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Abstract— Sensor-based Incremental control is a recently 

developed family of techniques with a reduced dependency on a 

plant model. This approach uses measurements or estimates of 

current state derivatives and actuator states to linearize the 

dynamics with respect to the previous time moment. However, 

in such a formulation, the control system is sensitive to the 

quality of measurements or estimations. The presence of 

uncertainties caused by unforeseen malfunctions in 

measurement and/or actuation systems could provoke drastic 

performance degradation. The paper proposes a sensor-based 

Incremental Nonlinear Dynamic Inversion (INDI) control 

algorithm augmented with Budgeted Sparse Online Gaussian 

Processes Adaptation for the compensation of unknown system 

behaviour. INDI performs quite efficiently under design 

conditions. Meanwhile, GP-based direct adaptation provides 

not only long-term dependency learning but also noise signal 

filtering. The efficiency of the proposed approach is 

demonstrated with a longitudinal motion of a missile. 

Keywords— Gaussian processes, Data-driven, Sensor based,  

Nonlinear control systems, uncertainty. 

I. INTRODUCTION  

Nonlinear Dynamics Inversion (NDI) and Backstepping (BS) 
techniques have become popular control strategies for 
adaptation since they can be used for global linearization of 
the system dynamics and control decoupling [1], [2]. Later, 
to make the NDI and BS controls more robust and fault-
tolerant an incremental-type sensor-based form has been 
proposed [3], [4].  

Regardless of the fact that incremental-type controllers 
demonstrates robustness to some failures [5], [6], these types 
are sensible to a quality of sensing information. Noisy 
measurements can cause degradation of the control system 
and require filtering techniques to be applied. However, 
filtering of the very noisy signal might cause significant 
delays in measurement circuit and could harm control 
performance as a result. Furthermore, possible failures of the 
sensors or actuation system might cause devastating results. 
Augmenting adaptation loops could tackle these issues. 

Neural networks, including Radial Basis Functions (RBF), 
are quite popular for on-line identification and adaptive 
control since they are universal approximators and can match 
any uncertainty (for example, see. [7], [8]). RBFs have 
advantage, namely, they are linear-in-the-parameters, as 
opposed to multilayer perceptron neural networks. However, 
performance of former approach is significantly determined 
by selection of the RBF centres. Normally, researches 
preallocate a fixed quantity of Gaussian RBF centres over the 
presumed domain [7], [9]. The system states must stay close 
to the location of the preallocated RBF centres because a 
Gaussian RBF output decays exponentially away from its 
centre; otherwise, the system would not be able to capture the 
uncertainty. 

To tackle the issues mentioned above we propose to use a 
Gaussian Process (GP) online identification framework to 
estimate aircraft control derivatives and perform in-direct 
adaptive control loop augmenting baseline IBKS controller. 
GP brings promising Bayesian paradigm to adaptive control 
by considering the estimation as a statistical problem [10]. 
The efficiency of applying GP as an augmenting loop to the 
backstepping strategy is demonstrated in [11]. However, the 
authors in [11] collected data prior to the control design. 
Furthermore, the data should be collected on a compact set. 
All these peculiarities limit the controller performance. 
Within the proposed approach, GPs utilize a Bayesian 
framework to represent uncertainties as a distribution over 
functions. It is assumed that the uncertainty and the model 
follow Gaussian distributions, with the uncertainty being 
estimated using its mean and covariance function. One of the 
advantages of the proposed method is that it does not require 
prior assumptions about operating domain. From the 
provided flight data, GP is able to dynamically choose new 
kernel locations to guarantee domain coverage. Furthermore, 
measurement noise is explicitly handled, and parameters such 
as the centres of RBFs does not require pre-allocation. GP 
approach allows Bayesian inference to overcome 
shortcomings of the standard gradient based parameter 
update laws, e.g. lack of convergence guarantees and possible 
instabilities under noise presence [12], [13]. This method was 
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applied for design of direct Model Reference Adaptive 
Control GP-MRAC [14], where GP was used to match 
uncertainty to produce compensating control commands. In 
[15], a GP-based indirect adaptive augmentation to sensor 
based Incremental Backstepping control was proposed to 
tackle issues with failures in actuation system of an aircraft.  

In the current work, we develop a GP based adaptation to 
incremental controller to match a wide range of uncertainties.  

II. PROBLEM STATEMENT 

We are considering nonlinear strict-feedback systems [2], 
which can be represented in the following form 𝒙̇ = 𝑭(𝒙) + 𝑮(𝒙)𝜉1,𝜉𝑖̇ = 𝑓𝑖(𝒘𝒊) + 𝑔𝑖(𝒘𝑖)𝜉𝑖+1, 𝑖 = 2, … , ℎ − 1,𝜉ℎ̇ = 𝑓ℎ(𝒘ℎ) + 𝑔ℎ(𝒘ℎ)𝒖, . (1) 

where 𝒙 ∈ ℝ𝒏 and 𝜉𝑖 ∈ ℝ, 𝑖 = 1, … , ℎ are the system states, 𝑢 ∈ ℝ is the control input, 𝒘𝑖 =  [𝒙𝑇 , 𝜉1, … , 𝜉𝑖], 𝑖 = 1, … , ℎ. 
For brevity, unless stated otherwise, whenever the subscript 𝑖 is utilized, the full set, i.e., 𝑖 = 1, … , ℎ, is referred to. The 
nonlinear functions 𝑭  and 𝑓𝑖 are assumed to be unknown 
system dynamics, whereas the nonlinear functions 𝑮 and 𝑔𝑖 
are assumed to be known. In this case, 𝜉1 is a control input 
for 𝒙  sub-system, and 𝜉𝑖+1  is a control input for 𝜉𝑖  sub-
system. 

III. INCREMENTAL FORM OF SYSTEM DYNAMICS 

The concept of the Incremental Nonlinear Dynamics 
Inversion (INDI) utilizes an idea that the system dynamics (1) 
can be represented in an incremental form. This can be 
achieved via using sensor and actuator measurements for 
feedback and can significantly reduce dependency on the 
accurate knowledge of the plant dynamics. Expanding Eq. (1) 
into the Taylor series around (𝒙0, 𝜉10 , … , 𝜉ℎ0 , 𝒖0) 
corresponding to the previous time moment 𝑡0 the dynamics 
(1) can be expressed in the following form 𝒙̇ ≅ 𝒙̇𝟎 + 𝐴𝑥∆𝒙 + 𝐵𝜉1∆𝜉1 + ∆𝒙,𝜉𝑖̇ ≅ 𝜉𝑖̇0 + 𝐴𝜉𝑖Δ𝜉𝑖 + 𝐵𝜉𝑖+1Δ𝜉𝑖+1 + ∆𝝃𝒊 , 𝑖 = 2, … , ℎ − 1,𝜉ℎ̇ ≅ 𝜉ℎ̇0 + 𝐴𝜉ℎΔ𝜉ℎ + 𝐵𝑢∆𝒖 + ∆𝜉ℎ , . (2) 

where 𝐴𝑥 = 𝜕(𝑭(𝒙)+𝑮(𝒙)𝜉1)𝜕𝒙 |𝒘1=𝒘10 , 𝐵𝜉1 =  𝜕(𝑭(𝒙)+𝑮(𝒙)𝜉1)𝜕𝜉1 |𝒘1=𝒘10 , 𝐴𝜉𝑖 =  𝜕(𝑓𝑖(𝒘𝒊)+𝑔𝑖(𝒘𝑖)𝜉𝑖+1)𝜕𝜉𝑖 |𝒘𝑖=𝒘𝑖0  𝐵𝜉𝑖+1 =  𝜕(𝑓𝑖(𝒘𝒊)+𝑔𝑖(𝒘𝑖)𝜉𝑖+1)𝜕𝜉𝑖+1 |𝒘𝑖=𝒘𝑖0 , 𝐵𝑢 =  𝑓ℎ(𝒘ℎ)+𝑔ℎ(𝒘ℎ)𝑢𝜕𝑢 |𝒘ℎ=𝒘ℎ0 ,𝒖=𝒖𝟎   are partial derivatives with 

respect to the state vector parameters and the control input, ∆𝒙 = 𝒙 − 𝒙𝟎,  Δ𝜉𝑖 = 𝜉𝑖 − 𝜉𝑖0 , ∆𝒖 = 𝒖 − 𝒖𝟎  are increments 
in the state derivatives and the control input. This means an 
approximate linearization about the previously measured 
signals is performed incrementally. We also included in the 
dynamics equations terms ∆𝒙 , ∆𝝃𝒊 , which are uncertainties 
that might be due to failed estimation/measurement of state 
vector derivatives and/or faulty actuation. For a sufficiently 
high frequency rate such that 𝑭(𝒙) + 𝑮(𝒙)𝜉1,  𝑓𝑖(𝒘𝒊) +

𝑔𝑖(𝒘𝑖)𝜉𝑖+1  and 𝑓ℎ(𝒘ℎ) do not change significantly during 
sampling time, the following approximations are assumed ∆𝒙 ≪ ∆𝒙,̇  ∆𝒙 ≪ Δ𝜉𝑖 ;  Δ𝜉𝑖 ≪ Δ𝜉𝑖̇ , Δ𝜉𝑖 ≪ Δ𝜉𝑖+1 . Such 
assumptions become possible for a real plant because the 
control inputs 𝜉𝑖 , 𝒖 directly affect the state derivatives 𝒘̇𝑖 , 
whereas the increments in the state vector are only changed 
by integrating these state derivatives. In this case, the 
dynamics can be simplified as follows 𝒙̇ ≅ 𝒙̇𝟎 + 𝐵𝜉1∆𝜉1 + ∆𝒙,𝜉𝑖̇ ≅ 𝜉𝑖̇0 + 𝐵𝜉𝑖+1Δ𝜉𝑖+1 + ∆𝝃𝒊 , 𝑖 = 2, … , ℎ − 1,𝜉ℎ̇ ≅ 𝜉ℎ̇0 + 𝐵𝑢∆𝒖 + ∆𝜉ℎ. . (3) 

One of the main weak points of the sensor-based controller 
is that it requires precise measurements or estimations of the 
state vector derivatives and actuator position. Thus, the 
stability and performance of the system can be significantly 
harmed by some faulty conditions. To simulate effect of 
possible failure of state derivative measurement system or 
actuation system, we introduced the uncertainty terms ∆𝒙 , ∆𝝃𝒊 . GP estimation of control efficiency augmenting the 
Incremental Backstepping controller was shown to be 
efficient in tackling unknown nonlinear dynamics in actuation 
system [15]. In the current research, we assumed a more 
general uncertainty that might result not only from the failed 
actuator, but also from other sources, for example from failed 
on-board sensors. Even though a multivariate GP formulation 
exists [16] and can be used to approximate each ∆𝒙, ∆𝝃𝒊  by a 
single GP, such a formulation is very cumbersome and 
corresponds to a high computational cost, as opposed to 
utilizing multiple scalar GPs for individual ∆. 

IV. SPARSE ON-LINE GAUSSIAN PROCESSES 

GP utilizes Bayesian paradigm for the adaptive control by 
considering the identification as a statistical problem [10]. GP 
is non-parametric because the “parameters” to be identified 
are functions 𝑓𝑥  of an input variable 𝑥 ∈ 𝑅𝑑 . Function 𝑓 is 
characterised by its statistics, namely, by the mean 〈𝑓〉 and 
the covariance, which is also called the kernel 𝐾0(𝑥, 𝑥′) =𝐶𝑜𝑣(𝜍, 𝜍′)  [17]. The a priori assumption is that 𝑓  is a 
Gaussian process. Indeed, according to the Central Limit 
Theorem any sufficiently large set of random samples 𝑓𝑖 is 
considered to have normal distribution. Within the Bayesian 
framework, given a set of input-output observations (𝑥𝑛, 𝜍𝑛) (𝑛 = 1, … , 𝑁)  the posterior distribution of the 
process 𝑓𝑥 is computed via prior and the likelihood. 

A representation of posterior means 〈𝑓𝑥〉𝑡  =  〈𝑓(𝑥𝑡)〉𝑡 
and the posterior covariance 𝐾𝑡(𝑥, 𝑥′), where t denotes the 
number of data points, with a finite linear combinations of 
kernels 𝐾0(𝑥, 𝑥𝑖)  evaluated at the training inputs 𝑥𝑖  is 
proposed in [10]. Using sequential projections of the 
posterior process on the manifold of Gaussian processes, 
approximate recursions for the effective parameters of these 
representations can be obtained. To avoid enormous growth 
of the size of representations an elegant algorithm for 
extraction of a smaller subset of input data is proposed [10]. 
Such a subset allows an on-line sparse representation of the 
posterior process, which is used to predict the GP model. 



The posterior expectations within the Bayesian approach 
are conventionally expressed by high-dimensional integrals. 
Obviously, this is not applicable for on-line identification. 
However, it was shown in [10] that the posterior mean and 
the posterior covariance of the process arbitrary inputs can be 
expressed as a combination of a finite set of parameters which 
depend on the training data only. To make Bayesian 
interference trackable on-line, the posterior is projected to the 
closest Gaussian process by a single sequential sweep 
through the examples. 

The posterior GP approximation with its posterior means 
and the posterior covariance can be estimated using the initial 
kernel 𝐾0(𝑥, 𝑥′) and the likelihoods 〈𝑓𝑥〉𝑡 =  𝜶𝑡𝑇𝒌𝑥 𝐾𝑡(𝑥, 𝑥′) = 𝐾0(𝑥, 𝑥′) + 𝒌𝑥𝑻𝑪𝑡𝒌𝑥′  (4) 

where 𝒌𝑥  = [𝐾0(𝑥1, 𝑥), … , 𝐾0(𝑥𝑡 , 𝑥)]𝑇  is the kernel 
functions, 𝜶𝑡 = [𝛼𝑡(1), … , 𝛼𝑡(𝑡)]𝑇  is the coefficient vector, 𝑪𝑡 = {𝐶𝑡(𝑖𝑗)}𝑖,𝑗=1.,𝑡 . is the coefficient matrix. It should be 
noted that coefficients 𝛼𝑡(𝑖) and 𝐶𝑡(𝑖𝑗) do not depend on 𝑥 
and 𝑥′  [10]. For the regression problems, Radial Basis 
Functions (RBF) are quite popular choice for kernel functions 
(see, for example, [10], [14], [18], [19]) 𝐾(𝑥, 𝑥′) = 𝑒𝑥𝑝(‖𝑥−𝑥′‖22𝜎𝑥2 ). (5) 

A. Online Learning 

The recursive update of the GP parameters in Eq. (4) can 
be performed via the following equations: 𝜶𝑡+1 =  𝑇𝑡+1(𝜶𝑡) + 𝑞(𝑡+1)𝒔𝑡+1,𝑪𝑡 = 𝑈𝑡+1(𝑪𝑡) + 𝑟(𝑡+1)𝒔𝑡+1𝒔𝑡+1𝑇 ,𝒔𝑡+1 =  𝑇𝑡+1(𝑪𝑡𝒌𝑡+1 ) + 𝒆𝑡+1,  (6) 

where 𝒌𝑡+1 =  𝒌𝑥𝑡+1  and 𝒆𝑡+1  the 𝑡 + 1-th unit vector and 𝒔𝑡+1  is introduced for clarity. Operators 𝑇𝑡+1  and 𝑈𝑡+1 
extend a 𝑡 -dimensional vector and matrix to a 𝑡 + 1  – 
dimensional one by appending zeros at the end of the vector 
and to the last row and column of the matrix respectively.  

For the RBF kernel functions the 𝑞(𝑡+1) and 𝑟(𝑡+1) are as 
follows 𝑞(𝑡+1) = (ς − 𝜶𝑡𝑇𝒌𝑥)/𝜎𝑥2,𝑟(𝑡+1) =  −1/𝜎𝑥2,  (7) 

where 𝜎𝑥2 = 𝜎02 + 𝒌𝑥𝑻𝑪𝑡𝒌𝑥 + 𝑘𝑥∗ ,  𝑘𝑥∗ =  𝐾0(𝑥, 𝑥) . One can 
conclude that the dimension of the vector 𝜶 and the size of 
matrix 𝑪 increases with each data point added since 𝒆𝑡+1 is 
the 𝑡 + 1-th unit vector. 

The updates in the form of Eqs. (6) has a drawback since 
the number of parameters increases quadratically with the 
number of training examples. An effective way of controlling 
the number of parameters was proposed in Ref. [10], namely, 
sparseness within the GP framework was introduced. 
According to this approach, the update of the GP parameters 

is implemented without increase in the number of parameters 𝜶  and 𝑪  when, according a certain criterion, the error due to 
the approximation is not too large. 

If the new input 𝑥𝑡+1 is such that  

𝑲𝟎(𝑥, 𝑥𝑡+1) = ∑ 𝑒̂𝑡+1(𝑖)𝐾0(𝑥, 𝑥𝑖)𝑡
𝑖=1  (8) 

is true for all 𝑥, then the update can be achieved exactly. In 
this case, the updated process in the form Eq. (4) is 
represented by only the first t inputs, but with “renormalised” 
parameters 𝜶 ̂  and 𝑪 ̂  and the update (6) is implemented 
without extending the size of the parameters 𝜶  and 𝑪  and 𝒔𝑡+1 as follows: 𝜶̂𝑡+1 =  𝜶𝑡 + 𝑞(𝑡+1)𝒔̂𝑡+1,𝑪̂𝑡 = 𝑪𝑡 + 𝑟(𝑡+1)𝒔̂𝑡+1𝒔̂𝑡+1𝑇 ,𝒔̂𝑡+1 =  𝑪𝑡𝒌𝑡+1 + 𝒆̂𝑡+1,  (9) 

where 𝜶̂𝑡+1, 𝑪̂𝑡 and 𝒔̂𝑡+1 are t-th unit vectors. 
Obviously, for most kernels and inputs 𝑥𝑡+1 relationship 

(8) does not hold for all input x. However, the updates in the 
form of (9) might be used for approximations if 𝒆̂𝑡+1  is 
determined by minimising the error measure ‖𝐾0(∙, 𝑥𝑡+1) − ∑ 𝑒̂𝑡+1(𝑖)𝐾0(∙, 𝑥𝑖)𝒕𝒊=𝟏 ‖2, (10) 

where ‖∙‖ is a norm in a space of functions of inputs 𝑥. If the 
norm is defined via the inner product of the Reproducing 
Kernel Hilbert Space (RKHS) generated by the kernel 𝐾0 , 
then minimising (10), one can obtain the following 
expression  𝒆̂𝑡+1 =  𝑲𝑡−1𝒌𝑡+1, (11) 

where 𝑲𝑡 =  {𝐾0(𝑥𝑖 , 𝑥𝑗)}𝑖,𝑗=1,𝑡  is the Gram matrix. In this 

case, the equation 𝐾0(𝑥, 𝑥𝑡+1)  =  ∑ 𝑒̂𝑡+1(𝑖)𝐾0(∙, 𝑥𝑖)𝒕𝒊=𝟏 , (12) 

gives the orthogonal projection of the function 𝐾0(𝑥, 𝑥𝑡+1) 
on the linear span of the functions 𝐾0(𝑥, 𝑥𝑖). 

The update rule (9) is performed when a measure of the 
approximation error 𝛾𝑡+1 = 𝑘𝑡+1∗ − 𝒌𝑡+1𝑇 𝑲𝑡−1𝒌𝑡+1 (13) 

does not exceed some tolerance level 𝜖𝑡𝑜𝑙 > 0. Here, 𝑘𝑡+1∗ = 𝐾0(𝑥𝑡+1, 𝑥𝑡+1). The Eq. (13) has a geometrical interpretation, 
namely, it is a square norm of the “residual vector” from the 
projection in the RKHS. Alternatively, it measures the 
“novelty” of the current input. If 𝛾𝑡+1  is higher than a 
threshold value then the current input holds additional 
information as compared to the existing set of inputs, which is 
called “basis vector set” or BV set, and thus it should be added 
to this set. Proceeding sequentially, some of the inputs are left 
out and others are included in the BV set. However, because 



of the projection (12) the inputs left out from the BV set will 
still contribute to the final GP configuration – the one used for 
prediction and to measure the posterior uncertainties. But the 
latter inputs will not be stored and do not lead to an increase 
of the size of the parameter set [10]. 

B. Deleting a Basis Vector 

Recursive update of the GP parameters (6) is 
implemented while the BV set does not exceed the budget, 
namely, the maximum number of elements in the BV. Thus, 
a pruning procedure should be introduced. When a new 
example is estimated as novel, this procedure should get rid 
of one of the basis vectors and replace it by the new input 
vector. Two different strategies can be applied for selection 
of the vector from the BV set. The first strategy is supposed 
to add a novel input vector instead of the oldest basis vector 
[18]. The second strategy [10] proposes to replace the basis 
vector with the smallest error. The former might be preferred 
for a fast-varying process. However, here we will follow the 
later approach since it provides enhanced richness of the BV 
set.  

The removal procedure assumes that the respective BV 
was added and the previous update step (9) was implemented. 
In this case 𝜶𝑡+1 has 𝑡 + 1 elements, and 𝐶𝑡+1 and 𝑄𝑡+1  are 
the (𝑡 + 1) × (𝑡 + 1)  matrices. If we assume that the last 
added element should be deleted the decomposition of the 𝜶𝑡+1, 𝐶𝑡+1 and 𝑄𝑡+1  could be represented as follows: 

𝜶𝑡+1 = [𝜶𝒕𝒍𝛼𝑟] , 𝐶𝑡+1 = [ 𝐶𝑡𝑙 𝒄𝑟𝒄𝑟𝑇 𝑐𝑟] , 𝑄𝑡+1 = [ 𝑄𝑡𝑙 𝒒𝑟𝒒𝑟𝑇 𝑞𝑟 ], (14) 

where 𝐶𝑡𝑙  and 𝑄𝑡𝑙  are 𝑡 × 𝑡  sub-matrices extracted from the (𝑡 + 1) × (𝑡 + 1)  matrices 𝐶𝑡+1  and 𝑄𝑡+1 . For simplicity, 
this representation is shown for the case when the last 
element should be removed, however, similar partitioning 
could be done for a general case. Updating equations for the 
element deleting case are the following: 

𝜶̂ = 𝜶𝒕𝒍 − 𝛼𝑟 𝒒𝑟𝑞𝑟 ,
𝐶̂ = 𝐶𝑡𝑙 + 𝑐𝑟 𝒒𝑟𝒒𝑟𝑇𝑞𝑟2𝑄 ̂ = 𝑄𝑡𝑙 − 𝒒𝑟𝒒𝑟𝑇𝑞𝑟 ,

− 1𝑞𝑟 [𝒒𝑟𝒄𝑟𝑇 + 𝒄𝑟𝒒𝑟𝑇] , (15) 

where 𝜶̂, 𝐶̂ and 𝑄 ̂ are the parameters after the deletion of the 
last basis vector and 𝜶𝒕𝒍 , 𝐶𝑡𝑙 , 𝑄𝑡𝑙 , 𝛼𝑟 , 𝒄𝑟 , 𝒒𝑟 , 𝑐𝑟  and 𝑞𝑟  are 
taken from GP parameters before deletion.  

To decide the element of the BV set to be deleted a score 
measure for each element i is calculated 𝜀𝑖 = |𝛼𝑡+1(𝑖)|𝑄𝑡+1(𝑖,𝑖). (16) 

The basis vector with minimal score (16) is deleted. This 
method provides deleting of a basis vector from the BV set 
with minimal loss of information. Finally, the budgeted 
sparse GP algorithm is summarized by Algorithm 1. 

Algorithm 1 Budgeted sparse GP algorithm  

0: Initialize the BV set with an empty set, maximum 
number of the set elements with d, a tolerance with 𝜖𝑡𝑜𝑙, 𝛂, 𝐂, 𝐐 with empty values. 

For each new measurement (𝑥𝑡+1, 𝜍𝑡+1) iterate 

 
1. Compute 𝒒𝑡+1, 𝒓𝑡+1, 𝑘𝑡+1∗ , 𝒌𝑡+1, 𝒆̂𝑡+1  and 𝛾𝑡+1. 
2. If 𝛾𝑡+1 < 𝜖𝑡𝑜𝑙  then 
Perform a reduced update using (9). 
3. else  
Perform an update using (6). Add the current input to 

the BV set, and compute the inversed Gram matrix. 
4. If | BV |>d then 
Compute scores for the BV elements via (16) find the 

vector corresponding to the lowest score, and delete it 
using (15). 

 

V. LONGITUDINAL FLIGHT CONTROL 

A. Flight Dynamics Model 

In this section, performance of the proposed approach is 
considered with a tracking control of longitudinal missile 
model from [20]. The second-order nonlinear model 
represents longitudinal dynamics of a vehicle traveling at an 
altitude of approximately 6000 meters, with aerodynamic 
coefficients represented as third order polynomials in angle 
of attack α and Mach number M. The nonlinear equations of 
motion in the pitch plane are given by 

𝑥̇1 = 𝑥2 + 𝑓1(𝑥1) + 𝑔1𝑢 𝑥̇2 =  𝑓2(𝑥1) + 𝑔2𝑢 ,  (17) 

where 𝑥1 = 𝛼, 𝑥2 = 𝑞, 𝑔1 = 𝐶1𝑏𝑧 and 𝑔2 = 𝐶2𝑏𝑚 and 

𝑓1(𝑥1) =  𝐶1[𝜑𝑧1(𝑥1) + 𝜑𝑧2(𝑥1)𝑀],   𝐶1 = 𝑞̅𝑆𝑚𝑉 ,𝑓2(𝑥1) =  𝐶2[𝜑𝑚1(𝑥1) + 𝜑𝑚2(𝑥1)𝑀],   𝐶2 = 𝑞̅𝑆𝑑𝐼𝑦𝑦 . (18) 

Here   𝜑𝑧1(𝑥1) =  −288.7𝑥13 + 50.32𝑥1|𝑥1| − 23.89𝑥1𝜑𝑧2(𝑥1) = −13.53𝑥1|𝑥1| + 4.185𝑥1,𝜑𝑚1(𝑥1) = 303.1𝑥13 − 246.3𝑥1|𝑥1| − 37.56𝑥1,𝜑𝑚2(𝑥1) = 71.51𝑥1|𝑥1| + 10.01𝑥1.  (19) 

The model is valid for −10° ≤ 𝛼 ≤ 10° and 1.8 ≤ 𝛼 ≤ 2.6.  

Details of the aerodynamic coefficients can be found in 
[20]. 



B. INDI Longitudinal Controller 

INDI longitudinal controller that tracks a smooth 
command reference y𝑟 with the pitch rate 𝑥2 was developed 
in [21] and used here as a baseline controller. Details of the 
controller design can be found in the original paper. During 
the design, it was assumed that the aerodynamic force and 
moment functions are accurately known and the Mach number 
M is treated as a parameter available for measurement. 
Moreover, for this second-order system in non-lower 
triangular form due to 𝑔1𝑢 and 𝑓2(𝑥1), pitch rate control using 
INDI is possible due to the timescale separation principle [4]. 

The rate tracking error is introduced as follows  𝑧2 = 𝑥2 − 𝑥2𝑟𝑒𝑓 . (20) 

The 𝑧2-dynamics satisfies the following error 𝑧̇2 = 𝑥̇2 − 𝑥̇2𝑟𝑒𝑓, (21) 

for which the following exponentially stable desired error 
dynamics is introduced 

𝑧̇2 + 𝑘𝑃2𝑧2 = 0, 𝑘𝑃2=50 rad/s. (22) 

INDI was derived from the following approximate dynamics 
of the pitch rate   𝑥̇2 ≅ 𝑥̇20 + 𝑔̅𝑢, (23) 

where 𝑔̅2 is the estimate of 𝑔2. The control law in this case 
is obtained as  

𝑢 ≅ 𝑢0 + 𝑔̅−1(𝜈 − 𝑥̇20), (24) 

where  

𝜈 = −𝑘𝑃2𝑧2 + 𝑥̇2𝑟𝑒𝑓. (25) 

Should be noted here that the accurate knowledge of 𝑓2 were 
replaced with measurements (or estimates) as 𝑓2 ≅ 𝑥̇20 , 
which reduces dependence of the control law on the model. 

C. GP Adaptation 

As was mentioned before, incremental-type controller is 
dependent on the quality of the measurement (estimation) of 
state derivatives, furthermore, the incremental-type 
controller can have degraded performance and even lost the 
system stability in case of presence on unknown 
nonlinearities, e.g. transport delay or unknown actuator 
dynamics [15]. To improve robustness of the controller to 
uncertainties, we introduced GP-based adaptation and 
modified the controller in the following form  𝑢 ≅ 𝑢0 + 𝑔̅−1(𝜈 − 𝑥̇20 + ∆̂𝐺𝑃), (26) 

where ∆̂𝐺𝑃   is a GP estimation of uncertainties. 𝜍 = 𝛥𝑥̇20 −𝑔̅𝛥𝑢. The maximum number 𝑑  of the BV set was 6, 𝜖𝑡𝑜𝑙 =1𝑒 − 5 , 𝜎02 = 1.5 . To obtain the appropriate overlapping 
between neighbouring kernels the RBF width is specified as 
follows 𝜎 = 102(√𝑑−1).  

 
Fig.1. Two failures and loss of effectiveness 



VI. SIMULATION RESULTS 

In the current section an ability of the proposed controller is 
evaluated in a case of presence of unknown nonlinear 
dynamics in the actuator 𝐹(𝑠) = (𝑠 + 0.25)−1 and a sensor 
noise, namely, zero-mean Gaussian white-noise with 
standard deviation 1𝑒−6 . The proposed INDI with GP 
adaptation is compared with the baseline GP controller. The 
results are presented in Fig.1.  

From the figure one could see that the INDI has instability, 
however the proposed adaptation cancels out the existing 
uncertainty and follows reference signal. It should be noted, 
as opposite to [11] the GP performs identification of 
unknown function online. Furthermore, these approach can 
tackle a wide class of uncertainties, not only ones presented 
in the actuation as in [15]. 

VII. CONCLUSIONS 

Sensor-based incremental control is recently developed 
technique with a reduced dependency on the on-board model. 
This approach uses estimates of the state derivatives and the 
current actuator states to linearize the system dynamics with 
respect to the previous time moment. Some previous 
researches suggest that incremental controllers are robust to 
actuator failures, when the system remains input affine. 
However, this type of controllers is sensitive to the quality of 
the measured or estimated state vector derivative. However, 
a failure of measurement system might cause a noise growth 
and thus drastically effect the stability of the system. 
Intensive filtering of a noisy signal also can produce 
undesired signal delays and thus cause the system instability.  

In this work, we utilised GP framework to assist INDI in 
tackling uncertainties. GP provide a flexible nonparametric 
data-driven modelling framework that incorporates an 
automatic trade-off between data fitting and regularization in 
noisy conditions. The other advantage is that GP enables 
long-term learning. To make Bayesian interference trackable 
on-line, the posterior is projected to the closest Gaussian 
process by a single sequential sweep through the examples. 
Within the approach, the number of basis vectors is limited 
with predefined “budget” to make the algorithm 
computationally efficient. The input vectors providing the 
maximum information richness to the basis set, namely, 
having maximum scores, are selected as the basis vectors, 
while basis vectors with lowest scores are deleted from the 
set. Budgeted sparse approximation of GP allowed to train 
the model online with a low-computational costs, which is 
extremely important for real-world applications. Our 
simulation results revealed improved tracking performance 
and stability of the INDI with GP-based adaptation. Adaptive 
loop performs not only a capturing of uncertainty but also a 
noise signal filtering. We showed that a combination of 
multiple failures of sensors and actuators, the system 
dynamics might loss its input affine property. As a result, the 
stability of the closed-loop system with pure INDI cannot be 
guaranteed anymore. The proposed GP-adaptive 
augmentation compensates the unmodelled dynamics. 
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