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Abstract
This paper addresses in-schedule dependent task allocation problems for multi-robot sys-
tems. One of the main issues with those problems is the inherent NP-hardness of combina-
torial optimisation. To handle this issue, this paper develops a decentralised task allocation 
algorithm by leveraging the submodularity concept and a sampling process of task sets. 
Our theoretical analysis reveals that the proposed algorithm can provide an approximation 
guarantee of 1/2 of the optimal solution for the monotone submodular case and 1/4 for the 
non-monotone submodular case, both with polynomial time complexity. To examine the 
performance of the proposed algorithm and validate the theoretical analysis, we introduce 
two task allocation scenarios and perform numerical simulations. The simulation results 
confirm that the proposed algorithm achieves a solution quality which is comparable to 
state-of-the-art algorithms in the monotone case and much better quality in the non-mono-
tone case with significantly lower computational complexity.

Keywords  Task allocation · Multi-robot system · Approximation guarantee · 
Submodularity · Sampling greedy

1  Introduction

This paper addresses ID [ST, SR, TA] multi-robot task allocation (MRTA) problems, 
according to the taxonomy of MRTA problems defined by Gerkey and Matarić (2004) and 
Korsah et  al. (2013). In-schedule dependent (ID) problems mean that the utility, or gain 
that is obtained by performing some tasks, of each robot depends on a robot’s own sched-
ule and the other tasks that the robot has already performed. The problem is to find the 
time-extended assignment (TA) of a set of single-robot (SR) tasks to a group of single-task 
(ST) robots. Each robot can perform one task at a time, and one task cannot be performed 
by multiple robots. The well-known travelling sales man problem and many multi-robot 
coordination problems also belong to this category of MRTA. The issue is that the MRTA 
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problems in this category are known to be NP-hard, requiring extensive computational cost 
to find the exact solution.

The task allocation algorithm under consideration in this paper exploits an approxima-
tion approach, and the algorithm is fully decentralised. Approximation approaches can 
balance the optimality of a solution and computational cost by approximating the MRTA 
problem. Moreover, they typically provide a mathematical guarantee on the quality of solu-
tion and computational complexity if the problem satisfies certain conditions. Note that 
the centralised solution of the task allocation problem involves having to communicate all 
the robots and environment data to a centralised entity. This may not be possible in some 
realistic scenarios because relying on a central entity could remove resilience, or the band-
width to communicate all the information may not be available. Employing a decentral-
ised algorithm can improve resilience and relieve communication requirements compared 
with a centralised algorithm, and thus enabling decentralisation could be more practical for 
multi-robot operations.

Decentralised approximation approaches have been frequently applied to solve MRTA 
problems. Choi et al. presented the Consensus-Based Bundle Auction (CBBA) algorithm, 
which is the first decentralised approximate algorithm that provides a solution guaranteed 
to be within a constant factor of the optimal (Choi et al., 2009). By assuming that the util-
ity functions of the robots are monotone non-decreasing and submodular, their algorithm 
is proven to provide a solution with a guarantee of at least 50% of the value of the optimal 
solution.

Submodularity is a property commonly required in approximate approaches to obtain 
a mathematical guarantee. The marginal gain that a robot obtains by executing an extra 
task diminishes as the number of tasks that need to be carried out by the robot increases. 
Williams et al. (2017) investigated a surveillance mission in an urban environment apply-
ing decentralised Sequential Greedy Algorithm (SGA) considering multiple matroid 
constraints. Sun et al. (2019) solved a target covering problem using distributed SGA in 
an environment with obstacles and provided a tighter optimality bound by analysing the 
curvature of submodularity. To improve the efficiency, Qu et al. (2015), Qu et al. (2019) 
developed a Distributed Greedy Algorithm (DGA) for a large group of Earth-observing 
satellites to automatically assign locations based on local information and communication. 
DGA introduces the concept of admissible task set, which is valid for spatially station-
ary robots, but difficult to apply to mobile robots. Decentralised approximation approaches 
were also used in search and localisation (Ding & Castanón, 2017), and sensor networks 
(Kumar et al., 2017; Corah & Michael, 2018) to efficiently solve MRTA problems.

The issue with the aforementioned algorithms is that they can provide approximation 
guarantees only for monotone submodular objective functions: they cannot provide any 
approximation guarantee for maximising non-monotone objective functions. The objec-
tive functions are not necessarily monotone, e.g., if concentrating too many tasks to one 
robot is not beneficial due to battery constraints, then the objective functions could become 
non-monotone.

This paper aims to develop a decentralised task allocation algorithm that can be imple-
mented in practice for large-scale multi-robot systems (MRS) based on submodular maxi-
misation. The focus is to provide guarantees on optimality not only for monotone submod-
ular functions, but also for non-monotone ones with low computational complexity. The 
main contribution of our work is summarised in the following:

This paper introduces a sampling process of task sets to the main concepts of SGA 
which sequentially allocates tasks in a greedy manner considering all tasks available. 
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The proposed algorithm is named DSTA (Decentralised Sample-based Task Allo-
cation). In DSTA, each robot randomly selects tasks with a uniform probability of 
p ∈ (0, 1] from the task set. Then, DSTA runs decentralised SGA based on the task 
samples randomly selected. The DSTA algorithm offers three advantages. First, the 
algorithm achieves approximation guarantees in expectation for both monotone and 
non-monotone submodular functions. Second, the computational complexity can be 
reduced as the algorithm considers only sampled tasks, not all tasks in the greedy 
selection phase. Third, DSTA is able to balance the approximation guarantee and 
computational complexity by adjusting the sampling probability p.

To examine the advantages of the proposed algorithm, we conduct a theoretical analysis. 
The analysis focuses on the expected approximation guarantee and variance of the solution 
and the computational complexity. To the best of our knowledge, this is the first attempt to 
theoretically investigate the variance of the solutions in any randomised SGAs.

We consider two simple surveillance mission scenarios for the validation of the pro-
posed algorithm through Monte Carlo simulations. Using simulations, we investigate the 
performance of the proposed algorithm, i.e., optimality and variance of the solution and 
computational complexity. The simulation results confirm the theoretical analysis. For rig-
orous validation, the performance of the proposed algorithm is compared with that of state-
of-the-art algorithms such as Genetic Algorithm (GA) (Kotwal & Dhope, 2015), CBBA 
(Choi et al., 2009), and DGA (Qu et al., 2019).

The rest of this paper is organised as follows. Section 2 presents preliminaries and back-
grounds. Section 3 describes our task allocation algorithm, and its analysis is detailed in 
Sect. 4. The performance and validity of the analysis are investigated through numerical 
simulations in Sect. 5. Section 6 offers conclusions and discusses future research directions.

2 � Preliminaries and backgrounds

Following the general definition of the task allocation problems from (Dias et al., 2006), 
the particular instance of the task allocation problems under consideration is defined as 
follows:

Definition 1  (Task allocation) Given a set of tasks T  , a set of robots A , and a utility func-
tion fa ∶ 2T → ℝ

+ for each robot a ∈ A , find a non-overlapping allocation, S ∈ A × T  , 
that maximises an objective function f ∶ 2A×T

→ ℝ
+ defined as f (S) =

∑
a∈A f (Sa) where 

f (Sa) ∶= fa(Ta) and Sa denotes the allocation subset for Robot a. Here, S = ∪a∈ASa and Ta 
is the task subset allocated to Robot a.

The task-robot pair for Robot a and Task j is denoted as uaj ∶= (a, j) . Then, Sa can be 
expressed as Sa = {uaj ∶ ∀j ∈ Ta} . In the rest of this paper, we use the term “pair" to refer 
to “task-robot pair" for simplicity. The non-overlapping allocation implies that one task 
cannot be allocated to more than one robot, i.e., the sets {Ta}a∈A are disjoint, but one robot 
can take more than one task.
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Definition 2  (Marginal gain value (mgv) (Krause & Golovin, 2014)) For a set function 
f ∶ 2N → ℝ , S ⊂ N  and u ∈ N  , the marginal gain value (mgv) of f at S with respect to u 
is defined as

This paper assumes that the utility function for each robot is submodular. The definition 
of submodularity follows.

Definition 3  (Submodularity (Krause & Golovin, 2014)) Let N  be a finite set. A real-
valued set function f ∶ 2N → ℝ is submodular if, for all X, Y ⊆ N ,

Equivalently, ∀ A ⊆ B ⊂ N  and u ∈ N�B,

We use “ ∖ ” as the subtraction operation of two sets. The submodular functions consid-
ered are normalised (i.e., f (�) = 0 ) and non-negative (i.e., f (S) ≥ 0 for all S ⊆ N ).

Submodularity is an intuitive notion, meaning that the mgv that a robot obtains by exe-
cuting an extra task diminishes, as the number of tasks carried out by the robot increases. 
We believe that submodularity is a good modelling tool in designing utility functions for 
task allocation problems. In the machine learning community, there has been a great effort 
spearheading this idea: finding suitable submodular models to solve inherently discrete 
tasks, such as summarising documents, scene segmentation, or pattern discovery (Song 
et al., 2014; Mirzasoleiman et al., 2016). Task allocation is an inherently discrete problem, 
and thus “submodularising” task allocation problems should yield useful applications of 
efficient MRS cooperation.

Equation  3 is known as diminishing returns, which is one of the core properties of sub-
modular functions (Krause & Golovin, 2014). Diminishing returns mean that the mgv of 
a given element u will never increase as more elements have already been added into the 
set S. The range of applications holding this property is wide (Choi et al., 2009), e.g., a 
surveillance mission in which the available time for a robot to monitor an additional point 
decreases as a given robot is assigned more points to monitor.

Definition 4  (Monotonicity (Krause & Golovin, 2014)) A set function f ∶ 2N → ℝ is 
monotone if, ∀ A ⊆ B ⊆ N  , f (A) ≤ f (B).

Developing an algorithm that works with non-monotone submodular utility functions 
could be of significant importance since non-monotonicity is a feature that arises naturally 
in many practical scenarios. For example, in a multi-robot surveillance mission, if a robot 
is assigned too many targets to track, it might end up spending its time travelling between 
targets and not gathering enough useful information at the targets’ locations. Therefore, 
adding tasks to a robot’s assignment could reduce the final utility. Monotone submodular 
functions are structurally ill-suited to model such a scenario since, by definition, they do 
not contemplate reduction in the utility. Therefore, this paper considers both monotone and 
non-monotone submodular functions.

(1)�f (u|S) ∶= f (S ∪ {u}) − f (S).

(2)f (X) + f (Y) ≥ f (X ∩ Y) + f (X ∪ Y).

(3)�f (u|A) ≥ �f (u|B).
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The non-overlapping constraint in Definition 1 can be classified as a partition matroid 
constraint. The definition of matroid is given next.

Definition 5  (Matroid (Badanidiyuru & Vondrák, 2014)) A matroid M is a pair of N  and 
I  , i.e., M = (N, I) where N  is a finite set, called ground set, and I ⊆ 2N  is a collection of 
independent sets, satisfying:

•	 � ∈ I

•	 A ⊆ B,B ∈ I ⇒ A ∈ I

•	 A,B ∈ I, |A| < |B| ⇒ ∃ b ∈ B�A such that A ∪ {b} ∈ I .

where | ⋅ | is the cardinality operator.
Representative examples of matroid constraints are uniform and partition matroid con-

straints. For the uniform matroid constraint, which is also called cardinality constraint, 
any subset S ⊆ N  satisfying |S| ≤ k is independent, i.e., S ∈ I  . The partition matroid con-
straint means that an independent subset S can contain at most a certain number of ele-
ments from each partition of N .

For the task allocation problem under consideration, we define the ground set as 
N ∶= {uaj ∶ ∀a ∈ A,∀j ∈ T} , i.e., the set of all pairs, and define I  as the collection of all 
possible non-overlapping allocation solutions. Then the ground set N  can be divided into 
|T| partitions with respect to the tasks j ∈ T  , as shown in Fig. 1. According to the non-
overlapping constraint in Definition 1, a valid allocation solution S can contain at most one 
pair from each partition. For example, if we have already selected the pair ua1j1 from Parti-
tion 1 which contains available pairs corresponding to Task j1 , then we cannot select any 
other task-robot pairs from Partition 1. This implies that the non-overlapping constraint in 
our task allocation problem is a partition matroid constraint.

This paper considers a bidirectional communication graph in which any robot can com-
municate with its neighbouring robots. The definition of neighbouring robot is provided in 
Definition 6. For ease of analysis, we assume that the communication network is strongly 
connected and all communication links are stable. Under the assumption, it is proven that 
the convergence of the max-consensus protocol is guaranteed (Giannini et al., 2016). The 
communication error and the specific communication techniques are out of the scope of 
this work.

Fig. 1   Demonstration of task-robot pairs grouped by different partitions
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Definition 6  (Neighbouring robots (Macal & North, 2010; Shin et al., 2020)) For Robot a 
in a communication network, the robots that have a direct bidirectional communication link 
with Robot a are termed as neighbouring robots of Robot a.

A simple communication graph is illustrated in Fig. 2. Two robots build a bidirectional 
communication link and become neighbouring robots if their physical distance is within 
the transmission range of their onboard communication equipment. Robot a4 and Robot 
a2 are not neighboring robots because they have no direct communication link with each 
other. However, Robot a3 can transmit the information of Robot a4 to Robot a2.

Definition 7  (Consensus step) In a connected network, a consensus step is one round 
of communication after which each robot share the information of all other robots in the 
network.

The following theorem adapted from (Buchbinder et al., 2014) will be used as the math-
ematical foundation to analyse the approximation guarantee of the proposed task allocation 
algorithm. This shows the bound of expectation of h(S), i.e., �[h(S)] with respect to the the 
utility of an empty set, h(�) for all submodular functions h(⋅) . Please refer to (Buchbinder 
et al., 2014) for the proof of Theorem 1.

Theorem 1  ((Buchbinder et al., 2014)) Let h ∶ 2N → ℝ≥0 be a submodular function, and 
let S be a random subset of N  where each element appears with probability at most p (not 
necessarily independently). Then, �[h(S)] ≥ (1 − p)h(�).

3 � Algorithm

As summarised in Algorithm 1, DSTA consists of two phases: the sampling phase (Algo-
rithm 1, lines 1 – 6) and the allocation phase (Algorithm 1, lines 7 – 20).

In the sampling phase, the ground set Na containing all pairs that are related to Robot 
a is generated. Then, Robot a randomly samples pairs from Na with a uniform probability 
p ∈ (0, 1] to form its own sample set, Ra (Algorithm 1, lines 3 – 6). This means that the 
probability of a pair uaj being added into the sample set Ra is p.

Fig. 2   Illustration of a commu-
nication graph with bidirectional 
links
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In the allocation phase, each robot selects a pair and negotiates with other robots in a 
greedy manner. Robot a selects a pair that provides the maximum mgv from its own sample 
set Ra (Algorithm 1, lines 8 – 9). Then, Robot a uses the information of the selected pair 
to negotiate with other robots through the MaxCons function (Algorithm 1, line 10). The 
notation “==” in line 11 is used to judge whether the two elements have the same value. 
“ a∗ == a ” means that Robot a provides the globally largest mgv and wins the auction in 
the current iteration. Robot a adds its pair um

aj
 to its selection set and removes the pair from 

its sample set (Algorithm 1, lines 11 – 13). Otherwise, if Robot a has the pair uaj∗ in its 
sample set, the robot removes uaj∗ from its Ra (Algorithm 1, lines 15 – 17). Robots repeat 
this procedure until there is no more task to allocate.

MaxCons in line 10 of Algorithm 1 is the max-consensus function, which represents the 
negotiation among all robots. For the max-consensus, Robot a sends its current best mgv, 
i.e., �m

a
 together with the corresponding robot id a and task id jm to its neighbours. At the 

same time, each robot receives the same information from all its neighbours. Robots keep 
transferring the information they have received until reaching global consensus. Finally, 
the MaxCons function returns the corresponding robot id a∗ and the task id j∗ of the pair 
that provides the globally largest mgv. 

Algorithm 1 DSTA for Robot a
Input: f : 2A×T → R+, T ,A, p.
Output: A set Sa ⊆ {uaj : ∀j ∈ T }.

1: Ra ← ∅, Sa ← ∅
2: Na ← {uaj : ∀j ∈ T }
3: for uaj ∈ Na do
4: with probability p,
5: Ra ← Ra ∪ {uaj}
6: end for
7: while ∃ uaj ∈ Ra s.t. ∆f(uaj |Sa) > 0

do
8: jm, um

aj ← argmax
j∈T ,uaj∈Ra

∆f(uaj |Sa)

9: ωm
a ← ∆f(um

aj |Sa)

10: a∗, j∗ ← MaxCons(a, jm, ωm
a ,A)

11: if a∗ == a then
12: Sa ← Sa ∪ {um

aj}
13: Ra ← Ra\{um

aj}
14: else
15: if uaj∗ ∈ Ra then
16: Ra ← Ra\{uaj∗}
17: end if
18: end if
19: end while
20: return Sa

Remark 1  Thanks to sampling, each robot in DSTA is required to evaluate function values 
only for a portion of entire pairs, i.e., only for those sampled. This should accelerate the 
task allocation process by some degree, which depends on the sampling probability p.

Remark 2  Developing a max-consensus protocol is beyond the scope of this study. There 
are many max-consensus algorithms available in the existing literature. Also, the conver-
gence characteristics of such algorithms are well studied considering various practical 
aspects of communication, e.g. dynamic networks, asynchronous communication, and time 
delay (Cortés, 2008; Giannini et  al., 2016; Iutzeler et  al., 2012; Olfati-Saber & Murray, 
2004). For the application of the proposed DSTA algorithm, one can select an efficient 
consensus protocol considering the practical aspects.
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Algorithm 2 An Equivalent View of DSTA
Input: f : 2A×T → R+, T ,A, p.
Output: Sets Sa ⊆ {uaj : ∀j ∈ T },∀a ∈ A.

1: for a ∈ A do
2: Ra ← ∅, Sa ← ∅
3: Na ← {uaj : ∀j ∈ T }
4: for uaj ∈ Na do
5: with probability p,
6: Ra ← Ra ∪ {uaj}
7: end for
8: end for
9: while ∃ uaj ∈ Ra s.t. ∆f(uaj |Sa) > 0

do
10: a∗, j∗ ← argmax

a∈A,j∈T ,uaj∈Ra

∆f(uaj |Sa)

11: for a ∈ A do
12: if a∗ == a then
13: Sa ← Sa ∪ {uaj∗}
14: Ra ← Ra\{uaj∗}
15: else
16: if uaj∗ ∈ Ra then
17: Ra ← Ra\{uaj∗}
18: end if
19: end if
20: end for
21: end while
22: return Sa,∀a ∈ A

An equivalent view of DSTA is demonstrated in Algorithm 2, which handles task 
allocation procedures of all robots in one algorithm framework. The lines 1 – 8 of 
Algorithm 2 describe the sampling process of DSTA for all robots. The greedy selec-
tion and MaxCons (Algorithm 1, lines 8 – 10) are represented by the line 10 of Algo-
rithm 2. This line finds the robot id a∗ and task id j∗ corresponding to the pair that can 
provide the globally largest mgv among all robots in the current iteration. Then, in 
lines 11 – 20 of Algorithm 2, the winner Robot a∗ puts its selected pair to its allocation 
set Sa . Next, all robots remove the pairs related to the corresponding task j∗ from their 
sample sets to avoid conflicts.

Remark 3  It is possible that some tasks are not allocated to any robot due to random sam-
pling, especially when the number of robots is small. If coverage of tasks is critical, we can 
increase the sampling probability. Nonetheless, as indicated in Definition 1, allocating all 
tasks is not required in the task allocation problem considered in this paper. This is natu-
ral as we consider not only monotone, but also non-monotone cases where the algorithm 
should be terminated when a marginal gain value becomes negative. In addition, for some 
repetitive missions such as a multi-target surveillance mission, it is unnecessary to cover 
all targets every time when there are too many targets compared with the number of robots.

Remark 4  CBBA algorithm (Choi et al., 2009) is used as a benchmark algorithm as it is 
widely used and is developed based on the decentralised SGA. Each robot with CBBA 
first constructs a task bundle by continually adding tasks in a greedy manner. Then, CBBA 
applies a sophisticated consensus strategy to enable convergence on the list of winning 
bids and robots. The task bundles help CBBA to reduce communication burden but incur 
dramatic increase in the computational complexity. The reason is that if a task j in a bundle 
of a robot is allocated to another robot during one consensus step, the robot must release 
all the tasks that are added to the bundle after the task j, and reconstruct the bundle in the 
next iteration. Reconstructing the bundle requires additional function evaluations and thus 
increases the computational complexity.
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4 � Analysis

This section analyses the performance, especially optimality and computational complex-
ity, of the DSTA algorithm. As discussed in Sect. 3, for ease of analysis, it is assumed that 
the communication network is strongly connected and stable. Under the assumption, it is 
well known that the convergence of the max-consensus is established (Cortés, 2008; Gian-
nini et al., 2016; Iutzeler et al., 2012; Olfati-Saber & Murray, 2004) and thus the decentral-
ised algorithm can be understood in an equivalent view shown in Algorithm 2.

4.1 � Algorithm analysis

For the convenience of analysing the theoretical performance of the proposed decen-
tralised DSTA, we transform Algorithm  2 to an equivalent version, Algorithm  3, which 
first samples the task-robot pairs and then performs a greedy algorithm for the sam-
pled set. We define the ground set N  as a set containing all task-robot pairs, i.e., 
N ∶= {uaj ∶ ∀a ∈ A,∀j ∈ T} = ∪a∈ANa . I is defined as the collection of all independent 
sets of task-robot pairs. An independent set of task-robot pairs means that this set can contain 
at most one task-robot pair from each partition determined by each task as described in Fig 1.

According to Definition 1, the sets {Ta}a∈A are disjoint, i.e., ∪a∈ASa ∈ I  . Also, from 
Definition 1, S = ∪a∈ASa and f (∪a∈ASa) =

∑
a∈A f (Sa) . Denoting the ith robot as ai , we 

have:

We can thus represent the DSTA algorithm with respect to S, instead of Sa , in a centralised 
view under the assumption of the consensus convergence. The resulting algorithm given in 
Algorithm 3 is equivalent to the sampling greedy algorithm for submodular maximisation 
subject to a partition matroid constraint. Note that the while loop condition ∃ uaj ∈ Ra in 
Algorithm 2 is replaced by ∃ uaj ∈ Ns�S s.t. S ∪ {uaj} ∈ I  in Algorithm 3. The rationale 
behind this replacement is that, if the allocated tasks are subtracted from Ra for all robots, 
the solution set S should satisfy S ∪ {uaj} ∈ I  thanks to the partition matroid properties. 
The line 8 of Algorithm 3 is to find the globally best task-robot pair.

Algorithm 3 Sample Greedy
Input: f : 2A×T → R+, T ,A, I, p.
Output: A set S ∈ I.

1: Ns ← ∅, S ← ∅
2: N ← {uaj : ∀a ∈ A,∀j ∈ T }
3: for uaj ∈ N do
4: with probability p,
5: Ns ← Ns ∪ {uaj}
6: end for

7: while ∃ uaj ∈ Ns\S s.t. S ∪ {uaj} ∈ I
and ∆f(uaj |S) > 0 do

8: u∗
aj ← argmax

uaj∈Ns\S
∆f(uaj |S)

9: S ← S ∪ {u∗
aj}

10: end while
11: return S

(4)

�f (uaj�S) = f
�
uaj ∪

�
∪ai∈A

Sai

��
− f

�
∪ai∈A

Sai

�
= f (uaj ∪ Sa) +

∑
ai∈A,ai≠a

f (Sai ) −
∑

ai∈A
f (Sai )

= f (uaj ∪ Sa) − f (Sa)

= �f (uaj�Sa)
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This paper considers Algorithm 3 as the baseline algorithm for the performance analy-
sis. Note that (Feldman et al., 2017) provides a good analysis scheme for the sample greedy 
for k-extendable systems, especially for the approximation guarantee. Since the partition 
matroid constraint is a special case of k-extendable systems, we can borrow the analysis 
scheme in Feldman et al. (2017) for the analysis of the proposed DSTA algorithm. There-
fore, we follow the analysis scheme in Feldman et al. (2017), but make necessary modifica-
tions to facilitate the partition matroid constraint to examine the expected approximation 
guarantee. To further investigate properties, we derive the upper bound of the variance of 
the solution in the proposed DSTA algorithm. Note that this is the first attempt to examine 
the variance of any randomised greedy algorithm.

Algorithm 4 Equivalent Sample Greedy
Input: f : 2N → R≥0,N , I, p.
Output: A set S ∈ I.

1: Ns ← ∅, S ← ∅, R ← N , C ← ∅, Q ←
OPT , Ku = ∅ for all u ∈ N

2: for u ∈ N do
3: with probability p,
4: Ns ← Ns ∪ {u}
5: end for
6: while ∃ u ∈ R s.t. S ∪ {u} ∈ I and

∆f(u|S) > 0 do
7: c ← argmax

u∈R
∆f(u|S)

8: Sc ← S
9: C ← C ∪ {c}
10: R ← R\{c}
11: if c ∈ Ns then

12: S ← S ∪ {c}
13: Q ← Q ∪ {c}
14: Let Kc ⊆ Q\S be the smallest

set s.t. Q\Kc ∈ I
15: else
16: if c ∈ Q then
17: Kc ← {c}
18: else
19: Kc ← ∅
20: end if
21: end if
22: Q ← Q\Kc

23: end while
24: return S

Following (Feldman et al., 2017), we present Algorithm 4, which results in the output 
S equivalent to Algorithm 3, but contains a few auxiliary variables. Algorithm 4 allows us 
to ease the performance analysis. To derive the theoretical approximation guarantee in the 
average sense, it is necessary to take all task-robot pairs into account, even those that are 
not in the sample set. Then, in line 11 of Algorithm 4, we check whether the current con-
sidered pair c is in the sample set. If c is in Ns , it means that c has been sampled and should 
be put into the solution set S. In this way, we can analyse the theoretical performance of the 
random sampling in the average sense. Note that Algorithm 4 introduces a few auxiliary 
variables, such as R, OPT, C, Sc , Q, and Kc , which are highlighted in magenta. These vari-
ables have no effect on procedures of generating S and hence on the output S, but are used 
for the convenience of analysis. Therefore, Algorithm 4 is equivalent to Algorithm 3.

Let us briefly discuss the meanings and roles of the auxiliary variables. The set R in 
Algorithm 4 is for remaining pairs, i.e., R = N�C , and OPT is the optimal solution. There 
is no need to know the exact value of OPT because it is introduced only for the theoretical 
analysis.

The variable C is a set that contains all pairs that have already been considered by Algo-
rithm 4 regardless of whether they are added to S or not.

Sc is a set that contains the selected pairs at the beginning of the current iteration. At the 
end of the current iteration, S = Sc ∪ {c} if c is added into S and Q, otherwise S = Sc.
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Q is an independent set introduced to help to prove the relationship between the 
expected function utility of the solution set S of DSTA and that of the optimal solution set 
OPT.

Kc is a set that is introduced to ensure Q remains independent even as c is added. Fol-
lowing the matroid properties, Kc is removed from Q to ensure the independence of Q. 
Before c is added, Q is independent and thus satisfies the partition matroid constraint at 
each iteration. Once c is added, Q could have at most two common elements within one 
partition. This implies that the set Kc is either an empty set or a singleton, i.e., |Kc| ≤ 1.

The variables with subscript in Algorithm 4, e.g. Kc and Sc , are not single variables, but 
they have a distinct value for each c ∈ C . On the other hand, variables denoted without any 
subscript, e.g. S or Q, are single variables.

4.2 � Performance analysis

The main characteristics of the approximation guarantee and computational complexity of 
the proposed DSTA algorithm are summarised in Theorem 2.

Theorem  2  Suppose the max-consensus in Algorithm  1 assures convergence. Then, the 
DSTA algorithm achieves the following expected approximation guarantees, Ga , for sub-
modular objective functions:

with an expected total computational complexity of O(pnr) and individual complexity of 
O(pr2) for each robot, where p is the sampling probability, r is the number of tasks, i.e., 
r = |T| , and n is the number of pairs, i.e., n = |T| × |A|.

The computational complexity of DSTA can be easily proven. As shown in Algo-
rithm 2, there are at most r rounds of auctions. In each round, each robot requires func-
tion evaluations at most pr times on average. Since there are |A| number of robots, the 
total number of utility function evaluations in each auction is O(pn). Therefore, the 
average total time complexity is O(pnr). For each robot, the average individual time 
complexity is equivalent to the average total complexity divided by the number of 
robots, i.e., O(pr2).

Let us now investigate the approximation guarantee of DSTA through Algorithm 4. To 
prove the approximation guarantee given in Theorem 2, we first show the bound of expec-
tation of f(S), i.e., �

[
f (S)

]
 , with respect to �[f (S ∪ OPT)] in Lemma 3. Lemmas 1 and 2 will 

be required to prove the bound of �
[
f (S)

]
 in Lemma 3.

Lemma 1 �[|Ku|] ≤ max(p, 1 − p) for all u ∈ N .

Proof  See Appendix A. 	�  ◻

Lemma 2 �[f (S)] =
∑

u∈N p�
�
�f (u�Su)

�
.

Proof  See Appendix B. 	�  ◻

(5)Ga =

{ p

p+max(p,1−p)
for monotone

p(1−p)

p+max(p,1−p)
for non-monotone
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Now, let us derive the lower bound of �
[
f (S)

]
 with respect to �[f (S ∪ OPT)] based on 

the results of Lemmas 1 and 2.

Lemma 3 �[f (S)] ≥ p

p+max(p,1−p)
�[f (S ∪ OPT)].

Proof  According to the evolution of Q in Algorithm 4, Q is independent at the end of each 
iteration, i.e., Q ∈ I  . S is a subset of Q i.e., S ⊆ Q , since every element c that is added to S 
is also in Q. Therefore, from Definition 5, we have S ∪ {q} ∈ I ∀q ∈ Q�S . By the termina-
tion condition of Algorithm 4, �f (q|S) ≤ 0 ∀q ∈ Q�S . Hence, at the termination of Algo-
rithm 4, it holds that

Let Q�S = {q1, q2,… , q|Q�S|} , then

If u ∈ C , it implies that the mgv of u is no less than any other element from Ku∖S at that 
iteration, i.e.,

Additionally, any pair can be removed from Q at most once. In other words, the pair that 
is contained in Ku at one iteration is always different from other iterations when Ku is not 
empty. Hence, the sets in the sequence {Ku�S}u∈N  are disjoint. According to the definition 
and evolution of Q, Q can be expressed as

Note that if u ∉ C , then Ku = � and Su = � by convention. Denoting N  as {u1,… , u|N|} , 
we define Qi

u
 as:

where Ni = {u1,… , ui} . Then, it is clear that Su ⊆ S ⊆ Qi
u
 . From Eq. (7), we obtain

where Ki
u
 and Si

u
 denote Ku and Su corresponding to ui , respectively.

∑
q∈Q�S

�f (q|S) ≤ 0.

f (S) = f (Q) −
∑|Q�S|

i=1
�f (qi|S ∪ {q1,… , qi−1})

≥ f (Q) −
∑|Q�S|

i=1
�f (qi|S) (submodularity)

≥ f (Q)

(6)�f (u|Su) ≥ �f (q|Su), ∀q ∈ Ku�S.

(7)Q = (S ∪ OPT)� ∪u∈N (Ku�S).

(8)Qi
u
∶= (S ∪ OPT)� ∪u∈Ni

(Ku�S)

f (Q) = f (S ∪ OPT) −
∑|N|

i=1
�f (Ki

u
�S|Qi

u
)

(submodularity)≥ f (S ∪ OPT) −
∑|N|

i=1
�f (Ki

u
�S|Si

u
)

(Eq. (6))≥ f (S ∪ OPT) −
∑

u∈N
|Ku�S|�f (u|Su)

≥ f (S ∪ OPT) −
∑

u∈N
|Ku|�f (u|Su)
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By taking an expectation over f(S), we have

The result is clear by rearranging the above inequality. 	�  ◻

We are now ready to complete the proof of Theorem 2. We denote the objective func-
tion f as fm and fn for the monotone and non-monotone cases, respectively.

Proof of Theorem 2  To obtain the approximation guarantees for both monotone and non-
monotone submodular utility functions, we need to analyse the relationship between 
f (S ∪ OPT) and f(OPT). If f is monotone, then

From Lemma 3 and Eq. (9), it is clear that

For the non-monotone case, we define a new submodular function h ∶ 2N → ℝ≥0 as 
h(X) = fn(X ∪ OPT) ∀X ⊆ N  . Since S contains every element with probability at most p, 
Theorem 1 yields

Hence, we have

	�  ◻

Corollary 1  The trade-off between approximation guarantee and computational complex-
ity can be controlled by adjusting the sampling probability p. When p = 0.5 , the solution 
given by DSTA is lower-bounded by 1

2
 and 1

4
 of the optimal solution for the monotone and 

non-monotone cases, respectively.

Proof  Recalling that p is the sampling probability and p ∈ (0, 1] , we have

�[f (S)] ≥ �[f (Q)]

≥ �[f (S ∪ OPT)] − �[|Ku|] ⋅ �
[∑

u∈N
�f (u|Su)

]

(Lemma 1)≥ �[f (S ∪ OPT)] −max(p, 1 − p) ⋅
∑

u∈N
�[�f (u|Su)]

(Lemma 2)= �[f (S ∪ OPT)] −max(p, 1 − p) ⋅
1

p
�[f (S)].

(9)fm(S ∪ OPT) ≥ fm(OPT).

�[fm(S)] ≥
p

p +max(p, 1 − p)
⋅ �[fm(S ∪ OPT)] (Lemma 3)

≥
p

p +max(p, 1 − p)
⋅ fm(OPT).

�[fn(S ∪ OPT)] = �[h(S)] ≥ (1 − p)h(�) = (1 − p)fn(OPT).

�[fn(S)] ≥
p(1 − p)

p +max(p, 1 − p)
⋅ fn(OPT).
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Therefore, in the monotone case, the expected approximation ratios are obtained as:

In the non-monotone case,

As shown in Eqs. (10) and (11), for p ∈ (0.5, 1] , the lower bound of the expected approxi-
mation ratio becomes stagnated in the monotone case and decreasing in the non-monotone 
case. Moreover, it is clear that the computational complexity increases as the sampling 
probability increases. On the other side, for p ∈ (0, 0.5] , the sampling probability provides 
trade-off capability between the approximation ratio and computational complexity. As the 
probability increases for p ∈ (0, 0.5] , the expected approximation ratios improve for both 
monotone and non-monotone cases, but the computational complexity also increases. From 
Eqs.  (10) and (11), the best expected approximation guarantees can be readily obtained, 
when p = 0.5 , as:

	�  ◻

Now, let us investigate another key property of the DSTA algorithm, that is the vari-
ance of the functional value of the solution.

Theorem  3  Suppose the max-consensus in Algorithm  1 assures convergence. Then, the 
variance of the converged objective function is bounded as:

Proof  f 2(S) can be obtained as:

where Si ≜ Ni ∩ S . Its expectation is obtained as:

max(p, 1 − p) =

{
1 − p for p ∈ (0, 0.5]

p for p ∈ (0.5, 1].

(10)�[fm(S)] ≥

{
p ⋅ fm(OPT) for p ∈ (0, 0.5]

1∕2 ⋅ fm(OPT) for p ∈ (0.5, 1] .

(11)�[fn(S)] ≥

{
p(1 − p) ⋅ fn(OPT) for p ∈ (0, 0.5]

(1 − p)∕2 ⋅ fn(OPT) for p ∈ (0.5, 1] .

�[f (S)] ≥

{
1∕2 ⋅ f (OPT) if f is monotone

1∕4 ⋅ f (OPT) if f is non-monotone .

(12)Var(f (S)) ≤

(
1

p
− 1

)
f 2(OPT) + p ⋅ Var

(∑
u∈N

�f (u|Su)
)
.

(13)
f 2(S) =

(∑
u∈S

�f (u|Su)
)2

=
∑
u∈S

�f 2(u|Su) + 2
∑
ui∈S

∑
uj∈S

i

�f (ui|Sui )�f (uj|Suj ),
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Hence, the variance of f(S) is bounded as:

	�  ◻

Remark 5  Theorem 3 shows that the upper bound of the variance of f(S) depends on the 
sampling probability p and variance of the summation of the marginal gain values. It is 
clear that the first term on the right-hand side of Eq. (14) is exponentially diminishing 
as the sampling probability increases. For the monotone case, the variance of the random 
variable Su becomes smaller, approaching zero, as p increases. This implies that the var-
iance of the summation of the marginal gain values decreases, converging to zero, as p 
increases to one. Therefore, it is expected that the upper bound of the variance decreases 
as the sampling probability increases. For the non-monotone case, the variance of Su would 
not become smaller even if p increases since the DSTA algorithm will be terminated when 
�f (u|S) becomes negative. Note that negative marginal gain value is possible not in the 
monotone case, but only in the non-monotone case. This means that the second term on 
the right-hand side of Eq. (14) and consequently the variance could become larger as p 
increases for the non-monotone cases.

5 � Numerical simulations

In this section, we validate the theoretical analysis and examine the performance of the 
DSTA algorithm. For rigorous validation, we consider two application scenarios of a multi-
target surveillance mission. In the first scenario, we use unmanned aerial vehicles (UAVs) 
and compare DSTA with the benchmark algorithms. The first benchmark algorithm is a 
widely accepted decentralised task allocation algorithm, CBBA (Choi et  al., 2009). The 
second benchmark algorithm is a state-of-the-art task allocation algorithm denoted as GA 
(Kotwal & Dhope, 2015) that is based on a genetic algorithm. A simple demonstration of 

�[f 2(S)] = p ⋅ �

��
u∈N

�f 2(u�Su)
�
+ 2p2 ⋅ �

⎡
⎢⎢⎣
�
ui∈N

�
uj∈Ni

�f (ui�Sui )�f (uj�Suj )
⎤
⎥⎥⎦

≤ p�

⎡
⎢⎢⎣

��
u∈N

�f (u�Su)
�2⎤

⎥⎥⎦

(Lemma 2)=
1

p
(�[f (S)])2 + p ⋅ Var

(∑
u∈N

�f (u|Su)
)
.

(14)

Var(f (S)) = �[f 2(S)] − (�[f (S)])2

≤

(
1

p
− 1

)
(�[f (S)])2 + p ⋅ Var

(∑
u∈N

�f (u|Su)
)

≤

(
1

p
− 1

)
f 2(OPT) + p ⋅ Var

(∑
u∈N

�f (u|Su)
)
.
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the multi-target surveillance mission can be found in the literature (Li et al., 2019). While 
in the second scenario, we compare DSTA with the state-of-the-art algorithm DGA (Qu 
et al., 2019) using spatially static Earth-observing satellites as robot platforms. Both mono-
tone and non-monotone objective functions are considered for each scenario.

The computational complexity of task allocation algorithms is measured by the number 
of function evaluations (objective function queries), which is independent from the com-
puter status. Since DSTA requires global consensus among robots, we count the number 
of consensus steps to measure the communication complexity. Note that the maximum 
number of consensus steps is equal to the number of tasks. To investigate the variances of 
DSTA performance, we run 1000 rounds of DSTA in each case. The results are depicted 
in bar graph to also indicate the variances. For comparison, we run CBBA (Choi et  al., 
2009) or DGA (Qu et al., 2019) for one round in each case because they are deterministic 
algorithms.

5.1 � Scenario 1: Surveillance mission using UAVs

In this scenario, we assess the performance of DSTA and compare it with CBBA (Choi 
et al., 2009) and GA (Kotwal & Dhope, 2015) based on a monotone submodular objective 
function (Case 1) and a non-monotone submodular objective function (Case 2). Then, we 
examine the trade-off performance of DSTA with respect to different sampling probabili-
ties (Case 3).

We assume that a group of UAVs needs to perform 60 tasks (waypoint targets). Tasks 
are randomly located on a W ×W 2D space (W = 10 km). In Case 1 and Case 2, the sam-
pling probability is fixed to 0.5. In Case 3, we fix the number of UAVs to 15 and increase 
the sampling probability from 0.1 to 0.9 with a step of 0.1.

Case 1: Monotone submodular objective function
We adapt a monotone submodular utility function from (Segui-Gasco et  al., 2015) 

which is a coverage-type function for the surveillance mission. Different tasks are marked 
with a task value factor vj according to their values. Assume that UAVs are equipped with 
different sensors that are suitable for different tasks. The task-robot fitness factor maj rep-
resents the match fitness between the capabilities of Robot a and the requirements of Task 
j. The utility of executing the tasks j ∈ Ta is measured as the sum of the product of maj 
and vj . For the tasks j ∉ Ta , we add an exponentially decaying term related to the shortest 
distance between Task j and tasks in Ta which is denoted as dmin(j, Ta) . When Robot a is 
carrying out a task at the location of this task, it can partially serve another one nearby. The 
objective function for Robot a is

where d0 is a reference distance. The overall objective function of the surveillance mission 
is obtained by combining Eq. (15) and Definition 1:

(15)f (Sa) =
∑
j∈Ta

majvj +
∑
j∉Ta

majvje
−

dmin (j,Ta )

d0 ,

(16)f (S) =
∑
a∈A

[∑
j∈Ta

majvj +
∑
j∉Ta

majvje
−

dmin (j,Ta )

d0

]
.
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In the simulations, the task value factors are uniformly random numbers vj ∈ [0.6, 1.0] . 
Each task-robot fitness factor is set as a uniformly random number maj ∈ [0.5, 1.0] . The 
reference distance is set as d0 = 1 km.

Figure  3 demonstrates the simulation results comparing the performance of DSTA 
with CBBA. On the one hand, as shown in Fig.  3a, the function utilities achieved by 
CBBA and DSTA increase with a decreasing increment rate as the number of robots 
increases. The nonlinearity of increment is attributed to the submodularity of the objec-
tive function. The proposed DSTA algorithm achieves a comparable quality of solu-
tions, i.e., comparable values of the utility function, to CBBA. On average, the quality 
of the DSTA solution increases from 90% to 98% with CBBA as a baseline as shown 
in Fig.  3d. On the other hand, Figure  3b shows that the computational complexity of 
CBBA and DSTA increases linearly as the number of robots increases. As shown in 
Fig.  3 b and d, the computational time of the DSTA algorithm is significantly lower 
compared with that of CBBA (less than 10%). It is worth noting that as the size of 
the problem increases, the difference between the two algorithms on the function value 
becomes tighter, but the difference in computational time becomes more significant. 
Overall, DSTA has minor variations in terms of function utilities, computational com-
plexity, and consensus steps in the monotone case.

One advantage of CBBA is that it requires fewer consensus steps than DSTA does, 
especially when there are small numbers of UAVs, as shown in Fig.  3c. Therefore, 
CBBA has lower potential communication complexity. However, UAVs communicate 

(a) Solution quality represented by objective

function utilities.

(b) Computational complexity measured by

numbers of function evaluations.

(c) Communication complexity measured by

numbers of consensus steps.

(d) Percentages of performance of DSTA with

CBBA as a baseline.

Fig. 3   Performance comparison of DSTA and CBBA in the monotone case
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using task bundle information with CBBA while using single task information with 
DSTA. This means that more information needs to be transferred in each consensus step 
with CBBA. In addition, the number of consensus steps required by CBBA gets closer 
to that required by DSTA as Na goes up. When there are fewer UAVs, some tasks could 
be more likely ignored by all UAVs due to random sampling. This is the reason why 
DSTA requires fewer consensus steps and shows larger spreads when Na is small as 
shown in Fig. 3c.

Next, we compare the performance of DSTA with that of GA (Kotwal & Dhope, 
2015). The number of robots is fixed as 15. For GA, the size of the population is set as 
20. In each iteration, we store the largest function utility among the population of 20. In 
order to avoid the local optima, we set the mutation probability to 0.5. We set the maxi-
mum number of iterations to 8000.

Figure 4 reports the simulation results. The number of function evaluations of GA 
is proportional to the number of iterations. According to Fig.  4, the maximum utility 
achieved by GA is around 131. DSTA achieves an average utility of about 129 which is 
98.5% of GA. On average, DSTA executes 13.6 × 103 function evaluations. In contrast, 
GA executes more function evaluations than DSTA to achieve the same function utility.

Case 2: Non-monotone submodular objective function
A non-monotone submodular objective function is designed by modifying the mono-

tone objective function. Assume that tasks with high importance are usually difficult to 
execute. Allocating many difficult tasks to one robot could exceed the capability of the 
robot and cause mission failure. Therefore, it is risky to allocate many important tasks 
to one robot, but only a few to others. We introduce an inter-task effect factor xij as a 
penalty to the concentration of important tasks for each robot.

The overall objective function in the non-monotone case is modelled as

where �x is a scaling parameter of the penalty term. The model uses xij = evivj to discourage 
the concentration of important tasks in one robot. Note that the task allocation algorithms 
will stop once the mgvs of all remaining tasks become negative.

It is assumed that there are Na special tasks that are more important and difficult 
than others. We set the importance factors of these tasks as uniformly random numbers 
vj ∈ [5.0, 6.0] . For these tasks, the match fitness factors maj are set to be 0.2 for certain 
UAVs and 0.1 for others. The importance factors of other tasks are uniformly distributed 
over [0.6, 1.0] and the match fitness factors related to these tasks are uniformly distributed 
over [0.5, 1.0]. To examine the variance of the performance of DSTA, we fix the values of 

(17)f (S) =
∑
a∈A

[∑
j∈Ta

majvj − 𝜆x

∑
i,j∈Ta ,i<j

xij

]
,

Fig. 4   Performance comparison 
of DSTA and GA in the mono-
tone case
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these importance factors and match fitness factors once they are assigned at the beginning 
of the algorithm. We set the scaling factor of the penalty term to �x = 0.01.

The simulation results are reported in Fig.  5. The results confirm that the proposed 
DSTA achieves better average function values and is still significantly faster than CBBA. 
Figure 5a shows that the average utilities achieved by DSTA are higher than the utilities 
achieved by CBBA. Compared with the monotone case in Fig. 3a, the spreads in Fig. 5a are 
larger. This is because whether the special tasks are selected or not has a significant impact 
on the results of DSTA and consequently its variation. When the special tasks are sampled, 
DSTA is most likely to select them greedily at the beginning, considering their relatively 
large mgvs. Unlike in the monotone case, this could quickly make the mgv, �f (u|S) , nega-
tive and terminate the algorithm. Nonetheless, as shown in Fig. 5a, even the worst cases 
of the function values achieved by DSTA are comparable to those of CBBA. The potential 
attribute of the relatively poor performance of CBBA is that robots greedily select more 
important tasks at early iterations. If robots select more tasks in later iterations, the total 
function values could start to decrease due to the non-monotonicity of the utility function. 
Hence, CBBA gets trapped in local optima with a few allocated tasks per robot. Note that 
CBBA only has constant approximation guarantee for monotone submodular functions. 
By contrast, it may exhibit arbitrarily poor performance with non-monotone utility func-
tions, which is confirmed by the simulation results. However, the sampling procedure in 
the proposed DSTA might enable abandoning the special tasks with a certain probability 
and hence utilising most of the available tasks to find solutions without getting trapped in 
local optima.

(a) Solution quality represented by objective

function utilities.

(b) Computational complexity measured by

numbers of function evaluations.

(c) Communication complexity measured by

numbers of consensus steps.

(d) Percentages of performance of DSTA with

CBBA as a baseline.

Fig. 5   Performance comparison of DSTA and CBBA in the non-monotone case
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Then, we compare the performance of DSTA with that of GA (Kotwal & Dhope, 2015) 
using the same parameter settings as before. According to Fig. 6, DSTA achieves an aver-
age utility of 37 and executes 13.2 × 103 function evaluations on average. In contrast, the 
maximum utility achieved by GA is only 8. Moreover, GA executes much more function 
evaluations than DSTA. This is because GA tends to allocate more tasks to each robot. 
However, in the non-monotone case, adding too many tasks likely decreases the over-
all utility due to the negative marginal gain caused by the penalty term. On the contrary, 
DSTA will allocate a proper number of tasks to each robot. In other words, the DSTA 
algorithm will terminate once the largest mgv of the remaining tasks becomes negative. 
The simulation result indicates that DSTA can still work well in extreme cases where the 
objective function has significant non-monotonicity, but the benchmark algorithms (CBBA 
and GA) fail to provide a satisfactory solution.

Case 3: Trade-offs with respect to different sampling probabilities
To validate the trade-off analysis in Sect.  4, we run another set of simulations with 

respect to different sampling probabilities. Parameters related to the monotone and non-
monotone objective functions have the same settings as in Case 1 and Case 2, respectively, 
except the number of robots and the sampling probability. Simulation results for the mono-
tone and non-monotone cases are demonstrated in Figs. 7 and 8, respectively.

Figure 7 shows that the average function utility, computational complexity, and commu-
nication complexity increase as the sampling probability p increases in the monotone case. 
As shown in Fig. 7a and c, the increment rates of the functional utility and the number of 
consensus steps decrease for the fixed increase in the sampling probability. This feature is 
attributed to the fact that the utility function given in Eq. (16) and the task-robot pair cover-
age by random sampling are submodular. Figure 7a shows that the variation of the func-
tional utility decreases as p increases, which confirms the analysis results in Theorem 3 
and Remark 5. Figure 7b indicates that the average computational complexity is linearly 
increasing, which is coherent with the relevant theoretical result described in Theorem 2.

Simulation results in the non-monotone case are reported in Fig. 8. As shown in Fig. 8a, 
the average function utility achieved by DSTA initially increases and then decreases as 
the sampling probability increases, which demonstrates the non-monotone submodularity. 
Similarly, the average communication complexity shown in Fig. 8c also first increases and 
then decreases as p goes up from 0.1 to 0.9. This is because when p ≤ 0.5 , robots can cover 
more tasks with larger sampling probability, which means that they require more consensus 
steps. However, with larger sampling probability when p > 0.5 , the task allocation process 
can get trapped easier by the special tasks. Figure 8b shows the tendency of the average 
computational complexity which is linearly increasing.

Now, let us examine the variation of the functional utilities in the non-monotone case. 
As shown in Fig. 8a, the spread of the error bars is bigger than that in the monotone case 

Fig. 6   Performance comparison 
of DSTA and GA in the non-
monotone case
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depicted in Fig. 7a. This is attributed to the difference in the nature of marginal gain val-
ues. In the monotone case, considering more tasks is always beneficial with respect to the 
functional utility as mgvs are always non-negative. In the non-monotone case, adding more 
tasks is not always beneficial since it might produce negative mgvs. Therefore, the task 
allocation process could provide poor solution quality when increasing the sampling proba-
bility. The global consensus stops once the task allocation process gets trapped. Therefore, 
the large spreads shown in Fig. 8a and c are resulted from the fact that the task allocation 
algorithm is likely to be trapped in local optimal solutions. Nevertheless, as demonstrated 
in Fig. 8a, DSTA provides better functional utility values in most of the cases and compa-
rable values in the very worst case, compared with CBBA, unless p is significantly small.

It is worthwhile to note that the variation of the functional values is small around 0.5 
and 0.6. Then, the variation becomes larger as p further increases. Beyond certain prob-
ability, as more task-robot pairs are sampled, the chance to be trapped in poor solutions 
increases. The variation of the functional values becomes even larger than lower probabil-
ity cases as p gets closer to 1 in the non-monotone case. This is aligned with the analysis 
results of Theorem 3 and Remark 5.

It is expected that the more significant the importance of special tasks becomes, the big-
ger the variation might become. This is because more significant importance implies more 
significant mgv, compared with other tasks. When mgvs of tasks are much bigger than the 
others, the greedy selection procedure in the algorithm could increase the chance of being 

(a) Solution quality represented by objective

function utilities.

(b) Computational complexity measured by

numbers of function evaluations.
(c) Communication complexity measured by

numbers of consensus steps.

Fig. 7   Performance of the DSTA algorithm with respect to different sampling probabilities in the monotone 
case N

a
= 15 (red lines denote the values of CBBA, which are invariant with respect to the sampling prob-

ability)
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trapped in local solutions. For validation of the argument, we removed the special tasks 
from the non-monotone case and conducted Monte-Calro simulations. Figure 9 shows the 
results on the functional utility. As shown in the figure, median functional values keep 
increasing and the increment decreases as the sampling probability increases. Decreases in 
the functional values are not present and thus it is expected that the chance of being trapped 
in poor quality solutions is low. This implies that the variance of the functional values will 
decrease as p increases, which is confirmed in the simulation results illustrated in Fig. 9.

5.2 � Scenario 2: Surveillance mission using satellites

We conducted a further comparison between DSTA and a state-of-the-art algorithm, 
DGA (Qu et al., 2019). The work in Qu et al. (2019) uses the concept of admissible task 
sets which means that the tasks are constrained to different admissible task sets for each 
robot. For a fair comparison, the proposed DSTA also adopts the concept of admissible 
task sets. Thus, the main difference between DSTA and DGA in the comparison is the 
task sampling procedure. We denote the admissible task set for Robot a as Na . DGA 
was developed and proved for stationary robots, unlike CBBA and DSTA. Hence, this 
paper adopts a new scenario with satellites from (Qu et al., 2019) in which the benefits 
of DGA can be well presented.

(a) Solution quality represented by objective

function utilities.

(b) Computational complexity measured by

numbers of function evaluations.
(c) Communication complexity measured by

numbers of consensus steps.

Fig. 8   Performance of the DSTA algorithm with respect to different sampling probabilities with special 
tasks in the non-monotone case N

a
= 15 (red lines denote the values of CBBA, which are invariant with 

respect to the sampling probability)
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Like in Qu et al. (2019), it is assumed that all satellites face vertically downwards to 
the ground. The operation range of each robot is a cone with a circle of radius ro = 20 
km on the ground. The mission area is assumed to be the plane of a local approximation 
of observation of the earth. Each task is a way-point ground target to be observed by 
satellites. The vertical projections of robots and the positions of targets are stationary 
and randomly located in the mission area which is a W ×W  2D plane ( W = 60 km). The 
tasks that are located in the operation circle of Robot a are contained in the admissible 
task set Na . We set the number of targets as 100 and increase the number of satellites 
from 4 to 20 which is denoted as Na . The sampling probability for DSTA is fixed to 0.5.

We model the objective functions for the monotone and non-monotone cases as simi-
lar functions in the first scenario. The variables in this scenario have the same meanings 
as those described in Scenario 1, except that the robots are satellites instead of UAVs.

Case 1: Monotone submodular objective function
The overall objective function in the monotone case is modelled as

The parameters have the same settings as those in Scenario 1 Case 1. The simula-
tion results are reported in Fig. 10. DSTA achieves lower function utilities and displays 
lower computational and communication complexity compared to DGA, as shown in 
Fig. 10 a, b, and c. According to Fig. 10 d, the quality of the DSTA solution increases 
from 60.3% to 85.1%, and the running time of DSTA increases from 31.7% to around 
44.9% on average with DGA as a baseline. In other words, when Na = 20 , DSTA 
achieves 55.1% of computational complexity reduction by sacrificing 14.9% of function 
utility on average compared with DGA. The reason why the number of consensus steps 
of DSTA is smaller than that of DGA is that DSTA has selected fewer tasks due to ran-
dom sampling.

Case 2: Non-monotone submodular objective function
Similarly to Scenario 1 Case 2, the objective function in the non-monotone case in 

Scenario 2 is modelled as

(18)f (S) =
∑
a∈A

[∑
j∈Ta

majvj +
∑

j∈Na�Ta

majvje
−

dmin (j,Ta )

d0

]
.

(19)f (S) =
∑
a∈A

[∑
j∈Ta

majvj − �x

∑
i,j∈Ta ,i≠j

xij

]
.

Fig. 9   Function utility of the 
DSTA algorithm with respect to 
different sampling probabilities 
without special tasks in the non-
monotone case N

a
= 15
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We use the same parameter settings as those in Scenario 1 Case 2, except the number 
of tasks and the range of mission area. The simulation results are reported in Fig. 11. 
As shown in Fig.  11a and b, DSTA’s runtimes are approximately half with respect to 
DGA’s, and DSTA achieves significantly better solution quality. The reason for the rel-
atively poor performance of DGA in terms of solution quality is that DGA greedily 
selects those important special tasks at early iterations. As robots select more tasks, 
the mgvs could become negative. Hence, DGA gets trapped in local optima with only a 
few tasks selected. With the help of the sampling procedure, DSTA avoids those special 
tasks with a certain probability. Hence, robots cover more tasks and achieve better func-
tion values without getting trapped in local optima. This is also the reason why DSTA 
requires more consensus steps than DGA as shown in Fig. 11c.

6 � Conclusions and future work

This paper presents an efficient decentralised task allocation algorithm for MRS. Since task 
allocation problems can be considered as optimisation of a set function subject to a matroid 
constraint, we have leveraged the submodular maximisation method to solve the task 
allocation problems for theoretical tractability. The CBBA algorithm (Choi et al., 2009), 
which is one of the most applied and practical task allocation algorithms, also utilises the 
submodularity concept and hence provides an approximation guarantee. The issue is that 
it provides an approximation guarantee only for monotone submodular utility functions. 

(a) Solution quality represented by objective

function utilities.

(b) Computational complexity measured by

numbers of function evaluations.

(c) Communication complexity measured by

numbers of consensus steps.

(d) Percentages of performance of DSTA with

DGA as a baseline.

Fig. 10   Performance comparison of DSTA and DGA in the monotone case
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To overcome this issue, this paper utilises a sampling process, i.e., drawing task samples 
from the set of all tasks. Consequently, the proposed task allocation algorithm achieves 
an expected approximation guarantee not only for monotone submodular utility functions 
but also for general non-monotone submodular utility functions. Moreover, the computa-
tional complexity of the proposed algorithm can be further reduced and adjusted as the 
introduction of the sampling process allows reduction of function evaluations: it requires to 
evaluate function values for only task samples, not for all the tasks. The performance of the 
proposed task allocation algorithm is investigated through theoretical analysis. The results 
of numerical simulations confirm the validity of the theoretical analysis.

A future research direction would be improving the approximation ratio for both monotone 
and non-monotone submodular utility functions. There are some gaps between the theoreti-
cally achievable approximation guarantee and the actual performance of our algorithm. The 
key challenge will be how to improve the approximation guarantee for both monotone and 
non-monotone cases while maintaining reasonable computational complexity. Applying dif-
ferent sampling probabilities for different tasks could better overcome the local minima issue 
which is subject to our future study. Also, it would be worth to modify CBBA with a ran-
dom sampling procedure and analyse its performance improvement in the non-monotone case. 
Another research direction would be further reducing the computational complexity while 
achieving the same or similar approximation guarantee. In our opinion, this could be achieved 
by introducing the lazy greedy concept (Minoux, 1978) to the proposed algorithm.

(a) Solution quality represented by objective
function utilities.

(b) Computational complexity measured by
numbers of function evaluations.

(c) Communication complexity measured by
numbers of consensus steps.

(d) Percentages of performance of DSTA with
DGA as a baseline.

Fig. 11   Performance comparison of DSTA and DGA in the non-monotone case
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Appendix A Proof of Lemma 1

For the proof, we have three cases to analyse, depending on whether the current pair u is con-
sidered at some point of iteration, i.e., u ∈ C , and whether u is already in Q at the beginning of 
the iteration in Algorithm 4. Note that the size of Ku is kept as small as possible. 

	 i.	 If u ∉ C for whole iterations, Ku = � and thus the expectation is obtained as: 

	 ii.	 If u ∈ C and u ∈ Q at the beginning of the iteration, then Ku = � for u ∈ Ns and 
Ku = {u} for u ∉ Ns . Since u is sampled in Ns with probability p, the expectation is 
obtained as: 

	 iii.	 If u ∈ C and u ∉ Q at the beginning of the iteration, then Ku contains at most one 
element for u ∈ Ns , and Ku = � for u ∉ Ns . According to the properties of partition 
matroid, if Q becomes dependent after adding u, then Q can remove one element that 
is in the same partition with u to remain independence. If Q is still independent after 
adding u, then Ku = � . Therefore, we have 

In summary, �[|Ku|] ≤ max(p, 1 − p) . 	�  ◻

Appendix B Proof of Lemma 2

Let us define a random variable Gu such that its value is equal to the increase of f(S) when 
u ∈ N  is considered, i.e.,

Note that since f is assumed to be normalised, f (�) = 0 . Given the event Eu , the conditional 
expectation of Gu is obtained as

Here, if u is sampled, Gu is equal to �f (u|S�
u
) with the probability of P(Gu|Eu) = p , where S′

u
 

is defined as Su given event Eu . Note that if u is sampled but not in C, �f (u|S�
u
) is defined as 

0 by convention. Otherwise if u is not sampled, Gu is zero. Hence, the conditional expecta-
tion of Gu is:

By the law of total expectation, expectation of Gu is obtained as:

�[|Ku|] = 0

�[|Ku|] = p ⋅ |�| + (1 − p)|{u}| = 1 − p.

�[|Ku|] ≤ p ⋅ 1 + (1 − p)|�| = p.

f (S) = f (�) +
∑
u∈N

Gu.

(20)�[Gu|Eu] =
∑
Gu

P(Gu|Eu)Gu.

(21)
�[Gu|Eu] = p�f (u|S�

u
)

= p�[�f (u|Su)|Eu]
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Hence, the expectation of f(S) is obtained as:

	�  ◻
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