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Abstract

Objective. This study aims to explore the potential of high-resolution brain functional connectivity
based on electroencephalogram, a non-invasive low-cost technique, to be translated into a
long-overdue biomarker and a diagnostic method for Alzheimer’s disease (AD). Approach. The
paper proposes a novel ultra-high-resolution time-frequency nonlinear cross-spectrum method to
construct a promising biomarker of AD pathophysiology. Specifically, using the peak frequency
estimated from a revised Hilbert—-Huang transformation (RHHT) cross-spectrum as a biomarker,
the support vector machine classifier is used to distinguish AD from healthy controls (HCs). Main
results. With the combinations of the proposed biomarker and machine learning, we achieved a
promising accuracy of 89%. The proposed method performs better than the wavelet
cross-spectrum and other functional connectivity measures in the temporal or frequency domain,
particularly in the Full, Delta and Alpha bands. Besides, a novel visualisation approach developed
from topography is introduced to represent the brain functional connectivity, with which the
difference between AD and HCs can be clearly displayed. The interconnections between posterior
and other brain regions are obviously affected in AD. Significance. Those findings imply that the
proposed RHHT approach could better track dynamic and nonlinear functional connectivity
information, paving the way for the development of a novel diagnostic approach.

1. Introduction

Alzheimer’s disease (AD) is one of the most com-
mon neurodegenerative diseases, resulting in the
loss of memory and other cognitive impairments
(Ferreri et al 2016, Blinowska et al 2017). The num-
ber of patients affected by AD and the difficulties
in treating this disorder provoke massive demands
for the early diagnosis of the condition and effect-
ive approaches for monitoring disease progression.

© 2022 The Author(s). Published by IOP Publishing Ltd

In the past decades, electroencephalogram (EEG) has
attracted significant interest since it is economical,
non-invasive and with an ultra-high time resolution.
A variety of biomarkers were extracted from EEGs
in AD-related research, such as amplitude (Poil et al
2013), power spectral densities (PSDs) (Wang et al
2015b, Liu et al 2016), phase-related features (Engels
et al 2015, Kent et al 2021), alpha rhythm power
(Babiloni et al 2013, Schmidt et al 2013, Sadaghiani
and Kleinschmidt 2016, Benwell et al 2020) wavelet
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energy (Jeong et al 2016), features from graph the-
ory (Miraglia et al 2016, delEtoile and Adeli 2017)
and brain connectivity estimations (Blinowska et al
2017, delEtoile and Adeli 2017, Vecchio et al 2017, Yu
et al 2018, Durongbhan et al 2019, Zhao et al 2020).
Peak frequency is also a promising biomarker in the
field of dementia and other neurodegenerative dis-
orders (Grandy et al 2013). To support the classific-
ation of AD based on those features extracted from
EEG recordings, many machine learning algorithms
have been employed, such as linear discriminant ana-
lysis, logistic regression, random forest, support vec-
tor machines (SVMs), K-nearest neighbour (KNN)
and deep learning (Qiao et al 2018, Durongbhan et al
2019, Vecchio et al 2020, Gunawardena et al 2021).

Alpha and Beta peak frequency of a single chan-
nel was used as a quantitative EEG (qEEG) measure
for the classification between AD and mild cognitive
impairment (MCI). MCI represents a transitional
period of neurological degeneration from normal
ageing to AD (Poil et al 2013). That is to say, the
peak frequency may be a potential biomarker to eval-
uate the degree of brain degeneration. Dementia with
Lewy bodies can also be discriminated from AD since
it has a significantly lower peak frequency (van der
Zande et al 2018). However, Idaji et al (2022) sug-
gested that the peak frequency in the Beta band may
be a harmonic activity from the Alpha band and this
observation requires further investigation. Besides,
different from young adults, older people show sig-
nificant slowing of individual alpha peak frequency.
In a word, there is increasing evidence from the lit-
erature suggesting the EEG peak frequency has great
potential to advance dementia research and possibly
one day be translated into a clinically useful AD dia-
gnostic tool.

However, most of the previous related techniques
are univariate-based methods. That is to say, those
techniques are trying to obtain independent fea-
tures from each EEG channel. However, there is
evidence suggesting brain disorders affect informa-
tion exchange between multiple brain areas, namely
brain connectivity (Varotto et al 2014, McBride et al
2015, Hassan et al 2017, Cao et al 2021a). To be
more specific, brain connectivity is divided into three
well-accepted categories: neuroanatomical brain con-
nectivity, functional brain connectivity, and effect-
ive brain connectivity (Abbasvandi and Nasrabadi
2019, Cao et al 2021b). Neuroanatomical connectiv-
ity refers to structural links such as synapses or fibre
pathways at the microscopic scale of neurons (Cao
et al 2021b). In terms of effective connectivity, it
indicates the directed causal influence of one neural
region over others. On the other hand, functional
brain connectivity is defined as the statistical strength
of covariance and/or correlation between pairs of
brain regions, typically estimated with correlation,
coherence, and information theory (Mheich et al
2015, Allen 2018). Many researchers demonstrated
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that brain connectivity is able to reflect complex cor-
tical interconnections among brain networks and the
state of independent brain regions (Sakkalis 2011, van
Mierlo et al 2014, Durongbhan et al 2019, Tafreshi
et al 2019). Furthermore, it can reveal distinct aspects
characterising various neurological conditions, such
as dementia and other neurodegenerative diseases.
There is evidence that both anatomical and func-
tional connections among neural areas are affected
in various forms of neurodegeneration (Pijnenburg
et al 2004, Cao et al 2021b). In this regard, measures
of functional connectivity from scalp EEG recordings
are of keen interest to elucidate the effect of neuro-
degeneration on intercommunications within widely
distributed brain networks.

Analysing time-varying interactions and dynamic
brain networks is increasingly attractive and challen-
ging for researchers in the field of neurosciences (Li
et al 2019). Recently, many techniques to estimate
dynamic functional connectivity have been developed
to extract biomarkers from EEG signals, including
short-time Fourier transform (STFT) (Ahmadlou
et al 2012, Keijzer et al 2021), wavelet analysis
(Sankari and Adeli 2011, Handojoseno et al 2013,
Jeong et al 2016, leracitano et al 2017), error reduc-
tion ratio (Zhao et al 2020) and Hilbert-Huang trans-
forms (HHTs) (Shan et al 2021). Although those
techniques are satisfactory to an extent and can
be extended to estimate time-frequency coherence
between different EEG channels, there are some lim-
itations because of their principles. STFT computes
Fourier spectra on successive sliding windows and the
STFT mainly suffers from the trade-off between tem-
poral and spectral resolution (Fu et al 2014, Moca
et al 2021). Generally, STFT is employed to analyse
the linear and non-stationary signals (Mousavi et al
2020). To avoid the window problem of STFT, wavelet
analysis employs a longer window for lower frequen-
cies and a shorter one for higher frequencies. In this
case, it is more suitable for extracting time-varying
information in different frequency bands (Sakkalis
2011). However, wavelet-based methods suffer from
the Heisenberg uncertainty principle, the wavelet
transform cannot achieve fine resolutions in both the
time domain and frequency domain simultaneously
due to non-adaptivity once the basis wavelet is set
(Fu et al 2014). Wavelet transform is an advanced
technique developed from Fourier analysis, using har-
monic waves as its templates. Therefore, facing some
similar problems of Fourier spectrum analysis, the
wavelet is capable to solve inter-wave frequency mod-
ulation and cannot solve intra-wave frequency mod-
ulation (Shan et al 2021). However, neural oscilla-
tions have not been proved to be sinusoidal (Mazaheri
and Jensen 2008, Jones 2016, Cohen 2017a). Wavelet-
based approaches have the weakness of dealing with
non-sinusoidal oscillations and discriminating them
from sinusoidal ones (Cohen 2017b). Therefore, there
is a need to develop novel methods to fully explore the
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hidden association in the typical nonlinear and non-
stationary EEG recordings. Unlike wavelet transform
with sinusoidal templates, empirical mode decom-
position (EMD) does not need any template assump-
tion of the target signal (Huang et al 1998), which may
improve the ability of extracting non-stationary and
non-linear EEG information to an extent. EMD ana-
lyses the behaviour of non-stationary and non-linear
signals by decomposing them into several intrinsic
mode functions (IMFs) that could be further ana-
lysed by HHTs. Since the decomposition is based
on the characteristics of the local time scale, with
the HHT, the IMFs generate instantaneous frequen-
cies (IFs) as functions of time that separately estim-
ate dynamic structures of different transient inform-
ation. Furthermore, Shan et al (2021) developed a
new brain connectivity method relying on the revised
HHT (RHHT) based on complete ensemble EMD
(EEMD) with adaptive noise (CEEMDAN). It is able
to capture dynamic interconnection between EEG
signals and shows higher time-frequency resolution,
compared with wavelet analysis. The ‘mode mixing’
is a non-negligible issue of the traditional EMD. To
be more specific, one mode may represent different-
amplitude oscillations or there are oscillations with
high similarity found in different modes. To over-
come this, Wu and Huang (2009) developed EEMD,
which performs the EMD over an ensemble of the
signal plus white Gaussian noise. However, there are
still a variety of problems remaining and showing
up. For instance, residual noise exists in IMF, and
adding different white Gaussian noise to the signal
increases the difficulty in controlling the number of
IMFs. Torres et al (2011) improved the algorithm by
proposing the CEEMDAN. The main improvement
occurs in adding noise. CEEMDAN tries to add a dis-
tinct noise at each step of the decomposition process,
while EEMD adds the white Gaussian noise after the
extraction of each IME.

Considering the aforementioned findings, it is
hypothesised that the functional brain network con-
nectivity of patients with AD differs from networks
of age-matched healthy controls (HCs). The peak
frequency extracted from the functional connectiv-
ity estimates is also hypothesised to act differentially
for these two groups. The present study proposes a
framework to accomplish the discrimination between
AD and HC:s based on wavelet cross-spectrum (WC)
and RHHT cross-spectrum, the latter of which is
used for the first time in the field of AD. The
second innovation of this study is to evaluate a
promising biomarker based on the peak frequency
of cross-spectrums (PFoCSs). The proposed method
is advanced in capturing dynamic interconnection
between EEG signals and pointing out frequency-
related biomarkers more precisely, which may help
us to better understand brain dysfunction in AD.
Then, a novel topographic visualisation method is
designed to map the estimated brain connectivity.
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Finally, the proposed RHHT technique is critically
compared with other approaches in terms of prin-
ciples, results and limitations.

2. Materials and methodology

2.1. Experimental data and EEG pre-processing
Participants were recruited from Sheffield Teaching
Hospitals NHS Foundation Trust Neurology clin-
ics. HCs were enrolled through educational meet-
ings, word of mouth, family and friends. The Shef-
field Teaching Hospital memory clinic provided
the majority of these patients. This is a young-
onset memory clinic seeing people predominantly
aged under 65. The study includes participants
recruited between September 2014 to December
2019. Forty participants were recruited in this work
(70 years > age > 48 years) and resting-state EEG
recordings were undertaken from both cohorts by our
research team based at the University of Sheffield.
The subjects from both groups were age-matched,
HC (12 female/8 male, mean age 61y, £SD 6.7y), AD
(8f/12m, 60y £ SD 4.4y). The EEG study underwent
ethics approval by the Yorkshire and The Humber
(Leeds West) Research Ethics Committee (reference
number 14/YH/1070). AD patients had their dia-
gnosis confirmed between 1 month and up to 2 years
prior to their EEG recording while they had mild to
moderate cognitive deficits, according to their Mini-
mental state examination. All patients and controls
had brain magnetic resonance imaging (MRI) scans
to eliminate other alternative causes of dementia. For
the age and gender-matched HC cohort, normal MRI
brain scans and cognitive assessments were required
before their EEG recordings. The final diagnosis of
AD was based on the National Institute of Neurolo-
gical and Communicative Disorders and Stroke and
the Alzheimer’s Disease and Related Disorders Asso-
ciation criteria (Dubois et al 2007); diagnosis was
reached based on a consensus of multidisciplinary
evidence, considering clinical history, neurological
examination, neuropsychological scores and neuro-
radiological findings (Blackburn et al 2018).

The dataset includes 19 AD patients and 20 HC
participants. EEG recordings were undertaken with
an XLTEK 128-channel headbox (Optima Medical
LTD) and Ag/AgCL electrodes at a sampling fre-
quency of 2 kHz by implementing a modified 10—
10 overlapping a 10-20 international system of elec-
trode placement, with a referential montage (linked
earlobe reference). Thirty-minute resting-state EEG
recordings (task-free—participants were instructed
to rest and refrain from thinking anything specific)
were obtained from each participant including sus-
tained periods of keeping their eyes closed (EC)
alternating with periods during which they kept their
eyes open (EO). The recordings obtained were sub-
sequently reviewed by a neurophysiologist—on an
XLTEK review station—and for each participant,
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Figure 1. (A) Bipolar channel locations. The numbers 1, 2, 3, 4, 5, 6 and 7 represent the left frontal, right frontal, left temporal,
right temporal, parietal, left occipital and right occipital regions, respectively (B) an example of 23-bipolar-channel EEG

three 12 s artefact-free mini-epochs of EC and
EO were selected. To reduce volume conduction
effects related to the common reference electrode,
23 bipolar derivations were created from different
brain regions: the left frontal (F7-F3, F3-FZ), right
frontal (F8-F4, F4-FZ), left frontocentral, temporo-
central, temporal and centroparietal (F3-C3, T3—
C3, T3-T5, C3-P3), right frontocentral, temporo-
central, temporal and centroparietal (F4-C4, T4—C4,
T4-T6, C4—P4), midline frontocentral, centroparietal

and left and right parasagittal central regions (Fz—
Cz, Cz-Pz, C3-Cz, C4-Cz), left parietal, parieto-
occipital and temporo-occipital areas (P3-Pz, P3—
01, T5-01), right parietal, parieto-occipital and
temporo-occipital areas (P4—Pz, P4-02, T6-02) and
midline occipital region (01-02)).

An example of the 23 bipolar channels used in
this work and their locations are shown in figure 1.
The functional connectivity is calculated by using
each pair of EEG signals, and figure 2 shows the 253
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Figure 2. A total of 207 possible channel pair combinations and 46 discarded pairs marked with X (symmetry).

possible channel pair combinations (C3?). It can-
not be ignored that some combinations have com-
mon EEG channels because a bipolar approach is
employed (such as F4—C4 and C4-P4), which may
result in a misleading high false connectivity between
some of the bipolar channels. To avoid this issue, the
authors neglected any pair with common EEG elec-
trodes. Therefore, the 46 channel pairs that have this
characteristic include (F8-F4, F4-FZ), (F8-F4, F4—
C4), (F7-F3,F3-FZ), (C4-CZ,CZ-PZ), (T4-C4, C4—
P4), (F3—C3, T3-C3), (C4-P4, P4-PZ), (FZ-CZ, C4—
CZ), (T3-T5, T5-01), (C3-CZ, CZ-PZ), (P4-02,
01-02), (T6-02, P4-02), (T6-02, 01-02), (F7—
E3, F3-C3), (FA—FZ, FZ-CZ), (T3-C3, C3-CZ), (F3—
FZ, FZ-CZ), (T4—C4, T4-T6), (FZ-CZ, CZ-PZ),
(C4-CZz,C3-CZ), (P3-PZ,P3-01), (F3-C3, C3-P3),
(F4-C4, FA-FZ), (F4—C4, T4-C4), (F4-C4, C4-CZ),
(C3-P3, P3-01), (C4-P4, P4-02), (F4-C4, C4-P4),
(T5-01, 01-02), (CZ-PZ, P4-PZ), (F3-C3, F3—
FZ), (P4—PZ, P3-PZ), (F3-C3, C3-CZ), (FA-FZ, F3—
FZ), (FZ-CZ, C3-CZ), (T4-C4, C4-CZ), (T3-C3,
C3-P3), (T3-C3, T3-T5), (C4-CZ, C4-P4), (C3-CZ,
C3-P3), (CZ-PZ, P3-PZ), (C3-P3, P3-PZ), (T4-Té,
T6-02), (P4-PZ, P4-02), (T5-01, P3-O1), (P3-O1,
01-02) (Cao et al 2021a). In the following processes,
only those pairs without common channels are con-
sidered, while the values of the 46 neglected chan-
nels are set as null (figure 2). Hence, 207 channel
pairs are remaining for the following processing and
discussion.

Figure 3 presents a flowchart of the pro-
posed framework, including pre-processing,
time-frequency brain connectivity analysis, feature
extraction, significance test and machine learning
classification. Before estimating brain connectivity,

data were pre-processed by the following steps: (a)
each signal was filtered to 0-50 Hz; (b) the record-
ings were down-sampled to 100 Hz to decrease
computation cost.

2.2. Time-frequency brain connectivity methods
2.2.1. Wavelet-based cross-spectrum

The continuous wavelet transform (CWT) of a time
series x is defined as:

400

CWT, (a,b) = / OV (1)

—0oQ

where W is the mother wavelet, a is the scaling para-
meter and b is the shifting parameter. In this study,
the Morlet wavelet was chosen as the mother wave-
let because it is reasonably localised in both time and
frequency (leracitano et al 2017). Each scale corres-
ponds to a specific frequency value, so CWT is a func-
tion of time and frequency. The wavelet formulation
of cross-spectrum between two signals, x and y, can
be formulated as:

WC, (a,b) = S (wx (a,b) W (a, b)) 2)

where Wy (a,b), W, (a,b) are the wavelet transforms
of x and y at scales a and position b; S denotes a func-
tion of smoothing, and * means complex conjugate.

Smoothing takes place across scale and time axes;
it increases the degree of freedom for each point in
the CWT (Sankari et al 2012). A proper smoothing
function for WC application across time axis Sgme is
defined for the Morlet:

—a2

Sime (CWT(£)) =CWT () e, (3)
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Figure 3. Flow diagram of the proposed framework.

where A =1t/a, ¢ is a normalisation constant, and
A refers to the convolution operator. The smooth-

ing function across scale Sy (frequency) axis is
defined as

Secale (CWT (£,f)) = CWT (£f) A ] [ (0.62)  (4)

where ¢, is a normalisation constant, and [] is the
rectangular function. In practice, the two convolu-
tions in equations are computed discretely and the
normalisation coefficients are determined numeric-
ally. The width of the rectangular function [ [ used in
Sscale 1s determined by the scale-decorrelation length
that is empirically determined to be 0.6 for the Morlet
wavelet (Sankari et al 2012).

2.2.2. Revised Hilbert—Huang transformation
(RHHT)-based cross-spectrum

Firstly, an advanced method of EMD is used to
decompose each EEG signal, called CEEMDAN. In
this case, we can obtain a series of complete and oscil-
latory components, named IMFs. Secondly, the HHT
is performed on the IMFs of the signal to capture IF
and amplitude features. Finally, the cross-spectrum of
each pair of channels is calculated based on the HHT
spectrum.

2.2.2.1. CEEMDAN

Given a signal x(t), the defined operator E;(-) pro-
duces the jth mode of x(¢) by EMD. Let n’ € [0, 1],
i=1,..., I be white noise where I is the realisa-
tion times of adding noise. Coefficient ¢; allows
selecting the signal-to-noise ratio at each stage. The
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implementation of the CEEMDAN algorithm can be
summarised as follows:

(1) Decompose I realisations x (t) 4 £9n' (t) by EMD
to obtain the first mode IMF; that is defined as:

I
— 1 )
IMF, = - > IMF,". (5)

(2) Atthe first stage (j = 1) calculate the first residue
1 (t) :

ri (£) = x(t) — IMF,. (6)

(3) Decompose I realisations | (¢) + &1 E; (n’) by

EMD to obtain theifr\flrst modes and the second
CEEMDAN mode IMF, is defined as:

m:z ZEI T]

(4) Forj=2,3...

+51E1( ())) (7)

I, calculate the jth residue:
7 () = ri—1 (t) — IME;. (8)

(5) Decompose realisations r;(t) 4 £;E; (n’ (t)) by
EMD to obtain their first modes and the (j + 1)th
CEEMDAN mode IMF; is defined as:

ZEl TJ

(6) Go to step 4 for the next j and repeat steps 4
and 5 until the residue is no longer feasible to be
decomposed (the residue does not have at least
two extrema).

H\/I/xij_;,_l +€] ( (t))) (9)

The final residual R (¢) is written as

J
By v (10
=1

with j being the total number of modes. The given sig-
nal x () can be expressed as:

]
£) => IMF;+R (). (11)

j=1

CEEMDAN needs to adjust its parameters to obtain
a better decomposition of the data (Torres et al
2011, Mousavi et al 2020). Noise standard deviation
(Nstd), the number of realisations (NR), and the
maximum number of shifting iterations (MaxIter) are
important parameters for optimising the results of
decomposition (Mousavi et al 2020). Figure 4 shows
the flowchart of the CEEMDAN algorithm. Three
parameters control the process of CEEMDAN. To be
more specific, noise standard deviation (Nstd) rep-
resents the strength of the added white noise. The

7

J Cao et al

| IMFL=}¥!  IMF1 ‘
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Figure 4. Flowchart of CEEMDAN algorithm.

number of realisations (NR) controls the number
of adding noise. The maximum number of shift-
ing iterations (MaxIter) indicates the number of
decompositions. In the present study, considering
both computation efficiency and separation accuracy,
these parameters were set as: Nstd = 0.1, NR = 100,
and MaxIter = 1000.

2.2.2.2. Hilbert—Huang transform (HHT)

Then, the Hilbert transform (HT) is applied to each
IMF to obtain IFs and instantaneous amplitude fea-
tures. This eventually yields a time-frequency repres-
entation (Hilbert spectrum) for each IMF. For an ori-
ginal signal x (¢), its HT h(¢) is obtained by (Huang
etal 1998):

[ x(n)

h(t):HT(x(t)):%P.V./ :

— 00

dr (12)

where P.V. denotes the Cauchy principal value, t is the
time variable and 7 is the time interval. In this case,
the HHT of the signal is given as follows:

2(t) = x(t) + ih (1) = a (1) (13)
where a(t) and 6(t) denote the amplitude and phase,
respectively.

a(1) is the trace envelope and defined as:

a(t) =/x2(t) + h2 (). (14)
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0 (1) is defined as:

6 (t) = arctan (ZEg) . (15)

IF f(t) is defined as the first derivative of 6 (t).
Thus,

oy = L0,

= 1
2w dt (16)

To prevent ambiguities because of phase unwrap-
ping in equation (14), f(¢) can be calculated instead
from:

1 x(t)h' (1) —x' (£) h(2)

0= =20+ r0 17

where the prime denotes derivative with respect to
time. The time-frequency spectrum of signal x(¢) is
defined as:

RHHT, (£,f(1)) = a(1) €’®. (18)

The time-frequency spectrum of M:j (t),t=
I,...,N, andj=1,...,J,and RHHT (¢) are defined
as:

RHH T (£5(1)) = a; (1) £0(1) (19)

RHHT} (t,fR (t)) =ag (t) eiGR(t) . (20)

The time-frequency spectrum of x(¢) is:

K
RHHT, (¢,f(t)) = Za](t) el (1) +ag (1) lfr(0)
k=1
21)

A series of IFs are generated from the process,
empowering the capability of in-depth signal ana-
lysis. At each time point, the number of IFs is corres-
ponding to the number of IMFs. The RHHT method
can generate a dozen of IMFs, which results in sparse
time-frequency representations.

2.2.2.3. RHHT cross-spectrum
The RHHT cross-spectrum of x (¢) and y (¢) is defined
as follows:

t—6/2

RC,y (t,f) = / RHHT, (7,f) - RHHT," (7,f) d7
t—48/2
(22)

where, RHHT,, (7,f) and RHHT,(7,f) are the
RHHT coefficients of x(¢) and y(¢) and; * means
complex conjugate; 0 is the length of the integrating
range.

For RHHT cross-spectrum, the selection of § is
entirely empirical, independent of frequency. Differ-
ent values of § were used and the performance varied
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in terms of time-frequency resolution and compu-
tation cost. In this paper, the length of the integ-
ral window of RHHT coherence was set to 4. Given
two signals x(t) and y(¢), for all IMFs of x(¢) and
y(t), the RHHT cross-spectrums between M:xj (1)
and I/I\7I/Fy]- () can be calculated and analysed separ-
ately. An example of RHHT and cross-spectrum is
illustrated in figures S1 and S2 in supplementary.

2.2.3. Feature extraction

As shown in figure 3, both WC and RHHT meth-
ods yield a two-dimensional time-frequency cross-
spectrum. To reveal the distribution of cross-
spectrum in time (horizontal) and frequency
(vertical) direction, the average was taken for two
techniques, respectively (equations (21)—(24)):

max

WCke (f) = WC (t,f) (23)

max =0
fmax

> WC(tf) (24)

WCtime (t) =
fmax
=0

1 Imax

> RC(1f) (25)

t=0

Rcfre (f) =

max

fonax
> RC(Lf). (26)
=0

RCtime (t) -

max

In this case, 12 features were captured from the
cross-spectrum map and two average curves (table 1).

2.3. Single-channel methods

To compare the efficiency and ability of the developed
RHHT technique and PFoCS features to a non-
connectivity method, PSD was calculated and then
the same SVM classifier was applied. The PSD tends
to be used to extract features from each band of
the EEG recordings. Specifically, PSD in each trial
was calculated for each of the 23 channels using
Welch’s method with 0.5 s windows, 50% overlap
and 256 points. Then, power was averaged for Delta
(0—4 Hz), Theta (4-8 Hz), Alpha (8-12 Hz) and
Beta (12-32 Hz) and Gamma (32-45 Hz) frequency
bands.

2.4. Statistical analysis

One-way analysis of variance (ANOVA) was
employed to evaluate the significance of differences
in the investigated features of AD vs HC. In this
case, it guides to select channels for each frequency
band based on the p-value, preparing for optimising
the input features of machine learning. ANOVA is
widely used to test the significant difference between
the AD and HC groups (Sankari et al 2011, Engels
et al 2015, Benwell et al 2020). ANOVA tests the null
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Table 1. Extracted features from the cross-spectrum and two average curves.

Representations Features

WC and RC Max Peak frequency Mean Max/Mean Std
WC. and RCp Max Peak frequency Std Max/Mean

WCiime and RCiime Max Std Max/Mean

Max: the maximum value of the cross-spectrum or average curve, Std: the standard deviation of the
cross-spectrum or average curve, Mean: the average of the cross-spectrum or average curve.

J Cao et al

hypothesis, i.e. means of the tested groups are equal
and the p-value indicates the statistical significance.
Rejection of the null hypothesis leads to the con-
clusion that the two groups are statistically different
(Cao et al 2021a). Before applying ANOVA, the para-
metric test assumptions have been tested. It has been
found that the majority of features meet the assump-
tions but not all of them. To simplify the problem,
we used the ANOVA analysis. To select promising
features that offer significant differentiation between
AD and HC and to reduce the computational burden
of machine learning, the estimation was undertaken
using a threshold p < 0.001. All statistical analysis was
applied in MATLAB 2019b.

2.5. Machine learning

2.5.1. Features selection

Features were computed between all possible pairs
of channels for each of the six independent EEG
frequency bands for each subject: Delta (0-4 Hz),
Theta (4-8 Hz), Alpha (8-12 Hz), Beta (12-32 Hz),
Gamma (32-45 Hz) and Full (0-45 HZ). There
were in total 207 x 6 X 12 = 14 904 (chan-
nel x band x features) features extracted from WC
and RHHT cross-spectrum respectively. If a feature
is successfully passed through the significance test
(p < 0.001, ANOVA), it would become an input to
the machine learning classifier, as it indicates AD and
HCs have a significant difference in terms of this fea-
ture. Each feature was normalised to [—1, 1] for the
AD and HC groups in preparation for machine learn-
ing classification.

2.5.2. Classifier

The SVM was applied to achieve the classification of
AD and HC. SVM constructs an optimal separating
hyper-plane in the feature space based on the struc-
ture risk minimisation principle (Fu et al 2014). The
optimised features extracted from RHHT and WC in
six bands are fed into the SVM with a radial basis
function (RBF) kernel. Different machine learning
algorithms were tested and compared, such as KNN,
decision tree and SVM, etc. SVM outperforms other
methods in terms of classification. Hence, this paper
mainly utilises the SVM with RBF to represent classi-
fication results.

2.5.3. Cross-validation
The data from all subjects were mixed up and grouped
by the eye state: EC, EO and EC&EO state. To avoid
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the problem of overfitting in the case of limited
data as well as decrease the influence of selecting a
training set, a five-fold cross-validation technique is
employed. To be more specific, the dataset of each
condition was divided into five subsets. Then five iter-
ations are undertaken to ensure each subset is used for
training and testing (Berrar 2019, Cao et al 2021a).
That is to say, for each iteration, 80% of the data-
set is used for training and the remaining 20% of the
dataset is used for testing. Consequently, the classific-
ation result is calculated by averaging the accuracies
obtained from five iterations.

3. Results

3.1. Machine learning classification

The ten pairs with the highest classification accur-
acy were chosen to evaluate the efficiency of WC
and RHHT cross-spectrum methods in EO, EC and
EO&EC states separately (figure 5). It can be observed
that RHHT performs better in the Full band for
all three eye states. It can achieve about 86% and
89% classification accuracy in EO and EC respect-
ively, while features from the wavelet analysis can
only provide classification accuracy of less than 85%.
Besides, for the EC condition, the mean and median
accuracies of RHHT lay closely to about 85%, which
is relatively higher than the results obtained from the
wavelet-based method (78%). Notably, the peak fre-
quency of the frequency-average curve in the Full
band most accurately discriminated the AD from the
HC group in EO, EC and EO&EC conditions, and
RHHT enables the Full band to consistently outper-
form other bands with respect to both highest and
mean accuracy. However, for the WC method in EO
and EO&EC states, the Theta band was superior to
other bands, and the best feature was in the Theta
band. In the meantime, WC only surpassed RHHT in
the Theta and Beta band, while RHHT increased the
accuracy in the Delta and Alpha band, especially for
the EO Group with an approximate 5% increase.

It is noteworthy that the functional connectiv-
ity estimates, between the frontocentral midline and
occipital derivations, demonstrate the highest accur-
acy in the Full band in all three eye conditions. For
example, the RHHT PFoCS of the pair Fz—Cz:01-
02 achieved the best classification performance with
about 89% accuracy using the proposed machine
learning method, which surpasses all features extrac-
ted from the wavelet-based method. Therefore, more
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details and analysis with respect to the Fz—Cz:01-02
connections are further discussed below.

3.2. Time-frequency functional connectivity

To evaluate the efficiency of the wavelet and RHHT-
based methods, the time-frequency analysis is imple-
mented on each channel pair. Figure 7 represents
the cross-spectrum of Fz—Cz:01-O2 obtained from
wavelet (A) and (B) and RHHT (C) and (D), as well
as the average value in time and frequency axes. It
is obvious that the frequency resolution of RHHT is
higher than the WC for both AD and HC participants.
For instance, the WC method suggests that the PFoCS
is located in the Alpha band (figure 6(A)), while
RHHT is capable to indicate a specific frequency of

10 Hz (figure 6(C)). Similarly, figures 6(B) and (D)
also exhibit the same pattern in the AD case. Fur-
thermore, it can be observed that both two meth-
ods have dominating power in the Alpha band. Based
on the resulting cross-spectrum of the channel pair
Fz—Cz:01-02, the PFoCS of the AD subject is lower
than the value of the HC subject, observed both from
the wavelet and the RHHT cross-spectrum.

Figure 6(E) plots the distribution of the PFoCS
value of each sample for the Fz—Cz:01-02 channel
pair. For both RHHT and WC, there was a significant
difference in the PFoCS (p < 0.0001, ANOVA). For
both methods, the PFoCS for HCs ranges between 8
and 14 Hz with an average of 10 Hz, while the AD
PFoCS varies from 4 to 12 Hz with an average of

10
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Figure 6. Time-frequency brain connectivity analysis of channel pair Fz—Cz:01-02. (A) WC for a HC participant. (B) WC for an
AD participant. (C) RHHT cross-spectrum for a HC participant. (D) RHHT cross-spectrum for an AD participant. (E) A violin
plot to present peak frequency values for channel pair Fz—Cz:01-02 (p < 0.0001, ANOVA).

8.5 Hz. Notably, compared with HCs, a majority of
AD participants have an obvious decrease in terms of
PFoCS in the Alpha band, and RHHT seems to out-
perform WT in detecting the difference to an extent
since the p-value of RHHT (2.7 x 10~7) is lower than
the p-value of WT (5.6 x 107°). Consequently, the
classification accuracy can be improved by using the
RHHT technique. Moreover, the value of PFoCS var-
ies in different bands, although it was mainly concen-
trated in the Alpha band. This may explain that the
feature extracted from the Full band outperformed
the Alpha band to some extent.

3.3. Topographic visualisation of PFoCS

To further compare the difference between AD and
HCs across different brain areas, a novel visualisa-
tion method based on a topographic map is pro-
posed to illustrate an extensive brain connectivity
map. Figure 7 represents the occipital-related con-
nectivity using the PFoCS as an estimation. The topo-
graphy map represents the distribution of Full-band
functional connectivity between channel O1-02 and
every other derivation included in this work. The
channel O1-02 and other contiguous channels that
share a common electrode are set to NaN in the

11
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wavelet and RHHT techniques, by using each available derivation against the occipital O1-O2 channel (red circles indicates the
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resulting map (i.e. P3-01, T6-02, T5-O1, and P4-
02). On one hand, from the averaged topographic
map, it can be observed that not only Fz-Cz:01-
02 can significantly differentiate AD from HCs, but
also many other areas show increased levels of PFoCS
functional connectivity, offering a visual represent-
ation of the striking differences between AD and
HC, clearly more prominent for the averaged RHHT-
based maps. The red circles in figure 7 indicate the

areas that represent the obvious difference between
HC and AD. For instance, WC suggests the PFoCS
of HC is about 4 Hz higher than AD in the right
frontal and centroparietal region (figures 7(B) and
(D)), while RHHT indicates the PFoCS of HC is about
6.5 Hz higher than AD in the right frontal, mid-
line frontocentral, left frontocentral and centropari-
etal region (figures 7(F) and (H)). Clearly, the RHHT
method suggests more differences between the two
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groups in terms of values and regions. Those findings
are in keeping with the previous significance test res-
ults and SVM-based classification.

On the other hand, the variations of estimated
distribution for the participants are quite large. This
is a general issue in EEG research since EEG has been
associated with cognitive, emotional, and motor pro-
cesses (Bell and Cuevas 2012). In this respect, parti-
cipants from the AD and HC groups may have similar
characteristics. As a result, the machine learning clas-
sifier cannot achieve 100% discrimination between
the two cohorts. However, a similar trend can be
observed as AD patients have relatively lower PFoCS
across widely distributed brain areas. To be more spe-
cific, RHHT performed better in revealing the differ-
ence between AD and HCs in terms of the PFoCS,
resulting from its superior time-frequency resolution
and ability to estimate a frequency value.

3.4. PSD results

The spatial distribution of the classification accuracy
is displayed in figure 8. Obviously, the most signific-
ant difference occurs in the Theta band. Noticeably,
the highest accuracy is approximately 72%. The res-
ults obtained by PSD are about 15% lower than that
of the RHHT method. That is to say, AD, the most

common neurodegenerative disorder, affects not only
the function of individual cortical regions but also the
intercommunications between them. Furthermore,
the abnormalities of AD brain connectivity are more
prominent in the present dataset, which is satisfactor-
ily evaluated by the proposed RHHT method.

4, Discussion

4.1. RHHT vs WC

EEG signals are often non-stationary in nature, con-
tain non-linear processes, and their frequency com-
ponents dynamically change over time (Lakshmi
et al 2014, Yao and Wang 2017, Lotte et al 2018).
Hence, the desired time-frequency analysis methods
for qEEG studies should have satisfying resolutions
in both the time and frequency domains. RHHT
can clearly present the cross-spectrum distribution
with time and frequency and localise any event on
its occurring time as well as its IF (Peng et al 2005,
Law et al 2012). Specifically, the PFoCS variation of
RHHT shows a much higher resolution in compar-
ison to those achieved by the Morlet wavelet spec-
trum. In this case, even though WC can achieve about
85% classification accuracy in the EO condition using
the mean of cross-spectrum as a feature, it cannot

13
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perform better when it comes to PFoCS. Figure S3
in the supplementary represents a brain connectiv-
ity map using the mean cross-spectrum of WC as
an estimation. Consequently, RHHT is more suited
for EEG brain connectivity analysis in this paradigm
and performs better in localising in time PFoCS con-
nectivity strength which is translated into better per-
formance in distinguishing between AD and HCs.
Furthermore, the two techniques did not obtain
satisfying outcomes when high-frequency bands
(Beta and Gamma) were analysed in isolation, which
suggests the effect of AD on the high-frequency bands
cannot be tracked with the WC and RHHT tech-
niques. Those results agree with several previous
works that focus on the peak frequency. For instance,
Scally et al (2018) provided evidence that peak fre-
quency brain connectivity in the range of 6-14 Hz
is associated with ageing. Barry and de Blasio (2017)
revealed a significant difference between young and
older adults in the Delta, Theta and Alpha bands.
Therefore, it seems that with some methods cognitive
performance and neurodegeneration are more related
to the change in the low-frequency band rather than
the Beta and Gamma band (Posthuma et al 2001,
Smit et al 2006, Nir et al 2010, Grandy et al 2013).

4.2. RHHT vs other functional connectivity
methods

In addition to the aforementioned advantages, the
RHHT method can track non-linear associations
between channels. To demonstrate the superior per-
formance of cross-spectrum RHHT, in distinguish-
ing between AD and HCs, we compared our findings
against those obtained by implementing other pop-
ular linear and non-linear brain connectivity meth-
ods. Phase locking value (PLV) (Lachaux et al 1999,
Hassan et al 2017) and mutual information (MI)
(Wells 1996, Melia et al 2015, Nimmy et al 2019)
were used to estimate non-linear connections, while
Pearson correlation coefficient (van Mierlo et al 2014,
Chen et al 2018) and magnitude squared coher-
ence (MSC) (Pfurtscheller and Andrew 1999, Cao
et al 2021a) were calculated with respect to lin-
ear brain connectivity. MI measure indicates the
mutual dependence of two signals, i.e. how much
information is shared between two signals (Cover
and Thomas 2005). It is based on a probability func-
tion and entropy. Three features are taken from the
cross-correlation, namely the maximum value of cor-
relation (CorrMax), the mean value of correlation
(CorrMean) and the correlation lag at the maximum
value of correlation (CorrLag). Two features are taken
from the MSC: maximum (CohMax) and mean val-
ues (CohMean). PLV measures the significance of the
phase covariance between two signals. PLV values are
in the range from 0 to 1. If the phase difference of
the two signals remains the same, PLV is close to one.
A PLV close to zero indicates that there is no phase
synchrony between two signals (Cao et al 2021a).
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Figure 9 illustrates the comparison between the pro-
posed methods and conventional techniques in terms
of the top ten channel classification accuracies. The
average, highest and lowest accuracy are represented
by the bar chart. To statistically compare different
techniques, the Mann—Whitney U tends to be more
appropriate as the top ten accuracies do not meet
the parametric assumptions of a normal distribution
(Shan et al 2021). The Mann—Whitney U test tests the
null hypothesis that data in two groups are samples
from continuous distributions with equal medians,
against the alternative that they are not. The test
assumes that the two samples are independent. The
Mann—Whitney test was applied to check for signific-
ant differences between the accuracies of techniques,
using a threshold of p < 0.001. Overall, the EO condi-
tion appears more suitable to distinguish AD patients
from HCs, since the classification accuracy is slightly
higher in comparison to the EC recordings. For the
EC condition (figure 9(A)), as expected, RHHT and
WC were superior in comparison to others, especially
in the Full band, as well as Delta and Alpha bands.
RHHT performs significantly better than others in
the Full band (the accuracy ranges between 84% and
88%), while WC provides significantly higher accur-
acy in the Theta band (78%—82%). For the EC condi-
tion (figure 9(B)), RHHT significantly outperforms
other methods in the Full (83%—-89%), Delta (76%—
82%) and Alpha bands (77%—-82%). WC keeps its sig-
nificant superiority in the Theta band, which ranges
from 84% to 87%. Therefore, our findings suggests
that the non-linear time-frequency method (RHHT)
has superior performance in the Full, Delta and
Alpha band that contributes in better differentiating
AD participants from HCs, as there is a 10%—20%
improvement in classification accuracy. Although the
lower frequency bands have a higher contribution to
the classification than the higher frequency bands,
there is still evidence that higher frequency bands can
be useful (Poil et al 2013, Babiloni et al 2016). The
full band higher classification accuracy with RHHT
might also be related to the ability of the technique
to increase the signal-noise-ratio of high-frequencies
and extract additional useful frequency features. To
explore the evidence, we used 0-12 Hz as a sep-
arate band and performed the same method on it.
The results are shown in figure S4 of supplement-
ary. It can be found that ‘0-12 Hz’ outperforms every
single band, but its accuracies are slightly lower than
the Full band (0-45 Hz). In this case, RHHT in
the Full band can provide more information on the
discrimination between AD and HC than 0-12 Hz.
RHHT probably can increase the signal-noise-ratio of
high-frequency data which extracts useful frequency
features for higher classification accuracy and com-
presses the noise. The advantages of the proposed
RHHT method rely on its distinct signal decomposi-
tion and higher resolution in the time and frequency
domain.
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Figure 9. Comparison of the RHHT and previous brain connectivity methods. * Mann—Whitney test, p < 0.001, it means
significant outperformance in a band.

Our study is undertaken on resting-state EEG
recordings and Engel et al (2013) in their pivotal
work introduce the concept of ‘intrinsic coupling
modes’ to denote complex spectral and spatial sig-
natures, likely dynamic in nature that characterise
brain coupling not enforced by a stimulus or task.

They also highlight how phase and amplitude-based
functional connectivity measures have the potential
to capture various pathophysiological and neuro-
physiological aspects of brain function (Engel et al
2013). RHHT cross-spectrum has the ability to cap-
ture both phase and amplitude coupling. Under this
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prism, the dynamic properties of RHHT offer the res-
olution required to capture various intrinsic coupling
modes and translate into higher classification per-
formance like the one observed with the PFoCS.

4.3. RHHT vs single-channel method

This paper demonstrates that RHHT cross-spectrum,
a functional brain connectivity method implemen-
ted in this work to produce strength of associations
between multiple EEG channels, could produce a
higher classification accuracy in distinguishing AD
participants from a group of age-matched HCs, com-
pared to single-channel methods like PSD. PSD is
a widely-used single-channel method dealing with
EEG recordings, which calculates the distribution of
power against the frequencies. Furthermore, the spec-
tral information in different bands can be estimated
by PSD. It normally considers Delta, Theta, Alpha,
Beta and Gamma bands for EEG, since those bands
represent distinct neural activities (Wang et al 2015a,
2015b, 2017, Liu et al 2016). Many previous works
have shown that PSD can be used to evaluate the
changes between HC and AD groups. For example,
it was found that AD groups have relatively higher
PSD than HC groups in the Theta band (4-8 Hz),
while AD patients may experience a decrease in Alpha
power (8-12 Hz) and Beta power (12-32 Hz) (Liu
et al 2016, Benwell et al 2020).

Table 2 compares the highest classification res-
ults of the popular features extracted from EEG in
the literature and the approach proposes in this
paper, using the same dataset of AD and HCs. Evid-
ently, the developed method obtains the highest
accuracy, which is clearly higher than other exist-
ing approaches. Notably, the time-frequency meth-
ods (i.e. WC and RHHT) perform better than other
methods that focus on stationary information with
the superiority at approximately 10%. That is to say,
dynamic and non-stationary methods may have more
potential to reveal hidden changes during the progress
of neurodegeneration.

4.4. Limitations and future direction

However, the proposed framework has several chal-
lenges to address in future research. Firstly, the com-
putation efficiency of the RHHT technique is not sat-
isfying. It could be improved to meet the requirement
of real-time feedback, aiming to translate it into a
clinically useful diagnostic tool. Secondly, the train-
ing dataset for machine learning is not cross-subject,
limiting the universality of the proposed algorithm.
Cross-subject validation means that the data for
training and testing are extracted from different par-
ticipants. Only this type of approach can demonstrate
the universality of the proposed methods, but it usu-
ally requires a significant number of participants to
reveal the degree of variability between subjects. In
the present study, the size of the dataset is limited. The
cross-subject approach is not appropriate to evaluate
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Table 2. A comparison of performances of the various functional
connectivity methods and univariate methods (maximum
accuracy achieved by each method).

Features References SVM accuracy
PSD Wang et al (2017), 72.2%
Benwell et al
(2020)
Correlation Chen et al (2018) 77.7%
Coherence Sankari et al 72.11%
(2011), Wang et al
(2015b)
Mutual Babiloni et al 77.23%
information (MI)  (2016), Nimmy
etal (2019)
Phase locking Engels et al (2015), 72.11%
value (PLV) Kabbara et al
(2017), Su et al
(2021)
WC Sankari and Adeli 85.2%
(2011)
RHHT—PFoCS$ This paper 88.9%

the model performance and therefore has not been
applied. In this case, the data from all subjects were
mixed up and then divided into training and testing.
Thirdly, to reduce volume conduction effects from
a common reference, bipolar derivations were used
to assess the degree of differences between various
pairs of electrodes for two different cohorts of sub-
jects. With this approach—the use of bipolar pairs
of electrodes—the effects of volume conduction are
reduced but not eliminated. We recognise that this
work is based on a sensor-level scalp EEG analysis,
and we do not claim to be able to precisely local-
ise the spatial characteristics underpinning the EEG
sensor findings. Fourthly, the noise tolerating cap-
ability of the RHHT technique may need to be fur-
ther studied. According to our previous study, the
performance of RHHT seems to be more sensitive to
noise (Shan et al 2021). Finally, only a two-group clas-
sification (HCs vs AD) has been carried out in the
present study, without considering preclinical or pro-
dromal populations or staging of disease severity of
AD patients. The proposed method has demonstrated
effective performance in the case of HCs vs AD and it
may have potential in dealing with the classification
of HCs vs MCI vs AD. We are collecting data from
MCI and this three-class classification will be tested
in further studies.

5. Conclusion

In this study, we demonstrate that the peak fre-
quency estimated with the RHHT-based brain func-
tional connectivity is reduced in a group of AD
patients in comparison to an age-matched HC cohort.
A comparison undertaken with various other lin-
ear and nonlinear functional connectivity EEG meth-
ods shows that RHHT is better suited to detect this
difference, because of its superior resolution and
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ability to track non-stationary EEG dynamics and
possibly non-linear interconnections. Notably, this
paper introduces an approach to reveal the areas of
interest at an EEG sensor level, which helps to bet-
ter understand each brain area’s contribution to the
classification, of AD but this can also be applied to
numerous other brain-related disorders.
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