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ABSTRACT 43 

Food quality has recently received considerable attention from governments, researchers, and 44 

consumers due to the increasing demand for healthier and more nutritious food products. 45 

Traditionally, food quality is determined using a range of destructive and time-consuming 46 

approaches with modest analytical performance, underscoring the urgent need to develop novel 47 

analytical techniques. The Fourth Industrial Revolution (called Industry 4.0) is progressing 48 

exponentially, driven by the advent of a range of digital technologies and other innovative 49 

technological advances. “Food Quality 4.0” is a new concept referring to the use of Industry 4.0 50 

technologies in food analysis to achieve rapid, reliable, and objective assessment of food quality. 51 

In this review, we will first discuss the fundamentals and principles of Food Industry 4.0 52 

technologies and their connections with the Food Quality 4.0 concept. Then, the most common 53 

techniques used to determine food quality will briefly be reviewed before highlighting the 54 

advancements made in analytical techniques to assess food quality in the era of Industry 4.0.  55 

Food Quality 4.0 is characterized by growing digitalization and automation of food analysis using 56 

the most advanced technologies in the food industry. Key aspects of Food Quality 4.0, including, 57 

among others, non-destructive fingerprinting techniques, omics technologies and bioinformatics 58 

tools, Artificial Intelligence and Big Data, have great potential to revolutionize food quality. 59 

Although most of these technologies are still under development, it is anticipated that future 60 

research will overcome current limitations for large-scale applications. 61 

Keywords: Artificial Intelligence, automation, Big Data, digitalization, food, Industry 4.0, omics, 62 

quality, smart sensors, spectroscopy  63 
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1. Introduction 64 

The modern food industry is a very competitive and dynamically developing environment, with 65 

increasing consumers’ demands towards better food quality, safety, and shelf life, more product 66 

diversity and adoption of green/eco-friendly/sustainable production. Nevertheless, traditional 67 

processing technologies may affect sensory quality characteristics such as appearance, color, taste, 68 

and texture due to structural and conformational changes (e.g., lipid oxidation and protein 69 

denaturation) in food products. Therefore, to meet the constantly growing consumer demands for 70 

food products of high quality, food researchers and the food industry should constantly seek more 71 

advanced solutions and technologies, including innovative processing and analytical techniques 72 

(Echegary et al., 2022; García-Oliveira et al., 2020; Putnik et al., 2019). 73 

Food quality refers to a range of attributes that are mainly related to sensory traits, shelf life, and 74 

freshness of food, but other properties associated with microbiological and technological 75 

parameters are also of utmost importance. During food processing and storage by using traditional 76 

and advanced non-thermal technologies, food’s physicochemical and sensory quality is affected to 77 

some degree due to mechanical, electrical, or other physical damage to the microstructures of the 78 

cell wall and cell membrane. Currently, the assessment of food quality has been focused on 79 

conventional physicochemical methods, biological indicators, and sensory analysis, which are 80 

destructive, time-consuming, and laborious (Ren et al., 2022). These techniques are considered 81 

targeted methods and are often used to measure one specific aspect or a single well-described 82 

attribute of a given food (ElMasry & Nakauchi, 2016). However, non-targeted methods that 83 

simultaneously enable the acquisition of information about several parameters are more appropriate 84 

for measuring food quality. A remarkable innovation has recently been seen in the application and 85 

use of non-targeted detection methods to determine and monitor food quality (Hassoun, Siddiqui, 86 

et al., 2022; Özdoğan et al., 2021). Most non-targeted methods are well adopted with the principle 87 
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of non-destructive non-contact screening. The need for such techniques has been receiving even 88 

more interest over the past two years due to the outbreak of the ongoing COVID-19 pandemic and 89 

the increasing demand for less human contact with food (Khaled et al., 2021). Green foodomics 90 

and bioinformatics technologies, including metabolomics (e.g., chromatography–mass 91 

spectrometry‐based metabolomics, and NMR-based metabolomics), have gained much attention 92 

(Balkir et al., 2021). Besides, image and spectroscopic techniques are becoming increasingly 93 

interesting alternatives to traditional methods, enabling rapid online measurements (Mahanti et al., 94 

2022; McVey et al., 2021). These advanced analytical techniques have recently been empowered 95 

by the advent of the Fourth Industrial Revolution (Industry 4.0) technologies. 96 

Industry 4.0 has emerged due to the fusion of multidisciplinary fields, particularly the digital, 97 

biological, and physical domains (Maynard, 2015). In the food industry, the ongoing Industry 4.0 98 

era has been characterized by high interconnectivity and growing use of novel technologies, 99 

especially digital innovations, e.g., Artificial Intelligence (AI), cloud computing and analytics, and 100 

blockchain, and other emerging techniques, such as the Internet of Things (IoT), smart sensors, 101 

autonomous robotics, and 3D food printing (Bouzembrak et al., 2019; Chowdhury et al., 2022; 102 

Galvan et al., 2021; Hassoun, Aït-kaddour, et al., 2022; Hassoun, Siddiqui, et al., 2022). These 103 

advanced technologies have accelerated digitalization and automation in almost all sectors, 104 

including the food industry, enhancing rapid, online and in-site monitoring and intelligent food 105 

quality control. According to the Scopus database, the number of publications and citations related 106 

to digitalization or automation in food quality has increased tremendously in the last decade, and 107 

it is still permanently increasing (Fig. 1). 108 

<Fig. 1 near here> 109 
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Quality 4.0 concept has been used in many fields, such as development and management, 110 

organizational readiness, businesses, and leadership (Antony et al., 2021; Javaid et al., 2021; Sader 111 

et al., 2021). However, there is a gap in literature, as up to date, no application has been reported 112 

in the food industry or food-related fields.This work will introduce, for the first time,the “Food 113 

Quality 4.0” concept referring to the use of Industry 4.0 technologies (e.g., AI, Big Data, smart 114 

sensors, etc.) to determine food quality in the most efficient, rapid, and reliable manner. This 115 

literature overview will show through specific examples how the application of the Food Quality 116 

4.0 concept will contribute to ensuring high food quality, saving time and labor, and increasing the 117 

efficiency of the food industry.  118 

The main motivation of the study is to encourage more automation and digitalization in the food 119 

industry. More concretely, this review paper aims to i) adopt the concept of Quality 4.0 in the food 120 

industry; ii) define the main enablers of Food Quality 4.0; iii) promote wider applications of 121 

Industry 4.0 technologies in the food industry; and iv) help to automate and digitalize quality 122 

analysis in the food industry.  123 

The organization of this manuscript is as follows: After the introduction, Section 2 gives a general 124 

overview of Industry 4.0 technologies and introduces the Food Quality 4.0 concept. Section 3 125 

presents the most common traditional methods as well as emerging techniques and approaches used 126 

for the determination of food quality. Section 4 presents a short discussion, highlighting the main 127 

theoretical and practical implications of Food Quality 4.0 and its relevance to policy makers. The 128 

main conclusions, limitations, and future perspectives are briefly presented in Section 5. 129 

This literature review was conducted with a methodology that focused on scientific articles 130 

authored in the English language, published in peer-reviewed journals in the last ten years. Data 131 

were obtained from Scopus with the following search criteria: Title, Abstract, Keyword; Food 132 

Quality AND Digitalization OR Automation. 133 
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 134 

2. Food Industry 4.0 and “Food Quality 4.0” concept 135 

Industry 4.0 is gaining momentum and supporting businesses to optimize their operations by 136 

increasing automation and improving communication. It integrates recent developments in 137 

information technology, such as robotics and automation, Big Data, simulation, system integration, 138 

IoT, cybersecurity, the cloud, additive manufacturing, and augmented reality (Rüßmann, 2015), as 139 

shown in Fig. 2. In addition, Industry 4.0 can help increase the efficiency of operations by 140 

supporting the implementation of lean principles and methods, such as Just-in-time and Jidoka 141 

(Rosin et al., 2019).  142 

<Fig. 2 near here> 143 

Industry 4.0 principles are related to the three pillars of sustainability (i.e., environmental, 144 

economic, and social domains). Ghobakhloo, (2020) analyzed such relationships and concluded 145 

that Industry 4.0 is more connected to the economic domain of sustainability, mainly through 146 

production efficiency and business model innovation. However, such principles can also pave the 147 

way for improvements in the environmental and social domains. Bai et al.,(2020) ranked Industry 148 

4.0 technologies based on their impact on sustainability performance and placed mobile 149 

technologies first overall, while simulation ranked first in the food and beverage sector. Such 150 

technologies contribute unequally to the economic, environmental, and social dimensions of 151 

sustainability.  152 

Although the implementation of Industry 4.0 technologies is generally expected to generate 153 

industrial benefits, some of these technologies are still at a very early stage of adoption. As a result, 154 

they do not offer clear benefits yet, especially in emerging economies (Dalenogare et al., 2018). In 155 

this context, Raj et al.,(2020) analyzed the barriers to adopting Industry 4.0 technologies in the 156 
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manufacturing sector of developed and developing economies. They found that, although the lack 157 

of a digital strategy alongside resource scarcity is the most significant barrier in both types of 158 

economies, important differences exist between developed and developing countries. In developing 159 

countries, improvements in standards and government regulation could facilitate the adoption of 160 

Industry 4.0 technologies, whereas the focus should be on technological infrastructure in developed 161 

countries. An important challenge to implementing Industry 4.0 more widely is the lack of expertise 162 

and thus the need for a skilled workforce to operate such new systems (Sony & Naik, 2020). 163 

The adoption of Industry 4.0 technologies varies significantly among European countries. The 164 

Netherlands and Finland are leading the implementation thanks to their Industry 4.0 infrastructure 165 

and Big Data maturity, while Hungary, Bulgaria, and Poland rank last (Castelo-Branco et al., 2019). 166 

Sony & Naik, (2020) proposed factors from the following themes to assess Industry 4.0 readiness 167 

for businesses (Fig. 3). 168 

<Fig. 3 near here> 169 

Macroeconomic factors also influence the adoption of Industry 4.0, such as the structure of the 170 

industrial sector, its role within each country’s economy and differences in business models or 171 

management styles (Castelo-Branco et al., 2019). Frank et al.,(2019) proposed a framework to 172 

support the implementation of Industry 4.0 technologies in manufacturing businesses. 173 

Food businesses are slowly embracing Industry 4.0 technologies, with sensors, simulations, AI-174 

based autonomous systems, additive manufacturing, cloud systems, and blockchain projected to 175 

have the greatest impact in the sector. There are several examples of the application of such 176 

technologies in various food-manufacturing applications, such as logistics (Jagtap, Bader, et al., 177 

2021); reduction of waste, energy and water use (Jagtap, Garcia-Garcia, et al., 2021); data 178 

collection and monitoring (Konur et al., 2021a); and quality control (Garcia-Garcia et al., 2021). 179 
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Currently, Quality 4.0 is integrated with traditional quality practices rather than substituting them 180 

(Sader et al., 2021). According to interviews with senior management professionals, the most 181 

critical technologies for driving Quality 4.0 are predictive analytics, sensors and tracking, and 182 

electronic feedback loops (Antony et al., 2021). Nevertheless, it is often difficult to transform 183 

traditional quality-control processes into Quality 4.0 and obtain value from such changes. 184 

Therefore, Escobar et al.,(2021) presented a problem-solving strategy based on seven steps 185 

(namely, identify, accessorize, discover, learn, predict, redesign, and relearn) to increase the 186 

likelihood of success in implementing Quality 4.0. 187 

Quality control is key in the food sector, as it assures food products are safe for consumers and 188 

have the required organoleptic properties. Quality 4.0 allows assessing the quality of food products 189 

more accurately and in real-time (Ada et al., 2021), thus facilitating traceability (Khan et al., 2020), 190 

which is a critical step toward more transparency in the food supply chains. There already exist 191 

examples of the application of Quality 4.0 to optimize the quality-control process in food 192 

businesses. Bhatia & Ahanger, (2021) presented an IoT-based framework to assess food-quality 193 

parameters in restaurants and food outlets. Rejeb et al., (2020) analyzed the implementation of 194 

blockchain technology for different applications, including quality assurance in the food supply 195 

chain. Ping et al., (2018) reviewed the application of IoT technology in monitoring agricultural 196 

product’s quality and safety.  197 

Furthermore, due to the high perishability of food products, smart packaging plays an important 198 

role in food quality to extend the shelf life, improve quality, safety, and provide information about 199 

food products. Technologies integrated into smart packaging include nano sensors, biosensors, and 200 

gas sensors to measure the temperature and freshness of food products (Ben-Daya et al., 2020). 201 

Implementation of Industry 4.0 technologies could create huge time and cost savings compared to 202 

traditional analytical approaches. Although initial capital investment associated with innovative 203 
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technologies could be large, higher product quality, fewer errors, and reduced machine 204 

downtimes,and other desirable features associated with smart technologies make the move from 205 

traditional to Quality 4.0 system financially viable. For example, the application of blockchain will 206 

not only solve problems of food safety and quality and improve transparency but also reduce costs 207 

along the different stages and operations of food supply chain, such as transaction, quality, and 208 

time costs, among other costs (Qian et al., 2022; Xu et al., 2020). Beside economic costs, a wider 209 

implementation of digitalization, AI, and other Industry 4.0 elements has high potential to reduce 210 

environmental costs by supporting the transition towards more sustainable food systems (Marvin 211 

et al., 2022). Despite these advances, most of the innovative technologies are still under 212 

development, and further research and testing is still required to accelerate the transitionfrom 213 

laboratory to industrial-scale applications. 214 

In conclusion, Industry 4.0 technologies show great potential for food businesses. Industry 4.0 may 215 

optimize the quality-control process, key in the food sector, by increasing automation and 216 

digitalization, and improving communication. The rest of the article reviews traditional methods 217 

used to determine food quality and emerging techniques within Quality 4.0 that are expected to 218 

contribute to the development of quality control in the food sector in the coming years. 219 

 220 

3. Findings 221 

3.1. Traditional methods used for the determination of food quality 222 

Quality is defined through various characteristics, including nutritional value, physicochemical 223 

properties, safety, sensory attributes, and shelf-life stability. Several standard and reference 224 

methods have been used over the years to determine the quality and authenticity of food products, 225 

mainly based on intrinsic attribute measurements (Bernués et al., 2003; Kutsanedzie et al., 2019). 226 

Among them, physicochemical determinations (color, texture, water holding capacity) that are 227 
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related to product technological properties, sensory attributes (flavor, juiciness, tenderness) linked 228 

to consumer acceptability, safety aspects including the presence of pathogenic and foodborne 229 

microorganisms or toxic substances, and nutritional/health concerns (proximate composition, fatty 230 

acid and amino acid composition) are included among these analytics (Lorenzo et al., 2022). 231 

The most commonly used methods are supported by international organizations such as the AOAC 232 

International, International Organization for Standardization (ISO), or the American Oil Chemists 233 

Society (AOCS) (AOAC, 2019; ISO, 1981). The standards are intended to establish a quality 234 

system, maintain product integrity, and satisfy customers. Others, such as Codex Alimentarius also 235 

aim to protect consumers’ health and guarantee and facilitate international food trade. In addition, 236 

these methods allow the comparison of results, ensuring that the results are of quality. 237 

There is no single standard method for proximate composition determination since the selection of 238 

the method depends on the type of sample. This is clearly reflected in the case of lipids, where the 239 

total content could be quantified by organic solvent extraction methods such as Soxhlet or Folch, 240 

among others. In the case of protein, Kjeldahl and Dumas methods based on nitrogen measurements 241 

are commonly used. In the case of total carbohydrate analysis, colorimetric and reducing sugar 242 

methods are applied, while gravimetric procedures are the ones selected in the case of moisture and 243 

ash. Moreover, spectroscopic methods are based on the absorption or emission of radiation in UV-244 

visible, and infrared frequency ranges are among the common instruments in many food 245 

laboratories. In fact, these analyses can also be carried out using near-infrared reflectance 246 

spectroscopy (NIRS), which allowsthe detection of product adulterations, predicting fat, protein 247 

and water content quickly. Still, it has some limitations regarding instrument calibration and spectra 248 

interpretation (Troy et al., 2016). In addition, the high absorbance of the NIRS signal by water 249 

could disturb the results in products with high moisture content (Liu et al., 2015). In elemental 250 

analysis, atomic emission spectroscopy (AAS), flame atomic emission spectroscopy (FAAS), 251 
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inductively coupled plasma-atomic emission spectrometry (ICP-OES) are among the 252 

recommended techniques. In contrast, various chromatographic and mass spectrometry techniques 253 

are used to identify these compounds in a more specific way (Di Stefano et al., 2012). Fig. 4 shows 254 

the traditional methods vs. emerging techniques for food quality determination. 255 

<Fig. 4 near here> 256 

Regarding physicochemical parameters, color is one of the most important parameters that has a 257 

huge impact on consumer acceptance, and is especially important in products, such as meat and 258 

meat products, oils, or honey, among others (Brühl & Unbehend, 2021; Kuś et al., 2018; 259 

Milovanovic et al., 2020; Tomasevic et al., 2019). It can be evaluated using visual or instrumental 260 

methods. In the first case, color pattern cards or photographic scales are used. However, visual 261 

evaluation is considered a subjective measure, since it is dependent on several factors, such as 262 

testing conditions, lighting, color tones, training of assessors, and difficulty in finding matches 263 

between standards and tested samples. In the case of instrumental measurements, the evaluation 264 

based on the CIELAB system allows determining the exact color of the product in a three-265 

dimensional color sphere through the determination of three coordinates defined as L* 266 

(luminosity), a* (redness-greenness), and b* (yellow-blueness). Moreover, other parameters such 267 

as chroma (C*) and hue (h*) can also be obtained from a* and b*.  268 

Food texture is another determining characteristic in food products since it conditions food satiety, 269 

the organoleptic experience of the consumer, and the overall acceptance of food products 270 

(Guimarães et al., 2020). Sensory, instrumental (known as objective, physical or mechanical) and 271 

indirect methods (collagen content, dry matter, among others) can be used to evaluate texture. The 272 

main textural parameters evaluated in instrumental methods are hardness and cohesiveness, 273 

although springiness, gumminess, and chewiness are also evaluated. These parameters are selected 274 

depending on the product to be analyzed. The most common way to determine these parameters is 275 
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mechanical tests, such as the Warner-Bratzler test (WB) and texture profile analysis (TPA). 276 

However, other parameters are more difficult to determine through instrumental methods. It is the 277 

case of adhesiveness, creaminess, tenderness, and juiciness since these characteristics are more 278 

linked to oral processing (Pascua et al., 2013). Therefore, they are usually evaluated through 279 

sensory assessment. Consequently, many industries use both methodologies since they are 280 

complementary and provide more reliable results. Along with these, the rheological properties of 281 

foods are also determined to determine how the shape of the food changes in response to some 282 

applied force. Other physicochemical parameters such as acidity or electrical conductivity could 283 

complement the previous determinations, and in some cases, they would offer important data about 284 

their quality. 285 

In the case of microbiological analysis, there are several methodologies to determine the viability 286 

of a product and the identification of microbial contaminants. However, cultivation continues to be 287 

the most widely used method. It is the case of Total Viable Counts (TVC) determination, 288 

considered as a standard tool (Hassoun, Gudjónsdóttir, et al., 2020). In addition to this, enzyme-289 

linked immune sorbent assay (ELISA) and polymerase chain reaction (PCR) are commonly used. 290 

Other parameters can also be used as freshness indicators, along with these determinations. This is 291 

the case of peroxide values (PV) and thiobarbituric acid reactive substances (TBARS), or protein 292 

carbonyls and total volatile basic nitrogen (TVB-N), which are related to the stability of, 293 

respectively, lipids and proteins to oxidation (Bekhit et al., 2021; Domínguez et al., 2019; Rubén 294 

Domínguez et al., 2022). 295 

The value of these analytics is unquestionable, but the results of these techniques must be correlated 296 

with sensory analysis since the results obtained in the sensory characterization of a product are of 297 

vital importance both in the development of new products and in their acceptance by the final 298 

consumer (Ruiz-Capillas et al., 2021). Descriptive sensory analysis is the most usedmethod in 299 
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sensory characterization. The attributes are evaluated by a panel of highly trained panelists, making 300 

the results obtained more objective and reliable. This, together with the fact that it is a flexible 301 

method, has continued to be used over time (Purriños et al., 2022). The selected attributes usually 302 

offer a large amount of information about the product whose intensity is evaluated within a 303 

structured scale (Pateiro et al., 2022). 304 

In summary, there are many methods conventionally used to determine food quality. However, it 305 

is important to note that although they have good precision and reliability, in many cases, they 306 

require several preliminary steps, are destructive, and are time-consuming (Hassoun et al., 2019), 307 

highlighting the urgent need for more innovative and advanced analytical approaches. 308 

 309 

3.2. Emerging techniques and approaches 310 

3.2.1. Non-destructive fingerprinting techniques 311 

As discussed before, conventional or traditional methods used to determine food quality have 312 

several drawbacks, e.g., laborious and destructive nature, high cost, long process time, a limited 313 

number of analytes, and low performance (El-Mesery et al., 2019; Khaled et al., 2021; Sarkar et 314 

al., 2022; Valdés et al., 2021). These drawbacks can be faced by the Industry 4.0 vision or Quality 315 

4.0 principles. Non-destructive, non-targeted fingerprinting methods (e.g., spectroscopic and 316 

imaging techniques) can be more suitable for analyzing complex materials such as food products, 317 

achieving rapid and cost-effective outcomes. Moreover, the need for such non-destructive methods 318 

has become more evident in the last two years due to the outbreak of COVID-19 and the trend of 319 

increased adoption of automation and AI in the food industry (Khaled et al., 2021). 320 

This section will discuss a selection of the most common non-destructive fingerprinting techniques.  321 

Spectroscopic techniques are based on the interaction between electromagnetic radiation and 322 

matter at various wavelengths. Spectroscopic-based techniques can provide reliable information 323 
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about physical properties and the chemical composition of samples quickly and inexpensively, in 324 

line with the core principles of Quality 4.0. A range of spectroscopic techniques, including, among 325 

others, near-infrared (NIR) and mid-infrared (MIR) spectroscopy (Munawar et al., 2022; Pasquini, 326 

2018; Su & Sun, 2019), fluorescence (Hassoun, 2021; Hassoun et al., 2019), and Raman 327 

spectroscopy (Jiang et al., 2021; Lintvedt et al., 2022), has recently been gaining special attention 328 

due to their desirable features such as high sensitivity and specificity and the possibility of being 329 

applied on line during food production or processing for real-time data acquisition of intact 330 

samples. 331 

Spectroscopic methods have been widely used in many applications, ranging from detection of 332 

adulteration and fraud (Hassoun, Måge, et al., 2020; Hassoun, Shumilina, et al., 2020; Rifna et al., 333 

2022; Silva et al., 2022; Zaukuu et al., 2022), determination of the chemical composition or specific 334 

constituents (Xu et al., 2022), monitoring processing conditions, such as thermal and non-thermal 335 

treatments (Abderrahmane Aït-Kaddour et al., 2021; Hassoun, Ojha, et al., 2020; Hassoun et al., 336 

2021; Hassoun, Heia, et al., 2020), to the determination of food quality and safety (Fan et al., 2022; 337 

Hassoun & Karoui, 2017; Wang et al., 2018; Wu et al., 2021). 338 

In recent years, tremendous progress has been made in miniaturized instrumentation, compact 339 

spectral sensors and handheld systems (Giussani et al., 2022; Müller-Maatsch et al., 2021; Müller-340 

Maatsch & van Ruth, 2021; Rodriguez-Saona et al., 2020) has been made, driven by Industry 4.0 341 

innovations and recent advancements. This trend has especially concerned NIR spectrometers that 342 

have become available at a much smaller size and lower cost than traditional NIR benchtop 343 

laboratory instruments (Beć et al., 2021; Giussani et al., 2022). Furthermore, the integration of AI, 344 

deep learning, smart sensors, and other Industry 4.0 elements into spectroscopic systems has 345 

enhanced the analytical performance of the proposed analysis systems. For example, in a recent 346 
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study, a portable system integrating NIR sensor, load sensor, and deep learning methods was 347 

proposed for mixture powdery food evaluation (Zhou et al., 2022).  348 

One of the most significant communication protocols for Industry 4.0 and IoT is Open Platform 349 

Communications Unified Architecture (OPC-UA). OPC standardizes access to machines, devices, 350 

and other systems in the industrial environment, allowing for identical and manufacturer-agnostic 351 

data sharing (Ioana & Korodi, 2021). For example, a miniaturized spectrometer technology, 352 

combined with AI was developed (called SmartSpectrometer) and used to predict sugar and acid 353 

in grapes in the field. The open communication interface OPC-UA can be used to connect the 354 

SmartSpectrometer modules on one side by ensuring interoperable data and information sharing 355 

inside and on the other side between different Industry 4.0 automation levels. Production processes 356 

can be optimized, quality can be improved, and resources can be saved by collecting and analyzing 357 

spectroscopic measurement data and exchanging production-relevant information (Krause et al., 358 

2021). 359 

Hyperspectral imaging (HSI) combines traditional spectroscopy and imaging and simultaneously 360 

obtains spectral and spatial information. HSI has been most commonly used in Vis/NIR, 361 

fluorescence, and Raman (Özdoğan et al., 2021; Qin et al., 2020). Three different sensing modes, 362 

namely interactance, reflectance, and transmittance, are widely applied for various applications 363 

(Hassoun, Heia, et al., 2020; Khaled et al., 2021; Ma et al., 2019). The technique can also be used 364 

with microscopy systems (Pu et al., 2019). Data created by HSI has a three-dimensional structure; 365 

x, y, λ (called hypercube), with two spatial dimensions (x rows, y columns) and one spectral 366 

dimension (a range of wavelengths).A detailed overview of HSI principles, different configurations 367 

and settings, and various hardware and software can be found in other review papers (Caporaso et 368 

al., 2018; Fu & Chen, 2019; Ma et al., 2019; Wang et al., 2021).  369 
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HSI was first used in remote-sensing applications, but the range of applications has recently 370 

become very large, including food quality (Caporaso et al., 2018; Pu et al., 2019; Saha & 371 

Manickavasagan, 2021). HSI can be used to evaluate external quality attributes and internal quality 372 

parameters (Hassoun et al., 2021; Khaled et al., 2021; Ma et al., 2019; Wang et al., 2021). HSI is 373 

most used in sensory and freshness assessment (Özdoğan et al., 2021), authentication (Qin et al., 374 

2020), and determination of the quality of different food categories such as egg (Yao et al., 2022), 375 

meat (Fu & Chen, 2019), and fruits and vegetables (Lu et al., 2017). Recent research has shown 376 

that most of the quality indicators (discussed in Section 3), such as TVB-N, TBARS, TPA, and 377 

color, can be predicted from HSI data. Some relevant examples of recent applications of HSI in the 378 

field of food quality control can be found in Table 1. This table shows that HSI has been widely 379 

used in various food products, mostly of animal origin, and the Vis/NIR range (especially 400-380 

1000 nm) has been the most used mode. 381 

<Table 1 near here> 382 

Compared to other techniques, HSI has many desirable features that meet Industry 4.0 383 

requirements. The technique is characterized by high speed, accuracy, automation, and real-time 384 

monitoring and could be suitable for automated quality evaluation and safety inspection of large 385 

sample sets. Although most investigations have been conducted at the laboratory level, HSI has 386 

great potential for industrial applications (El-Mesery et al., 2019; Lu et al., 2017; Özdoğan et al., 387 

2021). One of the main limitations of HSI remains the huge amount of obtained data that should 388 

be processed in real-time. However, with the rapid developments in technology (especially the 389 

recent advancements of Industry 4.0 and the combination of HSI with Big Data and cloud-390 

computing technologies), the development of new algorithm models for optimal wavelength 391 

selection and implementation of multispectral imaging have enabled higher computing efficiency 392 

and enhanced the entire system performance, demonstrating the feasibility of using HSI to evaluate 393 
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numerous properties of various food products (Khaled et al., 2021; Ma et al., 2019; Özdoğan et al., 394 

2021). 395 

Besides spectroscopic and imaging techniques, a wide range of analytical methods have been 396 

developed in recent years. These include acoustic and ultrasound sensing (Caladcad et al., 2020; 397 

Lei & Sun, 2019), machine vision system and computer vision (El-Mesery et al., 2019; Kakani et 398 

al., 2020; Saberioon et al., 2017), bioelectrical impedance analysis (Fan et al., 2021; Huh et al., 399 

2021), wireless chemical sensors and biosensors, such as radio-frequency identification (RFID) 400 

(Karuppuswami et al., 2020; Kassal et al., 2018), electronic nose and electronic tongue (Di Rosa 401 

et al., 2017), just to mention a few. However, most of these techniques are still under development 402 

and require more research to meet industrial needs. 403 

3.2.2. Omics and bioinformatics technologies 404 

Generally, foods represent very complex and diverse mixtures consisting of naturally occurring 405 

compounds including primary and secondary metabolites such as lipids, proteins, carbohydrates, 406 

amino acids, fatty acids, phytochemicals, colorants, aromas, preservatives, among others, in 407 

addition to several other exogenous compounds, which pose enormous analytical challenges. The 408 

assessment of these metabolites and the monitoring of food quality and food safety imply the use 409 

of robust, sensitive, cost-effective, and efficient analytical methodologies.  410 

Currently, the most common high-throughput analytical techniques that are well accepted and 411 

taken as gold standards for food quality assessment and safety monitoring are liquid (LC) or gas 412 

chromatography (GC), usually coupled to mass spectrometry (MS), nuclear magnetic resonance 413 

(NMR) spectroscopy, and capillary electrophoresis (CE) (Fig. 5).  414 

<Fig. 5 near here> 415 
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In addition to those molecular analysis methods, other methodological approaches of biological 416 

origin, such as ELISA and PCR, are also used extensively in food analysis (Tramuta et al., 2022; 417 

Xu et al., 2022). Although these methods have been in use for a long time (hence their introduction 418 

in Section 3), recent advances and developments in terms of instrumentation and techniques have 419 

revolutionized many aspects of analytical chemistry. Coupled with machine learning, these 420 

techniques are a promising way of modelling food-human interaction. In recent years, 421 

bioinformatics technologies have been gaining popularity, especially with the increased need for 422 

enhanced computational capabilities to process huge biological data, enabling effective monitoring 423 

of food quality (Jeevanandam et al., 2022). Omics is a sub domain of “foodomics” that studies food 424 

and nutrition domains through the application and integration of advanced omics technologies, 425 

such as proteomics (proteins), metabolomics (metabolites), and genomics (detection of genes), 426 

among others (Balkir et al., 2021; Carrera et al., 2020; Picone et al., 2022). 427 

One of the most powerful analytical techniques that has played a vital role in food safety and quality 428 

issues, in addition to food authenticity and labeling accuracy as a useful tool to prevent food fraud 429 

and adulteration, is liquid chromatography with ultraviolet (LC-UV) detection or coupled to mass 430 

spectrometry (LC-MS) (Malik et al., 2010; Núñez et al., 2005).The characterization of food 431 

products based on LC analytical methodologies has been reported in several works, providing a 432 

large amount of information, such as the confirmation and quantification of thousands of 433 

compounds in one chromatographic run (Núñez et al., 2005). For example, native Colombian fruits 434 

and their by-products were characterized by Loizzo et al., (2019) by determining their 435 

hypoglycemic potential antioxidant activity and phenolic profile. The presence of chlorogenic acid 436 

as a dominant compound in Solanaceae samples was revealed by ultra-high performance liquid 437 

chromatography-high resolution mass spectrometry (UHPLC-HRMS) with an Orbitrap mass 438 

analyzer. Izquierdo-Llopart & Saurina, (2019) established the polyphenolic profiles (280, 310 and 439 
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370 nm) of sparkling wines by LC-UV/Vis and principal component analysis (PCA). Figueira et 440 

al., (2021) established the fingerprint of the free low molecular weight phenolic composition and 441 

bioactivity of Vacciniumpadifolium Sm. fruits by LC-MSMS, while Aguiar et al., (2020) reported 442 

the chemical fingerprint of free polyphenols and antioxidant activity in dietary fruits and vegetables 443 

using a non-targeted approach based on QuEChERS-ultrasound assisted extraction combined with 444 

UHPLC-FLR. 445 

In a recent study, Reyrolle et al.,(2022) selected ion flow tube mass spectrometry (SIFT-MS)was 446 

developed to detect and quantify volatile organic compounds emitted by ewe cheeses, illustrating 447 

producer’s typicality and process control and the impact of the animals' diet on the final product 448 

without any previous separation step. Other applications of chromatography and spectrometry 449 

techniques for the analysis of food metabolites and metabolomics research have been recently 450 

reviewed (Emwas et al., 2021; Pedrosa et al., 2021). 451 

NMR is a non-destructive analytical method based on the magnetic properties of several atomic 452 

nuclei, in which the spin nuclear magnetization of a sample that contains NMR active nuclei and 453 

is located inside a strong field NMR magnet, is excited by radio-frequency pulses generating a 454 

signal, which during its relaxation back to equilibrium, is recorded and Fourier transformed to 455 

provide the NMR spectrum. The most common nuclei studied in food analysis are 456 

hydrogen, deuterium, carbon, and phosphorus (Higashi et al., 2020; Pedrosa et al., 2021; 457 

Wieczorek et al., 2021). NMR is well suited to omics approach. It is a versatile and accurate 458 

quantitative technique that can be applied to samples of all states of matter for quality control, 459 

production monitoring/improvement, sensory evaluation, and food authentication. However, its 460 

sensitivity is relatively low compared to other high-throughput technologies. High-resolution solid 461 

state (Munson et al., 2022) and liquid state NMR (Dubrow et al., 2022) are the most common NMR 462 

techniques applied to food to obtain a frequency domain spectrum.  463 
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CE is another emerging technique that has generated great interest in the analyses of many 464 

compounds due to its high separation efficiency, extremely small sample and reagent requirements, 465 

and rapid analysis. Recently, Valdés et al., (2022) presented a detailed overview of the main 466 

applications (e.g., detection and analyzing carbohydrates, amino acids, biogenic amines, 467 

heterocyclic amines, lipids, proteins and peptides, vitamins, among others)of CE methods in food 468 

analysis and foodomics. Another review paper provided an overview of the application of MS, 469 

NMR, CE and other metabolomics approaches for the characterization of meat and the exploration 470 

of biomarkers in the production system (Muroya et al., 2020). 471 

Despite the numerous obvious advantages and the important capabilities and possibilities offered 472 

by the application of omics and bioinformatics, these main characteristics of the Quality 4.0 era are 473 

not without challenges. The main obstacles are the complexity and variety of data generated from 474 

different bioinformatics tools, expensive instrumentation, and lack of skilled operators needed for 475 

method development (Valdés et al., 2021, 2022). 476 

 477 

3.3. Artificial Intelligence (AI) and Big Data 478 

Industry 4.0 includes innovative technologies, such as Big Data and AI. Deep learning and Big 479 

Data are among the most important topics of Industry 4.0 (Zeba et al., 2021). These technologies 480 

exist within smart ecosystems: humans, machines, and devices interact for efficient product 481 

manufacturing. These technologies improve food manufacturing efficiency and consistency and 482 

reduce operational costs. They may be implemented to adapt existing machinery to a new way of 483 

operating instead of expensive replacement (Konur et al., 2021b). Integrating Big Data and AI into 484 

traditional food science can create new recipes alongside intelligent recommendations, track and 485 

trace food for improved food quality, and analyze food taste preferences. 486 

3.3.1. Agriculture 487 

Jo
ur

na
l P

re
-p

ro
of



22 

 

Agri-food supply chains are the source of quality raw materials transformed into quality 488 

manufactured foods. In response to consumer demand for affordable and higher quality food, agri-489 

food supply chains deploy AI and Big Data to guide decision-making to improve food product 490 

quality through traceability, reduced waste and improved productivity. For example, AI can assess 491 

plants and fruits at various harvest stages and post-harvest stages to detect effects such as decay 492 

and mold (Stasenko et al., 2021). There are, however, challenges to the digitalization of agri-food 493 

supply chains such as low inter-operability of different data sets, silo mentality, low willingness to 494 

share data and a significant skills gap (Serazetdinova et al., 2019). 495 

Our ability to assess crop quality at scale in the fields has recently improved due to remote sensing 496 

and AI, which integrate Big Data into predictive and prescriptive management tools to address 497 

agricultural and human nutrition challenges (Jung et al., 2021). AI has great potential to support 498 

the transition to sustainable food systems, impacting the entire value chain from farmers to 499 

consumers (Marvin et al., 2022). AI may be combined with ontological models to improve the 500 

product quality of vertical farms, supporting autonomous data-driven decisions (Abbasi et al., 501 

2021). Further optimization and decision-making support may be derived from digital twins that 502 

rely on AI and Big Data for even greater insights (Nasirahmadi & Hensel, 2022). 503 

3.3.2. Traceability 504 

Food traceability is an important means of ensuring food quality that addresses trust issues between 505 

consumers and the market. RFID technology and Big Data may be used to obtain information about 506 

the food production process (Zheng et al., 2021). Processed food is particularly challenging due to 507 

the variety of raw materials, batch mixing and resource transformation. In the context of processed 508 

food, AI may be used to optimize batch mixing and Big Data can support quality forecasting (Qian 509 

et al., 2022). It is predicted that blockchain technology will be integrated with AI and Big Data, 510 

supporting a new level of supply chain traceability. 511 
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3.3.3. Food processing quality 512 

With respect to food processing, AI-based 3D food printing can produce high quality, customized 513 

products for individuals based on appropriateness judgments and standards for food ingredients 514 

supported by Big Data values of various food groups (Yoo & Park, 2021). Furthermore, new food 515 

product development can look to “computational pharmaceutics” (Wang et al., 2021) for 516 

inspiration on integrating Big Data, AI and multi-scale modelling techniques for pre-formulation 517 

studies and predicting nutritional effects. Recently, AI used in conjunction with simple sound 518 

vibrations traversing the food product has demonstrated the ability to verify high-quality products 519 

with no additives and organic food products (Iymen et al., 2020). 520 

3.3.4. Sensors and food quality 521 

Determining the quality of a food product may also be aided by sensor data combined with AI and 522 

Big Data. Non-destructive spectroscopic, acoustic, ultrasound and artificial sensing techniques 523 

have immense food quality testing applications. The application of computer vision and learning 524 

methods to improve the food industry is termed “computer vision and AI-driven food industry” 525 

(Kakani et al., 2020). 526 

Biogenic amines are important biomarkers for monitoring food quality that benefit from AI’s 527 

application; this application may be a new way to monitor the freshness of meat (Tan et al., 2022). 528 

Non-destructive inspection based on X-ray CT scans has been used with a deep neural network to 529 

indicate suboptimal storage conditions of pear fruits. In addition, the technique can be used to 530 

detect internal disorders, such as internal browning and cavity formation, which are often invisible 531 

from the outside (Van De Looverbosch et al., 2021). 532 

Nonthermal technologies such as high-power ultrasound, pulsed electric fields, high voltage 533 

electrical discharge, high-pressure processing, UV-LED, pulsed light, e-beam, and advanced 534 

thermal food processing techniques including microwave processing, ohmic heating, and high-535 
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pressure homogenization may all benefit from the implementation of smart sensors combined with 536 

AI and Big Data (Jambrak et al., 2021). AI may support food quality analysis using food images 537 

(from smartphones) to estimate their nutrient content (Ma et al., 2022). In addition, AI human-like 538 

sensors exist for vision, hearing, smell, taste and touch (Zhao et al., 2020), which may complement 539 

and eventually replace human sensory tests of food quality.  540 

Big Data and AI afford opportunities for multi-parameter sensing that mimics the sense of taste, 541 

overcoming the limitations of salty, sweet, sour, bitter and glutamate sensing by using electronic 542 

taste chip systems that can act as fingerprints of health and wellness (Christodoulides et al., 2019). 543 

In addition, E-sensing and nanoscale-sensing devices may be combined with AI for food quality 544 

control (Galvan et al., 2021)(Galvan et al., 2021)[20](Galvan et al., 2021). However, although there 545 

is significant literature investigating food product quality with computer vision algorithms, there 546 

is a lack of commercial exploitation (Meenu et al., 2021). 547 

3.3.5. Food safety and food quality 548 

The globalization of food production makes ensuring food quality more difficult. Therefore, a 549 

reliable digital ecosystem of food quality management requires a balanced strategy for the 550 

integration of Big Data, AI and blockchain for the end-to-end monitoring of food quality and safety 551 

and improvement of quality management and traceability of food products at all stages – 552 

production, circulation and consumption (Savina et al., 2020). 553 

3.3.6. Food supply chain and cold chain 554 

The main challenge of Sustainable Development Goal 12, “Responsible Consumption and 555 

Production”, is the reduction of food losses along production and supply chains. Improving food 556 

product quality is particularly important for fresh food products to avoid waste and losses. Big Data 557 

and AI may bring new solutions to mitigate the perishability nature of fresh food products (Vernier 558 

et al., 2021). 559 
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Constructing a traceable system for cold chain logistics would help brand image and increase 560 

consumer trust by delivering safe and higher-quality food products (Wang et al., 2020; 561 

Zhuangzhuang, 2020). Traditional systems may be slow to adjust the fresh food storage 562 

temperature. Temperature control algorithms using AI and Big Data may be used to adjust the 563 

temperature environment so that food is consistently at the optimal storage temperature (Guan et 564 

al., 2021). 565 

3.3.7. Packaging 566 

Food quality depends on food packaging methods and materials. AI and Big Data can be used to 567 

assess a range of environmental factors near food manufacturing sites and impacts within a variable 568 

food packaging value chain for better decision-making on packaging materials aligned with the 569 

Sustainable Development Goals (Sand, 2020). Furthermore, recent advances in nanotechnology 570 

have enabled the development of small devices and nano-sized sensors that could be incorporated 571 

in food packaging or even in smartphones giving consumers the ability to assess the quality and 572 

investigate the properties of their own food easily (Saadat et al., 2022). 573 

 574 

4. Discussion and implications 575 

Our literature overview revealed that some of the recently developed technologies can be 576 

considered promising options in food quality assessment. Specifically, the use of spectroscopic 577 

techniques (NIR, MIR, fluorescence, and Raman spectroscopy) in addition to HSI has received 578 

much attention in the determination of food quality. For example, the HSI technique generates both 579 

spectral and spatial data, showing promising results for various classification purposes and 580 

prediction of many traditional quality parameters (e.g., TVB-N, TBARS, TPA, and color). Imaging 581 

and spectroscopic techniques have demonstrated considerable capacity to detect food fraud and 582 

determine chemical composition, food quality and safety parameters, as well as monitor particular 583 
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quality parameters during production, processing, or storage of food. Most of these techniques are 584 

non-destructive, relatively low-cost, and generate data that contains maximum information, 585 

providing a “fingerprint” of the investigated food product. Other analytical methods, such as mass 586 

spectrometry and chromatographic methods are powerful tools to determine freshness parameters, 587 

safety, authenticity, traceability, and overall quality of foods, but they often require large 588 

equipment and experienced laboratory personnel.  589 

Recently, “omics” has emerged as a sub-domain of “foodomics” that refers to the study of 590 

proteomics (proteins), metabolomics (metabolites), among others, through the application of 591 

advanced platforms of electrophoresis, molecular approaches, nuclear magnetic resonance 592 

spectroscopy, and others (Creydt & Fischer, 2018; Singh et al., 2021). More recently, food quality 593 

monitoring through bioinformatics, Big Data, machine learning, AI, IoT, and smart sensors has 594 

received huge considerations (Bouzembrak et al., 2019; Goyal et al., 2022; Jagatheesaperumal et 595 

al., 2021; Jeevanandam et al., 2022; Kumar et al., 2021; Marvin et al., 2022; Mavani et al., 2021). 596 

These Industry 4.0 elements have revolutionary features (e.g., allowing obtaining robust data, 597 

appropriate for real-time measurements, and saving time and costs), making them most suitable for 598 

the future Food Quality 4.0 era.  599 

Our findings highlight the importance of AI and Big Data as a crucial pillar of Food Quality 4.0 600 

era. The use of these digital quality enablers in agriculture, traceability, food processing quality, 601 

packaging, and other stages along the supply and cold chains has been demonstrated through 602 

concrete examples. However, the findings from our review shows that research studies dealing 603 

with the application of Industry 4.0 technologies in the food industry are limited. This is likely due 604 

to the silo mentality and the conservative nature of the food industry compared to other industrial 605 

sectors (Chapman et al., 2022; Hassoun et al., 2020), in addition to other limitations that will be 606 

discussed in the next section.  607 
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The introduction of Quality 4.0 concept into the food industry could have several theoretical and 608 

practical implications. Theoretically, the incorporation of Food Quality 4.0 will address the gap 609 

highlighted in the literature regarding the scarce of research investigating application of Industry 610 

4.0 technologies in the food industry. Food Quality 4.0 opens up promising avenues for future 611 

research in several digitalization and automation technologies. Although, most of the topics 612 

discussed in this work were previously reviewed in more detail in other publications, to the best of 613 

our knowledge, this manuscript is the first to raise awareness of the importance of multidisciplinary 614 

approaches and simultaneously considering a wide range of emerging technologies that address the 615 

key principle of Industry 4.0, namely the convergence between various areas of science, especially 616 

physical, biological, and digital disciplines.  617 

In practice, this research can be used as a basis for understanding the different challenges and 618 

opportunities offered by adopting Quality 4.0 in the food industry. More adoption of Quality 4.0 619 

enablers will ensure best quality management practices of raw materials and final food products 620 

during production, processing and commercialization. Close collaboration and cooperation 621 

between different actors is needed to optimally implement and fully exploit and harness the 622 

potential of Industry 4.0 in food quality.  623 

 624 

5. Conclusions, limitations, and future research perspectives 625 

The main objective of this work is to discuss the concept of Food Quality 4.0, highlighting the 626 

potential of emerging analytical methods and smart technologies, in the context of the Fourth 627 

Industrial Revolution (Industry 4.0), for enhancing food quality. Industry 4.0 technologies have a 628 

significant role to play in sustainable social, environmental, and economic development. Although 629 

the Quality 4.0 concept has been used in many other disciplines, such as manufacturing 630 

development, management, and related fields (Antony et al., 2021; Javaid et al., 2021; Sader et al., 631 
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2021), up to date, an obvious gap in literature can be noticed since no application has been reported 632 

in the food industry. This review paper provides an up-to-date source of information about the 633 

latest developments and advances in food quality assessment methods by introducing, for the first 634 

time, the concept of “Food Quality 4.0” in food-related applications.  635 

The results of this review may help policy makers to move toward fostering and supporting 636 

transdisciplinary collaboration to embrace more technological innovations. Long-term policy-637 

making strategies are needed to facilitate the adoption of the Industry 4.0 paradigm, and 638 

consequently accelerate the implementation of Food Quality 4.0. The results of our literature 639 

review show that, despite the increased research attention directed to the importance of Industry 640 

4.0 technologies, there are a lot of uncertainties regarding the wider adoption of these technologies 641 

in the food industry. There is still a lack of serious awareness related to Industry 4.0 features within 642 

the food quality context. However, the interest for Industry 4.0 among managers and policy-makers 643 

has increased significantly in recent years. Managers and policy-makers should set out on a journey 644 

towards Food Quality 4.0 by identifying the measures (such as incentives, roadmaps, and 645 

consultancy services) that could facilitate the implementation of Industry 4.0 technologies in small 646 

and medium-sized enterprises (Matt et al., 2020). The role of new generation (young managers and 647 

leaders) having an open-mindset should be strengthen and prioritized in decision-making process 648 

to overcome the limitation of silo mentality, which is a well-known character of food industry. 649 

The efficiency of food quality and safety assessment methods, as well as food processing 650 

technologies come into question with every food crisis and pandemic outbreak, seriously 651 

undermining consumer confidence. The role policy makers is particularly important during crises, 652 

such as the coronavirus pandemic. For this reason, it is ever more important, during and in the wake 653 

of the COVID-19 pandemic, to develop rapid and non-destructive techniques to measure food 654 

quality efficiently and objectively.  655 
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Food quality is traditionally determined using intrinsic attributes, such as physical, chemical, 656 

microbial, and technical (processing) parameters, through the application of numerous methods 657 

that are time-consuming, laborious, and destructive. In contrast, Industry 4.0 technologies have 658 

strong prospects for overcoming these limitations. By combining the physical, digital, and 659 

biological worlds, Industry 4.0 has recently begun to automate and digitalize many food production 660 

and consumption sectors thanks to the implementation of AI, Big Data analytics, IoT, smart 661 

sensors, robotics, and other digital and innovative technologies along the whole food value chain. 662 

Industry 4.0 innovations and technologies can be employed to enable Food Quality 4.0, improving 663 

efficiency, rapidity, and reliability of food assessment techniques.  664 

 665 

A successful transition from the traditional to Food Quality 4.0 system implies some prerequisites 666 

and challenges that need to be addressed. While Food Quality 4.0 offers various advantages 667 

concerning automation and digitalization in food quality analysis, it faces various obstacles. The 668 

techniques need to be more affordable, adequate in size, and efficient in industrial environments. 669 

High cost, lack of adaptability to the existing industrial environment, and lack of technical skills 670 

are among the most challenging bottlenecks hindering the wider application of these technologies. 671 

Inadequate infrastructure facilities, especially in developing countries are also a critical limitation 672 

that needs to be addressed.  673 

Besides the challenges related to implementation of Quality 4.0 concept and obstacles facing the 674 

application of emerging technologies, some limitations linked to the approach used in this review 675 

paper can be highlighted. Although most relevant studies (mainly extracted from Scopus) have 676 

been reported, more systematic reviews that consider bibliometric approaches to visualize results 677 

should be conducted in the future. A larger source of data, including, in addition to Scopus, Web 678 
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of Science, Google Scholar, and other online databases (e.g., IEEE Explore, SAGE Publications, 679 

and MDPI, among others) should be considered.  680 

However, in line with the ongoing efforts put into the development of technical innovations and 681 

digital solutions, it is expected that the limitations of these emerging techniques will be overcome. 682 

More research is needed to better understand the contribution of Industry 4.0 technologies to Food 683 

Quality 4.0. Optimal quality monitoring (once achieved by implementing Food Quality 4.0 684 

principles) means smart quality controls and high-quality assurance of food products, reduced food 685 

waste and loss, and decreased use of resources and energy, thus enhancing the transition towards 686 

more sustainable food systems. 687 
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Figure Captions 1344 

 1345 

Fig. 1. Number of publications and citations per year (until June 06, 2022) related to the application 1346 

of digitalization and automation in the food quality.  1347 

Fig. 2. Building blocks of Industry 4.0. 1348 

Fig. 3. Some factors to assess Industry 4.0 readiness for businesses. 1349 

Fig. 4. Traditional methods vs. emerging techniques used in the food quality determination. 1350 

Legend: IRMS: Isotope Ratio Mass Spectrometry; MALDI-TOF-MS: Matrix-Assisted 1351 

Laser Desorption Ionization coupled to Time-of-Flight Mass Spectrometry; NMR: Nuclear 1352 

Magnetic Resonance spectroscopy; PTR: Proton Transfer Reaction; REIMS: Rapid 1353 

Evaporative Ionization Mass Spectrometry. 1354 

Fig. 5. Common high-throughput analytical techniques taken as gold standards for food quality 1355 

assessment and safety monitoring. 1356 

 1357 
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Table 1. Use of hyperspectral imaging in various foods quality-related applications 1358 

Food Objective Spectral Range Main results Reference 

American bison  
(Bison bison) 

Classification of muscles 
according to ageing period 
and retail display period, 
and prediction of color 
parameters 

400-1000 nm Satisfactory classification results were obtained 
using PLS-DA model. Redness value (a* value) 
was successfully predicted using PLSR model. 

(Chaudhry et al., 
2021) 

Pacific white shrimp 
(Litopenaeusvannamei) 

Prediction of TVB-N 900-1700 nm After extracting spectral features by deep 
learning algorithms, LS-SVM model predicted 
TVB-N with satisfactory accuracy. 

(Yu et al., 2019) 

Prediction of TVB-N 860-1700 nm After building PLSR models with six various 
pretreatments algorithms, the one built with 
multiple scattering correction gave the best 
results. A graphical user interface system was 
developed to predict the freshness. 

(Guo et al., 
2021) 

Grass carp 
(Ctenopharyngodonidella) 

Prediction of TVB-N 308-1105 nm The best TVB-N prediction result was obtained 
using PLSR model applied to six optimal 
wavelengths, selected by a novel algorithm 
called Physarum network combined with genetic 
algorithm. 

(Cheng et al., 
2017) 

Detection of fish bones in 
natural fish fillets 

Raman: Excitation; 
785 nm line laser 

(covering a 
Raman shift range 

from 820 cm -1 - 2847 
cm -1) 

Support vector data description classification 
model was built on optimal band information, 
selected using a fuzzy-rough set model, yielding 
a detection performance of 90.5% with a depth 
of up to 2.5 mm. 

(Song et al., 
2020) 

Pork Prediction of TVB-N 842–2532 nm The PLSR model optimized using random frog 
(wavelength selection method) and maximum 
normalization (preprocessing method) showed 
the best prediction results. 

(Baek et al., 2021) 

Prediction of several 
freshness parameters in 

frozen pork 

Fluorescence: 
Excitation at 365 nm 
and emission at 400-

1000 nm 
Vis/NIR: 400–1000 

nm 

The PLSR model established on the fluorescence 
data showed good performances in predicting 
freshness attributes (TVB-N, pH, and color 
parameters) in frozen samples without thawing. 

(Zhuang et al., 
2022) 
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Prediction of microbial 
growth 

400–1000 nm A high correlation coefficient between the 
growth models of Pseudomonas fluorescens 
established using HSI and the plate count 
method. 

(Zhou et al., 
2022) 

Detection of offal 
adulteration in ground 

pork 

400–1000 nm Good prediction performances were achieved 
using PLSR models established on eleven 
featured wavelengths. Limit of detection less 
than 10 % was obtained. 

(Jiang et al., 
2021) 

Cured pork Prediction of chemical 
composition 

400-1000 nm The PLSR model based on nine wavelengths 
enabled good prediction performances of 
moisture, protein, and fat contents with R2 values 
of respectively 0.8294, 0.8909, and 8241. 

(Ma, Sun, 
Nicolai, et al., 

2019) 

Atlantic salmon 
(Salmo salar) 

Prediction of TBARS and 
pH 

900-1700 nm Feature wavelengths were selected for 
developing multispectral imaging system. A 
satisfactory performance of TBARS prediction 
model was obtained, enabling a rapid assessment 
of oxidative degradation. 

(Xu et al., 2016) 

Prediction of tenderness 400-1720 nm Warner–Bratzler shear was predicted with good 
accuracy by LS-SVM models established on four 
wavelengths, selected using successful 
projections algorithm. 
 

(He et al., 2014) 

Traditional dry-cured pork 
belly 

Prediction of TBARS as a 
lipid oxidation indicator 

400-1000 nm Acceptable prediction results of TBARS were 
obtained using PLSR models established 
following first and second derivatives 
pretreatments. 

(Aheto et al., 
2020) 

Crucian carp 
 

Prediction of TVB-N and 
TPA 

900-1700 nm The PLSR models built on spectral data and 
textural features, extracted from fish eyes and 
gills to predict TVB-N and TPA, respectively, 
show high accuracy. 

(Wang et al., 
2019) 

Detection of micro plastics 
in the intestinal tracts 

900-1700 nm SVM classification model was developed, 
showing promising efficiency and satisfying 
detection accuracy on three marine fish species. 

(Zhang et al., 
2019) 

Beef, lamb and  
venison samples including 

different muscle type 

Prediction of 
intramuscular fat and pH 

548 - 1701 nm PLSR and deep convolutional neural networks 
models showed good prediction performances. 

(Dixit et al., 
2021) 

Tilapia Prediction of 4 freshness 
parameters; 

325-1098 nm A new neural network algorithm (called radial 
basis function neural networks) was developed 

(Shi et al., 2019) 
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TVB-N, total aerobic 
count, K value, and 
sensory evaluation 

using nine wavelengths selected by the 
successive projection algorithm, and the 
optimized model provided accurate prediction of 
the 4 freshness indicators. 

Fish cakes Prediction of core 
temperature 

760-1040 nm A good prediction model was established giving 
a root mean square error of prediction of 2.3 °C, 
even down to 11–13 mm depth. 

(Wold, 2016) 

Japanese Big Sausages Determination of pH 
of cooked sausages after 

different storage 
conditions 

380 -1000 nm The PLSR model built on the optimal 
wavelengths showed good prediction precision 
(R2 0.909 and the root mean square error of 
prediction 0.035). 

(Feng et al., 
2018) 

Potato slices Prediction of foodborne 
pathogens (Escherichia 

coli) on the surface of 
fresh-cut products 

400-1000 nm E. coli was predicted with back-propagation 
neural network model giving a good accuracy 
(R2 = 0.976). 

(Li et al., 2021) 

Plant-based meat 
analogues 

Prediction of proximate 
composition and alpha-

galactosides content 

950−1654 nm A robust prediction of the chemical composition 
was achieved using PLSR models, and pixel-by-
pixel prediction allowed the tracking of 
components distribution. 

(Squeo et al., 
2022) 

Kyoho grape 
(Vitis labruscana cv. 

Kyoho) 

Prediction of firmness and 
pH 

400-1000 nm Deep features, extracted via a deep learning 
approach (called Stacked auto-encoders), were 
used to build a LS-SVM, achieving an optimal 
prediction performance for firmness and 
satisfactory accuracy for pH. 

(Xu et al., 2022) 

Banana 
(Musa spp., AAA group cv. 

‘Brazil’) 
 

Prediction of color 
parameters and firmness 

380-1023 nm Color parameters (L∗, a∗andb∗) and firmness 
were predicted with acceptable accuracy using 
PLSR models. Excellent classification results of 
ripe and unripe banana were achieved. 

(Xie et al., 2018) 

Beef 
 

Detection of adulteration 
of beef with duck meat 

380-1012 nm Good performance of predicted values of 
adulteration levels using PLRS models was 
achieved. Adulteration maps in the samples with 
different adulteration levels were generated, 
enhancing the visual appearance of adulteration. 

(Jiang et al., 
2019) 

Cod Characterization of 
lutefisk and classification 

of four brands 

Fluorescence: 
Excitation at 365 nm 
and emission at 430-

1000 nm 

High performance for the discrimination 
between samples of four different brands of 
lutefisk using PLR-DA applied on fluorescence 
data. 

(Hassoun, Heia, 
et al., 2020a) 
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Lamb, beef, and pork Authentication and 
classification of meat 

species 

548-1701 nm Spectral and spatial information, integrated into 
deep convolutional neural network models, 
provided a stable accuracy on line-scanning and 
snapshot HSI images. 

(Al-Sarayreh et 
al., 2020) 

Pearl Gentian 
Grouper 

 

Detection of freshness of 
fish stored under different 

conditions 

900-1700 nm Classification accuracies of 100%, 96.43%, and 
96.43% were obtained for respectively fresh, 
refrigerated, and frozen thawed fish. PLSR 
models used to predict storage time achieved 
high modeling and prediction accuracy. 

(Chen et al., 
2021) 

Lettuce Detection of foreign 
substances 

Fluorescence: 
Excitation at 365 nm 
and emission at 430-

700 nm 

Prediction accuracy of 95.87% for worm 
detection was obtained, with best classification 
accuracy being achieved using spectral images 
with a pixel size of 1×1mm. 

(Mo et al., 2017) 

Cod  
(Gadus morhua L.) 

Monitoring thermal 
treatments and storage 

time 

Fluorescence: 
Excitation at 365 nm 
and emission at 430-

1000 nm 

Fluorescence intensity was decreased with 
increasing cooking temperature and storage 
time. Classification accuracy of 92.5% was 
obtained. 

(Hassoun et al., 
2020) 

TVB-N: Total volatile basic nitrogen; HSI: Hyperspectral imaging; PLS-DA: Partial least square discrimination analysis; PLSR: Partial least squares regression; 1359 
LS-SVM: Least-squares support vector machine; TPA: Texture profile analysis; TBARS: Thiobarbituric acid reactive substance; Vis/NIR: Visible/Near infrared 1360 
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HIGHLIGHTS 

 

• Consumer interest in food quality call for advanced and reliable analytical methods 

• Industry 4.0 has offered numerous opportunities in many fields, including food analysis. 

• Food Quality 4.0 concept - determination of food quality using Industry 4.0 technologies 

• AI, Big Data, and smart sensors are important enablers of Food Quality 4.0 

• Innovations, digitalization, and automation experienced a massive boost  

 

Jo
ur

na
l P

re
-p

ro
of



Declaration of interests 

 

☒ The authors declare that they have no known competing financial interests or personal 

relationships that could have appeared to influence the work reported in this paper.  

 

 
 
 

 

Jo
ur

na
l P

re
-p

ro
of



Cranfield University

CERES https://dspace.lib.cranfield.ac.uk

School of Aerospace, Transport and Manufacturing (SATM) Staff publications (SATM)

2022-08-01

Food quality 4.0: From traditional

approaches to digitalized automated analysis

Hassoun, Abdo

Elsevier

Hassoun A, Jagtap S, Garcia-Garcia G, et al., (2023) Food quality 4.0: From traditional

approaches to digitalized automated analysis. Journal of Food Engineering, Volume 337,

January 2023, Article number 111216

https://doi.org/10.1016/j.jfoodeng.2022.111216

Downloaded from Cranfield Library Services E-Repository


