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Three-Dimensional Biased Proportional Navigation Guidance

Based on Spatial Rotation of Predicted Final Velocity

Namhoon Cho, Seokwon Lee, Hyo-Sang Shin, and Tae-Hun Kim

Abstract

This study presents the design of three-dimensional biased proportional navigation guidance laws for

arrival at a stationary target along a desired direction based on spatial rotation of predicted final velocity

vector. The focus is on full constructive derivation using vector-form expressions without introducing

local representation of rotation such as Euler angles or quaternions. The proposed approach synthesises

the bias command in the form of an angular velocity vector through realisation of the predictive control

design philosophy, the direction which has been unexplored in a three-dimensional setting. The proposed

approach avoids heuristic choices and approximations in the design process and hence overcomes the

limitation of earlier studies. The vector-form design approach provides theoretical and practical advantages

including rigour in derivation, clear geometric understandings about the problem provided by identifica-

tion of the most effective direction for rotation of final velocity, independence from selection of a fixed

coordinate system, avoidance of singularities in local representations, more direct trajectory shaping, and

simple implementation.

Index Terms

Three-Dimensional, Biased Proportional Navigation Guidance, Predictive Correction, Final Velocity

Direction, Vector Rotation

Nomenclature

a acceleration

a
𝑣⊥ lateral (normal) acceleration, perpendicular to vehicle velocity

𝑒 predicted final velocity direction error, value in [0, 𝜋] radians
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k̂ unit normal vector of manoeuvre plane

𝑁 proportional navigation constant

𝑟 distance between vehicle and target, i.e., range

r line-of-sight from vehicle to target

r̂ unit vector in the direction of line-of-sight

v vehicle velocity

v̂ unit vector in the direction of vehicle velocity

v̂ 𝑓𝑑 unit vector in the direction of desired final vehicle velocity

v̂ 𝑓𝑝𝑟𝑒𝑑 unit vector in the direction of predicted final vehicle velocity

𝜎 three-dimensional lead angle, value in [0, 𝜋] radians

𝝎𝑏𝑖𝑎𝑠 bias angular velocity command

𝝎 𝑓 angular velocity of predicted final vehicle velocity

𝝎 𝑓𝑑 desired angular velocity of predicted final vehicle velocity

𝝎
𝑟⊥
𝑟 angular velocity of line-of-sight, perpendicular to line-of-sight

𝝎𝑣 angular velocity of vehicle velocity

Vector Notations

ˆ(·) unit vector

¤(·) derivative with respect to time

(·)′ derivative with respect to range

I. Introduction

The capability to arrive at a point with a specific direction at the final time is an essential prerequisite

for autonomous flying vehicles to accomplish missions by passing through a series of waypoints or a

real target. Typical anti-ground and anti-ship missiles perform manoeuvres to achieve certain incidence

direction in vertical and horizontal plane, respectively, at the end of midcourse phase to shape their

trajectories as needed for enhanced survivability as well as increased attack effectiveness. However,

the approximation of planar motion and corresponding manoeuvre strategy based on stitching two-

dimensional movements are invalid in certain applications. The necessity of three-dimensional arrival

direction control arises specifically from anti-air missiles that require certain angle of approach to

establish a desirable collision geometry for enhancing seeker measurement quality or maximising final

speed for higher manoeuvrability. Advanced anti-ground or anti-ship missile concepts involving in-flight

target selection/update also require a guidance method that can effectively handle the changes in both

manoeuvre plane and desired impact direction. Furthermore, three-dimensional guidance methods capable
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of arrival direction control can be utilised as the near-optimal local planners inside sampling-based motion

planning algorithms for safe and efficient movement of flying robots in obstacle-rich environment [1],

[2]. Planetary landers that perform landing-site selection during the descent phase may also find a simple

three-dimensional steering law useful to achieve a specific approach angle.

Three-dimensional guidance problems are in general much more challenging than their planar counter-

parts due to the complexities in mathematical formulation. Increased number of variables as well as addi-

tional degrees-of-freedom associated with the kinematic relations is one apparent cause. Non-uniqueness

of the ways to define error variables quantifying the separation between performance outputs and their

reference values is also a reason. Another significant difficulty in most endo-atmospheric problems is

the constraint that the acceleration command should be perpendicular to the vehicle velocity to avoid

demanding speed change which might easily be infeasible for aerodynamically-controlled vehicles. This

restriction leads to a command structure for the under-actuated kinematic model representing acceleration

command as the cross product of a vector with the vehicle velocity as discussed in [3], [4], thus the

name cross product steering. Unlike the explicit guidance methods such as those developed in [5]–[7]

based on a fully-actuated kinematic model performing arbitrary steering which permits the presence of

tangential acceleration command, a cross product steering method can hardly be designed by using simple

double integrator kinematics since propagation of its acceleration command given by a bilinear map is

not easy. The aforementioned complexities of three-dimensional guidance with cross-product steering can

commonly be observed in the studies on target interception [4], [8]–[17], target interception with evasive

manoeuvre [18], target interception with impact direction constraint [19]–[24], path-following [25], [26],

and leader-follower formation flight [27].

Target interception with a three-dimensional terminal direction constraint has been addressed by ap-

plying various control-theoretic approaches. A motivation to develop methods addressing the three-

dimensional nature of the problem directly is to overcome the drawbacks of employing planar impact-

angle-control guidance laws applied separately in two orthogonal planes. In the context of this study, pre-

vious studies can be categorised into two groups depending on the type of differential relations considered

for development: i) multiple scalar equations, and ii) vector form equations. The methods in [28]–[38]

were developed based on multiple scalar equations describing the motion of vehicle and line-of-sight with

respect to a fixed coordinate system in R3. Although the formulation takes into account all the coupling

effects in three-dimensional engagement kinematics, the system of equations may become ill-defined due

to the inherent singularities of Euler angles used to describe directional quantities. Manipulation of many

scalar equations may also hinder clear physical understanding of the closed-loop system. On the other

hand, vector form equations are used with 1) the arbitrary steering form on two separate orthogonal planes
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in [39], [40], 2) the arbitrary steering form for spatial motion in [6], [7], [41], [42], and 3) the cross

product steering form in [19]–[24]. The methods employing vector formulation are in general simpler to

understand and implement, while the optimisation-based techniques employing multiple scalar equations

allows more flexibility.

Despite extensive efforts, a completely constructive approach to the design of Biased Proportional

Navigation Guidance law (BPNG) according to the predictive control philosophy has not been addressed

in three-dimensional space. As it was recognised well in [21], a single well-defined equation for guidance

policy posed in three-dimensional space is desirable for practice. Only a few recent studies attempted to

design three-dimensional algorithms in the form of BPNG [19]–[24] which belongs to the general family

of cross product steering methods. However, the approaches taken in those studies to derive the command

formula are quite empirical in the sense that they substantially rely on heuristic choices based on physical

intuition and extension of previous knowledge about two-dimensional BPNG. Selection of the manoeuvre

plane for three-dimensional engagement was highlighted in [19] in the context of midcourse guidance, but

it resorted to simulation tests comparing different candidates rather than a deductive reasoning. The issue

was left as an ambiguity of design process. The multi-stage strategy of [20] is essentially a planar technique

as it separates alignment of the manoeuvre plane to the desired one before proceeding to in-plane control

of impact angle. Also, the quaternion-based analysis presented in [22] regarding optimality and trajectory

shaping is unnecessarily complicated. Most importantly, the design principle of predictive correction is

not thoroughly realised in those earlier studies, leading to the limitation in showing the extensibility of

the design process as a systematic framework to incorporate various trajectory shaping necessities. Unlike

the studies on planar BPNGs such as [43]–[45], the notion of defining a performance output error as a

difference between the instantaneous prediction of the final value and the desired value is not perceived

in [21], [22] where the spatial BPNGs are developed to align the current velocity or line-of-sight with the

desired terminal direction. That is, the prediction-centric perspective towards BPNG remains unexplored

in a three-dimensional setup. A notable exception is [24] where the three-dimensional guidance law was

derived to control the impact direction with respect to a manoeuvring target based on nullifying the error

angle associated with the predicted terminal velocity direction. The method was obtained by employing

a vector-form BPNG in the relative reference frame to define the three-dimensional relative motion of

missile with respect to target. However, the notion of vector spatial rotation and the additional rotational

degree-of-freedom around the final velocity direction have not been fully appreciated. In these regards,

the study of three-dimensional BPNG is still incomplete.

This study primarily aims to develop a constructive framework of three-dimensional BPNGs for arrival

direction control capable of additional trajectory shaping. The main novelty is a straightforward realisation
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of the predictive control philosophy through spatial rotation of the predicted final velocity for the

baseline Pure Proportional Navigation Guidance law (PPNG) onto the desired direction. Accordingly, the

proposition is to design the angular velocity of the predicted velocity direction vector as the command to

nullify the angular difference. This approach brings advantages in three-dimensional problems as it does

not necessarily rely on a ground-fixed coordinate system. In addition, the design directly with vector form

manipulation could be more elegant and clearer than the approach of considering approximate kinematic

equations decoupled for motion in vertical and horizontal planes.

The proposed approach complements the limitations of relevant studies through novel vector-form

formulation. To the best of our knowledge, this study introduces predictive spatial rotation of the final

velocity for the first time as the design principle for three-dimensional BPNGs, without introducing local

parametrisation that might be ill-defined such as Euler angle or quaternion. Understanding the action of

bias command as the angular velocity of the predicted final velocity provides not only a solid theoretical

foundation but also practical benefits. This point of view facilitates the analysis of optimality and final

velocity direction error convergence. In particular, this study does not assume any small angle assumption

for linearisation in the design and analysis. Another important contribution is that the rotation of predicted

final velocity around the axis of desired final direction, which is decoupled from regulation of the final

direction error, provides one additional degree-of-freedom in the design of bias command vector to

meet further trajectory shaping objectives. For example, the additional rotation enables three-dimensional

impact direction control combined with weaving manoeuvre pattern for evasion or target observability

enhancement. Most of all, the proposed three-dimensional BPNG is simple to implement and flexible

enough to achieve a wide range of arrival directions. A Julia implementation of the proposed BPNG is

accessible via [46].

The rest of the paper is organised as follows: Section II summarises the preliminary mathematical

knowledge about vector products and rotation. Section III first derives the expressions for predicted final

velocity and its time-derivate in vector form. The latter part of Sec. III presents the proposed methodology

to design a bias command for control of arrival direction based on three-dimensional rotation of predicted

final velocity. Section III also discusses possible extensions to incorporate additional trajectory shaping

goals and modifications to keep the lead angle below a limit. In Sec. IV, numerical simulation examples

validate the proposed BPNG design principle and demonstrate the closed-loop trajectory characteristics.

Section V provides concluding remarks.
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II. Preliminaries

This section briefly presents some of the basic facts related to algebraic manipulation of three-

dimensional vectors that will be frequently recalled throughout the paper. Lemma 1 provides a summary

of useful relations for triple products, Lemma 2 explains the Rodrigues’ rotation formula, and Lemma 3

describes the time-derivative of unit vector and the associated angular velocity.

A. Triple Product

Lemma 1 (Triple Product Rules).

a · (b × c) = b · (c × a) = c · (a × b) (1)

(a · (b × c)) a = (a × b) × (a × c) (2)

a × (b × c) = (a · c) b − (a · b) c (3)

(a × b) × c = a × (b × c) − b × (a × c) (4)

a × (b × c) + b × (c × a) + c × (a × b) = 0 (5)

B. Three-Dimensional Rotation of Vector

Rodrigues’ rotation formula is a simple expression for the operation rotating a vector in three-dimensional

space, given a rotation axis and angle.

Lemma 2 (Rodrigues’ Rotation Formula).

If v is a vector in R3 and k is a unit vector describing an axis of rotation about which v rotates by an

angle 𝜃 according to the right-hand rule, the Rodrigues’ formula for the rotated vector v𝑟𝑜𝑡 is

v𝑟𝑜𝑡 = v cos 𝜃 + (k × v) sin 𝜃 + k (k · v) (1 − cos 𝜃) (6)

Proof. See [47]–[49]. □

C. Angular Velocity of Unit Vector Induced by Time-Derivative

Lemma 3 (Time-Derivative and Angular Velocity of Unit Vector).

The time-derivative of a three-dimensional unit vector u can always be represented as

¤̂u = 𝝎𝑢 × û (7)

with an angular velocity 𝝎𝑢. The component of 𝝎𝑢 perpendicular to the associated unit vector û can be

written as

𝝎
𝑢⊥
𝑢 = û × ¤̂u (8)
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Also, Eq. (7) can be rewritten considering Eq. (8) as

¤̂u = 𝝎
𝑢⊥
𝑢 × û (9)

Proof. See Appendices of [27]. □

III. Design of Command Vector

A. Problem Formulation and Kinematics

Consider the three-dimensional motion of a point mass vehicle 𝑀 for which Fig. 1 shows the problem

geometry both in three-dimensional and two-dimensional perspectives. The target 𝑇 in Fig. 1 is a fixed

̂r

v̂

T

M

v̂fpred

k̂

σ

v̂fd

Manoeuvre Plane

(a) Three-Dimensional View

̂r

v̂

TM

σ

Ref

v̂fpred

k̂

γλ γfpred

(b) Two-Dimensional View and Definition of Variables in Manoeuvre Plane

Fig. 1: Problem Geometry
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point in space. Let r and v denote the Line-Of-Sight (LOS) from vehicle to target and vehicle velocity,

respectively. The hat notation indicates that the quantity is a unit vector. Here, r̂ ≜
r

∥r∥ and v̂ ≜
v

∥v∥

denote the unit vectors in the direction of r and v, respectively. Another unit vector k̂ is defined to be

perpendicular to the instantaneous manoeuvre plane spanned by r̂ and v̂, i.e.,

k̂ ≜
r × v

∥r × v∥ (10)

Note that the instantaneous manoeuvre plane can rotate in three-dimensional space, that is, k̂ is not

necessarily a fixed unit vector. In Fig. 1a, v̂ 𝑓𝑑 is the desired final velocity direction and v̂ 𝑓𝑝𝑟𝑒𝑑 is the final

velocity direction predicted at each instance as a result of motion governed by a baseline guidance law.

Figure 1b depicts the geometry and definitions of associated variables in the instantaneous manoeuvre

plane. The angular separation between r̂ and v̂ along the manoeuvre plane is the three-dimensional lead

angle defined as 𝜎 ≜ cos−1 (r̂ · v̂) ∈ [0, 𝜋]. By definition, we have cos𝜎 = r̂ · v̂ and sin𝜎 = ∥r̂ × v̂∥. For

the simplicity of explanation, we can consider a reference line on the manoeuvre plane as shown in Fig.

1b to define the flight path angle 𝛾 and the LOS angle 𝜆 as the amount of rotation from the reference line

which is positive around the axis k̂ with the right-hand rule. The reference line is taken in a direction

that render both 𝛾 and 𝜆 positive so that 𝜎 = 𝛾 − 𝜆 holds. In accordance with the definition of 𝛾, the

predicted final flight path angle that corresponds to v̂ 𝑓𝑝𝑟𝑒𝑑 is denoted by 𝛾 𝑓𝑝𝑟𝑒𝑑 .

According to Lemma 3, the time-derivative of LOS direction vector can be written as

¤̂r = 𝝎
𝑟⊥
𝑟 × r̂ (11)

where 𝝎
𝑟⊥
𝑟 is the angular velocity of LOS given by

𝝎
𝑟⊥
𝑟 =

v × r

∥r∥2
= −𝑣 sin𝜎

𝑟
k̂ (12)

where 𝑣 ≜ ∥v∥. Equation (12) shows that 𝝎𝑟⊥
𝑟 has no component in the redundant direction of r̂ since it

is parallel to k̂. Also, the time-derivative of the range 𝑟 ≜ ∥r∥ can be expressed as

¤𝑟 = −v · r̂ = −𝑣 cos𝜎 (13)

B. Predicted Final Velocity Direction Vector

Suppose that the vehicle employs a baseline guidance law for arrival at a stationary target. The present

study takes the PPNG with a constant gain 𝑁 given by

a
𝑣⊥
𝑃𝑃𝑁𝐺 = 𝑁𝝎𝑟⊥

𝑟 × v (14)

as the baseline that generates command for the normal acceleration. For a vehicle motion governed by the

PPNG, it is well-known that the trajectory evolves on a manoeuvre plane which does not rotate through
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the flight when the target is stationary. That is, the relative motion of a vehicle with respect to a target is

a planar motion. Hence, the usual two-dimensional analytical results of PPNG applies well on this plane.

With the angular quantities defined previously, the angular velocity of LOS can be written as

𝝎
𝑟⊥
𝑟 = ¤𝜆k̂ (15)

Also, the normal acceleration of vehicle for the motion confined on a manoeuvre plane can be represented

as

a
𝑣⊥

= ¤𝛾k̂ × v (16)

By applying the PPNG given by Eq. (14) and assuming that the vehicle response to the commanded

acceleration is lag-free, equating Eq. (16) and (14) yields

¤𝛾 = 𝑁 ¤𝜆 =
𝑁

𝑁 − 1
¤𝜎 (17)

where the last equation is the result from the relation 𝜎 = 𝛾 − 𝜆. Integrating Eq. (17) from 𝑡 to 𝑡 𝑓 side

by side gives the predicted final flight path angle as

𝛾 𝑓𝑝𝑟𝑒𝑑 = 𝛾 − 𝑁

𝑁 − 1
𝜎 = 𝜆 − 1

𝑁 − 1
𝜎 (18)

since the PPNG terminates flight with zero final lead angle, i.e., 𝜎 𝑓𝑝𝑟𝑒𝑑 = 0. This shows that the predicted

final velocity direction v̂ 𝑓𝑝𝑟𝑒𝑑 is the unit vector obtained from rotating v̂ by an angle 𝑁
𝑁−1𝜎, or equivalently,

rotating r̂ by 1
𝑁−1𝜎, about the axis −k̂ according to the right-hand rule. Therefore, v̂ 𝑓𝑝𝑟𝑒𝑑 can be expressed

by using Lemma 2 as

v̂ 𝑓𝑝𝑟𝑒𝑑 = v̂ cos

(
𝑁

𝑁 − 1
𝜎

)
−
(
k̂ × v̂

)
sin

(
𝑁

𝑁 − 1
𝜎

)

= r̂ cos

(
1

𝑁 − 1
𝜎

)
−
(
k̂ × r̂

)
sin

(
1

𝑁 − 1
𝜎

) (19)

C. Rotation of Predicted Final Velocity Direction Vector and Error Dynamics

It is now well-known that a guidance law for satisfying given constraints such as impact angle or impact

time conditions in addition to interception can be designed by taking the philosophy of predictive control

approach in which an additive correction input besides the baseline input for the current time is designed.

This allows the transfer of a predicted final value of an associated variable to its desired value [50]. The

same principle applies in an identical manner to the design of a guidance law for three-dimensional flight

with an extended set of equations representing the error dynamics. The main point of this study is that

derivation of the equations directly in vector-form yields a design approach that is more elegant.

According to Lemma 3, the time-derivative of the unit vector in the direction of vehicle velocity should

be represented in the following form

¤̂v = 𝝎𝑣 × v̂ (20)
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Considering the definition of normal acceleration a
𝑣⊥ = v̂ × ( ¤v × v̂) = 𝑣 ¤̂v in conjunction with Eq. (20),

a Biased Proportional Navigation Guidance law (BPNG) of the form a
𝑣⊥
𝐵𝑃𝑁𝐺

= a
𝑣⊥
𝑃𝑃𝑁𝐺

+ a
𝑣⊥
𝑏𝑖𝑎𝑠

can be

described equivalently in terms of the angular velocity command for the vehicle velocity as

𝝎𝑣 = 𝑁𝝎𝑟⊥
𝑟 + 𝝎𝑏𝑖𝑎𝑠 (21)

Therefore, the bias angular velocity command 𝝎𝑏𝑖𝑎𝑠 is the input variable for three-dimensional guidance

problem. One may easily verify by substituting Eq. (21) back in Eq. (20) and then multiplying 𝑣 that the

corresponding normal acceleration command is indeed

a
𝑣⊥
𝐵𝑃𝑁𝐺 =

(
𝑁𝝎𝑟⊥

𝑟 + 𝝎𝑏𝑖𝑎𝑠

)
× v (22)

Figure 2 shows the definition of the error 𝑒 associated with the problem of arrival at a target point

along the desired final incidence direction. We can state that the objective is to design the magnitude

and direction of 𝝎𝑏𝑖𝑎𝑠 to nullify the error 𝑒 so that the vehicle arrives at the target with the desired final

velocity direction.

T

v̂fpred

v̂fd
e

Fig. 2: Predicted Final Velocity Direction Error

The equation for the time-derivative of v̂ 𝑓𝑝𝑟𝑒𝑑 is necessary to describe its evolution over time depending

on the control input 𝝎𝑏𝑖𝑎𝑠. According to Lemma 3, it is obvious that the time-derivative of v̂ 𝑓𝑝𝑟𝑒𝑑 should

have the form of a cross product ¤̂v 𝑓𝑝𝑟𝑒𝑑 = 𝝎 𝑓 × v̂ 𝑓𝑝𝑟𝑒𝑑 for some angular velocity 𝝎 𝑓 which represents

the rotation of v̂ 𝑓𝑝𝑟𝑒𝑑 . The purpose of designing the bias angular velocity command 𝝎𝑏𝑖𝑎𝑠 is to produce

the angular velocity 𝝎 𝑓 that contributes to the alignment of v̂ 𝑓𝑝𝑟𝑒𝑑 with v̂ 𝑓𝑑 . To this end, an expression

relating 𝝎 𝑓 to 𝝎𝑏𝑖𝑎𝑠 and other quantities is necessary. The following lemma summarises the vector-form

expressions for the time-derivatives of 𝜎 and k̂. Note from Lemma 3 that the result of derivation will

bring the relation in the form of ¤̂
k = 𝝎𝑘 × k̂ where 𝝎𝑘 refers to the angular velocity of k̂.
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Lemma 4 (Time-Derivatives of Three-Dimensional Lead Angle and Normal Vector of Manoeuvre Plane).

¤𝜎 =
{
(𝑁 − 1)𝝎𝑟⊥

𝑟 + 𝝎𝑏𝑖𝑎𝑠

}
· k̂ (23)

¤̂
k =

𝝎𝑏𝑖𝑎𝑠 ·
(
v̂ × k̂

)
∥r̂ × v̂∥ r̂ × k̂ (24)

Proof. Considering the definition of 𝜎 described in Sec. III-A, Eq. (10) defining k̂ can be rewritten as

sin𝜎k̂ = r̂ × v̂ (25)

Differentiating each side of Eq. (25) followed by substitution of Eqs. (11) and (20) along with application

of Eq. (3) and the fact 𝝎𝑟⊥
𝑟 ⊥ v̂ gives

cos𝜎 ¤𝜎k̂ + sin𝜎 ¤̂
k = ¤̂r × v̂ + r̂ × ¤̂v

=
(
𝝎

𝑟⊥
𝑟 × r̂

)
× v̂ + r̂ × (𝝎𝑣 × v̂)

= (r̂ · v̂)
(
𝝎𝑣 − 𝝎

𝑟⊥
𝑟

)
− (r̂ · 𝝎𝑣) v̂

= (r̂ · v̂)
{
(𝑁 − 1)𝝎𝑟⊥

𝑟 + 𝝎𝑏𝑖𝑎𝑠

}
− (r̂ · 𝝎𝑏𝑖𝑎𝑠) v̂

(26)

Lemma 3 states that k̂ ⊥ ¤̂
k, therefore, the expressions for ¤𝜎 and ¤̂

k can be found by taking the component

of Eq. (26) in the direction parallel and perpendicular to k̂, respectively.

First, the dot product of Eq. (26) and k̂ gives

cos𝜎 ¤𝜎 = (r̂ · v̂)
(
𝝎𝑣 − 𝝎

𝑟⊥
𝑟

)
· k̂ = (r̂ · v̂)

{
(𝑁 − 1)𝝎𝑟⊥

𝑟 + 𝝎𝑏𝑖𝑎𝑠

}
· k̂ (27)

since k̂ ⊥ v̂ by definition. Then, using the relation cos𝜎 = r̂ · v̂ in Eq. (27) leads to Eq. (23).

Next, subtracting the component along k̂ from both sides of Eq. (26) while considering
(
𝝎

𝑟⊥
𝑟 · k̂

)
k̂ =

𝝎
𝑟⊥
𝑟 , we have

sin𝜎 ¤̂
k = r̂ × (𝝎𝑏𝑖𝑎𝑠 × v̂) − (r̂ · v̂)

(
𝝎𝑏𝑖𝑎𝑠 · k̂

)
k̂ (28)

The tuple of unit vectors
(
v̂, k̂, v̂ × k̂

)
forms an orthonormal basis of R3, validating the expansion 𝝎𝑏𝑖𝑎𝑠 =

(𝝎𝑏𝑖𝑎𝑠 · v̂) v̂ +
(
𝝎𝑏𝑖𝑎𝑠 · k̂

)
k̂ +

(
𝝎𝑏𝑖𝑎𝑠 ·

(
v̂ × k̂

))
v̂ × k̂. Substituting the resolved form into Eq. (28) gives

the following simplified expression.

sin𝜎 ¤̂
k = r̂ ×

[{
(𝝎𝑏𝑖𝑎𝑠 · v̂) v̂ +

(
𝝎𝑏𝑖𝑎𝑠 · k̂

)
k̂ +

(
𝝎𝑏𝑖𝑎𝑠 ·

(
v̂ × k̂

))
v̂ × k̂

}
× v̂

]
− (r̂ · v̂)

(
𝝎𝑏𝑖𝑎𝑠 · k̂

)
k̂

=

(
𝝎𝑏𝑖𝑎𝑠 ·

(
v̂ × k̂

))
r̂ × k̂

(29)

Rearranging Eq. (29) using the relation sin𝜎 = ∥r̂ × v̂∥ results in Eq. (24). □
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Now, the time-derivative of the second equality in Eq. (19) can be obtained by using Eq. (11) and the

results of Lemma 4 along with repeated application Eq. (3) as

¤̂v 𝑓𝑝𝑟𝑒𝑑 = ¤̂r cos

(
1

𝑁 − 1
𝜎

)
− r̂ sin

(
1

𝑁 − 1
𝜎

)
1

𝑁 − 1
¤𝜎

−
( ¤̂
k × r̂ + k̂ × ¤̂r

)
sin

(
1

𝑁 − 1
𝜎

)
−
(
k̂ × r̂

)
cos

(
1

𝑁 − 1
𝜎

)
1

𝑁 − 1
¤𝜎

= − cos

(
1

𝑁 − 1
𝜎

)
𝝎𝑏𝑖𝑎𝑠 · k̂

𝑁 − 1
k̂ × r̂ − sin

(
1

𝑁 − 1
𝜎

) ©­­«
𝝎𝑏𝑖𝑎𝑠 ·

(
v̂ × k̂

)
∥r̂ × v̂∥ k̂ + 𝝎𝑏𝑖𝑎𝑠 · k̂

𝑁 − 1
r̂
ª®®¬

(30)

Considering the relations r̂ ×
(
k̂ × r̂

)
= k̂ and k̂ ×

(
k̂ × r̂

)
= −r̂, Eq. (30) can be further simplified as

¤̂v 𝑓𝑝𝑟𝑒𝑑 =



𝝎𝑏𝑖𝑎𝑠 ·

(
v̂ × k̂

)
∥r̂ × v̂∥ r̂ − 𝝎𝑏𝑖𝑎𝑠 · k̂

𝑁 − 1
k̂



×
{
r̂ cos

(
1

𝑁 − 1
𝜎

)
−
(
k̂ × r̂

)
sin

(
1

𝑁 − 1
𝜎

)}

=



𝝎𝑏𝑖𝑎𝑠 ·

(
v̂ × k̂

)
∥r̂ × v̂∥ r̂ − 𝝎𝑏𝑖𝑎𝑠 · k̂

𝑁 − 1
k̂



× v̂ 𝑓𝑝𝑟𝑒𝑑

(31)

The final result of derivation confirms that it has the form of ¤̂v 𝑓𝑝𝑟𝑒𝑑 = 𝝎 𝑓 × v̂ 𝑓𝑝𝑟𝑒𝑑 with

𝝎 𝑓 ≜

𝝎𝑏𝑖𝑎𝑠 ·
(
v̂ × k̂

)
∥r̂ × v̂∥ r̂ − 𝝎𝑏𝑖𝑎𝑠 · k̂

𝑁 − 1
k̂ +Ωv̂ 𝑓𝑝𝑟𝑒𝑑

=



𝝎𝑏𝑖𝑎𝑠 ·

(
v̂ × k̂

)
∥r̂ × v̂∥ +Ω cos

(
1

𝑁 − 1
𝜎

)


r̂ − 𝝎𝑏𝑖𝑎𝑠 · k̂

𝑁 − 1
k̂ −Ω sin

(
1

𝑁 − 1
𝜎

) (
k̂ × r̂

) (32)

for some Ω ∈ R. It is worth noting that the component along k̂ is responsible for rotation of v̂ 𝑓𝑝𝑟𝑒𝑑 in

the manoeuvre plane. The component of 𝝎 𝑓 parallel to r̂ arises from the rotation of manoeuvre plane,

and it is indeed identical to the angular velocity of k̂, i.e., 𝝎𝑘 , as it can be observed from Eq. (31). The

component Ωv̂ 𝑓𝑝𝑟𝑒𝑑 is included in Eq. (32) with the intention to represent the ambiguity in the redundant

direction since the cross product operation removes the effect of parallel component.

Finally, the dynamics of the error angle 𝑒 depicted in Fig. 2 can be related with 𝝎𝑏𝑖𝑎𝑠 using Eq. (31).

Let 𝑒 ≜ cos−1
(
v̂ 𝑓𝑝𝑟𝑒𝑑 · v̂ 𝑓𝑑

)
. Then, differentiating with respect to time and using Eq. (1) gives

¤𝑒 = −
¤̂v 𝑓𝑝𝑟𝑒𝑑 · v̂ 𝑓𝑑√︂

1 −
(
v̂ 𝑓𝑝𝑟𝑒𝑑 · v̂ 𝑓𝑑

)2
= −

v̂ 𝑓𝑑 ·
(
𝝎 𝑓 × v̂ 𝑓𝑝𝑟𝑒𝑑

)


v̂ 𝑓𝑝𝑟𝑒𝑑 × v̂ 𝑓𝑑





= −𝝎 𝑓 ·
v̂ 𝑓𝑝𝑟𝑒𝑑 × v̂ 𝑓𝑑

v̂ 𝑓𝑝𝑟𝑒𝑑 × v̂ 𝑓𝑑




(33)

Equation (33) clearly indicates that the component of 𝝎 𝑓 in the direction of v̂ 𝑓𝑝𝑟𝑒𝑑 × v̂ 𝑓𝑑 contributes to

time-variation of 𝑒.
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D. Design of Bias Angular Velocity Command

The bias angular velocity command 𝝎𝑏𝑖𝑎𝑠 should be designed to rotate v̂ 𝑓𝑝𝑟𝑒𝑑 as desired. More

specifically, 𝝎𝑏𝑖𝑎𝑠 needs to be designed so that the resulting 𝝎 𝑓 produces the required amount of rotation

about the axis
v̂ 𝑓𝑝𝑟𝑒𝑑

×v̂ 𝑓𝑑


v̂ 𝑓𝑝𝑟𝑒𝑑
×v̂ 𝑓𝑑




 . The minimal movement of v̂ 𝑓𝑝𝑟𝑒𝑑 in the shortest path to the fixed vector v̂ 𝑓𝑑 is

the rotation about a fixed axis perpendicular to the plane of span
(
v̂ 𝑓𝑝𝑟𝑒𝑑 , v̂ 𝑓𝑑

)
. Rotation of v̂ 𝑓𝑝𝑟𝑒𝑑 around

v̂ 𝑓𝑑 can be used for trajectory shaping purposes at the expense of increased magnitude of 𝝎 𝑓 which will

require additional control effort in 𝝎𝑏𝑖𝑎𝑠.

The design process begins with specifying 𝝎 𝑓𝑑 that encodes the desired motion of v̂ 𝑓𝑝𝑟𝑒𝑑 as the

virtual control input, and proceeds with conversion into the real control input 𝝎𝑏𝑖𝑎𝑠. Motivated by the

observations of Eq. (33), the virtual control input can be constructed as

𝝎 𝑓𝑑 = 𝑘𝑒 (𝑟) | ¤𝑟 | 𝑒
v̂ 𝑓𝑝𝑟𝑒𝑑 × v̂ 𝑓𝑑

v̂ 𝑓𝑝𝑟𝑒𝑑 × v̂ 𝑓𝑑



 +Ω𝜇v̂ 𝑓𝑑 (34)

with a positive range-varying gain 𝑘𝑒 (𝑟) and an angular rate Ω𝜇 in order to prescribe the desired closed-

loop error dynamics as

¤𝑒 = −𝑘𝑒 (𝑟) | ¤𝑟 | 𝑒 (35)

Note that changing the independent variable of Eq. (35) from 𝑡 to 𝑟 leads to 𝑒′ = −𝑘𝑒 (𝑟) sign ( ¤𝑟) 𝑒 where

(·)′ ≜ 𝑑
𝑑𝑟

(·). Next, the ambiguity in Ω should be resolved to fully determine the real control input. This

can be done by resolving 𝝎 𝑓 (and 𝝎 𝑓𝑑 ) in the Cartesian coordinate system with
(
k̂, r̂, k̂ × r̂

)
as the basis

vectors. By equating Eq. (32) with Eq. (34), taking the dot product with k̂× r̂, and rearranging the result

about Ω, we have

Ω = −
𝝎 𝑓𝑑 ·

(
k̂ × r̂

)
sin

(
1

𝑁−1𝜎
) (36)

After back substitution of Eq. (36), the dot products of Eq. (32) with r̂ and k̂ can be written as

𝝎𝑏𝑖𝑎𝑠 ·
(
v̂ × k̂

)
∥r̂ × v̂∥ − 𝝎 𝑓𝑑 ·

(
k̂ × r̂

)
cot

(
1

𝑁 − 1
𝜎

)
= 𝝎 𝑓𝑑 · r̂ (37)

−𝝎𝑏𝑖𝑎𝑠 · k̂

𝑁 − 1
= 𝝎 𝑓𝑑 · k̂ (38)

The component of 𝝎𝑏𝑖𝑎𝑠 in the direction of v̂ does not generate any normal acceleration for steering of

v̂. This implies that a 𝝎𝑏𝑖𝑎𝑠 having components only in k̂ and v̂× k̂ suffices our control design objective.

Therefore, the bias angular velocity command that produces the desired angular velocity of the predicted

final velocity direction can be fully determined from Eqs. (37)-(38) as follows:

𝝎𝑏𝑖𝑎𝑠 = − (𝑁 − 1)
(
𝝎 𝑓𝑑 · k̂

)
k̂ + sin𝜎𝝎 𝑓𝑑 ·

{
r̂ + cot

(
1

𝑁 − 1
𝜎

) (
k̂ × r̂

)} (
v̂ × k̂

)
(39)
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Remark 1 (Corner Cases).

The unit vector in the direction of v̂ 𝑓𝑝𝑟𝑒𝑑 × v̂ 𝑓𝑑 that enters into the 𝝎 𝑓𝑑 of Eq. (34) is well-defined as long

as v̂ 𝑓𝑝𝑟𝑒𝑑 ≠ ±v̂ 𝑓𝑑 . The two corner cases due to the parallel pairs of
(
v̂ 𝑓𝑝𝑟𝑒𝑑 , v̂ 𝑓𝑑

)
are not considerably

restricting the applicability of proposed guidance law in practice as they can be reasonably mitigated by

an appropriate exception handling or a design modification for more reliability.

The first case of v̂ 𝑓𝑝𝑟𝑒𝑑 = v̂ 𝑓𝑑 , which is equivalent to 𝑒 = 0, corresponds to the situation when the vehicle

employing only the PPNG will arrive at the target with the desired direction. This case does not incur a

serious problem in practice because a bias command is not necessary to turn v̂ 𝑓𝑝𝑟𝑒𝑑 . Therefore, setting

the first term in Eq. (34) to be zero suffices our purpose. Also, this case does not involve a mathematical

singularity in Eq. (34), since L’Hôpital’s rule indicates that lim
𝑒→0+

𝑒


v̂ 𝑓𝑝𝑟𝑒𝑑
×v̂ 𝑓𝑑




 = lim
𝑒→0+

𝑒
sin 𝑒 = lim

𝑒→0+
1

cos 𝑒 = 1.

The other case of v̂ 𝑓𝑝𝑟𝑒𝑑 = −v̂ 𝑓𝑑 , which is equivalent to 𝑒 = 𝜋, corresponds to the situation when the

direction of rotation for v̂ 𝑓𝑝𝑟𝑒𝑑 cannot be uniquely determined due to the infinitude of possible solutions.

In this exceptional case, the angular velocity 𝝎 𝑓𝑑 in any direction on the plane perpendicular to v̂ 𝑓𝑑 will

reduce 𝑒. In view of the finite-time monotonic convergence of 𝑒 guaranteed by the proposed method,

one practical remedy is to simply avoid initialisation at 𝑒 = 𝜋. Another possible solution is to apply

an arbitrarily small perturbation in 𝝎 𝑓𝑑 to escape from the point of 𝑒 = 𝜋. Also, the singularity can be

avoided by modifying the design as 𝝎 𝑓𝑑 = 𝑘𝑒 (𝑟) | ¤𝑟 | 𝑒v̂ 𝑓𝑝𝑟𝑒𝑑×v̂ 𝑓𝑑+Ω𝜇v̂ 𝑓𝑑 at the expense of the closed-loop

error dynamics becoming a nonlinear asymptotically convergent system 𝑒′ = −𝑘𝑒 (𝑟) sign ( ¤𝑟) 𝑒 sin 𝑒.

Remark 2 (Effects of Nonideal Acceleration Tracking Response).

Performance degradation in terms of larger miss distance or impact angle error is generally expected in

the presence of a lag-like dynamics in the lateral acceleration responding to the command. Nevertheless,

the lag in the tracking response will impact the result to a limited extent in stationary target interception

when the convergence of 𝑒 to zero over time is fast enough to require only a small correction near the

end of engagement and the terminal acceleration command as well as its rate smoothly approaches zero.

One can prescribe the desired convergence patterns through judicious choice of design parameters.

Remark 3 (Extension to Control of Impact Angle against Manoeuvring Target).

The proposed BPNG can be extended to the case of intercepting a manoeuvring target with the impact

angle constraint by formulating the problem in the relative frame where target remains fixed and applying

the same derivation procedure. The notion of design first in the relative frame followed by realisation in

the absolute frame has been employed in [24] in a similar manner.
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E. Consideration of Shaping Requirements for Choice of Design Parameters

The proposed design approach introduces 𝑁 , 𝑘𝑒 (𝑟), and Ω𝜇 as the design parameters that should be

selected to reflect the trajectory shaping requirements. The navigation ratio 𝑁 can be reasonably chosen

a priori considering the baseline performance. The other design parameters are mainly associated with

the rotation of v̂ 𝑓𝑝𝑟𝑒𝑑 as well as the rotation of manoeuvre plane.

1) Design of 𝑘𝑒 (𝑟): The function 𝑘𝑒 (𝑟) can be selected by considering the scalar linear closed-loop

error dynamics given by Eq. (35) to prescribe a desired convergence pattern in the response of 𝑒 which

can be expressed as

𝑒 (𝑟) = 𝑒 (𝑟0) exp

[∫ 𝑟

𝑟0

𝑘𝑒 (𝜌) 𝑑𝜌
]

(40)

Finite-time convergence of the error requires choosing 𝑘𝑒 (𝑟) so that the solution in Eq. (40) satisfies

𝑒 (𝑟) = 0 in 𝑟 ∈ [0, 𝑟𝑐] for some 𝑟𝑐 ≥ 0. Moreover, the previous studies such as [50] provided an

alternative way to choose 𝑘𝑒 (𝑟) by solving an optimal control problem formulated as

minimise
𝝎 𝑓

𝐽 =

∫ 𝑟

0
𝑊 (𝜌)





𝝎 𝑓 (𝜌)
¤𝑟






𝑝

𝑑𝜌

subject to 𝑒′ (𝑟) = −
𝝎 𝑓 (𝑟)

¤𝑟 ·
v̂ 𝑓𝑝𝑟𝑒𝑑 × v̂ 𝑓𝑑

v̂ 𝑓𝑝𝑟𝑒𝑑 × v̂ 𝑓𝑑




𝑒 (0) = 0

(41)

where 𝑝 ∈ (0,∞) and 𝑊 (𝜌) is a weighting function that attains positive value in the interval [0, 𝑟]. The

optimal solution satisfies

𝑘𝑒 (𝑟) =
𝑊

− 1
𝑝−1 (𝑟)∫ 𝑟

0
𝑊

− 1
𝑝−1 (𝜌) 𝑑𝜌

(42)

One representative example placing a larger weight on the region of smaller 𝑟 for suppression of rotation

in the latter part of engagement is to take 𝑝 = 2 and 𝑊 (𝑟) = 𝑟−𝑛 where 𝑛 ≥ 0, the choice that results in

𝑘𝑒 (𝑟) =
𝑛 + 1

𝑟
(43)

Substituting the feedback gain given by Eq. (43) into Eqs. (40) and (34) with Ω𝜇 = 0 gives the solution

for the closed-loop error trajectory and the magnitude of the desired angular velocity in terms of 𝑟 as

𝑒 (𝑟) = 𝑒 (𝑟0)
(
𝑟

𝑟0

)𝑛+1

(44)




𝝎 𝑓𝑑



 = (𝑛 + 1) | ¤𝑟 | 𝑒 (𝑟0)
𝑟𝑛

𝑟0
𝑛+1

(45)
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2) Design of Ω𝜇: Obviously, Ω𝜇 = 0 is the choice to make the predicted rotation of v̂ 𝑓𝑝𝑟𝑒𝑑 follow the

shortest possible path for regulation of 𝑒. Nonzero Ω𝜇 does not contribute to reduction of 𝑒. Nonetheless,

the additional degree-of-freedom for roll-like motion of the predicted final velocity around the desired

arrival direction can be utilised for objectives that are independent from satisfying the terminal direction

constraint. One example is to deliberately induce weaving patterns for enhancing survivability and target

observability while guaranteeing satisfaction of the terminal direction constraint. One possible design for

inducing a barrel roll type evasive manoeuvre is to resemble the BPNG presented in [18], except that

the previous study does not consider a specific direction for incidence to the target. This can be done by

using Ω𝜇 with its magnitude given by a monotonically increasing function of 𝑟 such as

Ω𝜇 = Ω𝜇0

(
𝑟

𝑟0

)𝑚
(46)

with Ω𝜇0
≠ 0 and 𝑚 ≥ 0. Other types of functions such as sinusoidal, square, triangular, sawtooth

waveforms or random sequences can also be chosen as Ω𝜇 to generate erratic manoeuvre patterns without

loss of convergence in 𝑒.

T

v̂fpred

k̂d

μ

v̂fdDesired Manoeuvre Plane

v̂fpred
× v̂fd

v̂fpred
× v̂fd

−k̂d

Ω
μ

Fig. 3: Desired Manoeuvre Plane and Rotation Around Desired Arrival Direction

Another example is to place the manoeuvre plane in a desired orientation. Suppose that the unit normal

vector of the desired manoeuvre plane is given by k̂𝑝𝑙𝑎𝑛𝑒. The manoeuvre plane is said to be aligned

with the desired orientation if the trace of v̂ 𝑓𝑝𝑟𝑒𝑑 approaching v̂ 𝑓𝑑 lies in the desired manoeuvre plane,
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or equivalently, the plane spanned by v̂ 𝑓𝑝𝑟𝑒𝑑 and v̂ 𝑓𝑑 matches the desired one. Therefore, manoeuvre

plane alignment can be achieved when the rotational axis for convergence of v̂ 𝑓𝑝𝑟𝑒𝑑 toward v̂ 𝑓𝑑 , which

is represented by
v̂ 𝑓𝑝𝑟𝑒𝑑

×v̂ 𝑓𝑑


v̂ 𝑓𝑝𝑟𝑒𝑑
×v̂ 𝑓𝑑




 , is parallel to ±k̂𝑝𝑙𝑎𝑛𝑒.

One should take the desired rotational axis k̂𝑑 among two possible directions ±k̂𝑝𝑙𝑎𝑛𝑒 by the one

closer to the current rotational axis to produce smaller amount of correction effort. To this end, the

desired rotational axis can be defined as

k̂𝑑 ≜ sign
((

v̂ 𝑓𝑝𝑟𝑒𝑑 × v̂ 𝑓𝑑

)
· k̂𝑝𝑙𝑎𝑛𝑒

)
k̂𝑝𝑙𝑎𝑛𝑒 (47)

Then, the manoeuvre plane alignment error angle 𝜇 ∈
[
− 𝜋

2 ,
𝜋
2

]
can be defined as

𝜇 ≜ atan2
[{(

v̂ 𝑓𝑝𝑟𝑒𝑑 × v̂ 𝑓𝑑

)
× k̂𝑑

}
· v̂ 𝑓𝑑 ,

(
v̂ 𝑓𝑝𝑟𝑒𝑑 × v̂ 𝑓𝑑

)
· k̂𝑑

]
= atan2

[(
v̂ 𝑓𝑝𝑟𝑒𝑑 × v̂ 𝑓𝑑

)
·
(
k̂𝑑 × v̂ 𝑓𝑑

)
,

(
v̂ 𝑓𝑝𝑟𝑒𝑑 × v̂ 𝑓𝑑

)
· k̂𝑑

] (48)

The quantities k̂𝑑 and 𝜇 depicted in Fig. 3 is consistent with Eqs. (47) and (48), respectively.

Alignment of manoeuvre plane can be achieved by employing a Ω𝜇 that nullifies 𝜇. Note that 𝜇 defined

in Eq. (48) verifies the relations
v̂ 𝑓𝑝𝑟𝑒𝑑

×v̂ 𝑓𝑑


v̂ 𝑓𝑝𝑟𝑒𝑑
×v̂ 𝑓𝑑




 × k̂𝑑 = sin 𝜇v̂ 𝑓𝑑 and
v̂ 𝑓𝑝𝑟𝑒𝑑

×v̂ 𝑓𝑑


v̂ 𝑓𝑝𝑟𝑒𝑑
×v̂ 𝑓𝑑




 · k̂𝑑 = cos 𝜇. The relation

¤𝜇 = −Ω𝜇 holds with the angular rate Ω𝜇 defined to be positive for rotation of v̂ 𝑓𝑝𝑟𝑒𝑑 with respect to v̂ 𝑓𝑑

according to the right-hand rule. Therefore, the angular rate command given by

Ω𝜇 = 𝑘𝜇 (𝑟) | ¤𝑟 | 𝜇 (49)

with a positive range-varying gain 𝑘𝜇 (𝑟) specifies the closed-loop dynamics of 𝜇 for the case of ¤𝑟 ≤ 0

as

𝜇′ = 𝑘𝜇 (𝑟) 𝜇 (50)

By following the similar reasoning as explained above, the command given in Eq. (49) with the gain

given by

𝑘𝜇 (𝑟) =
𝑊

− 1
𝑝−1 (𝑟)∫ 𝑟

0
𝑊

− 1
𝑝−1 (𝜌) 𝑑𝜌

(51)

where 𝑝 ∈ (0,∞) and 𝑊 (𝜌) > 0 is the optimal control solution to the following problem.

minimise
Ω𝜇

𝐽 =

∫ 𝑟

0
𝑊 (𝜌)





Ω𝜇 (𝜌)
¤𝑟






𝑝

𝑑𝜌

subject to 𝜇′ (𝑟) = −
Ω𝜇 (𝑟)

¤𝑟
𝜇 (0) = 0

(52)
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IV. Numerical Simulation

This section will illustrate the performance of the proposed guidance law with various scenarios. The

simulation cases are divided according to the purpose as shown below:

• Case 1. To verify the basic performance with closed-loop trajectories for various desired arrival

directions and to compare with an existing method

• Case 2. To show the effects of design parameter in the gain function on error convergence

• Case 3. To demonstrate the modification considering look angle restriction

• Case 4. To demonstrate the modification considering rotation of manoeuvre plane around

desired arrival direction

TABLE I: Simulation Parameters

Parameter Unit Case 1 Case 2 Case 3 Case 4

r𝑀 (𝑡0) m
[
0 0 0

]𝑇
r𝑇 m

[
10 000 0 0

]𝑇
v (𝑡0) m/s 300

[
1√
2

0 1√
2

]𝑇
𝑁 - 3

𝛾 𝑓𝑑 deg −70 −70 −70 −90

𝜒 𝑓𝑑 deg {0, 45, 90, · · · , 315} 180 225 180

𝑛 (in 𝑘𝑒 (𝑟) = 𝑛+1
𝑟 ) - 1 {0, 1, 2, 3, 4} 1 1

Ω𝜇 rad/s 0 0 0 Eqs. (46)∗, (49)†

𝑓act (𝜎) - 1 1 2
𝜋 cos−1

((
𝜎
𝜎lim

)100
)

2
𝜋 cos−1

((
𝜎
𝜎lim

)4
)

𝜎lim deg - - {45, 50, 55, 60} 90

∗ Ω𝜇0 = {0, 0.1, 0.15, 0.2, 0.25}, 𝑚 = 3

† 𝑘𝜇 (𝑟) = 21
𝑟 , k̂𝑑 =

{[
1 0 0

]𝑇
,
[

1√
2

1√
2

0
]𝑇

,
[
0 1 0

]𝑇 }

Table I summarises the parameter values considered for each simulation case. The initial position

and velocity of the vehicle and the target position in Table I are represented in a fixed Cartesian

coordinate system, and the desired arrival direction vector is represented in the same frame with vertical

and horizontal flight path angles
(
𝛾 𝑓𝑑 , 𝜒 𝑓𝑑

)
as v̂ 𝑓𝑑 =

[
cos 𝛾 𝑓𝑑 sin 𝜒 𝑓𝑑 cos 𝛾 𝑓𝑑 cos 𝜒 𝑓𝑑 sin 𝛾 𝑓𝑑

]𝑇
. All

simulation cases apply the range-varying gain 𝑘𝑒 (𝑟) given by Eq. (43). In addition to demonstrating

effectiveness of the proposed BPNG in achieving a range of terminal conditions, simulation Case 1

also compares the closed-loop performance with the quaternion-based three-dimensional impact-angle-

control guidance law (QIACG) developed in [22]. Simulation Case 3 demonstrates the effectiveness of the
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modification described in Appendix for maintaining the look angle within a prespecified limit. Simulation

Case 4 illustrates the effect of manoeuvre plane rotation for two different algorithms developed in Sec.

III-E for evasive guidance with arrival direction constraint and alignment with the desired orientation.

The simulation model for the vehicle motion is a point mass kinematic model which maintains a constant

speed and does not experience response lag in lateral acceleration.

A. Case 1. Performance for Various Desired Arrival Directions and Comparison with Existing Method

Fig. 4: Simulation Result for Case 1 – Three-Dimensional Trajectory

Figures 4-5 show the simulation results for Case 1. Figures 4, 5b, and 5c show that the missile

successfully intercepts the target in all cases. The predicted final direction error 𝑒 decreases monotonically

to zero at the same time as shown in Fig. 5d, indicating the capability of the proposed BPNG to achieve

various desired arrival directions. Figures 5e and 5f are the time histories for the magnitude of inputs

that drive the convergence of heading error and impact direction error; the total lateral acceleration and

the bias angular velocity command, respectively. The results for the command magnitudes are obviously

identical for the symmetric desired arrival directions including the two-dimensional view of the trajectory

shown in Fig. 5a, showing that the proposed BPNG enables a wide coverage of final conditions neither

being unnecessarily sensitive nor giving preference to certain direction of rotation or manoeuvre plane.

Also, the commands are smooth throughout the engagement and their final values are zero. Overall, the

proposed BPNG exhibits good performance in satisfying the given constraints. A test based on a number
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of numerical simulations indicates that the proposed BPNG provides a wide coverage of achievable

missions.

The closed-loop performance is compared to the QIACG developed in [22] as an extension of the

planar linear quadratic optimal guidance law. Assuming that the error angles are small enough to justify

the validity of linearisation, the QIACG minimises the time-to-go weighted control energy given by

𝐽 =
1

2

∫ 𝑡 𝑓

𝑡

∥a∥2

𝑡𝑔𝑜𝜈
𝑑𝜏 (53)

where 𝜈 ≥ 0 is the design parameter introduced to adjust the distribution of manoeuvre demand over

time. The QIACG command can be expressed as

a
𝑣⊥
𝑄𝐼𝐴𝐶𝐺 =

(
𝑁𝜎𝝎

𝑟⊥
𝑟 +

𝑁 𝑓

𝑡𝑔𝑜
𝜀

v̂ 𝑓𝑑 × v̂

v̂ 𝑓𝑑 × v̂



)
× v (54)

where

𝜀 = cos−1 (
v̂ 𝑓𝑑 · v̂

)
, 𝑡𝑔𝑜 ≈ 𝑟

−¤𝑟
𝑁𝜎 = (𝜈 + 2) (𝜈 + 3) , 𝑁 𝑓 = (𝜈 + 1) (𝜈 + 2)

(55)

The definition of the arrival direction error differs between two guidance laws as 𝑒 in the proposed BPNG

is referenced to the predicted final velocity direction v̂ 𝑓𝑝𝑟𝑒𝑑 whereas 𝜀 in the QIACG is referenced to

the current velocity direction v̂. The performance index considered in [22] is closely related yet different

from that of this study, and [22] took a substantially different design approach.

The design parameters 𝑛 for the proposed BPNG and 𝜈 for the QIACG govern the trajectory char-

acteristics through the power function weighting factor in the performance indices of Eqs. (41) and

(53). Because of the apparent similarity between the performance indices, one can reasonably compare

the characteristics of the guidance laws by prescribing a similar overall trend in the lateral acceleration

through the choice of 𝑛 and 𝜈. The coefficient 𝜈 for the QIACG is chosen to have the same value as 𝑛

for the proposed BPNG, i.e., 𝜈 = 𝑛 = 1.

Figure 6 shows the simulation results for the QIACG with the same simulation scenario. Table II

compares the time-averaged total control consumption evaluated according to the metric defined by

𝐴̄ =
1

𝑡 𝑓 −𝑡0

∫ 𝑡 𝑓

𝑡0
∥a∥ 𝑑𝜏. The simulation results indicate that both guidance laws are capable of achieving

interception while satisfying arrival direction constraint in three-dimensional space. However, the QIACG

consumes more control effort than the proposed BPNG. The control expenditure difference between two

guidance laws grows with the increase of initial error. The observed overspending of control action is

thought to be attributed to the fact that baseline model prediction is out of consideration in the definition

of arrival direction error used in the QIACG and the invalidity of small angle assumption that forms the

basis of the QIACG.
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TABLE II: Case 1 - Comparison of Time-Averaged Total Control Expenditure 𝐴̄

��𝜒 𝑓𝑑 − 𝜒0

�� [deg] Proposed BPNG [m/s2] QIACG [22] [m/s2]

0 14.425 14.795

45 15.395 16.169

90 16.723 17.921

135 17.354 18.712

180 17.409 18.537

B. Case 2. Effect of Gain Coefficient

Figure 7 shows the simulation results for Case 2. The effect of gain coefficient 𝑛 is apparent mainly

in Fig. 7d as the tuning knob for the rate at which 𝑒 converges to zero. A large gain leads to faster

convergence at the cost of increased initial input as it can be seen from Fig. 7f. Figure 7d also shows

that ¤𝑒 becomes zero as well as 𝑒 when 𝑛 ≥ 1. Also, the bias angular velocity command 𝝎𝑏𝑖𝑎𝑠 becomes

zero at the end of engagement for 𝑛 ≥ 1. Figure 7f indicates that 𝑛 ≥ 2 is required to nullify the rate

of 𝜔 𝑓𝑑 and that of 𝜔𝑏𝑖𝑎𝑠 as well at the final time. The tendency is understandable from the optimal

control point of view that a larger 𝑛 places an increasingly higher weight 𝑊 (𝑟) as 𝑟 decreases in the

performance index 𝐽 of Eq. (41). All these observations are consistent with the knowledge about the

closed-loop system solutions derived in Eqs. (44) and (45). In summary, the design parameter determines

the tradeoff between the rate of error convergence against the magnitude of initial command and the

degree of smoothness in closed-loop trajectories. One can refer to the analytical predictions to choose

the design parameter as needed in each mission.

C. Case 3. Consideration of Look Angle Restriction

Figure 8 shows the simulation results for Case 3. Figures 8b and 8d together show that the modified

version of the proposed BPNG that includes a lead-angle-dependent bias command activation function

𝑓act (𝜎) successfully achieves impact-direction-constrained interception. Figure 8c clearly shows that the

design modification proposed in Sec. III-E is effective in keeping the lead angle below the specified limit

in each case. The velocity-vector-referenced lead angle is equivalent to the body-axis-referenced look

angle under the assumption of zero angle-of-attack. In this sense, the simulation results suggest that a

look angle restriction can be readily incorporated into the proposed BPNG framework.
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D. Case 4. Consideration of Manoeuvre Plane Rotation

Figures 9 and 10 show the simulation results for Case 4 obtained by employing the proposed manoeuvre

plane rotation algorithms given by Eqs. (46) and (49), respectively. Figure 9 shows that the missile

performs additional rotational movement during its course to the target. A larger magnitude of Ω𝜇 leads

to the increased amount of rotation enclosing the desired arrival direction. Also, the direction of the

evasive rotation is determined by sign
(
Ω𝜇

)
according to the right-hand rule. On the other hand, Figure

10 shows that the proposed BPNG adopting Eq. (49) enables the vehicle to take different manoeuvre

planes as needed even for the same target position and desired arrival direction. The manoeuvre plane

alignment error 𝜇 converges monotonically to zero as shown in Fig. 10d. In all examples considered in

Case 4, the proposed BPNG achieves the basic guidance objectives of nullifying 𝑟 and 𝑒 regardless of

a nonzero Ω𝜇 included in 𝝎 𝑓𝑑 . This observation confirms the property discussed in Sec. III-E that the

additional rotation of manoeuvre plane can be performed in a manner decoupled from the control of final

velocity direction. The results support the extensibility of the proposed BPNG provided by the additional

degree-of-freedom for manoeuvre plane rotation in contrast to the QIACG discussed in Case 1.

V. Conclusions

This study developed a new approach to construct three-dimensional Biased Proportional Navigation

Guidance laws (BPNG) in vector form for arrival direction control and trajectory shaping based on the

notion of predictive correction. The most effective axis for spatial rotation of the predicted final velocity

vector for alignment with the desired direction was identified. Also, the way to realise such rotation of the

future velocity vector with the corresponding angular velocity command for the current vehicle velocity

vector was developed. The properties of the three-dimensional BPNG including convergence of the pre-

dicted final velocity direction error and possible design extensions considering various trajectory shaping

goals were discussed. The proposed three-dimensional BPNG demanding no tangential acceleration is

useful for many aircraft and missile applications as it has the advantage of being a simple-to-implement

continuous feedback guidance method. The proposed method can remove ambiguities in the widely-

adopted approach of arrival direction control by means of planar techniques applied to two orthogonal

planes and avoid singularity issues. The three-dimensional BPNG is also useful to deal with in-flight

change of target position or desired arrival direction as it naturally handles the change of manoeuvre

plane. One unique benefit that distinguishes the three-dimensional BPNG from planar methods is that the

proposed BPNG provides the rotational rate of predicted final velocity vector around the desired arrival

direction as an additional degree-of-freedom for trajectory shaping which is decoupled from achievement

of the terminal constraints.
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(a) Two-Dimensional Trajectory (b) Range

(c) Lead Angle (d) Predicted Final Direction Error

(e) Magnitude of Acceleration (f) Magnitude of Bias Angular Velocity Command

Fig. 5: Simulation Results for Case 1
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(a) Three-Dimensional Trajectory (b) Two-Dimensional Trajectory

(c) Lead Angle (d) Current Direction Error

(e) Magnitude of Acceleration (f) Magnitude of Bias Angular Velocity Command

Fig. 6: Simulation Results for Case 1 with QIACG
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(a) Three-Dimensional Trajectory (b) Range

(c) Lead Angle (d) Predicted Final Direction Error

(e) Magnitude of Acceleration (f) Magnitude of Bias Angular Velocity Command

Fig. 7: Simulation Results for Case 2
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(a) Three-Dimensional Trajectory (b) Range

(c) Lead Angle (d) Predicted Final Direction Error

(e) Magnitude of Acceleration (f) Magnitude of Bias Angular Velocity Command

Fig. 8: Simulation Results for Case 3
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(a) Three-Dimensional Trajectory (b) Two-Dimensional Trajectory

(c) Range (d) Predicted Final Direction Error

(e) Magnitude of Bias Angular Velocity Command (f) Roll-like Angular Rate of Predicted Final Velocity

Fig. 9: Simulation Results for Case 4 – Evasive Manoeuvre
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(a) Three-Dimensional Trajectory (b) Two-Dimensional Trajectory

(c) Predicted Final Direction Error (d) Manoeuvre Plane Alignment Error

(e) Magnitude of Bias Angular Velocity Command (f) Roll-like Angular Rate of Predicted Final Velocity

Fig. 10: Simulation Results for Case 4 – Desired Orientation of Manoeuvre Plane
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Appendix

Modification Considering Look Angle Limit

An important aspect is to consider the constraint imposed on the look angle due to the limited field-

of-view of forward-looking sensor, e.g., strapdown seeker in missiles. Assuming that the body-referenced

look angle equals the velocity-referenced lead angle 𝜎, one of the simplest ways to maintain 𝜎 within

permissible range in the stationary target case is to deactivate the bias command as 𝜎 approaches the

maximum allowable value 𝜎lim. This way of design modification is reasonable because the PPNG with a

positive navigation ratio reduces the lead angle as it can be concluded from substituting Eq. (12) in Eq.

(23). The concept of bias deactivation can be realised with multiplication of the bias angular velocity

command an activation function 𝑓act (𝜎) such that 𝑓act (0) = 1 and 𝑓act (𝜎lim) = 0 so that the guidance

law becomes

𝝎𝑣 = 𝑁𝝎𝑟⊥
𝑟 + 𝑓act (𝜎)𝝎𝑏𝑖𝑎𝑠 (A.1)

This approach is similar in its essence to the method developed in previous studies on guidance under

look angle constraint such as [51]. The modification is also useful to ensure ¤𝑟 (𝑡) ≤ 0 for ∀𝑡 ∈
[
𝑡0, 𝑡 𝑓

]
by taking 𝜎lim = 90 deg, provided that ¤𝑟 (𝑡0) ≤ 0.
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