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Abstract: Automated vehicles are expected to push towards the evolution of the mobility environment
in the near future by increasing vehicle stability and decreasing commute time and vehicle fuel
consumption. One of the main limitations they face is motion sickness (MS), which can put their
wide impact at risk, as well as their acceptance by the public. In this direction, this paper presents the
application of motion planning in order to minimise motion sickness in automated vehicles. Thus, an
optimal control problem is formulated through which we seek the optimum velocity profile for a
predefined road path for multiple fixed journey time (JT) solutions. In this way, a Pareto Front will
be generated for the conflicting objectives of MS and JT. Despite the importance of optimising both
of these, the optimum velocity profile should be selected after taking into consideration additional
objectives. Therefore, as the optimal control is focused on the MS minimisation, a sorting algorithm is
applied to seek the optimum solution among the pareto alternatives of the fixed time solutions. The
aim is that this solution will correspond to the best velocity profile that also ensures the optimum
compromise between motion comfort, safety and driving behaviour, energy efficiency, journey time
and riding confidence.

Keywords: automated vehicles; motion planning; sorting alternatives; motion sickness; safety; energy
efficiency; journey time

1. Introduction

Automated driving is considered one of the major technological developments within
the automotive industry and is able to influence future mobility and improve life quality.
Based on research surveys, there are suggestions that automated vehicles (AV) will consti-
tute around 35% of vehicle sales, and 50% of all vehicle travel [1]. At the same time, there
are important challenges, which could lead to the disuse of AV technology.

The ability to engage in other activities during the ride and the ability to use the
commute time more productively is considered by consumers as one of the key reasons for
the adoption of AVs [2,3]. However, all the envisaged AV designs, i.e., the handing over of
vehicle control, seating backwards, or not having a clear view of the road ahead by displays
or structures, provoke the incidence of motion sickness (MS) to the occupants [4]. Hence, a
refocus on motion comfort is crucial when considering what is at stake.

Carsickness is motion sickness that results from provocative motion frequencies oc-
curring in a road vehicle in transit, while vertical vibrations were considered one of the
most important factors [5,6]. However, with the advent of AVs, the interest has been
shifted towards the horizontal accelerations which occur during accelerating, braking and
unexpected or intense directional changes. The reason is that the horizontal movement of
AVs can be influenced by motion planning, allowing the engineers to design controllers
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which could enhance occupants’ comfort and mitigate motion sickness, as highlighted by
Elbanhawi et al. [7].

In recent years, many different motion planning approaches have been developed
due to the increased interest in AVs. Existing works can be broadly classified into three
categories: simple geometric-based methods, heuristic-based methods and methods based
on optimal control techniques [8]. Geometric-based and heuristic-based methods focus
mainly on the generation of the path, while optimal control-oriented methods focus on
the conversion of the computed path in a feasible trajectory by assigning a velocity profile
to the path. The optimal trajectory is identified by the motion planning layer, which is
responsible for computing a dynamically feasible trajectory according to the state model
and the constraints. The cost function in these methods is selected based on the outputs of
a vehicle model and considering the presence of obstacles that exist or not along the path.

Nowadays, the need to consider cost-functions related to the minimisation of motion
sickness (MS) in trajectory planning studies has emerged. This is because all the envisaged
designs of driverless vehicles will be completely different from the human driven vehicles
(HDVs) and in contradiction with the occupant’s habituated driving experiences. Moreover,
the users might perceive the AV’s driving style as more aggressive, as it might result in
excessive, unexpected head and body motion. On the other hand, the excessive reduction in
the speed as a measure to mitigate MS can negatively affect traffic [9], but most importantly
comfort and acceptance, while the user’s dissatisfaction might also increase due to the
longer travel times [10,11]. In recent literature, the focus has been the minimum time
solutions either for lap time simulation cases [12] or minimum cornering of passenger
vehicles [13]. Few works have considered the motion sickness metrics [14–16] as the main
objective in motion planning, but more work has to be conducted. This is because it is
crucial to obtain a trajectory that satisfies the model and the constraints, while it guarantees
an optimal compromise between motion comfort and journey time.

Despite the importance of mitigating motion sickness without neglecting journey time,
the optimum velocity profile with which the vehicle will finally drive should be selected
after taking into consideration additional objectives. Firstly, the driving style should be
smooth enough and not assertive during the ride, as high acceleration values and jerk will
make the passenger feel discomfort [17] and the vehicle might be perceived as unstable,
while it is not. Few researchers [18,19] used aggressive driving metrics as the main objective
for the motion planning of an AV, while the passengers’ confidence in riding or subjective
feel (i.e., how the vehicle is perceived to drive) has not been used. This could potentially
affect the trust of the passengers towards the driving experience. Additionally, AVs are
expected to have a significant impact on the decrease in fuel emissions, therefore, the energy
efficiency should also be included in the final selection of the optimum velocity profile.
As a result, various researchers [20] have used energy efficiency as their main objective
in the motion planning studies, while Han et al. [21] investigated the fundamentals of
energy efficient driving by formulating control problems. Last but not least, apart from
constraints that secure the vehicle stability of the vehicle, it is important to consider it as an
additional objective, as well by using appropriate metrics. To the authors’ knowledge, very
few works have tried to combine many objectives in the past [22]. However, in these cases,
the objectives were combined in the main cost function with weighting coefficients.

In this direction, this paper considers in a simplified scenario the employment of
sorting algorithms to sort the alternatives provided by the motion planner after considering
additional objectives. More specifically, this work presents the application of optimal control
to extract the optimum trajectory to be considered as a reference from AVs. The problem,
which is formulated, seeks the optimal velocity profile for a predefined road path for
minimising the motion sickness (MS) at multiple fixed journey time (JT) solutions. As the
optimal control is focused on the MS minimisation, a sorting algorithm is applied to seek the
optimum solution among the pareto alternatives by considering the additional objectives.
The aim is that this solution will correspond to the best velocity profile that ensures
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the optimum compromise among the motion comfort, the driving behaviour, the energy
efficiency, the vehicle stability, the occupant’s confidence to ride and the journey time.

2. Background
2.1. Vehicle Model and Road Tracking

In motion planning studies which use optimal control methods, one of the most
commonly used and computationally efficient models is the point mass. The point mass
model (Figure 1) is a simplified but robust vehicle model with kinematic equations of
motion, which are as follows:

ẍ = ax, ÿ = ay (1)

where the inputs of this model are the longitudinal (ax) and lateral (ay) acceleration. Re-
garding the road tracking (Figure 1), the road path is considered similar to strips described
by the x and y coordinates of the road centreline and lateral width (Lw and Rw). The road
heading angle (θ), as well as x, y coordinates may be calculated by integrating the curvature
as follows:

dθ

ds
= κ(s),

dx
ds

= cosθ,
dy
ds

= sinθ (2)

Figure 1. Curvilinear coordinates for road tracking.

The curvilinear coordinates approach has been proposed by Lot et al. [23], and is
the most effective way to describe the road centreline using only the line curvature κ as
a function of arc length s (Figure 1). The main advantage of the curvilinear coordinates
approach is their use in tracking the orientation of the vehicle based on the calculus of the
vehicle forward (vx) and lateral velocity (vy) according to Equations (3)–(5):

ṡ =
vxcosα− vysinα

1− snκ
(3)

ṡn = vxsinα + vycosα (4)

α̇ = ψ̇− ṡκ (5)

where ψ̇ is the yaw rate; sn is the lateral offset on the road strip; and α is the vehicle relative
heading to the road.

2.2. Road Paths and Profiles

In this work, initially, we design a road path (Figure 2a) to seek the optimum velocity
profile and then, a random road profile of Class B [24] (Figure 2b) is used to study in depth
the vehicle dynamic behaviour using IPG/CarMaker 8.0.
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Figure 2. (a) The road path with the above X-Y trajectory and; (b) the Class B Road profile [24]
assigned to it.

3. Performance Metrics

Despite the importance of mitigating MS and minimising JT, the optimum velocity
profile with which the vehicle will finally drive should be selected after taking into consid-
eration additional objectives. Hence, in this work, we will also consider comfort, driving
behaviour, energy efficiency, vehicle stability and subjective feel oriented objectives.

3.1. Motion Comfort-Oriented Metrics

Current tools for the assessment of passenger comfort and motion sickness include
standardised metrics and models based on the direction, amplitude, frequency and duration
of the accelerations experienced by the passenger. In this work, the illness rating of the
passengers will be used to represent motion sickness.

3.1.1. ISO-2631: Whole Body Vibrations

ISO-2631:1998 provides a guideline for the measurement and evaluation of human
exposure to whole-body mechanical vibration and repeated shock. According to the
standard, the ride comfort is assessed by combining the root mean square (RMS) values
of the weighted accelerations (RCWi ) measured at the vehicle’s centre of gravity. More
specifically, for each acceleration, either directional (ẍ, ÿ and z̈) and rotational (φ̈, θ̈ and r̈)
the weighted RMS value can be evaluated as follows:

RCWi =

(
1
t

∫ t

0
a2

Wi
dτ

) 1
2

(6)

where i refers to the type of the acceleration, either translational (ẍ, ÿ and z̈) or rotational
(i= rx for φ̈, ry for θ̈ and rz for r̈); aWi stands for the weighted accelerations in the time
domain. The weighting of the accelerations is conducted based on ISO-2631:1998 [25], and
more specifically regarding comfort, Wk and We are used for the vertical and the rotational
accelerations, respectively. The overall ride comfort metric is evaluated by summing all the
RCWi , after multiplying each by appropriate factors (ki) based on the following equation:

RC =

( 6

∑
i=1

k2
i RC2

Wi

)1/2

(7)

where ki is the multiplying factor for each term (i = x, y, z, rx, ry and rz).

3.1.2. Illness Rating

ISO-2631:1998 provides an empirical approximation for assessing motion sickness pro-
voked from the vertical motion (MSDVz), which mainly is a simplification of Equation (7)
and is derived by giving a non-zero value to kz only:
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MSDVz = kz × RCWz (8)

This metric (MSDVz) occurred from experiments related with the sea sickness from the
vertical motion [26,27]. Later, Turner et al. [28,29] proved its suitability for road vehicles
as well, while they validated it for approximating the motion sickness likelihood in the
horizontal direction. The motion sickness that occurred from the lateral (x-axis) and
longitudinal (y-axis) motion (MSDVx,y) could be evaluated from Equation (9), which is
also a simplification of Equation (7) by giving a non-zero value only to kx and ky (kx,ky 6= 0
and krx,kry,krz,kz = 0).

MSDVxy = kx × RCWx + ky × RCWy (9)

For the calculation of RCWx and RCWy , the accelerations are weighted, but this for
the illness rating based on ISO-2631:1998 but with the W f weighting filter. The MSDVz
metric illustrated a linear regression with the mean passenger illness rating, leading to the
following equation for the assessment of the passengers predicted illness rating (IR):

IR = K×MSDVz (10)

where K is an empirically derived constant (=1/3) according to data obtained from motion
sickness-related studies in seat and road transport. In this work, it will be assumed that this
also stands for the horizontal accelerations. So, the IR metric will be calculated as follows,
and will be considered as a comfort-oriented objective:

IR = K×MSDVxy (11)

3.2. Aggressive Driving

In principle, the driver’s aggressiveness should be measured by how fast the driver
accelerates and decelerates. To evaluate the levels of aggressive driving (AD), the jerk of
the longitudinal acceleration (ẍ) is normally used. The jerk (Jai , Equation (12)) is defined
as the rate of change in acceleration and deceleration, having a significant impact on the
safety and comfort of passengers [30]:

Jai =
dai
dt

(12)

where i is x and y for longitudinal (ẍ) and lateral acceleration (ÿ), respectively. An accelera-
tion profile shows how a driver speeds up and slows down, whereas a jerk profile shows
how a driver accelerates and decelerates. The latter is more important in determining
drivers’ aggressiveness. In this work, the sum of Jẍ and Jÿ RMS values (AD) are used as a
metric of aggressive driving, according to Equation (13):

AD =

(
1
t

∫ t

0
J2
ẍdτ

) 1
2

+

(
1
t

∫ t

0
J2
ÿ dτ

) 1
2

(13)

3.3. Energy Efficiency-Oriented Metrics

One factor which has significant effect on vehicle fuel consumption is the rate at which
the vehicle is accelerated, as studies have shown that rapid or frequent accelerations result
in increased consumption. The total energy demanded from the vehicle over any cycle is
the time integral of the power requirement:

E =
∫ Tf

Ti

Pdt (14)

where E is the total energy demand; P the instantaneous power requirement; Ti the initial
time and Tf the final time. The power required could be expressed as the product of
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the instantaneous force produced by the propulsion motor (Fm) and the velocity of the
vehicle (v):

E =
∫ Tf

Ti

Fm × v(t)dt =
∫ Tf

Ti

(
m× dv

dt
+ Fr

)
v dt (15)

In the above equation, the force produced by the propulsion motor (Fm) consists of two
terms, the first (m dv

dt ) represents the inertial effect and the second (Fr) denotes the resistive
force (i.e., aerodynamic drag and rolling resistance). More specifically, Fr is defined:

Fr =
1
2

sρacd A f v(t)2 + crmg (16)

where ρa is the air density; cd denotes the aerodynamic drag coefficient; A f the vehi-
cle’s frontal area and cr the rolling resistance coefficient. In this work, the minimisation
of the energy demand (Equation (16)) will be considered through the metric of energy
efficiency (EE).

3.4. Vehicle Stability-Oriented Metrics
3.4.1. Vehicle Handling

Suspension travel is an important metric that indicates vehicle handling, as it depicts
the ability of the system to support the vehicle’s static weight. The vehicle is well supported
if the rattle space requirements are kept small. So, the maximum value of the suspension
travel is usually selected as an index to assess the vehicle handling based on Equation (17):

STi = max(Suspension Travel) (17)

where i = FR, FL, RR and RL refers to four vehicle suspension systems, i.e., front right
(FR) and left (FL), rear right (RR) and left (RL), respectively. The detailed equations for
the suspension travel for various vehicle models can be found in Papaioannou et al. [31].
In this work, the sum of the maximum suspension travels at the two wheels of the jth axle,
as shown below, is used as a metric of vehicle handling:

ST[J] = max(ST[J]R) + max(ST[J]L) (18)

where J is the front (F) and rear (R) axle.

3.4.2. Rollover Stability

The load transfer at each axle (LTRi, with i = R, F) is used in order to evaluate the
dynamic roll stability of the vehicle, using Equation (19) [32]:

LTR[i] =
FztRi − FztLi

FztRi + FztLi

(19)

LTR is used to assess the rollover propensity of the vehicle by considering the vertical
tyre forces FztR and FztL. This index ranges from−1 to 1 and identifies when either the right
or the left wheel has lost contact with the ground. When LTR[i] is close to −1 or 1, then
the right or the left wheel of the ith axle is close to experiencing lift off, respectively. In this
work, the maximum of the absolute values will be used to access the rollover propensity,
which will illustrate if either the front or the rear axle has lifted-off.

MLTR[i] = max(|LTR[i]|); (20)

3.5. Riding Confidence-Oriented Metrics

Until now, vehicles have been driven by people and are considered machines to be felt
by the driver. For the subjective evaluation of the driver-feel, three main parameters are
considered and consist of the confidence drive level, the safe vehicle behaviour and the
fun to drive [33]. In AVs, two of the three objectives could change. The confidence drive
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level could be neglected considering the lack of a driver, and the fun to drive could be
transformed to “fun to ride”, considering the subjective feel of the passengers and how they
perceive the ride in addition to the motion comfort. A metric able to capture the subjective
feel of the occupants is the perceptible roll index (SFi), as proposed by Trivedi et al. [34].
The metric (SFi) combines the most common metric for roll performance, i.e., the roll
gradient and the position of the passengers. The SFi metric is derived by Equation (21),
and when this value is increased more motion is felt by the occupant:

SFi = Φ
π

180
q (21)

where i is equal to D or P, referring to the subjective feel perceived by the occupant in the
driver’s or the passenger’s position (H − point), respectively, as shown in Figure 3; Φ is
the roll gradient; and q is the rotational arm of the occupants H − point. The H − point
is the position of the occupant’s hip measured from the front axle (X − axis), the centre
plane of the vehicle (Y− axis) and the road (Z− axis). Regarding the rotational arm (q), it
is derived from Equation (22):

qi =
√

H2
yi
+ (Hzi − hi)2 (22)

where Hyi and Hzi are the driver’s (i = 1) and the passenger’s (i = 2) H− point coordinates
in the Y and the Z axis, respectively. The height of roll axis (hi) at Hxi distance from the
front axle (H − point plane) is defined as follows:

hi = hrrc +
h f rc− hrrc

wb
Hxi (23)

where h f rc and hrrc are the roll center heights at the front and rear axle.

Figure 3. Vehicle side (top figure) and top (bottom figure) view.
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4. System Design

The goal is to find the appropriate vehicle control inputs, that can drive the vehi-
cle along a predefined path from the initial position (s0) to the final position (s f ), such
that the motion sickness, represented by illness rating (IR), to be minimised for various
fixed journey time (JT) cases. This problem could be codified as an optimisation problem
with the optimal trajectory and velocity profile of the vehicle to be its solution. GPOPS
software [35] will be used for this. Afterwards, a sorting algorithm (k− ε) will be used
to seek the optimum solution among the alternatives by considering additional objec-
tives. This approach of selecting a main objective for the main optimisation procedure
(i.e., the OCP) and adding additional objectives in the sorting algorithms have been used
successfully by Papaioannou et al. [36,37] in the optimisation of passive and semi-active
vehicle suspensions.

4.1. Optimal Control Problem (OCP)
4.1.1. Dynamic Model, States and Control Inputs

The state space form of our dynamic system, i.e., vehicle model (MDL), can be written
as follows:

ẋ1 = fMDLt [x1(t), u1(t)] (24)

u1 = [ax(t), ay(t)]T (25)

x1 = [vx(t), vy(t), s(t), sn(t), α(t), x(t), y(t), θ(t)]T (26)

where fMDLt is the function representing the equations of motion in the time domain;
uu1 are the two control inputs (Equation (25)); x1 are the eight state variables (Equation (26)).

The independent variable of the problem, i.e., the elapsed time (t f ), should be changed
to the distance (s) in order for us to be able to add the elapsed time in the formulation of
the problem either as cost function (journey time-JT) or as a state variable for fixed time
scenarios. Considering that in this work we will investigate the second case, the general
state space form of the dynamic system (Equation (24)), will be transformed in the distance
domain (Equation (27)) using the derivation rule (Equation (28)) for each state:

x′2(s) = fMDLs [x2(s), u2(s)] (27)

dζ

ds
= ζ ′ =

dζ

dt
dt
ds

= ζ̇ ṡ−1 (28)

where fMDLs is the function representing the equations of motion in the distance domain;
x2(s) and u2(s) are the states and the control inputs in the distance domain, respectively; ζ
is any state of x2. In the s domain, the inputs are the same and only the time (t) is included
in the states of our optimal control problem to study fixed time solutions. The states are
illustrated below:

x2 = [vx(s), vy(s), sn(s), α(s), x(s), y(s), θ(s), t(s)]T (29)

4.1.2. Cost Function

The OCP seeks the appropriate control inputs to minimise the cost function (Jc) that
describes the objective of the problem, i.e., motion sickness, as presented in Equation (30):

Jc = Λ[x2(s0), x2(s f )] +
∫ s f

s0

L[x2(s), u2(s)] (30)

where Λ consists of terminal costs that are not considered in this work, while the second
term will represent motion sickness by incorporating the MSDVxy, as illustrated in Equa-
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tion (9), in the definition of the cost function. Therefore, Equation (30) will be transformed
into Equation (31):

Jc = kx

∫ s f

s0

a2
x(s)ds + ky

∫ s f

s0

a2
y(s)ds (31)

4.1.3. Constraints

Considering the above, the motion planning problem has formulated as shown in
Equations (32)–(35):

u∗(·) = arg min
u(·)

Jc(x2(s), u2(s)) (32)

subject to : x′2(s) = fMDLs(x2, u2) (33)

σ(x2, u2, s) 6 0 (34)

b(x2(s0), x2(s f )) = 0 (35)

where σ and b are inequality and equality constraints that can configure the scenario of the
optimal control problem. More specifically, in this work, in order to secure the fixed journey
time (Tdemand), the final time (t f ) is set to be equal to Tdemand (Equation (36)). Then, two
inequality constraints, as described in Equation (37), are considered.

t f = Tdemand (36)

√
ẍ2 + ÿ2 6 amax,−Lw 6 sn 6 Rw (37)

The first inequality constraint (Equation (37)) ensures that the vehicle will be able to
accelerate within the bounds (amax) set by the friction circle [38]. This constraint secures
the vehicle stability. Moreover, with the second inequality constraint, the vehicle model
is bounded to never exceed the road borders considering left-width (Lw) and right-width
(Rw) from the centreline of the road (Equation (37)). However, in this work, both will be
zero (Rw = Lw= 0), forcing the vehicle to follow the centreline of the road. Last but not least,
boundary conditions regarding the vehicle velocity have been added, in order to achieve
the most feasible optimal solution, with the overall minimum and maximum velocity being
set at umin= 0 [m/s] and umax= 30 [m/s], respectively.

4.2. Multi-Criteria Decision Making
4.2.1. Pareto Front

The optimisation is described as a problem of minimisation of objective functions.
In single objective optimisation problems, the focus is turned on a scalar number, while
in multi–objective optimisation (MOO) the objective function is a vector and there is not
a single solution that optimises the problem. When the objective functions are in conflict
in MOO problems, an infinite number of solutions exists shaping the Pareto front, which
finally presents the trade-offs in compromising the different objectives. In this work,
in order to generate a Pareto set of optimal solutions, the formulated single objective
optimal control problem for minimising MS will be solved for different fixed time solutions
(Tdemandi

).

4.2.2. Sorting Algorithm k − ε

The solutions of the Pareto set are equally good and satisfy different subjective prefer-
ences, while the number increases as the complexity of the problem formulation is increased.
In this work, we will apply the k− ε sorting algorithm [39], which is able not only to vet
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solutions taking into consideration if an objective is or not better by another, but also
to quantify the entity of this variation. Through the k− ε optimality method, solutions
which “have something more” than the others are identified and proposed to the designer.
More specifically, according to this method, all the Pareto solutions are k−optimal. Thus, if
k = 0 stands for a solution, then it is just Pareto optimal, whereas if k = n− 1, where n
is the objectives number, then the so called “utopia point” is identified and is the global
optimum. The k levels are evaluated according to Equation (38).

k=minZ

( n

∑
i=1

Γ(∆ fi)

)
− 1 (38)

where ∆ fi is the difference between the ith objective of the considered solution compared to a
different Pareto optimal solution; Γ(x) is a merit function evaluated based on Equation (39).
In order k− ε to seek the "something more" than the others, an indifference threshold ε
is included in the merit function. So, if the difference ∆ fi is lower than ε, selected by the
designer, the solution is not sorted out as in other methods. The use of this threshold offers
a continuous degree of optimality in the solutions.

Γ(∆ fi) =


0 , ∆ fi ≥ ε

1− ∆ fi
ε , 0 < ∆ fi < ε

1 , ∆ fi ≤ 0

(39)

5. Results and Discussion

In this work, two optimisation algorithms are combined to seek the optimum velocity
profile among the alternatives that have shaped a Pareto front and consist of optimal
solutions of OCP problems with different fixed time for the minimisation of motion sickness.
More specifically, the procedure is described by Figure 4 and is divided in three steps.

Figure 4. The combination of OCP and k − ε algorithm to identify the optimum velocity profile
among multiple alternatives.

• Firstly, an optimal control problem is formulated for multiple fixed journey time (JT)
solutions and is solved using GPOPS II solver with MATLAB suite [35]. After obtaining
all the optimal solutions, a Pareto Front (Figure 5a) is generated.

• Secondly, after having obtained the velocity profiles (Figure 5b) for various fixed
solutions, a commercial software (IPG/CarMaker 8.0) is used to follow the predefined
path with the assigned velocity in order to evaluate more performance aspects of the
vehicle behaviour and the passengers condition (Figure 6). In order to achieve it, the
lateral control for path-following is realised taking advantage of IPG Driver, which is
a closed-loop control algorithm provided by the software. Moreover, a PID controller
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is utilised for the longitudinal control and the velocity tracking. According to Figure 6,
the vehicle stability is considered as an additional objective, but the vehicle stability
is already secured through constraints in the OCP. The supplementary objective is
added to further secure it with additional metrics that refer to ride dynamics and
rollover propensity.

• Finally, the k-ε algorithm, a sorting algorithm for multi-decision criteria making, is
applied to seek the optimum solution among the Pareto alternatives considering
the additional objectives. Prior to this, in order to generate more alternatives of JT,
the Pareto Fronts of all the objectives with regards JT = Tdemandi

are interpolated
for T′demandi

.
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Figure 5. (a) The Pareto front with the optimal solutions obtained from the OCP for different fixed
time cases (Tdemandi

) for the minimisation of IR and (b) their corresponding optimal velocity profiles.

5.1. Optimal Control Problem

Regarding the first part of this work, the minimisation of motion sickness is investi-
gated for a set of fixed journey time cases (i.e., JT = Tdemandi

), as shown in Equation (40).

JT = Tdemandi
∈ [35, 75] (40)

with an interval of 5 s. The road path selected is fixed without allowing any lateral
manoeuvrability to the vehicle by setting the road width at zero (i.e., the road boundary of
left border and right border measured from the centreline Lw, Rw = 0 m). The output of
these solutions is plotted shaping the Pareto front (Figure 5a) and illustrating the conflicting
relation of our objectives. According to Figure 5a, the IR metric decreases with higher
rate in the first three cases (around 22% per 5 s increase until 50 s), while afterwards the
decrease is less (around 16%). The above remark is also depicted in the optimal velocity
profiles assigned in the path (Figure 5b) for each JT case. According to Figure 5b, all the
optimal velocity profiles follow the same pattern, as they are assigned to the same path,
but with harsher and more aggressive accelerations when the JT is smaller.

5.2. Additional Objectives

As described previously, the optimal velocity profiles are assigned to the predefined
path with higher accuracy and assess more performance aspects, which have been described
in Section 3. The fraction of change of each metric with regards to the corresponding value
of the fastest case (JT = 35 s) is plotted versus journey time (JT) in Figure 6. The additional
metrics are divided into four groups of metrics, where the one referring to (A) motion
comfort (RC and IR) and driving behaviour (AD) is illustrated in Figure 6a, (B) to energy
efficiency (EE) is illustrated in Figure 6b, (C) to vehicle stability (STF, STR, LTRF and
LTRR) is illustrated in Figure 6d, and (D) to riding confidence (SFD and STP) is illustrated
in Figure 6c. The pattern illustrated in these figures presents the relation of each metric
with JT, when assigning different velocity profiles to a predefined path, and this would be
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the shape of their Pareto Front with regards to JT, if their value was plotted instead of the
fraction of decrease.
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Figure 6. Additional (a) comfort-oriented, (b) energy efficiency-oriented, (c) riding confidence,
(d) vehicle stability-oriented performance metrics evaluated by the outputs of an IGP/CarMaker
8.0 vehicle model following the predefined path with the assigned velocity obtained by the OCP
(Figure 5b) for different fixed time cases.

Regarding the comfort-oriented metrics (Figure 6a) a conflicting relation with the
journey time is illustrated as expected. The increase in the journey time leads to smoother
acceleration and deceleration and hence, the comfort perceived by the occupants is in-
creased. Based on the comparison of the various metrics (RC, IR and AD), we can extract
conclusions about the efficiency of our cost function (IR). According to Figure 6a, the
decrease that occurred in AD is greater than IR, which served as our cost function in
the OCP formulation. On the other hand, the RC metric illustrates a smaller decrease
compared to the cost function for the various JT cases, as it considers additional terms such
as the vertical accelerations, as shown in Equation (7). As far as the energy efficient metric
(Figure 6b) is concerned, it illustrates a conflicting relation with JT as well. The increase
in the JT from 35 s to 40 s offers a significant decrease of 65% in the vehicle’s energy
consumption, while afterwards the decrease is much less for the larger JT cases, i.e., after
60 s we identify 2% for each interval. Regarding the riding confidence-oriented metrics are
concerned (Figure 6d), they have a non-conflicting relation with the JT, so SFD and SFP
evaluated in the driver and passenger position is increasing as the JT is increased. Finally,
the vehicle stability-oriented metrics (Figure 6) have a more complicated relation with JT.
More specifically, MLTRR and MLTRF illustrate a conflicting relation with JT, with the
MLTRF to be constantly decreasing and offering a more stable front axle without the risk
of lift-off as the JT is increasing. On the other hand, MLTRR does not improve in the first
JT cases (JT ≤ 45 s), which means that the rear axle of the vehicle continues to experience
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lift-off in one of its wheels during the journey in these cases. However, after some point
(JT ≥ 45 s) the rear axle of the vehicle is becoming more stable. Similar complicated relation
with JT exists in STF and STR, which illustrate irregular variations but small ( 10%) while
the JT is increased.

5.3. Sorting Algorithm k − ε

Having evaluated the additional objectives for the all the JT cases, the Pareto Fronts
of all the additional objectives are interpolated for T′demandi

, where T′demandi
= [35:0.1:75],

in order to generate more alternatives. Afterwards, the k-ε algorithm is applied to seek
the optimum solution among the Pareto alternatives considering the additional objectives
described in Section 5.2. More specifically, the objective function of k-ε is defined as follows:

f = [RC, JT, AD, EE, STF, STR, STD, SFP, MLTRF, MLTRR] (41)

where RC is based on Equation (7); JT refers to the journey time of each optimal solu-
tion (Equation (40); AD is based on Equation (13); EE is the root mean square value of
Equation (15); STF and STR are based on Equation (18) for the front and rear axle, respec-
tively; MLTRF and MLTRR are based on Equation (19). The objective function is then
used to calculate the k levels of each alternative based on Equation (38). Finally, the merit
function from Equation (39) is calculated using the following threshold (ε):

ε = Pi[max( f1), ..., max( fn)] (42)

According to Figure 7, the optimum solution, which has managed to compromise
all the objectives including in Equation (41), is located at JT = 58.3 s. The k-value of this
solution is 7.3, which means it is dominating the rest of the objectives by 7.3 out of 9 (the
value that the utopia point should have). More specifically, the solution converged close to
the middle of the Pareto Frontiers which is the solution that compromises effectively all the
conflicting relations that were illustrated in the previous section.

Figure 7. Optimum solution obtained by the sorting algorithm considering multiple design criteria
(RC, AD, EE, STF, STR, LTF, LTR, SFD and SFP).

6. Conclusions

To sum up, in this paper, an OCP problem was formulated to seek the optimal velocity
profile for minimising motion sickness at multiple fixed time solutions. The employment
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of IPG CarMaker proved the feasibility of the solutions and allowed investigating the
impact of increasing the journey time to multiple performance aspects. The quantification
of this impact outlined the importance of considering them as well in the motion planning
process. Then, an approach combining two optimisation algorithms, i.e., the OCP and
the k− ε method, is applied successfully to seek the best velocity profile that ensures the
optimum compromise between motion comfort and driving behaviour, energy efficiency,
vehicle stability, occupants confidence to ride and journey time. The application of these
two algorithms aimed at two goals. The first goal was to investigate the sorting of the
alternatives that the motion planner can provide, and secondly, to pave the path for investi-
gating real-time applications of such methods. However, in this work, the employment of
IPG CarMaker to evaluate the additional objectives, was selected due to the offline nature
of the work. Such models are too computationally expensive and cannot be considered
for real-time planning. Work is in progress to employ simplified models to evaluate the
additional objectives, and employ this method in real-time planning.

Author Contributions: Conceptualization, G.P.; methodology, G.P.; software, Z.H. and G.P.; valida-
tion, G.P. and C.L.; formal analysis, Z.H. and G.P.; investigation, Z.H. and G.P.; resources, Z.H. and
G.P.; data curation, Z.H. and G.P.; writing—original draft preparation, G.P.; writing—review and
editing, E.S., S.L. and E.V.; visualization, G.P.; supervision, S.L. and E.V.; project administration, S.L.
and E.V.; funding acquisition, S.L. and E.V. All authors have read and agreed to the published version
of the manuscript.

Funding: The research was partially funded by Innovate UK through the AIDCAV project under
Grant EP/N509450/1 and EPSRC under Grant EP/N509450/1. The APC was funded by KTH Royal
Institute of Technology.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Litman, T. Autonomous Vehicle Implementation Predictions: Implications for Transport Planning; Technical Report. 2020.

Available online: https://trid.trb.org/View/1678741 (accessed on 12 April 2022).
2. Mosquet, X.; Dauner, T.; Lang, N.; Russmann, M.; Mei-Pochtler, A.; Agrawal, R.; Schmieg, F. Revolution in the Driver’s Seat: The

Road to Autonomous Vehicles; Technical Report; The Boston Consulting Group: Boston, MA, USA, 2015.
3. Paddeu, D.; Parkhurst, G.; Shergold, I. Passenger comfort and trust on first-time use of a shared autonomous shuttle vehicle.

Transp. Res. Part C Emerg. Technol. 2020, 115, 102604. [CrossRef]
4. Sivak, M.; Schoettle, B. Motion Sickness in Self-Driving Vehicles; Technical Report [UMTRI-2015-12]; Transportation Research

Institute—The University of Michigan: Ann Arbor, MI, USA, 2015.
5. McCauley, M.E.; Royal W.J.; Wylie D.C.; O’ Hanlon F.J.; Mackie R.R. Motion Sickness Incidence: Exploratory Studies of Habituation,

Pitch and Roll, and the Refinement of a Mathematical Model; Technical Report No. 1733-2; Office of Naval Research (Human Factors
Research): Arlington, VA, USA, 1976.

6. Bos, J.E.; Bles, W. Modelling motion sickness and subjective vertical mismatch detailed for vertical motions. Brain Res. Bull. 1998,
47, 537–542. [CrossRef]

7. Elbanhawi, M.; Simic, M.; Jazar, R. In the Passenger Seat: Investigating Ride Comfort Measures in Autonomous Cars. IEEE Intell.
Transp. Syst. Mag. 2015, 7, 4–17. [CrossRef]

8. Paden, B.; Cap, M.; Yong, S.Z.; Yershov, D.; Frazzoli, E. A Survey of Motion Planning and Control Techniques for Self-Driving
Urban Vehicles. IEEE Trans. Intell. Veh. 2016, 1, 33–55. [CrossRef]

9. Eden, G.; Nanchen, B.; Ramseyer, R.; Evéquoz, F. Expectation and experience: passenger acceptance of autonomous public
transportation vehicles. In Proceedings of the IFIP Conference on Human-Computer Interaction, Bombay, India, 25–29 September
2017; Volume 10516, pp. 360–363.

10. Krueger, R.; Rashidi, T.H.; Rose, J.M. Preferences for shared autonomous vehicles. Transp. Res. Part C Emerg. Technol. 2016,
69, 343–355. [CrossRef]

11. Nordhoff, S.; de Winter, J.; Payre, W.; van Arem, B.; Happee, R. What impressions do users have after a ride in an automated
shuttle? An interview study. Transp. Res. Part F Traffic Psychol. Behav. 2019, 63, 252–269. [CrossRef]

12. Lot, R.; Dal Bianco, N. Lap time optimisation of a racing go-kart. Veh. Syst. Dyn. 2016, 54, 210–230. [CrossRef]

https://trid.trb.org/View/1678741
http://doi.org/10.1016/j.trc.2020.02.026
http://dx.doi.org/10.1016/S0361-9230(98)00088-4
http://dx.doi.org/10.1109/MITS.2015.2405571
http://dx.doi.org/10.1109/TIV.2016.2578706
http://dx.doi.org/10.1016/j.trc.2016.06.015
http://dx.doi.org/10.1016/j.trf.2019.04.009
http://dx.doi.org/10.1080/00423114.2015.1125514


Sensors 2022, 22, 5177 15 of 15

13. Smith, E.N.; Velenis, E.; Tavernini, D.; Cao, D. Effect of handling characteristics on minimum time cornering with torque vectoring.
Veh. Syst. Dyn. 2018, 56, 221–248. [CrossRef]

14. Wada, T. Motion SIckness in Automated Vehicles. In Proceedings of the 13th International Symposium on Advanced Vehicle
Control (AVEC’16), Munich, Germany, 13–16 September 2016.

15. Htike, Z.; Papaioannou, G.; Siampis, E.; Velenis, E.; Longo, S. Minimisation of Motion Sickness in Autonomous Vehicles. In
Proceedings of the IEEE Intelligent Vehicles Symposium, Las Vegas, NV, USA, 19 October–13 November, 2020; pp. 1135–1140.
[CrossRef]

16. Htike, Z.; Papaioannou, G.; Siampis, E.; Velenis, E.; Longo, S. Fundamentals of motion planning for mitigating motion sickness in
automated vehicles. IEEE Trans. Veh. Technol. 2021, 71, 2375–2384. [CrossRef]

17. Bellem, H.; Schönenberg, T.; Krems, J.F.; Schrauf, M. Objective metrics of comfort: Developing a driving style for highly automated
vehicles. Transp. Res. Part F Traffic Psychol. Behav. 2016, 41, 45–54. [CrossRef]

18. Ziegler, J.; Bender, P.; Dang, T.; Stiller, C. Trajectory planning for Bertha—A local, continuous method. In Proceedings of the IEEE
Intelligent Vehicles Symposium, Dearborn, MI, USA, 8–11 June 2014; pp. 450–457. [CrossRef]

19. Hegedüs, F.; Bécsi, T.; Aradi, S.; Gápár, P. Model Based Trajectory Planning for Highly Automated Road Vehicles. IFAC-
PapersOnLine 2017, 50, 6958–6964. [CrossRef]

20. Herrmann, T.; Christ, F.; Betz, J.; Lienkamp, M. Energy Management Strategy for an Autonomous Electric Racecar using Optimal
Control. In Proceedings of the 2019 IEEE Intelligent Transportation Systems Conference (ITSC 2019), Auckland, New Zealand,
27–30 October 2019; pp. 720–725.

21. Han, J.; Vahidi, A.; Sciarretta, A. Fundamentals of energy efficient driving for combustion engine and electric vehicles: An
optimal control perspective. Automatica 2019, 103, 558–572. [CrossRef]

22. Sarker, A.; Shen, H.; Stankovic, J.A. MORP: Data-driven multi-objective route planning and optimization for electric vehicles.
Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2018, 1, 1–35. [CrossRef]

23. Lot, R.; Biral, F. A curvilinear abscissa approach for the lap time optimization of racing vehicles. IFAC Proc. Vol. 2014, 19,
7559–7565. [CrossRef]

24. International Organization for Standardization. Mechanical Vibration-Road Surface Profiles-Reporting of Measured Data; Technical
Report ISO8608; ISO: Geneva, Switzerland, 1995.

25. International Organization for Standardization. Mechanical Vibration and Shock- Evaluation of Human Exposure to Whole-Body
Vibration—Part 1: General Requirements; Technical Report ISO2631; ISO: Geneva, Switzerland, 1997.

26. Lawther, A.; Griffin, M.J. Prediction of the incidence of motion sickness from the magnitude, frequency, and duration of vertical
oscillation. J. Acoust. Soc. Am. 1987, 82, 957–966. [CrossRef] [PubMed]

27. Lawther, A.; Griffin, M.J. Motion sickness and motion characteristics of vessels at sea. Ergonomics 1988, 31, 1373–1394. [CrossRef]
[PubMed]

28. Turner, M.; Griffin, M.J. Motion sickness in public road transport: Passenger behaviour and susceptibility. Ergonomics 1999,
42, 444–461. [CrossRef]

29. Turner, M.; Griffin, M.J. Motion sickness in public road transport: The effect of driver, route and vehicle. Ergonomics 1999,
42, 1646–1664. [CrossRef]

30. Le Vine, S.; Zolfaghari, A.; Polak, J. Autonomous cars: The tension between occupant experience and intersection capacity.
Transp. Res. Part C Emerg. Technol. 2015, 52, 1–14. [CrossRef]

31. Papaioannou, G.; Dineff, A.M.; Koulocheris, D. Comparative Study of Different Vehicle Models with Respect to Their Dynamic
Behaviour. Int. J. Automot. Mech. Eng. 2019, 16, 7061–7092. [CrossRef]

32. Papaioannou, G.; Gauci, C.; Velenis, E.; Koulocheris, D. Sensitivity Analysis of Vehicle Handling and Ride Comfort with Respect
to Roll Centers Height. In Proceedings of the IAVSD International Symposium on Dynamics of Vehicles on Roads and Tracks,
Gothenburg, Sweden, 12–16 August 2019; pp. 1730–1739.

33. Nuti, A.C. Objective Metric x Subjetive Evaluation; 2003-01-3723; SAE Technical Papers; SAE International: Warrendale, PA,
USA, 2003.

34. Trivedi, Z.; Lakhera, V. Perceptible Roll. SAE Int. J. Commer. Veh. 2015, 8, 147–151. [CrossRef]
35. Patterson, M.A.; Rao, A.V. GPOPS - II: A MATLAB software for solving multiple-phase optimal control problems using hp-

adaptive gaussian quadrature collocation methods and sparse nonlinear programming. ACM Trans. Math. Softw. 2014, 41, 1–37.
[CrossRef]

36. Papaioannou, G.; Koulocheris, D. An approach for minimizing the number of objective functions in the optimization of vehicle
suspension systems. J. Sound Vib. 2018, 435, 149–169. [CrossRef]

37. Papaioannou, G.; Koulocheris, D. Multi-objective optimization of semi-active suspensions using KEMOGA algorithm. Eng. Sci.
Technol. Int. J. 2019, 22, 1035–1046. [CrossRef]

38. Godbole, D.N.; Hagenmeyer, V.; Sengupta, R.; Swaroop, D. Design of emergency maneuvers for Automated Highway System:
Obstacle avoidance problem. In Proceedings of the IEEE Conference on Decision and Control, San Diego, CA, USA, 10–12
December 1997; Volume 5, pp. 4774–4779. [CrossRef]

39. Gobbi, M. A k, k-ε optimality selection based multi objective genetic algorithm with applications to vehicle engineering. Optim.
Eng. 2013, 14, 345–360. [CrossRef]

http://dx.doi.org/10.1080/00423114.2017.1371771
http://dx.doi.org/10.1109/IV47402.2020.9304739
http://dx.doi.org/10.1109/TVT.2021.3138722
http://dx.doi.org/10.1016/j.trf.2016.05.005
http://dx.doi.org/10.1109/IVS.2014.6856581
http://dx.doi.org/10.1016/j.ifacol.2017.08.1336
http://dx.doi.org/10.1016/j.automatica.2019.02.031
http://dx.doi.org/10.1145/3161408
http://dx.doi.org/10.3182/20140824-6-ZA-1003.00868
http://dx.doi.org/10.1121/1.395295
http://www.ncbi.nlm.nih.gov/pubmed/3655126
http://dx.doi.org/10.1080/00140138808966783
http://www.ncbi.nlm.nih.gov/pubmed/3208731
http://dx.doi.org/10.1080/001401399185586
http://dx.doi.org/10.1080/001401399184730
http://dx.doi.org/10.1016/j.trc.2015.01.002
http://dx.doi.org/10.15282/ijame.16.3.2019.17.0529
http://dx.doi.org/10.4271/2015-01-1585
http://dx.doi.org/10.1145/2558904
http://dx.doi.org/10.1016/j.jsv.2018.08.009
http://dx.doi.org/10.1016/j.jestch.2019.02.013
http://dx.doi.org/10.1109/cdc.1997.649770
http://dx.doi.org/10.1007/s11081-011-9185-8


Cranfield University

CERES https://dspace.lib.cranfield.ac.uk

School of Aerospace, Transport and Manufacturing (SATM) Staff publications (SATM)

2022-07-11

Multi-criteria evaluation for sorting

motion planner alternatives

Papaioannou, Georgios

MDPI

Papaioannou G, Htike Z, Lin C, et al., (2022) Multi-criteria evaluation for sorting motion planner

alternatives, Sensors, Volume 22, Issue 14, July 2022, Article number 5177

https://doi.org/10.3390/s22145177

Downloaded from Cranfield Library Services E-Repository


