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Abstract

Stereo rectification is the determination of two image transformations
(or homographies) that map corresponding points on the two images, pro-
jections of the same point in the 3D space, onto the same horizontal line in
the transformed images. Rectification is used to simplify the subsequent
stereo correspondence problem and speeding up the matching process.
Rectifying transformations, in general, introduce perspective distortion
on the obtained images, which shall be minimised to improve the accu-
racy of the following algorithm dealing with the stereo correspondence
problem. The search for the optimal transformations is usually carried
out relying on numerical optimisation. This work proposes a closed-form
solution for the rectifying homographies that minimise perspective distor-
tion. The experimental comparison confirms its capability to solve the
convergence issues of the previous formulation. Its Python implementa-
tion is provided.
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1 Introduction

Stereo vision gained a prominent role among Computer Vision technologies as
it allows machines to perceive depth. Thanks to pinhole camera model, cali-
bration and epipolar geometry, a considerable simplification can be performed
before attempting to solve the stereo correspondence. Among these simplifica-
tions, rectification is almost always conducted to obtain horizontal and aligned
epipolar lines, so that the following stereo matching algorithm can work along
the x-axis only, with significant performance increase.

However, rectification transformations generally introduce distortion, which,
in turn, impairs the performance of the following stereo matching algorithm. For
this reason, minimal-distortion algorithms are proposed in the literature. In this
paper the closed-form solution of the rectifying homographies that minimise
perspective distortion is derived by means of the metric introduced by Loop
and Zhang [1]. This is applied to a calibrated stereo rig, where all the intrinsic
and extrinsic parameters are known.

The hereby presented formulation of the minimising solution is enabled by
a new geometrical interpretation of the problem, which simplifies the distortion
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metric expression. The solution found is general and, therefore, valid for every
relative position of a given stereo rig, even in extreme configurations and when
the previous algorithm [1] fails to provide an initial guess for minimisation (see
Sec. 5). Furthermore, the proposed method overcomes the need for optimisa-
tion libraries and is thus computationally more efficient by avoiding numerical
minimisation loops.

1.1 Background

Emulating the human vision system, stereo vision derives 3D information by
comparison of 2D digital images taken from two distinct camera positions, usu-
ally known from calibration [2]. Given a stereo image pair, the third coordinate
of each object in the scene is extracted by first solving the stereo correspondence
problem [3, 4], namely the problem of locating the projections of that object in
the two images, and then applying triangulation [5] to recover the position of
the object in the 3D world.

Taking advantage of the geometric relations between the 3D points and their
projections onto the 2D images, the so-called epipolar constraint, the stereo
correspondence problem can be reduced to one dimension. This means that the
search of each pair of corresponding points is thus carried on along one, usually
oblique, epipolar line in each picture. To further simplify the problem, image
rectifications can be applied, transforming the stereo correspondence problem
into a search along a horizontal line, with a consequent, significant improvement
in efficiency.

Image rectifications are a family of 2D transformations that can be applied
to a couple of non-coplanar stereo images to re-project them onto a rectifying
plane such that, on the transformed images, corresponding points will lie on
the same horizontal line. The drawback of rectification is that it introduces a
certain amount of distortion in the resulting images, that decreases the accu-
racy of the subsequent stereo matching algorithms. Hence, the importance of
identifying, among the rectifying transformations in the family, the ones that
minimise distortion. Hereafter, in continuity with the previous algorithm [1],
we will refer to perspective distortion simply as distortion.

This paper make the rectifications minimising distortion explicit, finding
their analytic formulation via a geometrical derivation. The basic notation and
metric are given in Sec. 2. Our novelties, the geometrical interpretation and
derivation of the closed form solution, are reported in Sec. 3. The main steps
of the algorithm are listed in Sec. 4, followed by a discussion and examples
in Sec. 5. Conclusions follow in Sec. 6. The Python 3 implementation of the
algorithm is also provided.

1.2 Previous work

Several algorithms for stereo image rectification are available in the literature.
Among the mostly accepted and applied, the one by Fusiello et al. [6] essentially
fixes the rectifying plane using the sole orientation of one of the two cameras.
Despite being a simple and compact, this algorithm is based on an arbitrary non-
optimal choice of one rectifying plane (see Sec. 5.1). This choice leads, for highly
skew configurations of the cameras, to the introduction of a massive amount of
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distortion in the transformed images, with the consequence of worsening the
performances of the algorithm dealing with the stereo correspondence.

The importance of minimising the distortion introduced by the rectifying
transformations is highlighted by Loop and Zhang [1]. In their work, the au-
thors decompose rectifying homographies as a combination of a perspective, a
similarity and a shearing sub-transformations, and minimise the global distor-
tion. A metric for measuring perspective distortion is thus presented. Finally,
using an iterative, numerical procedure, the pair of homographies introducing
the minimum perspective distortion is found. However, the initial guess thereby
suggested cannot always be found [7].

With the aim to minimise distortions at pixel level, a different distortion
metric was proposed by Gluckman and Nayar [8], making use of the Jacobian of
the transformation to track changes in local image areas. This method proposes
an approximate solution or requires to follow a complex iterative procedure to
obtain the optimal one.

A first-attempt of a closed-form solution was proposed by Sun [9]. Here
the rectification transformations are readily found estimating the fundamental
matrix. However, it leads to a particular solution without the criteria of reducing
perspective distortion.

Lately the attention of researchers has been focused on strategies for rectify-
ing uncalibrated stereo rigs [10, 11, 12, 13, 14]. These methods do not require a
calibration process and try to estimate camera parameters using the scene itself.
For example, a handy solution for uncalibrated dual lens cameras [12] relies on
key-points that have to be matched in the images. This approach is based on
the very limiting assumption of a small-drift between the cameras poses. Ob-
viously this does not apply to general camera poses, like verging cameras, and
calibration is still important to reach high accuracy and efficiency levels. Differ-
ent approaches focus on rectifying fisheye images [15, 16, 17]. Uncalibrated and
fisheye rectification algorithms are outside the scope of this article. To date,
the vast majority of stereo vision systems employs calibration, that allows for a
metric reconstruction with the subsequent triangulation.

2 Setting the Problem

This Section summarises the work of Loop and Zhang [1] to provide the basis
for the following closed-form solution.

2.1 Pinhole Cameras and Epipolar Geometry

Let us consider a calibrated stereo rig composed of two pinhole cameras, where
distortion caused by lens imperfections has been already corrected. As most
definitions hereafter will be analogous for both cameras, we will define them
only for one camera (definitions for the second camera will be obtained replac-
ing the subscript with 2). Let A1 ∈ R

3×3 be the intrinsic matrix of the left
camera, with R1 ∈ R

3×3 and t1 ∈ R
3 its rotation matrix and translation vec-

tor, respectively, describing the position of the first Camera Coordinate System
(CCS) with respect to World Coordinate System (WCS), as represented in Fig.
1, with a slight abuse of notation for axes names to ease visualisation.
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Figure 1: Representation of coordinate systems. CCSs are in red, dot-dashed.
ICSs are in blue. WCS is in grey and the baseline is dashed black.

Call o1 = −R−1
1 ·t1 the position of the optical center in the WCS. Hereafter,

unless otherwise stated, elements are expressed in WCS. The baseline is the
vector b = o2−o1 going from the first to the second camera center. Additionally,
an Image Coordinate System (ICS) is defined on the image plane of each camera,
where the left image I1 forms (located at z = 1 in CCS) with the x and y axes
parallel to the respective CCS ones and origin in the upper left corner of the

image, corresponding to
[
− [A1]13

[A1]11
− [A1]23

[A1]22
1
]
in CCS. The notation [A1]ij

indicates the (i, j) element of A1. The ICS system is shown in Fig. 1 as well.
Given two corresponding image points p1 ∈ I1 and p2 ∈ I2, each one in its

ICS and expressed as homogeneous coordinates (i.e. p1 ∈ R
3, with unitary 3rd

coordinate), the epipolar geometry constraint is defined as:

pT
2 · F · p1 = 0 (1)

where F is the fundamental matrix, a 3 × 3 matrix of rank 2 that can only be
determined up to a scale factor [3, 18], assumed as known. F maps a point on
I1 to a line on I2, and vice versa (using its transpose). Given that we work in
a projective space, all the points are defined up to an arbitrary scaling factor.

On each image all the epipolar lines will intersect in a single point called
epipole. Let e1 ∈ I1 and e2 ∈ I2 be the two epipoles in homogeneous ICS, they
can be defined as the left and right kernels of F, so that:

F · e1 =
[
0 0 0

]T
= FT · e2 (2)

Geometrically, e1 is the projection of o2 on the image I1. Similarly for e2. It
is worth noticing that each pair of corresponding epipolar lines lies on a same
plane together with the baseline.
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2.2 Rectification

Rectification is the problem of determining two homographies that map cor-
responding epipolar lines onto parallel horizontal lines sharing the same y-
coordinate (i.e. sending the epipoles to ∞). Thus, rectified images must have
the new fundamental matrix in the form [3]:

F =



0 0 0
0 0 −1
0 1 0


 (3)

Defining the rectified points p1 = H1 · p1 and p2 = H2 · p2, then, from
Eq. (1), we get:

pT
2 · F · p1 = pT

2 ·H−T
2 · F ·H−1

1 · p1

= pT
2 · F · p1

= 0

(4)

where H1 and H2 are the left and right sought-after homographies, respectively.

2.3 Perspective Distortion

Following the original procedure [1], given a generic homography H1, we scale
it by its last element and decompose as:

H1 =



u1a u1b u1c

v1a v1b v1c
w1a w1b 1


 = H1a ·H1p (5)

where H1a is an affine transformation and H1p is a purely perspective transfor-
mation in the form:

H1p =




1 0 0
0 1 0

w1a w1b 1


 (6)

H1p is the sole responsible for introducing perspective distortion. The affine
transformation will then be:

H1a =



u1a − u1cw1a u1b − u1cw1b u1c

v1a − v1cw1a v1b − v1cw1b v1c
0 0 1


 (7)

H1a can be decomposed further in a shearing transformation, followed by a
similarity transformation [1]. The same decomposition is derived for H2.

Let p1 = [x1 y1 1]T be a generic point on I1, in homogeneous ICS, then the
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perspective transformed point is:

p′
1 = H1p · p1

=




x1

y1
w1ax1 + w1by1 + 1




=




x1

y1
wT

1 · p1




∝




x1

wT

1
·p1

y1

wT

1
·p1

1




(8)

where wT
1 =

[
w1a w1b 1

]T
.

The codomain of I1 through H1p must be intended as including the point ∞,
as per the hyperplane model defined to handle perspective transformations [19].

Notice that if w1a = w1b = 0 there is no perspective component in the
rectifying transformations, then H1 is a purely affine transformation. If this is
true also for H2, then the stereo rig is perfectly frontoparallel and the image
pair is already rectified. However this, in general, does not happen.

2.4 Distortion Metric

We refer to the distortion metric introduced by Loop and Zhang [1]. The aim
is to select H1 and H2 “as affine as possible”, meaning that the elements w1a,
w1b, w2a and w2b should be chosen so to introduce less distortion.

Taking the average point p1c = 1
n1

∑n1

i=1 p1i as reference, with n1 total
number of pixels of I1, the amount of distortion on I1 is defined as:

n1∑

i=1

wT
1 · (p1i − p1c)

wT
1 · p1c

(9)

The goal is to find the global minimum of the sum of the distortion of both
images:

n1∑

i=1

wT
1 · (p1i − p1c)

wT
1 · p1c

+

n2∑

i=1

wT
2 · (p2i − p2c)

wT
2 · p2c

(10)

Then (10) can be rewritten in matrix form as:

wT
1 ·P1 ·P

T
1 ·w1

wT
1 ·Pc1 ·PT

c1 ·w1
+

wT
2 ·P2 ·P

T
2 ·w2

wT
2 ·Pc2 ·PT

c2 ·w2
(11)

where:

P1 ·P
T
1 =

wh

12



w2 − 1 0 0

0 h2 − 1 0
0 0 0


 (12)

and:

Pc1 ·P
T
c1 =




(w−1)2

4
(w−1)(h−1)

4
(w−1)

2
(w−1)(h−1)

4
(h−1)2

4
(h−1)

2
(w−1)

2
(h−1)

2 1


 (13)
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where w and h are pixel width and height of I1. Similarly applies to I2.

3 Geometric Interpretation and Analytical Deriva-

tion of the Minimum

A geometric interpretation of the family of rectifying homographies is introduced
hereafter, which paves the way to find the analytical formulation for the global
minimum of Eq. 10 and build the corresponding rectifying homographies that
minimise perspective distortion.

3.1 Geometric Interpretation

It is known that finding rectifying transformations can alternatively be seen
as determining a new common orientation for a pair of novel virtual cameras
projecting the images on the same principal plane, such that epipolar lines
become horizontal (Fig. 2).

In this subsection we will demonstrate that this can only be achieved if the
x̂-axis of the new common orientation is chosen parallel to the baseline, while
the ẑ-axis can be arbitrarily chosen, thus generating the full rectifying family.

Figure 2: Common orientation of the virtual camera pair (red), projecting on
a common plane (gray). x̂ is parallel to the baseline b (black, dashed). The
corresponding epipolar lines (blue, green) and ẑ are identified by y1 (magenta).
Rectified epipolar lines are green and blue, dashed.

The new common orientation will thus be defined as:

Rnew =



x̂T

ŷT

ẑT


 (14)

where x̂ = b
‖b‖ (the versor of the baseline) while ẑ and ŷ can be chosen accord-

ingly to form a Cartesian coordinate system.
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Each homography will have to cancel the corresponding intrinsic camera ma-
trix and camera rotation, re-orient the camera with the new chosen orientation
and apply another affine transformation, namely:

H1 = K1 ·R
new · (A1 ·R1)

−1

H2 = K2 ·R
new · (A2 ·R2)

−1
(15)

where K1,K2 ∈ R
3×3 are arbitrary affine transformations.

The geometric interpretation above is based on the following Theorem.

Theorem 1. The epipolar lines of two cameras are corresponding horizontal
lines if and only if the two cameras share the same orientation, with the x̂-axis
parallel to their baseline.

To prove this theorem we first introduce two Lemmas.

Theorem 1. The fundamental matrix F, with an abuse of notation, can be
written as:

F ∝ G×H =



[G]2 [H]3∗ − [G]3 [H]2∗
[G]3 [H]1∗ − [G]1 [H]3∗
[G]1 [H]2∗ − [G]2 [H]1∗


 (16)

where G = A2 · R2 · b ∈ R
3 and H = A2 · R2 · (A1 ·R1)

−1
∈ R

3×3. The ith

row of a matrix is denoted as [ ]i∗.

Proof (Lemma 1): let be X ∈ R
3 a point in WCS and x1 ∈ I1 and x2 ∈ I2

its projections in ICS, then X is a non-trivial solution of the linear system [20]:

{
A1 · (R1 ·X+ t1) = λx1

A2 · (R2 ·X+ t2) = µx2
(17)

where λ, µ ∈ R. Setting X̃ = A1 · (R1 ·X+ t1), yields:

{
I3 · X̃ = λx1

H · X̃−G = µx2

(18)

where I3 ∈ R
3×3 is the identity matrix. Therefore:

Det

([
I3 0 x1 0

H G 0 x2

])
= 0 (19)

which is linear in both x1 and x2 and can thus be rewritten as:

xT
2 · F · x1 = 0 (20)

with:
[F]ij = (−1)i+jDet(Q̂i,j), ∀i, j = 1, 2, 3. (21)

where Q̂i,j ∈ R
4×4 is equal to the matrix Q =

[
I3 0

H G

]
∈ R

6×6 with the ith

and (3 + j)th rows dropped. Furthermore:

[F]ij = (−1)i+1Det(S̄i,j) (22)
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with the first column of S̄i,j ∈ R
2×2 equal to the jth column of the matrix

H with the ith row dropped, and the second column equal to G with the ith

element dropped. Then Eq. (22) is equivalent to Eq. (16) �.
Remark: it can be shown that the matrix H is the matrix representing the

axes of the first CCS as seen from the second CCS and that e2 = G
‖G‖ . Therefore

the fundamental matrix can be expressed as F ∝ e2 ×H, similarly to Eq. (16).

Theorem 2. The epipolar lines of the second camera are horizontal if and only
if the x-axis of the second camera is parallel to the baseline.

Proof (Lemma 2): by the definition of the fundamental matrix (see Sec 2.1),
the epipolar lines of the second camera are horizontal if and only if the first
row of the fundamental matrix F is null. Using Eq. Lemma 1 the first row of F
can be expressed as:

[G]2 [H]3∗ − [G]3 [H]2∗ (23)

From the remark above, the rows of H form a base of linearly independent
vectors, therefore the only linear combination that can set the formula (23) to
zero is the trivial one, with [G]2 = [G]3 = 0, that is equivalent to state that the
x-axis of the second camera is parallel to the baseline �.

We can now demonstrate Theorem 1.
Proof (Theorem 1): by Lemma 1 and Lemma 2, if the epipolar lines of the

second camera are horizontal, the fundamental matrix can be reduced to the
form:

F ∝




0

− [H]3∗
[H]2∗


 (24)

Using Eq. (3) we impose:

[H]2∗ =
[
0 1 0

]

[H]3∗ =
[
0 0 1

] (25)

That is equivalent to require that the y and z axes of the first CCS, as seen
from the second CCS system of reference (respectively [H]2∗ and [H]3∗), must
be parallel to the corresponding axes of the second camera �.

3.2 Analytic Derivation of the Minimising Rectification

By Eqs. (14) and (15), finding the global minimum of Eq. (10) is equivalent
to find the optimal common orientation Rnew of the virtual cameras. Since
x̂ is imposed by the baseline, the problem is reduced to finding the ẑ so that
distortion is minimised. Setting ŷ = ẑ× x̂, will then determine Rnew.

Choosing the minimising ẑ, in turn, is equivalent, by construction, to finding
the pair of corresponding epipolar lines to become the new horizon lines (see
Fig. 2), which will lay at the intersection of the plane ŷ = 0 and the rectified im-
ages. Actually only one horizon line must be determined, as the corresponding
one is readily found by means of F.

Finally, the minimisation problem is reduced to a single parameter problem,
noticing that an epipolar line is uniquely determined by its y-intercept (0, y1) ∈
I1 in ICS. Such y-intercept, in WCS, takes the form:

y1 = R−1
1 · (A−1

1 ·
[
0 y1 1

]T
− t1) (26)
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The ẑ axes of the virtual cameras will thus be the direction of the line z

perpendicular to b, passing through y1, calculated as the difference between
the vector going from o1 to y1 and its projection on the baseline (its derivation
is done by means of the outer product ⊗ [21]):

z = (y1 − o1)− [(y1 − o1)
T · x̂]x̂

= (y1 − o1)− x̂⊗ x̂ · (y1 − o1)
(27)

Then follows:
ẑ =

z

‖z‖
(28)

Using Eqs. (14), (15) and (27), yields:

wT
1 = [H1]3∗

= [K1 ·R
new · (A1 ·R1)

−1]3∗

= ẑT · (A1 ·R1)
−1

=
zT

‖z‖
· (A1 ·R1)

−1

=


R−1

1 ·A−1
1 ·



0
y1
1


− x̂⊗ x̂ ·R−1

1 ·A−1
1 ·



0
y1
1






T

· (A1 ·R1)
−1

=
[
0 y1 1

]
· (A1 ·R1)

−T · (I3 − x̂⊗ x̂)

· (A1 ·R1)
−1

(29)

where K1 has been omitted as it does not affect the 3rd row of what follows
(being an affine transformation, its last row is

[
0 0 1

]
), and ‖z‖ has been dis-

carded noticing that in Eq. (11) it appears both at numerator and denominator.
Rearranging:

w1 = (A1 ·R1)
−T · (I3 − x̂⊗ x̂) · (A1 ·R1)

−1 ·



0
y1
1




= L1 ·



0
y1
1




(30)

where the matrix:

L1 = (A1 ·R1)
−T · (I3 − x̂⊗ x̂) · (A1 ·R1)

−1 (31)

Similarly for w2:

w2 = L2 ·



0
y1
1


 (32)

where:
L2 = (A2 ·R2)

−T · (I3 − x̂⊗ x̂) · (A1 ·R1)
−1 (33)
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Our goal is to minimise the distortion from Eq. (11), that can now be written
as:

[
0 y1 1

]
·M1 ·

[
0 y1 1

]T
[
0 y1 1

]
·C1 ·

[
0 y1 1

]T

+

[
0 y1 1

]
·M2 ·

[
0 y1 1

]T
[
0 y1 1

]
·C2 ·

[
0 y1 1

]T

(34)

where:

M1 = LT
1 ·P1 ·P

T
1 · L1

M2 = LT
2 ·P2 ·P

T
2 · L2

C1 = LT
1 ·Pc1 ·P

T
c1 · L1

C2 = LT
2 ·Pc2 ·P

T
c2 · L2

(35)

The terms of Eq. (34) can be now expanded as polynomial expressions in y1.
It can be verified that Eq. (34) takes the form:

Figure 3: Possible trend of the distortion in Eq. (34) as a function of y1. Global
minimum is identified by dashed lines.

f1(y1)

(g1(y1))
2 +

f2(y1)

(g2(y1))
2 (36)

with f1 = f1(y1), f2 = f2(y1) second degree polynomials and g1 = g1(y1),
g2 = g2(y1) first degree polynomials. Deriving to find the extreme points yields:

(
f1

g21
+

f2

g22

)′

=
g1g

3
2f

′
1 + g31g2f

′
2 − 2f1g

3
2g

′
1 − 2f2g

3
1g

′
2

g31g
3
2

(37)

11



where the terms of 5th degree cancel out. Discarding the denominator1, the
extreme points are thus found as the solution of a 4th degree polynomial:

ay41 + by31 + cy21 + dy1 + e = 0 (38)

with a, b, c, d, e ∈ R. The solutions of Eq. (38) can be found using any solv-
ing formula for homogeneous polynomials of 4th degree. Full calculations are
reported in Appendix A.

Fig. 3 shows a possible behavior of Eq. (34). Among the acceptable real
solutions of Eq. (38), the one representing the global minimum depends on the
initial position of the cameras, and therefore can only be determined by directly
comparing the value of the distortion in Eq. (34) for each solution.

It must be remarked that, in the very peculiar (unrealistic) case in which the
two cameras are identical (i.e. A1 = A2, P1 = P2 and Pc1 = Pc2) and share
the exact same orientation R1 = R2 (not necessarily frontoparallel), then (36)
takes the form:

2
f(y1)

(g(y1))
2 (39)

leading, once derived, to a first degree polynomial, thus to a single minimum.
The analytical expression of w1 and w2 minimising perspective distortion

is therefore found, so that H1p and H2p are directly determined. In order to
find the complete expression of the rectifying homographies H1 and H2, the
respective affine components, as shearing and similarity transformations, can
be easily calculated [1].

4 Algorithm Summary

The steps of the direct rectifying algorithm explained above are summarised as
follows:

1. The weights w1 and w2 of the perspective components of the rectifying
homographies are written as polynomial expression in y1, the y-intercept
of the horizon epipolar line on I1.

2. Distortion is written as function of y1 and auxiliary matrices are defined
to calculate the coefficients of the quartic polynomial.

3. The acceptable solutions (either 2 or 4) are calculated.

4. The global minimum is determined by direct comparison of the distortion
values obtained.

5. The minimising w1 and w2 are calculated as last row of the matrices in
Eq. (15).

6. The similarity and shearing transformations are calculated [1].

7. The rectification transformations H1 and H2 are fully determined.

The full Python 3 code is made available at https://github.com/decaden
za/DirectStereoRectification.

1It can be shown that approaching the roots of the denominator of the distortion function

both from the upper and lower limit, the function always goes to +∞, therefore the global

minimum never reaches −∞, as in Fig. 3.
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5 Discussion

Rectifying homographies are transformations that dramatically reduce the search
space for correspondences between a couple of stereo images, thus making the
stereo matching problem computationally affordable.

The optimal transformations are traditionally found making use of numer-
ical minimisation (see [1]), which prevents the use of rectification when low
computational power is available (e.g. space assets). Furthermore, the appli-
cation of the traditional method is limited by a convergence issue, due to the
matrices decomposition used therein and thus not avoidable, that will be dis-
cussed in the reminder of this Section. For both these reasons, most present
applications [22, 23] prefer to use the arbitrary, non-optimal solution proposed
by Fusiello et al. [6], that, for peculiar configurations introduces high distortion
levels (Sec. 5.1), thus impairing performance of the following stereo matching
algorithm.

This paper explicits and demonstrates the formula for the optimal rectifying
homograpies. The formula is valid for every pair of stereo images, independently
from the configuration parameters. Being an exact formulation, it eliminates
the need for minimisation, while still providing the optimal transformation, thus
enabling the use of rectification in scenarios with very limited computational
capabilities, as for example for autonomous navigation of space satellites. Future
work will concentrate on such applications.

The reminder of this section discusses a limiting convergence issue of the
traditional method proposed by Loop and Zhang [1]. Indeed, the convergence
of this algorithm cannot be guaranteed as it depends upon finding a suitable
initial guess, derived assuming A and A′ to be positive-definite, which cannot
be guarenteed for all configurations [7].

Consider, for example, the case in which the first CCS is coincident with the

WCS and an identical second camera is placed in
[
1 a b

]T
(with a, b ∈ R),

oriented as the first one but rotated around the x-axis of an angle θx. For
all cases in which b = a tan θx, the first element of A′ will be null, thus, as
a straightforward consequence of Sylvester’s Theorem, A′ will not be positive-
definite. Then, Loop and Zhang’s algorithm fails.

Moreover, numerical simulations confirm that the configurations for which
positive-definite assumption is violated are a numerous and therefore relevant
in limiting the applicability of the traditional algorithm. Indeed, considering
a setup with fixed intrinsic and randomly generating one million of extrinsic
parameters (i.e. relative position and rotation between the two cameras), it was
found that Loop and Zhang’s algorithm failed in over the 50% of the cases, in
spite of all the configurations being perfectly legitimate. This happened mostly
because of numerical errors in computing Cholesky decomposition of A and
A′. The proposed analytic method, instead, does not need an initial guess and
directly provides the optimal solution.

To the best of the authors’s knowledge, for the cases mentioned above, all
algorithms present in the the literature fail in providing the optimal rectifying
homography (introducing minimum distortion), found instead by the formula
derived in this work and not affected by the configuration settings.

Furthermore, Fig. 4 shows the optimal solution found by our algorithm in
case of extremely skewed camera positions configuration, for which Loop and
Zhang’s initial guess cannot be retrieved. Finally it must be mentioned that
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the direct algorithm here presented is capable of providing the optimal solution
also in the case of one camera entering the field of view of the other, i.e. when
the epipoles lie within image boundaries, which causes convergence issues when
employing numerical algorithms.

Figure 4: Left and right image of a synthetic scene with extremely skewed
camera positions (top-left and top-right, respectively). In this case the numerical
minimisation of [1] fails. Corresponding rectified image pair using our algorithm
is showed (bottom). Horizontal lines are drawn for reference on the rectified
image.

In summary, the formula here presented guarantees convergence for every
configuration, avoids the need of external libraries and saves computational time
as it does not make use of minimisation. Indeed, comparing the computational
cost, in our implementation on an Intel i7-7500U CPU 2.70GHz, the original
algorithm by Loop and Zhang requires 8.899ms on average to calculate the
rectifying homographies, while the proposed method takes 7.655ms.

5.1 Rectification Examples

A synthetic example of rectification is shown in Fig. 5. The original left and right
images are first shown. The images, as rectified following our direct algorithm,
are then listed, where arbitrary horizontal lines have been drawn as a reference.
Here the effects of rectification are clearly visible, as corresponding points are
aligned. This example is included in the Python code.

The couple of images on the third line of Fig. 5, shows the same image pair
rectified following the algorithm in [6]. As expected, while the value of the mini-
mum distortion introduced in the second row is 46 252, the homographies found
by Fusiello’s algorithm and generating the third pair of images are non optimal
and introduce a distortion of 48 207, about 4% higher than the minimum.

In Fig. 6 a real scene stereo pair is rectified. Despite the cameras are placed
almost frontoparallel, corresponding points still lie on different scan-lines, so
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Figure 5: Left and right image of a synthetic scene (top-left and top-right,
respectively) and corresponding rectified image pair as rectified using the direct
algorithm (center) and the algorithm in [6](bottom). Horizontal lines are drawn
for reference on the rectified images.

rectification is needed. In real applications, calibration [2] is required to accu-
rately fit the stereo rig to the pinhole camera model. Apart from lens distortion
correction, the algorithm finds no difference between real-case and synthetic
images, since it starts from the same premises (i.e. both camera projection
matrices).

6 Conclusions

A direct rectification algorithm for calibrated stereo rigs has been proposed.
Our method improves the well-known approach by Loop and Zhang to calculate
the optimal rectifying homographies.

Thanks to an alternative geometrical interpretation of the problem, the pro-
posed algorithm is able to find the formula for the rectifying homographies that
introduce the minimal perspective distortion for any camera configurations, even
in extremely skewed relative positions, and without depending on minimisation
libraries.

The Python 3 code has been made publicly available at https://github.c
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Figure 6: Left and right image of a real scene (top-left and top-right, re-
spectively) and corresponding rectified image pair (bottom). Horizontal lines
are drawn for reference on both images, showing effects of rectification. Lens
distortion correction is also noticeable.

om/decadenza/DirectStereoRectification.
Because of the lower computational cost, the value of having an analytic solu-

tion may be particularly relevant for hardware-limited applications (e.g. space
applications, miniaturised devices), where each change of camera extrinsic or
intrinsic parameters would require the computation of new rectifying homogra-
phies. Future work might formulate the analytic solution for a distortion metric
that includes pixel resampling effects and applications to scenarios with very
limited computational capabilities.
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Appendix A

The coefficients of the 4th order polynomial expression in y1 of Eq. (38) are:

a = m2m4 +m6m8

b = m1m4 + 3m2m3m4 +m5m8 + 3m6m7m8

c = 3m1m3m4 + 3m2m
2
3m4 + 3m5m7m8 + 3m6m

2
7m8

d = 3m1m
2
3m4 +m2m

3
3m4 + 3m5m

2
7m8 +m6m

3
7m8

e = m1m
3
3m4 +m5m

3
7m8

(40)

with:

m1 = [M1]23 [C1]23 − [M1]33 [C1]22

m2 = [M1]22 [C1]23 − [M1]23 [C1]22

m3 =
[C2]23
[C2]22

m4 =
[C2]22
[C1]22

m5 = [M2]23 [C2]23 − [M2]33 [C2]22

m6 = [M2]22 [C2]23 − [M2]23 [C2]22

m7 =
[C1]23
[C1]22

m8 =
[C1]22
[C2]22

(41)

The four roots of the equation are given by:

y1 =
−b

4a
±Q±

1

2

√
−4Q2 − 2p+

S

Q
(42)
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with:

Q =
1

2

√
−
2

3
p+

1

3a

(
∆0 +

q

∆0

)

S =
8a2d− 4abc+ b3

8a3

∆0 =

(
s+

√
s2 − 4q3

2

) 1

3

p =
8ac− 3b2

8a2

q = 12ae− 3bd+ c2

s = 27ad2 − 72ace+ 27b2e− 9bcd+ 2c3

(43)

Remark : for the case A1 = A2, P1 = P2, Pc1 = Pc2 and R1 = R2, the
solution is given by:

y1 = −
m1

m2
(44)
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