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I.Introduction 

The potential of adaptive control in improving the performance and reliability of control systems attracts 

researchers and engineers from different disciplines. However, the verification and validation of the flight control 

system regarding modeling error, uncertainty, disturbance, and time delay is not an easy task due to the inherent 

nonlinearity of the problem as well as the lack of rigorous analysis tools for nonlinear systems [1–5].  

Currently, to design a closed-loop system and to assess its stability and performance characteristics, well-

developed linear analysis tools are used. For clearance of flight control laws, testing system capabilities in the worst-

case scenario [6], bifurcation methods [7,8], and robust control techniques [9] are used. However, the majority of the 

techniques require linearization of system dynamics. The gap between linear analysis and nonlinear systems can cause 

undetected behavior of the system. Monte Carlo simulations of high-fidelity models could be utilized as a 

supplementary tool to analyze the viable subset of the flight envelope to prevent possible instability or violation of 

predefined constraints [10]. Even though the Monte-Carlo simulations could provide additional insight into the system 

dynamics, this approach is time-consuming and computationally expensive and cannot issue a stability certificate. In 

lieu of Monte Carlo simulations, sum-of-squares (SOS) programming techniques [11] provide an algebraic approach 

                                                         

 
 Presented as Paper AIAA 2022-0691 at the AIAA SCITECH 2022 Forum, San Diego, CA & Virtual, January 3-7, 

2022. 
* PhD student, School of Energy and Power Engineering. 
† Professor, School of Aerospace, Transport and Manufacturing, AIAA Senior Member. 
‡ Professor, School of Energy and Power Engineering. 
§ Senior Research Fellow, School of Aerospace, Transport and Manufacturing. 

li2106
Text Box
Journal of Guidance, Control, and Dynamics, 
Volume 45, Number 11, November 2022, pp. 2174–2181
DOI:10.2514/1.G006775


li2106
Text Box
Published by AIAA. This is the Author Accepted Manuscript issued with: Creative Commons Attribution Non-Commercial License (CC:BY:NC 4.0).  
The final published version (version of record) is available online at DOI:10.2514/1.G006775.  Please refer to any applicable publisher terms of use.




2 

 

 

to the problem of nonlinear control analysis [10]. In recent years, a lot of research based on the SOS techniques for 

nonlinear analysis has been done for computing region of attraction (ROA), reachability sets, input-output gains, time 

delay margins, and robustness to uncertainty for nonlinear polynomial systems [12–15]. Based on the Lyapunov 

stability theory, a systematic approach employing SOS programming is developed to provide a deterministic 

estimation of the ROA [11]. This numerical method broadens the application of the analytical Lyapunov theory and 

has been modified for an improved estimation ever since [16–18]. It has been applied for the investigation of the 

aircraft control system, for instance, the F/A-18 falling-leaf mode control [19] and the control synthesis for deep-stall 

recovery [10]. A simple procedure for estimating the ROA of an adaptive control system is used in [20].  

Although the SOS procedure can only accommodate dynamics described by polynomial vector fields, which has 

hitherto limited its applicability to, for instance, aeronautical control problems, it provides great potential to bridge 

the gap in the flight control validation process [19,21]. The clearance of adaptive strategies is an even more challenging 

task. Most of the adaptive algorithms make a closed-loop system a nonlinear one, and thus most of the analysis 

methods become inapplicable. Currently, the stability proofs for adaptive control systems are mostly obtained 

theoretically via selecting a Lyapunov function. However, this approach suffers from the ambiguity of the Lyapunov 

function determination and cannot be used to predict the real behavior of the system or validate the system's stability. 

From a practical point of view, measurable metrics are required to evaluate adaptive control systems. Some researchers 

tried to address this problem, in particular, the linear control notions of gain and phase margin are extended to the 

adaptive control flight system [1], and time delay margin[5,22] and input-output gains [15] for an adaptive control 

system are investigated theoretically or by using SOS programming. A relatively systematic overview of available 

robustness and performance metrics for adaptive flight control is provided in [23]. However, the lack of a universal 

approach and measurable metrics for adaptive control system validation still limits their wide usage. 

The objective of this paper is to address the gap in analyzing adaptive control systems and to bring a new 

measurable metric for stability evaluation of adaptive control systems. This paper is focused more on the clearance of 

adaptive control laws rather than on design. In particular, we propose to utilize a numerical ROA estimate method to 

issue stability certificates. The region of attraction (ROA) of a locally asymptotically stable equilibrium point is an 

invariant set that all trajectories starting inside will converge to the equilibrium point [16]. It defines the region where 

a control system can operate safely and effectively, the estimation error bounds, and, thus, the uncertainty level. For 

a successful control design, the operational region of the system has to be ensured inside the ROA [24] and the 
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uncertainty level has to be inside the estimation error bounds. A key element in adaptive control design is the tuning 

of hyperparameters, which obviously affects the system performance as well as the stability. One of the main 

performances of the adaptive system is a fast adaptation. This paper proposes a tool for studying the influence of the 

hyperparameters, such as the adaptation gain and the stability-enhancing σ-modification term, on the stability of the 

system through the numerical ROA estimation.  

In this paper, we used a wing-rock benchmark model for validation of our approach. Wing rock is a well-known 

lateral-directional instability that occurs in aircraft of varying configurations and aspect ratios at a moderate to high 

angle of attack[25]. In this paper, wing rock augmented with a model reference adaptive control (MRAC) is taken as 

for demonstration of the proposed approach.  

The paper is organized as follows. Firstly, the wing rock dynamics and the classical adaptive controller is described 

in Sec. II. In Sec. III, the algorithms for ROA estimation using SOS polynomial optimization are presented. Sec. IV 

summarizes the results of ROA analysis for an adaptive control system with respect to adaptation gain and sigma 

modification parameters. A discussion is followed in Sec. V and finally, the paper concludes in Sec. VI. 

II.Wing Rock Dynamics and Adaptive Control 

A. Wing Rock Model 

The wing rock model has gained great attention and interest in the field of the aviation industry and serves as a 

classical benchmark example for the demonstration of various control methodologies [20]. Mathematical models of 

wing rock have been developed and the existence of limit cycle oscillations has been examined [25–27]. However, 

the aerodynamic rolling moment is a complex nonlinear function of the roll angle, roll rate, angle of attack, and sideslip 

angle, and its exact analytical expression is difficult to derive [28]. Even though the wing rock model was well 

elaborated, in real flight, the aerodynamic coefficients at high angles of attack can differ significantly from the model 

ones [29]. The model of wing rock, taken from [25], considering a flat, thin wing is constrained such that it is free 

only to roll about its x-axis, is described as 

 2

0( / 2 )
xx l

U Sb I C d u      (1) 

where   is the roll angle and the overdot denotes the time derivative. Also,   is the air density, U  is the speed of 

freestream, S  is the reference wing area, b  is the chord, xx
I  is the mass moment of inertia of the wing around the 
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midspan axis, and l
C  is the roll-moment coefficient. Note that 0d  is the control effectiveness element, and the input 

signal u  acts as part of the roll rate. The roll-moment coefficient is written as 

 3 2 2

1 2 3 4 5l
C a a a a a            (2) 

The aerodynamic parameters i
a  are nonlinear functions of the angle of attack which have been presented in [25]  

Defining 1 2[ , ] [ , ]T T
x x   x , the wing rock system can be re-written as 

 
1 2

2 0( )

x x

x f d u


   x

  (3) 

where 
2x , the Euclidean space of dimension of two, and 

 ( ) ( )T
f x b h x   (4) 

where 

 

2

1 2 3 4 5

3 2 2

1 2 1 1 2 1 2

[ , , , , ] , ( / 2 ) 1,...,5

( ) [ , , , , ]

T

i xx i

T

b b b b b b U Sb I a i

x x x x x x x

   



b

h x
  (5) 

B. Model Reference Adaptive Control 
Approaches to suppress this unstable phenomenon have been explored [30–34]. To account for the uncertainty in 

the system, adaptive control is developed in [32,34,35]. A model reference adaptive controller applied to suppress the 

wing rock motion can be described as follows. The reference model carrying the desired response is given by  

 m m m
x A x   (6) 

where 1 2[ , ]T

m m m
x xx , 0  , 0

n
   and 

 2[0, 1; , 2 ]
m n n

   A   (7) 

where m
A  is a Hurwitz matrix, and the reference trajectory asymptotically converges to zero as t  . 

The wing rock control problem is formed under the assumption on ( )f x : suppose that in Eq. (3) the parameters 

( 1, 2,...,5)
i

b i   and 0d  are unknown, but the sign of 0d  is known.  

Defining the tracking error by 1 2[ , ]T

m
e e  e x x  and 

 0[( ) ( ) ]T

m m m
d u   e A e d b b h x   (8) 

where [0, 1]T

m
d  and 2[ , 2 ,0,0,0]T

m n n
   b . If we define  

 0( ) /
m

d
  b b  (9) 
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as the uncertainty of the dynamic system, then an adaptive control law of the form  

 ( )T
u   h x   (10) 

is designed with 
1 2 3 4 5[ , , , , ]T      as an estimate of the actual 

 , which enables the control input to cancel 

out the system uncertainty. In this case, Eq. (8) becomes 

 ( ),T

m m

   e A e d θ h x θ θ θ  (11) 

For the derivation of the adaptation law for θ , the Lyapunov approach is used but the details are omitted here due 

to the space limitation, and readers are referred to [28] for more information. Since  θ θ , the adaptation law 

adjusting the parameter   is  

 0sgn( ) ( ) ( )T

m R
d  e Pd h x     (12) 

where the adaptation gain diag( ) ( 1,...,5)
i

i   with 0
i

  . The latter term involving R
  is a sigma 

modification term.   and R
  are two important hyperparameters to be tuned while designing the adaptive control 

system. The adaptation gain   determines the main characteristics of the adaptive control system, namely, how 

quickly the adaptation parameter   evolves. For 0
R

  , the sigma modification term helps to prevent the parameter 

drift by ensuring   uniformly bounded, which enhances the robustness of the system. It improves the robustness of 

the adaptive control system by removing the purely integral action of the adaptive law [36,37]. P  is the positive 

definite solution of the Lyapunov equation 

 , 0T    A P PA Q Q  (13) 

where m
A A . It has been proven that all error signals can be asymptotically stable [28,34]. 

C. Disturbed Wing Rock System with Adaptive Control 

The implementation of controllers must be verified and validated under certain circumstances including modeling 

error, time delay, uncertainty, and disturbance. In terms of disturbance, a common scenario where the signal 

measurement process inevitably interferes is considered. The uncertainty is then introduced during the measurement 

of roll angle   and roll rate  . It was found that aerodynamic damping could depend nonlinearly on the angular rates 

and their derivatives and a polynomial description of these dependencies was used in [38,39]. Here, we follow the 

same approach and assume that there is an unmodelled uncertainty d
d  , which has a quadratic dependency on the 

angular rate derivative 
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 2

2d
d x  (14) 

where the constant   indicates the level of the disturbance. 

The disturbed measurement signals are written as  

 
1 2 1 2[ , ] [ , ]T T

d d d d d
x x x d x d   x ,  (15) 

which is used to construct the control input signal  

 ( )T

d d d
u   h x  (16) 

where d
u  is the actual signal sent to the executing agent, and d

h  is the relevant five-vector function. In this case, the 

actual adaptation law applied to the wing rock system becomes 

 0sgn( ) ( ) ( )T

m d d R
d   e Pd h x     (17) 

and the error dynamics 

 0 0{ ( ) ( ) [ ( ) ( )]}T

m m d d m d d
d d x    e A e d h x b h h x    (18) 

It can be seen that the control input does not cancel the effect of the uncertainty so the system cannot guarantee 

asymptotical stability. ROA estimation would help to evaluate whether the operating range is still within the system 

stability region and provide confidence in the controller implementation. 

In the simulation, the aerodynamic parameters of an 80 deg delta wing at a 25 deg angle of attack [28] are used to 

demonstrate the wing rock motion. A model aircraft with 15m/sU   and 0.429mb   is employed. In this 

simulation study, the non-dimensional time (4 / )t U b t


  is used as an independent variable with 
14 / 139.86sU b


   

and thus x  is replaced by x  that represents the derivative with respect to t

 [28]. The time scaling using t


 is used 

to reduce the discrepancy between   and   and to avoid the possible numerical issues. The parameters of the vector 

b  representing the model (4) for the non-dimensional time t

 are listed below  

 

21

3 4 5

0

0.0259

0.

6236, 0.1273338, 0.51970

02012844, 0.010519

4

1

1

6

7

b

b b

d

b

b


 


 





  

The open-loop system (3) with 0u   was simulated for three initial conditions: A: (0) 6   deg, (0) 419.4   

deg/s, B: (0) 30   deg, (0) 1398   deg/s, and C: (0) 140   deg, (0) 0   deg/s. The phase plot in Fig. 1 shows 

the occurrence of wing rock at the small initial condition. For proper scaling of the results, the roll rate derivative is 
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given for the non-dimensional time t

 with the corresponding scaling factor. The roll angle diverges for the latter two 

larger initial conditions. Then model reference adaptive control is introduced with adaptation gain 15
i

   and 1
R

  . 

The desired damping   and natural frequency n
  are 0.707 and 0.5, respectively. The reference signal is chosen as 

zero. For simplicity, 0θ  is set zero in the control law (10). As shown in Fig. 2 a) and b) the blue lines, the wing rock 

phenomenon is successfully suppressed and θ  converges to zero (for simplicity, only 1  is illustrated) for all three 

initial conditions A, B, and C. After introducing the disturbance, whose level   is specified to take the value of 0.1. 

Simulation of the responses (red lines in Fig. 2) tells that the adaptive control is still effective for A and B but fails for 

C. For initial conditions C, the adaptive control cannot bring the roll angle to zero, and the roll angle and θ  all go to 

infinity. So it is interesting to figure out in which range the adaptive control keeps effective and how the control 

parameters, adaptation gain Γ  , and sigma modification value R
 , affects the stable range of the control system. This 

may give some insights into the control design.  

 

Fig. 1 Phase portrait for the open-loop wing rock system with non-dimensional time t


 (the red “✳” marks 
the initial condition). 
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 a) b) 

Fig. 2 Adaptive wing rock system with (red) and without (blue) disturbance: a) phase plot; b) adaptation 

parameter 1  with non-dimensional time t
 . The red “✳” marks the initial conditions. 

III.Region of Attraction Estimation 

Consider an autonomous nonlinear polynomial system of the form  

 0( ), (0)F x x x x   (19) 

with 
nx  and ( )F x  is a 1n  polynomial vector field. Without loss of generality, we assume that the origin is an 

asymptotically stable equilibrium point such that (0) 0F  . The ROA, a set of initial conditions whose trajectories 

will always converge back to the origin, can be defined as  

  0 0: : If (0) then lim ( ) 0n

t
t


   x x x x   (20) 

Then the direct Lyapunov theory [11,40] is used to approximate the region of attraction by finding a Lyapunov 

function with a proper level set. 

Lemma 1[11,40] If there exist a continuously differentiable scalar function ( ) : n
V x  and a positive scalar 

  , such that 

 ( ) 0 0V   x x  and (0) 0V   (21) 

  : : ( )V  x x  is bounded (22) 

 { : ( / ) 0} {0}V F    x x   (23) 

then the origin is asymptotically stable and   is a subset of the ROA. ( )V x  is the so-called local Lyapunov function. 
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As can be seen, set containment constraints are involved in Eqs. (21)-(23) so the well-known generalized S-

procedure [41] is employed to provide sufficient conditions for them to be represented by inequalities that are then 

treatable by the SOS procedure.  

Lemma 2 (Generalized S-procedure [41]). Given polynomials 0 ( ),..., ( ) [ ]
m

g g x x R x  and polynomials  

 1( ),..., ( )
m n

s s x x
  

if 

 0

1

( ) ( ) ( ) 0
m

i i

i

g s g


 x x x   (24) 

then  

    1 0: ( ),..., ( ) 0 : ( ) 0n n

m
g g g    x x x x x   (25) 

where [ ]R x  represents the set of polynomials in nx  with real coefficients and n
  denotes the set of the sum of 

squares polynomials in nx . 

With a polynomial dynamic system and under the assumption of a polynomial Lyapunov function V , the ROA 

estimation problem in Eqs. (21)-(23) can be described by polynomial inequalities. Using the SOS procedure, these 

inequalities are represented as a sum of squares. The ROA estimation problem is then formulated by a SOS problem  

 
1 1

max

Subject to : [( / ) ] ( )
n

V F l V s


       x

  (26) 

where 1l  is a positive polynomial (typically T x x  with some small real number  ) which is used to guarantee the 

derivative of V  to be strictly negative. 1( )s x  is a decision SOS multiplier with a proper degree. n
  denotes the set 

of SOS polynomials in nx . The optimized   provides a guaranteed lower bound for the ROA. Since the 

optimization variable   is coupled with 1s , the bisection procedure is required to find the maximum   of a fixed V . 

A proper choice of 1s  is important to capture the feasible result of the problem described by Eq. (26) without 

introducing an unnecessary computation burden. According to [42], its degree can be chosen by  

 
1 1

1 1

max ( ) max (( / ) )

min ( ) min (( / ) )

D V s D V F l

D s D V F l

   
   

x

x
  (27) 

where ( )D   represents the degree of a polynomial. The freely available toolboxes SOSOPTs and solver SeDuMi [21], 

are used in this Note to solve the problem. Readers are referred to [41] for more information about the SOS 

programming and the toolboxes. 
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The result can be conservative because of many reasons, for example, the shape of the Lyapunov function, the 

SOS relaxation procedure, and the set containment treatment. Then exhaustive Monte Carlo search is carried out using 

0 ( 1,...,5)
i

i    to give an insight into the upper bound of ROA on the    plane, which helps to evaluate the 

extent to which the estimation obtained using the SOS approach is conservative.  

IV.Results 

As it was mentioned earlier, one of the main characteristics of the adaptive control system is the capability of fast 

adaptation. The MRAC performance can be optimized by tuning the hyperparameters, namely, the adaptation rate   

and the sigma modification R
 . One important step in verifying the adaptive control law is to ensure that the 

operational region of the system is contained in the ROA. The disturbed adaptive control model in Eqn. (17) and (18) 

can have an altered ROA compared with the original system. In this section, the ROAs for different values of the 

adaptation rate   and the sigma modification term R
  are analyzed.  

Linearization analysis shows that the origin is an asymptotically stable equilibrium point of the disturbed wing 

rock control system. To initialize the bisection procedure for estimation, a second-order Lyapunov function is 

computed as  

 
1T T

V
 x Px      (28) 

where P  is determined by Eq. (13) with Q I  ( I  is the unit matrix) and [2.298, 2.000;2.000,3.536]P  in this 

example; Γ I , and   is a positive scalar which is an important control design parameter. 

A. Adaptation Rate 
The effect of varying adaptation rates is explored by analyzing the ROA with respect to the origin of the disturbed 

adaptive system. In this case, the sigma modification value is held constant as 1 to isolate the effect of a changing 

adaptation rate. The largest possible values of the level sets for the Lyapunov function (28) is searched by the SOS 

procedure and the results are given in Table 1. The discrepancy in these values is small. However,   variation has a 

more tangible effect on the ROA, which is analyzed through 2D cross-sections of the ROA estimates in Fig. 3. The 

bounds on ( 1, 2,...,5)
i

i   increase as   increases. This makes sense because a larger adaptation rate enhances the 

adaptive law and a smaller adaptation rate disables the adaptive law [5]. The numeric simulation validates that the 
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trajectory converges to zero when  =10 but diverges when  =1 at 5 deg, 0   , 2 15    and zero initial 

values for other adaptation variables. 

Table 1 Level set of Lyapunov functions for different adaptation rates 

  Level set of V  in Eq. (28) 

0.01 2.09180 

0.1 2.07031 

1 2.05261 

10 2.04883 

100 2.04883 

1000 2.04863 

 

 

Fig. 3 Estimated ROA for different adaptation rates. 

 

B. Sigma Modification 

Similarly, the effect of varying sigma modification values R
  on the MRAC closed-loop system under proposed 

conditions is explored with the adaptation rate   fixed at 1. The sigma modification is used to prevent parameter 

drift by bounding the evolution of estimation parameters. By analyzing the region of attraction around the origin, the 

largest possible values for the level set of the Lyapunov function 
T T

V  x Px    are obtained, as shown in Table 2. 

Again, 2D cross-sections of ROA for different values of R
  are used for analysis, which is demonstrated in Fig. 4. 

These results manifest that R
  also affects the ROA size, however, it is less as compared to  . Similarly, the 

numerical simulation validates that the trajectory converges to zero when R
 =10 but diverges when R

 =1 at 

5 deg, 0   , 2 15    and zero initial values for other adaptation variables. The trajectory simulation in Fig. 5 
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shows that the larger the sigma modification value, the faster the convergence and the smaller the overshoot for the 

adaptation parameters, thus a larger range of initial conditions can be stabilized. The illustrative results of the SOS 

method in Fig. 4 support this statement. 

Table 2 Level set of Lyapunov function for different sigma modification values 

R
  Level set of V  in Eq. (28) 

0.01 1.68945 

0.1 1.86230 

1 2.05261 

10 2.09351 

100 2.09863 

1000 2.09863 

 

 

Fig. 4 Estimated ROA for different sigma modification values. 
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Fig. 5 Variables evolution for different sigma modification values. 

The SOS results above imply that the ROA for θ  grows with the increase of both adaptation rate and sigma 

modification value. A larger value of both the control parameters can assure a larger set of stable initial conditions, 

and adaptive parameters have a larger upper bound. 

V.Discussion 

The proposed approach for analysis of the hyper parameters, the adaptation gain   and the modification term 

value R
 , allows proper selection of adaptation gain. Taking into account that the SOS technique was shown to be a 

useful tool for time-delay margin [5,22] and input-output gain [15] analysis, SOS provides a comprehensive tool for 

adaptive control system design. 

For validation purposes, Monte Carlo simulations are performed on a boxed area of [ 360,360]deg    and 

[ 540 139.86,540 139.86]deg/ s     , and stable initial conditions on the    plane are obtained, as shown in the 

upper right area encircled by the curves in Fig. 6. The results indicate that the ROA is sensitive to the control parameter 

  and R
 , and the variation with   is relatively more obvious than that with R

 . This confirms the results obtained 

by the SOS procedure in Fig. 3 and Fig. 4. 

At the same time, the ROA estimates by SOS procedures are also demonstrated along with the Monte Carlo results 

as shown in Fig. 6, which reveals some limitations of the current method because of the usage of elliptical shapes (i.e. 

quadratic Lyapunov functions) to estimate the ROA. However, in our high-dimensional case, the ROA has a more 
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complex shape, and thus algorithm yields more conservative estimates. In order to overcome these limitations, 

methods using other more complex shapes, namely, high-order Lyapunov functions or superimposing elliptical shapes, 

might be useful.  

It is an inherent limitation of the SOS optimization that it is sensitive to both the state order and the polynomial 

degree of the model. The formulation of the ROA estimation problem results in a total of seven states and six-degree 

polynomials describing each variable. Considering that the size of the problem has approached the upper limit of SOS 

optimization, only a second-order Lyapunov function as in Eqn. (28) is evaluated, which takes two hours for one 

iteration in the bisection sequence with a 16-core processor and 12G of RAM. About 10-20 iterations are needed to 

obtain the level set in Table 1 and Table 2 with a tolerance of 1e-4. A higher-order Lyapunov function can further 

enlarge the SOS program in principle but for an adaptive control system, a large number of estimation parameters i
  

can easily inflate the SOS program, which can result in a shortage of available memory and computation power [5].  

Another limitation of SOS optimization is its reliance on polynomial models. Proper polynomial approximation 

[43] and piecewise polynomial models for a complex model (for example, the aerodynamic coefficients at the low and 

high angle of attack across the flight envelope) [10] have been proposed to work around this limit. The computation 

has also been extended to rational and composite Lyapunov functions [13]. Numerical computation is also sensitive 

to the dynamics of the systems. Time scalings can be used to preprocess the problem and reduce numerical issues [5].  

Even though the estimated ROA is still less than the ROA estimate via Monte Carlo and the controller design 

based on it might be too conservative, the estimation results cover the majority of the operational domain and provide 

a solid ground for adaptive control system exploitation domain. 

 

Fig. 6 Upper bound of ROA obtained by Monte Carlo simulations 
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VI.Conclusion 

The lack of rigorous numerical techniques for the clearance of adaptive control systems is one of the obstacles 

preventing the wide usage of these promising techniques. Most of the adaptive algorithms make a closed-loop system 

a nonlinear one, and thus most of the classical control design and clearance methods become inapplicable. This paper 

proposes novel measurable metrics for adaptive control stability evaluation. In particular, it is proposed to use a 

numerical region-of-attraction estimate to issue stability certificates. A key element in adaptive control design is the 

tuning of hyperparameters, which affects the system performance as well as the stability. One of the main 

performances of the adaptive system is a fast adaptation. The approach is demonstrated through the investigation of 

the influence of these hyperparameters, such as adaptation gain and the stability-enhancing σ-modification term, on 

the stability of the system through the numerical ROA estimates. The ROA is estimated using the sum of squares 

(SOS) optimization technique. The benchmark model of wing rock dynamics with a model reference adaptive control 

is utilized for validation purposes. 

The performed analysis manifests that the performance of the adaptive control system might be improved for larger 

adaptive gains since the system can adapt to unknown dynamics faster and can accommodate larger adaptation gain 

error bounds. Larger values of sigma modifications also improve the performance of the system, namely, decreasing 

overshoots and increasing the stable region of initial conditions. 

The analysis of results shows some limitations of the current method because of the usage of elliptical shapes to 

cover the ROA. For highly nonlinear systems with a large number of states, the ROAs have complex shapes, and thus 

algorithm yields more conservative estimations. Even though the estimated ROA is still less than the Monte-Carlo-

based ones, the results from the SOS optimization cover the majority of the operational domain and provide a solid 

ground for the adaptive control system exploitation domain. 
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