and DGA in the non-monotone case

258 Swarm Intelligence (2022) 16:233–260

1 3

Appendix A Proof of Lemma 1

For the proof, we have three cases to analyse, depending on whether the current pair u is con-
sidered at some point of iteration, i.e., u ∈ C , and whether u is already in Q at the beginning of
the iteration in Algorithm 4. Note that the size of Ku is kept as small as possible.

 i. If u ∉ C for whole iterations, Ku = � and thus the expectation is obtained as:

 ii. If u ∈ C and u ∈ Q at the beginning of the iteration, then Ku = � for u ∈ Ns and
Ku = {u} for u ∉ Ns . Since u is sampled in Ns with probability p, the expectation is
obtained as:

 iii. If u ∈ C and u ∉ Q at the beginning of the iteration, then Ku contains at most one
element for u ∈ Ns , and Ku = � for u ∉ Ns . According to the properties of partition
matroid, if Q becomes dependent after adding u, then Q can remove one element that
is in the same partition with u to remain independence. If Q is still independent after
adding u, then Ku = � . Therefore, we have

In summary, �[|Ku|] ≤ max(p, 1 − p) . ◻

Appendix B Proof of Lemma 2

Let us define a random variable Gu such that its value is equal to the increase of f(S) when
u ∈ N is considered, i.e.,

Note that since f is assumed to be normalised, f (�) = 0 . Given the event Eu , the conditional
expectation of Gu is obtained as

Here, if u is sampled, Gu is equal to �f (u|S�
u
) with the probability of P(Gu|Eu) = p , where S′

u

is defined as Su given event Eu . Note that if u is sampled but not in C, �f (u|S�
u
) is defined as

0 by convention. Otherwise if u is not sampled, Gu is zero. Hence, the conditional expecta-
tion of Gu is:

By the law of total expectation, expectation of Gu is obtained as:

�[|Ku|] = 0

�[|Ku|] = p ⋅ |�| + (1 − p)|{u}| = 1 − p.

�[|Ku|] ≤ p ⋅ 1 + (1 − p)|�| = p.

f (S) = f (�) +
∑
u∈N

Gu.

(20)�[Gu|Eu] =
∑
Gu

P(Gu|Eu)Gu.

(21)
�[Gu|Eu] = p�f (u|S�

u
)

= p�[�f (u|Su)|Eu]

259Swarm Intelligence (2022) 16:233–260

1 3

Hence, the expectation of f(S) is obtained as:

 ◻

Acknowledgements This material is based upon work supported by the Air Force Office of Scientific
Research under award number FA9550-19-1-7032. Any opinions finding and conclusions or recommen-
dations expressed in this material are those of the author(s) and donot necessarily reflect the views of the
United States Air Force.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

Badanidiyuru, A., & Vondrák, J. (2014). Fast algorithms for maximizing submodular functions. In Pro-
ceedings of the 25th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), SIAM, pp.
1497–1514.

Buchbinder, N., Feldman, M., Naor, J. S., & Schwartz, R. (2014). Submodular maximization with cardinal-
ity constraints. In Proceedings of the 25th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), SIAM, pp. 1433–1452.

Choi, H.-L., Brunet, L., & How, J. P. (2009). Consensus-based decentralized auctions for robust task alloca-
tion. IEEE Transactions on Robotics, 25(4), 912–926.

Corah, M., & Michael, N. (2018). Distributed submodular maximization on partition matroids for plan-
ning on large sensor networks. In 2018 IEEE Conference on Decision and Control (CDC), IEEE, pp.
6792–6799.

Cortés, J. (2008). Distributed algorithms for reaching consensus on general functions. Automatica, 44(3),
726–737.

Dias, M. B., Zlot, R., Kalra, N., & Stentz, A. (2006). Market-based multirobot coordination: A survey and
analysis. Proceedings of the IEEE, 94(7), 1257–1270.

Ding, H., & Castanón, D. (2017). Multi-agent discrete search with limited visibility. In 2017 IEEE 56th
Annual Conference on Decision and Control (CDC), IEEE, pp. 108–113.

Dolhansky, B. W., & Bilmes, J. A. Deep submodular functions: Definitions and learning, Advances in Neu-
ral Information Processing Systems 29.

Feldman, M., Harshaw, C., & Karbasi, A. (2017). Greed is good: Near-optimal submodular maximization
via greedy optimization. In Proceedings of the 2017 Conference on Learning Theory (COLT), Vol. 65,
PMLR, pp. 1–27.

Gerkey, B. P., & Matarić, M. J. (2004). A formal analysis and taxonomy of task allocation in multi-robot
systems. The International journal of robotics research, 23(9), 939–954.

Giannini, S., Petitti, A., Di Paola, D., & Rizzo, A. (2016). Asynchronous max-consensus protocol with time
delays: Convergence results and applications. IEEE Transactions on Circuits and Systems I: Regular
Papers, 63(2), 256–264.

�[Gu] = �[�[Gu|Eu)]] =
∑
Eu

P(Eu)�[Gu|Eu]

= p�
[
�f (u|Su)

]

�[f (S)] =
∑
u∈N

p�
[
�f (u|Su)

]

https://extranet.cranfield.ac.uk/licenses/by/4.0/,DanaInfo=creativecommons.org+

260 Swarm Intelligence (2022) 16:233–260

1 3

Iutzeler, F., Ciblat, P., & Jakubowicz, J. (2012). Analysis of max-consensus algorithms in wireless channels.
IEEE Transactions on Signal Processing, 60(11), 6103–6107.

Korsah, G. A., Stentz, A., & Dias, M. B. (2013). A comprehensive taxonomy for multi-robot task allocation.
The International Journal of Robotics Research, 32(12), 1495–1512.

Kotwal, J. G., & Dhope, T. S. (2015). Solving task allocation to the worker using genetic algorithm. Interna-
tional Journal of Computer Science and Information Technologies, 6(4), 3736–3741.

Krause, A., & Golovin, D. (2014). Submodular function maximization. Tractability, 3, 71–104.
Kumar, R. R., Varakantham, P., & Kumar, A. (2017). Decentralized planning in stochastic environments

with submodular rewards. In AAAI, pp. 3021–3028.
Li, T., Shin, H.-S., & Tsourdos, A. (2019). Efficient decentralized task allocation for uav swarms in multi-

target surveillance missions. In 2019 International Conference on Unmanned Aircraft Systems
(ICUAS), IEEE, pp. 61–68.

Macal, C. M., & North, M. J. (2010). Tutorial on agent-based modelling and simulation, Journal of. Simula-
tion, 4, 151–162.

Minoux, M. (1978). Accelerated greedy algorithms for maximizing submodular set functions. In Optimiza-
tion Techniques, Springer, pp. 234–243.

Mirzasoleiman, B., Badanidiyuru, A., Karbasi, A. (2016). Fast constrained submodular maximization: Per-
sonalized data summarization. In Proceedings of the 33rd International Conference on Machine Learn-
ing (ICML), Vol. 48, pp. 1358–1367.

Olfati-Saber, R., & Murray, R. M. (2004). Consensus problems in networks of agents with switching topol-
ogy and time-delays. IEEE Transactions on Automatic Control, 49(9), 1520–1533.

Qu, G., Brown, D., & Li, N. (2015). Distributed greedy algorithm for satellite assignment problem with
submodular utility function. IFAC-PapersOnLine, 48(22), 258–263.

Qu, G., Brown, D., & Li, N. (2019). Distributed greedy algorithm for multi-agent task assignment problem
with submodular utility functions. Automatica, 105, 206–215.

Segui-Gasco, P., Shin, H.-S., Tsourdos, A., & Segui, V. (2015). Decentralised submodular multi-robot task
allocation. In 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
IEEE, pp. 2829–2834.

Shin, H.-S., He, S., & Tsourdos, A. (2020). Sample greedy gossip distributed kalman filter. Information
Fusion, 64, 259–269.

Song, H. O., Lee, Y. J., Jegelka, S., & Darrell, T. (2014). Weakly-supervised discovery of visual pattern
configurations. In Advances in Neural Information Processing Systems, pp. 1637–1645.

Sun, X., Cassandras, C. G., & Meng, X. (2019). Exploiting submodularity to quantify near-optimality in
multi-agent coverage problems. Automatica, 100, 349–359.

Williams, R. K., Gasparri, A., & Ulivi, G. (2017). Decentralized matroid optimization for topology con-
straints in multi-robot allocation problems. In 2017 IEEE International Conference on Robotics and
Automation (ICRA), IEEE, pp. 293–300.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Cranfield University

CERES https://dspace.lib.cranfield.ac.uk

School of Aerospace, Transport and Manufacturing (SATM) Staff publications (SATM)

2022-08-13

Sample greedy based task allocation for

multiple robot systems

Shin, Hyo-Sang

Springer

Shin H-S, Li T, Lee H-I, Tsourdos A. (2022) Sample greedy based task allocation for multiple

robot systems. Swarm Intelligence, Volume 16, Issue 3, September 2022, pp. 233-260

https://doi.org/10.1007/s11721-022-00213-0

Downloaded from Cranfield Library Services E-Repository

