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Abstract

Non-elliptic lift distributions were originally conceived by Prandtl as a solution for wings having optimal aerody-
namic and structural efficiency. Since 1933, many researchers have expanded on this theory to confirm that it
explicitly facilitates the trade-off between induced drag and weight, and have unveiled other potential benefits
such as proverse yaw. This theory is seen as a promising alternative to redefine the underlying principles of
conceptual wing design in the search for a step increase in efficiency. Given the recent revival of this approach,
in this paper the authors present a concise review of its theoretical basis, the developments carried out in this
area and their relevance to the future of aviation.
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1. Introduction

The study of wing aerodynamics and design have been central to the work of aeronautical engineers
from the earliest days of human flight. The theories and methods developed have been consolidated
through the engineering excellence reflected in the safety standards of aviation. Today, optimisation
processes used in conceptual wing design tools are still grounded in these established approaches,
such as Prandtl’s lifting line theory[1]. However, the current socio-economic prospect has fuelled
the prevailing need for a technological future that is in closer harmony with the environment, yet ac-
commodating to our ever-growing demands. The consequential strive for more efficient flight has led
many to challenge a diversity of conventionalities in civil aircraft design. In particular, a community of
researchers and designers have addressed it through the reconsideration of the underlying theoret-
ical principles of conceptual wing design, in order to minimise induced drag and advance towards a
holistic flight model. This endeavour has led to the re-inspection of an alternative approach first pub-
lished by Prandtl in 1933[2]. Here, he proposed to remove the fundamental constraint of fixed span,
established in the lifting line theory and instead prescribe wing bending moment. By doing so, he
synthesised both aerodynamic and structural efficiency into a single theory, of which the solution for
minimum induced drag yielded a non-elliptic lift distribution (NELD). Today, a similar ‘span-extension’
solution can be seen on wings with winglets and elegantly designed wing twist distributions, the latter
often obtained through state-of-the-art multidisciplinary design optimisation (MDO) processes. Re-
searchers are now trying to integrate Prandtl’s 1933 approach in wing design frameworks so that
traditional assumptions, such as the elliptic spanload being the optimal, do not constrain their pro-
posed concept.

Given the recent revival in the development of this approach to conceptual wing design, in this paper
the authors present a concise review of the work and developments carried out in the field. This
begins by providing the reader with a short summary of lifting line theory, which is the theoretical
basis used to define the key concepts of aero-structural efficiency and span extension in the NELD
approach. This is followed by a more detailed discussion of the derivation, assumptions and limita-
tions of Prandtl’s 1933 work, which also includes: (1) further developments carried out by researchers
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such as Jones, Klein and Viswanathan and Hunsaker et al. and, (2) the need for revisiting the tradi-
tional perspectives on induced drag and span efficiency. The reader is also provided with a summary
of flight dynamics implications through the discussion of the experimental approaches of the Horten
brothers and Bowers. The paper concludes by a short review of current conceptual design frame-
works and highlights the potential routes for integrating the NELD approach in modern tools.

2. Lifting line theory

It is widely acknowledged that Prandtl’s work in fluid dynamics has shaped modern wing theory.
The lifting line theory[3, 4] arose from the collaboration with Betz in the early 1900’s, and is now so
fundamental to conceptual aircraft design that it can be found at the core of almost all modern wing
design tools. The theory defines a finite wing as a bound vortex filament consisting of an infinite
number of horseshoe vortices that are shed downstream. This approximation captured the main
aerodynamic features of a lifting surface despite the considerable number of assumptions: inviscid,
incompressible and irrotational flow only at small angles of attack. In the interest of conciseness,
the authors direct the reader to Reference [5] for the detailed theoretical derivations. Yet, Prandtl’s
early work exposes the struggle he faced to find an expression of circulation distribution that would
yield a "plausible"[3] downwash after solving the singular integral given by the Biot-Savart law, which
determines the velocities induced at the wing by the trailing vortices. The desired solution was initially
found in the equation of a half-ellipse as follows:

Γ(y) = Γ0

√

1−
(y

s

)2

(1)

With this, the circulation distribution Γ(y) at each spanwise position y would be determined by the
maximum circulation at the root Γ0 and the wing semi-span s. In addition to the elegance of the
constant downwash provided by Glauert’s integral, the elliptic lift distribution also yielded the minimum
induced drag for a given wing. Hereby, the spanwise loading could be effectively represented as the
sum of all the velocities induced on the wing, or presented in terms of angles-of-attack through the
following linear integro-differential equation:

−2Γ(y)
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1

4πV∞

∫ s
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dΓ(y0)
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dy0

y− y0

+α +αT (y)−α0L(y) = 0 (2)

The terms in the lifting line equation presented in Equation 2 equate to, respectively: the effective
angle-of-attack, the induced angle-of-attack, wing incidence angle α, geometric twist αT and zero-lift
angle-of-attack α0L; and is presented as a function of: circulation Γ, lift curve slope Clα , chord c,
free-stream velocity V∞ and vortex strength (dΓ/dy)dy.

The first formal mathematical model of a wing’s lifting properties was published by Prandtl[1] in 1918,
but it could be argued that this could not have been achieved without Lanchester’s earlier work,
published in 1907[6]. Here, he acknowledged the existence of asymmetric vortices being shed from
the wingtips of a finite wing, which would dissipate energy into the wake of a three-dimensional flow.
This has lead to historical controversy on the origins of lifting line theory and thin aerofoil theory[7],
for which Lanchester has received further credit in recent years. Be that as it may, this theory is built
upon the work of Kutta-Joukowski[8, 9], Biot-Savart[10], Helmholtz[11] or Munk[12], and altogether,
they lay down the theoretical and mathematical foundations behind the aerodynamics of the aircraft
we see today.

The profound relevance of lifting line theory has led many to generalise the approach: it has now
been extended for the study of curved, swept or other arbitrary-shaped wings[13, 14, 15, 16, 17]; it
can consider unsteady flow conditions[18, 19, 20, 21] and integrate nonlinear data[22, 23]; or include
compressibility effects[24, 25, 26]. An extensive discussion covering the numerous adaptations of
lifting line theory could easily commence, but that is beyond the scope of this review. The reader
interested in such developments is directed to the References[5, 27, 28, 29, 17, 30, 31, 32, 33].

2



On wings with non-elliptic lift distributions

3. Theory of non-elliptic lift distributions

Prandtl continued exploring the mathematics behind the established lifting line theory. The elliptic
circulation distribution was just the first order term of a series equation, which had been presented
as[3]:

Γ(ξ ) =
√

1−ξ 2(Γ0 +Γ2 ξ 2 +Γ4 ξ 4 + ...) (3)

where ξ = y/s. This formulation describes a variational problem that could yield many different solu-
tions. However, the design concepts that Prandtl was previously evaluating always considered a fixed
wing. With this constraint, the elliptic curve would always be the optimal spanwise loading.
However, his perseverance took him to an alternative solution, presented in 1933[2], which removed
the span constraint and instead considered structural limitations1. Conscious of the fact that span
extension is sometimes impractical due to operational limitations, he still believed it unseemly to
consider the elliptic spanload as the only optimum. Therefore, Prandtl reformulated the problem for a
given design flight condition: knowing that increasing aspect ratio reduces induced drag, he enquired
whether it was possible to extend the wing while minimising the increase in structural weight. To do so,
the integrated bending moment due to spanload was prescribed as the parameter driving structural
weight, while wing area remained fixed. Prandtl expanded Equation 1 according to Equation 3 to
account for second order circulation terms, becoming:

Γ(y) =
[

Γ0 +Γ2ξ 2
]

√

1−ξ 2 (4)

which would associate with a quadratic downwash distribution necessary to satisfy the problem con-
ditions. This generated a family of curves that would yield the spanload for minimum induced drag
and structural weight at each span extension. While the half ellipse still provided the ideal aerody-
namic characteristics for the baseline wing, the optimal solution would have a bell-shaped form2. The
latter provided an 11% induced drag reduction with a 22.5% span extension, therefore minimising
induced drag while maintaining the same structural weight as its equivalent wing with elliptic loading.
Let us expand on the derivations to show the mathematical implications of the above problem state-
ment. Prandtl assumed the structural weight Ws of the wing to be proportional to the integrated
bending moment MI(y) at each location as:

Ws(y) =
1

Ks

MI(y) =
1

Ks

ρ∞V∞

∫ s

y
Γ(y0)(y0 − y)dy0 (5)

with ρ∞ representing the free-stream density. Here, the spar was assumed to have a constant section,
which implies a rectangular planform and a constant proportionality factor Ks along the span. The
prescribed structural weight is computed through the integration of the bending moment MI(y), which
can be expressed in terms of the aerodynamic load as the moment of inertia of the lift:

Lr2 = ρ∞V∞

∫ s

−s
Γ(y) y2dy (6)

where r is radius of gyration of the lift distribution and L is the total lift. Betz derived the respective
auxiliary constraints by applying a variation δΓ to an auxiliary wing placed far downstream. Here,
the streamwise induced velocities are negligible, and thus the wing is only subjected to a downwash
given by 2w. If the required circulation must satisfy Γ(y), the addition of δΓ will cause no variation on
the induced drag Di, complying with Helmotz’s theorem. With this, the expression for induced drag
became:

Di =
L2

8πρ∞V 2
∞r2

(1−µ/2)
(

1−µ/2+µ2/4
)

(1−µ/4)3
(7)

where µ =−Γ2/Γ0. With this, the span b becomes a function of the spanload in the form of:

b = 4r

√

1−µ/4

1−µ/2
(8)

3



On wings with non-elliptic lift distributions

µ b/4r Γ0 Di/DiE

0.00 1.0000 1.0000 1.0000
0.25 1.0351 1.0305 0.9458
0.50 1.0801 1.0581 0.9096
0.75 1.1402 1.0795 0.8921
1.00 1.2247 1.0887 0.8889

Figure 1 – Reproduction of Prandtl’s 1933 solutions[2]. Curves for circulation and downwash
distributions (left). Tabulated span, circulation and induced drag factors for different values of µ

(right).

The results of this approach are shown in Figure 1: curves a show the well-known elliptic circulation
and constant downwash distributions, which agree with the earlier solution derived from the lifting line
theory, as there is no span extension; curves b show an intermediate case given by an arbitrary span
extension; curves c show the optimal bell-shaped distribution, having the same lift and integrated
bending moment as the elliptic case but providing the aforementioned 11% reduction in induced drag
with a 22.5% longer span. Prandtl examines this “optimal” point as a function of µ. This parameter
expresses the ratio of the second linearly superposed circulation, driven by the coefficient Γ2, over
the constant term in the expansion, which determines the elliptic spanload. Later it will be shown
how the second term is directly linked to the structural weight[35]. Thus, when µ = 0 the solution is
elliptic and no additional circulation is superimposed. As µ increases, the second term re-shapes the
original curve by superposition, while induced drag decreases with increasing span at a fixed radius
of inertia r. However, for µ > 1 the resulting circulation distributions start yielding negative values
from the wingtip, which is not physically consistent nor aerodynamically efficient. The optimal point
is therefore given by the curve that has a null gradient at the wingtips, corresponding to µ = 1. With
this, Prandtl elegantly found an alternative wing design approach that would suit both operational
and structural design requirements at a conceptual design stage. The solution could be derived
analytically and would provide minimum induced drag for a given design point.

3.1 Other classical approaches to aero-structural efficiency
Many have tried to derive similar theoretical models for minimum induced drag and optimal structural
weight. In 1950, Jones[36, 37] supported a design philosophy for practical wing design driven by
structural requirements, and addressed it independently by prescribing the wing root bending moment
MR, given by:

MR = ρ∞V∞

∫ s

0
Γ(y)ydy (9)

To reach Jones solution, Munk’s mutual drag theorem[12] was assumed to find an additional distribu-
tion that varies the loading without increasing induced drag. As previously, far-field wake assumptions
was applied to determine the downwash through potential theory. Herein, the downwash is defined
by a first order polynomial to satisfy the boundary conditions of this approach, as opposed to the
quadratic variation demanded by Prandtl’s 1933 proposal.

1Oddly enough, it is only recently that an official English translation of Prandtl’s 1933 paper was published[34].
2Hereafter, the authors refer to the bell-shaped spanload as the optimal non-elliptic curve for minimum induced drag

corresponding to each of the theories.

4



On wings with non-elliptic lift distributions

Prandtl[2] had defined the radius of inertia of the lift distribution and held this parameter fixed and
equal to that of the elliptic loading. Unlike Prandtl, Jones determines the circulation as a function
of the non-dimensional spanwise position of the spanload centroid over the semi-span yC. This
parameter needs to vary with span extension for the circulation to to redistribute the loading. However,
what remains fixed and equal to the baseline elliptic spanload is the dimensional centroid yC = yCs.
The loading distribution for a given lift and root bending moment can be expressed as a function of
the non-dimensional centroid as:

Γ(y) =
L

2ρ∞V∞s

(

12

π
−6yC

)

√

s2 − y2

s
+

(

18yC −
24

π

)

y2

s2
cos−1 s

|y|
(10)

and the expression for minimum induced drag yields:

Di =
L2

πρ∞V∞4s2

(

9

2
π2yC

2 −12πyC +9

)

(11)

With this, Jones had obtained another set of non-elliptic spanloads that provided minimum induced
drag and structural weight for any span extension. The optimal solution was now determined prag-
matically, given that the rate of induced drag reduction with span increase is insignificant for 1.15 <
rs < 1.33, and further extensions will again lead to negative circulation at the wingtips. Here, rs des-
ignates the ratio of span extension given by the span of the extended wing over the span of the
baseline elliptic planform as rs = b/bE . The upper limit of this span extension range can be found by
computing the first and second derivatives of Equation 11. The root of the first derivative is found
at rs = 1.33, and, like Prandtl’s solution, it will not be a global minima, but an inflection point. Thus,
the optimal point can be set at the lower limit, where Equation 10 yields a non-elliptic spanload that
reduces induced drag by 15% with a 15% increase in span. If the span remains fixed, the resulting
circulation curve agrees with the solution of an elliptic spanload, and any other solution will hold the
same root bending moment as the elliptic case.

Klein and Viswanathan also explored the added value that the non-elliptic spanloads can provide
in terms of aero-structural efficiency. Their work insists on the importance of incorporating structural
considerations in aerodynamic design as a way of coupling both design limitations into a single theory.
Initially, they derived a solution providing minimum induced drag for a prescribed wing-root bending
moment[38], as defined in Equation 9. Interestingly, this proposal was built upon Prandtl’s 1933 paper
alone and with no knowledge of Jones’ work, and could be applied to higher aspect ratio wings with
relatively small sweep. As Jones had shown, the downwash was required to vary linearly along the
span. The circulation distribution they obtained was as follows:

Γ(y) = rs
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s

)2
(

2C1 +2
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√
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y
s
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 (12)

where the constants C1 and C2 are a function of the span ratio rs.
Although Klein and Viswanathan employ a different approach to obtain the circulation distribution in
Equation 12, this can be rewritten in terms of the inverse hyperbolic cosine to yield Jones’ solution
in Equation 10, and therefore yield the same load and induced drag behaviour with span extension,
given that the boundary conditions of the problem are the same. In this case, Klein and Viswanathan
defined the optimal point at the upper bound of rs, where a reduction of 16% in induced drag is
achieved with a 33% span extension. This result shows the negligible reduction in induced drag
compared to span increase that Jones had observed previously.
Later, Klein and Viswanathan expanded the above theory to include more precise approximation of
the wing structural weight[39, 40], in which the structural boundary conditions were now determined
by the integrated bending moment MI and shear force Fs distributions, expressed as:

∫ s

0
Fs(y)dy = ρ∞V∞

∫ s

0

∫ s

y
Γ(y0)dy0dy

∫ s

0
MI(y)dy = ρ∞V∞

∫ s

0

∫ s

y
Γ(y0)(y0 − y)dy0dy

(13)
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which now required a quadratic downwash distribution. Altogether, the circulation distribution derived
from these assumptions follows:

Γ(y) =
s

sE
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where C1 =C2 =C3 = f (rs), and the ratio of induced drag over the elliptic case is expressed as:

Di

DiE

= 4
9r4

s −40r3
s +

145
2

r2
s −60rs +

75
4

r6
s

(15)

According to their publication, minimising Equation 14 would yield a NELD with a 7% reduction in
induced drag with a 16% span extension. Herein, they also discussed further design criteria that
should be considered in the design process, such as the reduction of wing weight during flight due
to fuel consumption. However, it is not straight forward to analytically insert such a design parameter
into the variational problem.

3.2 Extensions and limitations
The early theories for aero-structural wing design are insightful and elegant approximations that can
be employed as a prelude to the conceptual design phase. They add emphasis on wing shape optimi-
sation as a variational problem, the solution of which is not unique but dependant on the assumptions
and design criteria adopted. Indeed, one of the main limitations of these early approaches arises
from the determination of wing loads. In all cases, the structural constraint is set at the same flight
condition at which drag is minimised: cruise flight. Nevertheless, structural strength requirements
must be met at all regions of the flight envelope to ensure structural integrity. Not only it is a critical
design driver, but its omission can also bring dramatic induced drag increase due to the sensitivities
of the spanload to off-design conditions. The large washout needed to yield the traditional non-elliptic
spanloads penalises performance during high load manoeuvres, since twist has a direct impact on lift
coefficient CL. Similarly, to select a critical load condition as the design point will also increase drag
considerably during cruise.

These considerations have been addressed by many via extensions of the early theories presented
above. A more practical approach would allow to minimise induced drag at a different CL at which
the bending moment must be prescribed[41] in order to reduce off-design penalties while alleviating
wing structural loads during high load manoeuvres[35, 42]. Moreover, the choice of aerodynamic and
structural models alters the trade-off between span extension and wing structural weight, and impacts
the theoretical proportionality coefficient Ks between bending moment and weight[43]. However, more
accurate models for wing weight can be embedded to an analytical approach. For a simple beam, the
integrated bending moment divided by the section thickness[44] can capture the variation of material
properties carried along the span due to changes in chord or thickness, which would affect the wing
box strength and mass[45]. The inclusion of aerofoil thickness as a variable provides further insight
on various off-design considerations. It is a determining factor in the relation between weight and
bending moment Ks, and becomes a crucial parameter when total drag is considered[46, 47, 48], on
which the characteristic twist distribution of wings with NELD will also have a significant impact[49].
Constraints on the local maximum stress as a function of the beam cross-section and material would
allow further consideration of arbitrary planforms through a numerical approach. Wing area is another
variable that will compromise the results due to its direct relation with profile drag and area-dependant
weight[48, 50]. Moreover, the resulting high aspect ratio together with the required non-linear twist
distribution increases the risk of encountering adverse aeroelastic phenomena[51], which has been
assessed through its impact on wing deformation[52] and with consideration of aeroelastic feedback
on the bending moment constraints[43, 46, 47, 53].
The use of NELDs might face further limitations in transonic flight regimes. Here, compressibility ef-
fects are unavoidable and aircraft designers invest great effort to address such phenomena. Existing
methods focus on cross section and planform design to increase the speed at which drag divergence
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occurs while simultaneously weakening the shock strength. These include supercritical aerofoils and
wings, laminar flow wings, bodies shaped under the Whitcomb area rule, and, of course, the estab-
lished wing sweep. Wing warp is another design approach that is gaining interest due to the growing
MDO capabilities[54, 55]. Here, twist and camber distributions have proved to be significantly more
critical than spanwise thickness; parameters which are key features of wings with NELDs. These
designs require a non-linear downwash that is commonly achieved through a bell-shaped twist dis-
tribution, yielding a washout that can be notably higher than that found on conventional wings. Alter-
natively, the same effect could be achieved through careful design of camber distribution. However,
these requirements could lead to an increased the likelihood of shock waves and drag onset at both
design and off-design conditions.

Emphasis must be kept on span extension to achieve aero-structural optimisation under the assump-
tions of the above methodologies. Past work[56, 57] that did not account a span extension did not
see significant improvements in performance. Weight savings can be achieved on a fixed wing by
exchanging an elliptic spanload for a NELD as the load is shifted inboard. Without a span exten-
sion, these savings will be rapidly overcome by drag penalties as the spanload deviates from the
elliptic. In practise, however, it is frequently unfeasible to extend the span on an existing aircraft.
When operational aspects are considered, weight reduction at expense of induced drag becomes a
debatable trade-off. The optimal solution for such a problem would be given by the spanload that
provides the desired structural weight reduction with the smallest increase in drag. But this would
not necessarily improve the aircraft’s performance. However, this approach to aero-structural effi-
ciency does not essentially represent Prandtl 1933 proposal. Alternatively, such an approach could
be chosen if the design trade-off is to be made within the traditional vision of wing equivalence. The
standards[58, 59] define that two wings will be equivalent if they have an equal exposed wing area,
tip chord and fixed gross span. But this definition arises from the fact that majority of available meth-
ods to predict wing aerodynamic properties are predominantly based on tapered planforms. Thus,
this guideline fulfils the need to make allowances for shape variations, such as cranks, and its im-
plementation is done through the geometric representation of such wings in their equivalent tapered
form. However, it could be argued that this traditional definition, which is only a function of geometric
parameters, is not suitable in the context of NELD. Instead, it appears more sensible to define wing
equivalence in relation to the parameters that are to be compared. NELD wing designs are aero-
dynamically and structurally equivalent because they yield the same prescribed aerodynamic and
structural properties. Equivalence might therefore become a malleable criterion that is shaped to
provide the appropriate comparison required in each analysis.

A major benefit of the equivalent extended wing lies in the fact that induced drag is reduced while
structural penalties are minimised. But wing extension comes in other forms. Wingtip devices provide
the means to achieve similar aerodynamic improvements to those gained by increasing the wing as-
pect ratio, but also entail many of the trade-offs discussed above[60, 61, 62, 63, 64, 65]. The value of
wingtip technologies excels in their use as retrofitting devices, retaining the design aerodynamic and
handling characteristics while avoiding the redesign of the wing. The type of wingtip device that best
suits a given aircraft will depend on various factors, such as the spanload carried by the baseline wing,
airfield gate and manoeuvring limitations, on the convenience for wing structure modifications, as well
as the type of design mission of the aircraft. Anyhow, careful design of twist and camber is necessary
to extract significant improvements from the integration of this device[66, 67, 68, 69, 70, 71]. Gener-
ally, planar wingtip extensions can provide higher reductions in induced drag than winglets of similar
size. However, planar extensions induce higher loads on the wing structure, which will necessitate
reinforcement unless combined with a wing lift distribution that alleviates such loads. Aerodynamic
and structural features become again trade-offs between added weight and loads, which in turn will
determine the concessions made on performance and handling characteristics.

4. Induced drag

Drag prediction is a challenging task that has amassed many methods to estimate its magnitude and
just as many others to minimise its presence. Generally, drag forces manifest themselves by altering
the balance of momentum and pressure, while conservation of energy is achieved by an increase in
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heat and kinetic energy. The latter is particularly specific to induced drag, which is associated with
the motion of large air masses surrounding the wing and characterised by a downwards motion per-
pendicular to the direction of flight. This phenomena can be treated in both the near-field and far-field
planes. The near-field requires surface pressure integration and the far-field approach necessitates
wake contour integration in the Trefftz plane[72]. Each of the methods carry their corresponding
assumptions and limitations. The problem is exacerbated by the fact that any attempt of validation
requires a separation of total drag into its subcomponents (impossible to do with current flight test
techniques).
Theoretical derivations differ in their physical conception but work accordingly within theoretical fluid
mechanics, and have been used in the analysis of planar and non-planar lifting surfaces[73, 74, 75].
Analytical methods, however, not always address the accuracy of their predictions[76, 77, 78], al-
though various methodologies have achieved improved agreement[79, 80], while also considering
higher order terms neglected in the classical theories[81]. Earlier methods for approximate solutions
still show favourable predictions when compared to later procedures developed for accurate com-
putation of minimum induced drag[61, 66, 82]. These discrepancies suggest that previous theories
assumed excessively simplified boundary conditions. Lifting surface theories such as the vortex-
lattice method include chordwise and spanwise effects, and panel methods also consider wing thick-
ness. However, induced drag predictions from these latter methodologies are usually sensitive to
discretisation[83, 84, 85, 86].
Although immensely brief, this overview on induced drag intends to recall the complex phenomena
that we are trying to address. The methods and tools available have been successful in its estimation,
but there exists a persistent strive to find the right mathematical approach to translate such physical
events into an expression that allows further understanding and manipulation. For more detailed
discussions on induced drag, the reader is the directed to the references [87, 88, 89, 90, 91, 92, 93] .

4.1 Induced drag in NELDs
Countless efforts have been made to improve aircraft performance through induced drag reduction.
Nowadays, most solutions deviate the spanload from the elliptic ideal, which suggests that our base-
line theory is not the most efficient in real flight. Recent trade-off concepts have led to incremental
but successful gains in performance, including planform optimisation, highly non-planar surfaces, and
diverse tip devices. Still, this undeniably leads to compromise, either penalising on weight, increasing
systems complexity, or reducing internal airframe space, and it is to the judgement of the designer to
determine which sacrifice will be less detrimental to satisfy the mission specifications. Nevertheless,
non-elliptic spanloads seem to promise a more favourable deal in the trade between induced drag
and weight.

Figure 2 – Representation of the aerodynamic forces on a wing with non-elliptic lift distribution.
Reproduced from Reference [94].

The optimal bell-shaped curve is associated with a span extension, which reduces induced drag.
To relieve the increased structural loads derived from the extended span, the centre of lift is shifted
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towards the root. Effectively, the lift is redistributed to be locally high at the inboard wing and have
lightly loaded tips. Here, upwash is developed, generating local negative induced drag, or induced
thrust. But induced thrust, as many experts say, is one of those things that one would rather sweep
under the carpet. The division between the concepts of drag and thrust may vary with the reference
frame or context used, and such a divergence is typically subjected to theoretical simplifications. The
projection of aerodynamic forces into the flight direction is classified as drag, and excludes thrust
forces produced by the engine. Within this framework, negative induced drag could be understood as
a propulsive self-induced aerodynamic force, and could be represented by the sailboat analogy used
in the context of winglets. This remarkably popular definition of induced thrust depicts the winglet as
a sail that takes advantage of the distorted inflow at its tip to produce lift, in the same manner as a
sailboat navigates through the sea. The net resultant force will sometimes have a forward component
in the reference frame of the moving body. This is occasionally identified as thrust. Although it can
be a matter of nomenclature convention used to simplify the explanation of this phenomena, it is just
lift and drag forces generated locally on a portion of a lifting surface. But it is misleading to state that
winglets use the energy from the wingtip vortex to reduce induced drag by generating thrust. A winglet
will not simply reduce the strength of the wingtip vortex, its presence will alter the three-dimensional
flow-field at the wingtip as projected on the Trefftz plane and will redistribute the whole spanload
so that its expended kinetic energy is reduced. Drag can be regarded as the contribution from the
dissipative effects of the flow, and induced thrust could be assigned as a contribution to propulsive
forces. However, fuel burn will be reduced not due to the apparent thrust generated by the winglets,
but because the modified spanload will expend less energy. Winglets will combine an appropriate
toe angle, aerofoil camber and height for the wing to develop optimal loads. Likewise, wings with
NELDs redistribute the three-dimensional flow-field by means of a careful wing twist design. A similar
outcome is therefore obtained, where apparent thrust can be found at the outboard wing. Horten[95]
explained it as the induced propulsion at the wingtips shown by bell-shaped lift distributions, which is
favourable with aileron deflection. Bowers[94] describes it as the resultant force locally tilted upstream
as a consequence of the induced upwash, represented in Figure 2.
The treatment of total forces intuitively simplifies the isolation of local contributions, where negative
induced drag will be subtracted from the total drag and never added to the engine thrust. However,
even this distinction is penalised by, for instance, the presence of spurious drag in high-fidelity meth-
ods, and the classification of drag-producing mechanisms becomes even more complex[96, 97, 98].
Furthermore, this problematic dichotomy can reach the fundamental definition of induced drag, as
given by Equation 16. Thus, arisen from dissatisfaction with the underlying theory, some have tried to
demonstrate or disprove mathematically the existence of negative induced drag. Spalart[99] raised
essential questions on the analysis and evaluation of induced drag as defined in the Trefftz plane
due to the paradoxical negative squared term of the perturbation velocity u2 along the wake in the
following equation:

Di =
1

2
ρ∞

∫

S f ar

(

v2 +w2 −u2
)

dS (16)

whereas intuitively, the integral for induced drag should contain the expression for kinetic energy given
by the perturbation velocities (u,v,w). Such a definition appears to allow the prediction of negative
induced drag, since the integrand is not positive-definite, and thus the perturbation along the wake
could overcome the velocities perpendicular to it. Moreover, this expression adds complexity to the
frequently used formulation that only considers the perturbation of kinetic energy within the plane
perpendicular to the free-stream:

Di =
1

2
ρ∞

∫

S f ar

(

v2 +w2
)

dS (17)

This simplification is derived from the assumption that the trailing vortices far downstream cannot in-
duce velocities along their own axis, which now follows the free-stream direction, and thus any parallel
velocity perturbation must fade. Spalart provides a rigorous assertion that removes the ambiguity in
the negative sign of u2, while deriving a mathematical proof for consistent positivity of induced drag
within a set of idealised but generally valid assumptions. Yet, he believes that a concise mathematical
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and physical description of induced drag is still unconcluded, and is thus imperative. The complex for-
mulations can be derived into simple and desirable results, for which physics can be justified through
reasoned language, but which do not fully comply with the mathematical grounds in which they are
established. This was the case of a particular approach to Prandtl’s small-perturbation wing the-
ory from a force-impulse balance perspective[100, 101, 102, 103]. Here, a particularly provocative
outcome resulted in the static pressure at the Trefftz plane being greater than the atmospheric pres-
sure, which would produce small forward increments of velocity in the wake. Thereof, concepts such
as forward flow of energy or wake buckling were derived. Although it is counter-intuitive for such a
phenomena to occur given the association of induced drag with kinetic energy, it is possible to find
regions of positive perturbation pressure behind a lifting wing. However, a combination of an unsuit-
able assumptions had led to this surprising interpretation of conditions downstream[99, 104, 105]. It
is clear that any appearance of negative induced drag is usually received with curiosity and scepti-
cism, as it ignites the need to give a reason for and resolve this oddity, regardless of how desirable
its existence may be.

4.2 Wing wake, downwash and upwash
Sections 2 and 3 convey the need for accurate prediction of downwash and upwash distributions to
estimate the aerodynamic characteristics of a finite wing. Furthermore, the problem of induced drag
minimisation could be posed as the manipulation of the flow-field around the wing, since induced
drag can be viewed as a by-product of the downwash associated with the vortical wake.
The downwash distribution induced by NELDs is determined by the degree of the functions that com-
pose the problem conditions, which is quadratic for an integrated bending moment constraint and
linear if the root bending moment is prescribed. The gradient of the bell-shaped circulation distribu-
tions approaches zero at the wingtip, which features a weak circulation strength, and sheds stronger
vortices inboard. With this, it can be interpreted that the downwash at the vicinity of the wing root
can overcome the downwash at the wing tip, transforming it into upwash[94, 106]. Conversely, the
gradient of an elliptic spanload approaches infinity at the tip to satisfy a null circulation, leading to
an immediate formation of strong wingtip vortices. Figure 3 illustrates the contrast between both
downwash distributions. The wake characteristics of wings with NELDs could be observed recently
at NASA after a set of flight tests carried out under the direction of Bowers[94, 107]. The inboard
vortex roll-up and the outboard upwash were captured during flight by streamers attach on the trail-
ing edge of the flying wing. The fundamental design approach followed Prandtl’s 1933 theory and
was inspired by the Horten aircraft and aimed to gather experimental data on the performance and
handling qualities of such configurations.

Figure 3 – Diagram comparing the downwash induced by an elliptic circulation distribution (left) and
a bell-shaped circulation distribution (right). Reproduced from Reference [94].

Induced downwash is expressed as the vortex strength induced by the trailing vortex sheet. Thus,
variations of the self-induced velocity profile behind the wing will dictate the roll-up behaviour of the
wake vortex sheet. A recent comparative study[108] was performed on the wake characteristics of
elliptic and NELD configurations, with the use a RANS approach at the near-field and free-wake
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simulations at the far-field. The results show an unconventional wake development for the aero-
structurally optimised wings, which agree with past studies on wakes shed by similar spanloads[109,
110, 111]. Firstly, Prandtl and Jones’ configurations featured a substantial delay in wake roll-up
(approximately 6 and 12 times farther respectively, compared to an equivalent elliptic spanload).
Moreover, the roll-up rate behaved correspondingly to the quadratic and linear downwash distribution
characteristic of each configuration. Secondly, the trailing vortices of the non-elliptic configurations
did not develop at the wingtips but were formed further inboard. Thirdly, the vortex span was smaller
in the wake of the non-elliptic spanloads. However, it was identified that the separation of the vortex
cores corresponded to the distance between the maxima and minima of the shed vortex strength,
multiplied by the ratio of the vortex span to the wingspan of the elliptic configuration. The vortex
mitigation achieved by means of non-elliptic spanloads can challenge existing methods for passive
alleviation of the vortex roll-up process. These results could be beneficial in the context of formation
flying and address other operational interactions.

4.3 Span efficiency factor and performance
In the search for the spanload for minimum induced drag, it is customary to quantify the aerodynamic
efficiency of a given lift distribution in terms of the span efficiency factor e. In lifting line theory, it is
derived from the expression for induced drag, given by:

Di =
2L2

πb2ρ∞V 2
∞

[

1+
∞

∑
n=2

nA2
n

A2
1

]

=
2L2

πb2ρ∞V 2
∞

[1+δ ] =
2L2

πeb2ρ∞V 2
∞

(18)

for a fixed wing area, and is obtained from the general Fourier series formulation for the circulation
distribution. Hence, the expression for e becomes:

e =
1

1+δ
=

1

1+∑
∞
n=2

nA2
n

A2
1

(19)

Here, the inviscid span efficiency factor measures the departure of a given spanload from the elliptic
solution[112], as a result of the contribution of the additional non-zero Fourier coefficients An to the
circulation distribution. Within the classical lifting line theory framework, the elliptic spanload pro-
vides the minimum value of δ , as it is defined by only the first Fourier coefficient A1 and An = 0 for
n > 1. Any other solution will yield An 6= 0, which deviates the spanload from the elliptic curve and will
necessarily yield δ > 0 (or e < 1) and will increase induced drag. This criterion initiated the search
for wing configurations other than the elliptic planform that could provide the closest value to e = 1.
Glauert[113] showed that a straight tapered wing with a taper ratio of λ = 0.40 would be the most
advantageous. Nevertheless, as theory and technology were developed along with the endeavour to
increase efficiency, many unconventional designs emerged that included highly non-planar configu-
rations. The analysis of such wings required a more generalised expression for the span efficiency
factor to account for arbitrary geometries. This could be derived through Munk’s optimal normalwash
solution, which was obtained as proportional to the cosine of the dihedral angle. A wide range of
configurations were found to provide e > 1, including wings with an extensive variety of tip forms, box
wings, V-wings, etc[61, 114, 115, 116].
Now, it was possible to obtain values of span efficiency higher than the theoretical maximum, despite
the contradiction with the original formulation. However, these favourable results would be overcome,
among other factors, by the increase in profile drag or weight. Considering that weight is a cardinal
determinant for efficient flight, it seems rather inconvenient that it is not integrated in one of the
fundamental metrics for efficiency. Spanloads such as the bell-shaped distribution provide reductions
in induced drag by outweighing their reduced aerodynamic efficiency with a higher aspect ratio. Yet,
this does not reflect that weight has not theoretically increased with span extension, fact that could be
considered more efficient from an aircraft performance standpoint. The classical expression for span
efficiency factor e is a result of the specific constraints defined for a particular variational problem: a
straight wing with a given fixed lift and fixed span; and it conveys how much a spanload will vary from
the optimal solution of this particular problem. However, when the lifting line is extended to consider

11



On wings with non-elliptic lift distributions

structural weight, the resulting expression for induced drag is now different from Equation 18, and it
will vary for each modification of the assumed structural constraints.

Phillips and Hunsaker[35] put this approach into practice to demonstrate the significance of such
considerations. The corresponding analytic expressions for induced drag are derived, together with
their pertaining efficiency factors as a function of Fourier coefficients. With this, Prandtl’s 1933 op-
timal circulation distribution, shown in Equation 4 and having µ = −Γ2/Γ0 = 1, can be rewritten in
trigonometric coordinates as:

Γ(θ) = 2bV∞A1

[

sinθ −
1

3
sin3θ

]

(20)

Comparing Equation 20 to the generalised Fourier series expansion for circulation[3], and defining
Bn = An/A1, the Fourier coefficients for n > 1 are now B3 = −1/3 and Bn>3 = 0. Introducing B3 into
Equation 19, which assumes fixed gross lift and span, reveals a lower span efficiency factor than
that of the ideal elliptic spanload. This result does not indicate that the drag will be smaller due
to the extended span. A more suitable criteria could therefore be to have the highest value of the
product b2e, following Equation 18. Yet, this measure would not consider structural equivalence. To
do so, structural parameters must be present in the derivation of the expression for aero-structural
efficiency. Nonetheless, it must bear in mind that the choice of constraints remains arbitrary and
bound to the assumed critical design points, as to encompass all the structural variables is, again,
an unattainable task that demands compromise. For instance, one could fix weight and maximum
stress on the structure due to limit loads on a rectangular wing, and assume the integrated bending
moment to be proportional to the weight so that the proportionality factor is constant. The integrated
bending moment could be defined from its dependency on the aerodynamic loads as well as the
weight distribution, which could be a function of the wing structural weight, the total aircraft weight
and the specified maximum load factors. From these assumptions it derives that the wing structural
weight is a function of B3 only, and that this coefficient can be traded with span to keep the weight to a
minimum while reducing induced drag. The corresponding expression for induced drag would yield:

Di =
KgWr

16πρ∞V 2
∞

W 2

KsWs

(

1+B3 +3B2
3 +3B3

3

)

(21)

Because all Fourier coefficients contribute to induced drag, this study assumed that Bn = 0 for n 6= 3.
Thus, the expression for induced drag is composed of a constant term, which is a function of various
weight parameters, including the aircraft’s total weight W , the proportionality factor Ks and dynamic
pressure, multiplied by a new efficiency function that depends solely on B3. Now, if values of B3

that yield any negative circulation are likewise excluded, the minimum of Equation 21 corresponds to
Prandtl’s 1933 solution, and can be visualised in Figure 4.

Figure 4 – Induced drag efficiency factor from Equation 21 as a function of B3 on a rectangular wing
with fixed weight, maximum stress, and constant Ks. Reproduced from Reference [35].

As aforementioned, this is just one arbitrary solution subjected to some arbitrary set of constraints.
If, instead of the above conditions, the weight, maximum stress, and wing loading were to be fixed for
a same structural model and weight distribution, the resulting induced drag would now be a function
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of:
Di = f

(

(

1+3B2
3

)

(1+B3)
2/3

)

(22)

The coefficients that minimise the above expression are now B3 = −3/8+
√

9/64−1/12 and Bn = 0

for n 6= 3, the trend of which is shown in Figure 5. A final design approach presented by Phillips
and Hunsaker evaluates maximum deflection constraints under the previous structural and weight
assumptions. The corresponding expression for induced drag as a function of B3 is shown in Equation
23, and its trend is illustrated in Figure 6.

Di = f
(

(

1+3B2
3

)

(1+B3)
1/3

)

(23)

In this case, the solution for minimum induced drag is given by B3 =−3/7+
√

9/49−1/21 and Bn = 0

for n 6= 3.

Figure 5 – Induced drag efficiency factor from
Equation 22 as a function of B3. Extracted

from Reference [35].

Figure 6 – Induced drag efficiency factor from
Equation 23 as a function of B3. Extracted

from Reference [35].

Figures 4 to 6 show the variation of the induced drag efficiency factor as the spanload changes with
the third Fourier coefficient. These results manifest how each particular problem yields its own optimal
solution in accordance with the chosen set of constraints. Moreover, the above expressions for
induced drag are independent of the span, which has become a function of the prescribed parameters
and the spanload, specified by B3. Hence, when structural considerations are incorporated in the
lifting line theory, the trade-off between span and weight is balanced through B3. For a more extensive
discussion of this approach the reader is directed to Reference [35].
The derivation of alternative efficiency factors can provide significant insight into the aero-structural
sensitivities of a particular design problem at a conceptual design level. Such an analysis allows
the quantification of the trade-offs between aerodynamic and structural coupling independently of the
span. In other cases, it could further include considerations such as coupling between stability and
performance[117]. Efficiency metrics serve as a means to provide absolute comparisons in relation
to a defined set of parameters. However, there are many other factors that are neglected, and the
comparison is often subjected to the optimal solution of a specific variational problem. Therefore, it
would be appropriate to consider the use of further comparative indicators for wings designed under
the same underlying considerations. However, an overall comparison of efficiency might require
alternative approaches. In such cases, the lift-to-drag ratio L/D is widely chosen in the juxtaposition
of overall aerodynamic performance of any aircraft configuration. Its extensive use is due to the
simple concept that it carries, in which the invariable goal of achieving the most lift with the least
drag can be quantified at any flight condition. Furthermore, it is directly linked with the Breguet range
equation, which interconnects the main parameters that define a mission. However, this metric does
not explicitly incorporate the trade-off between induced drag and weight. Hence, there is still the need
to define a metric that captures aero-structural efficiency as a distinct parameter.

5. Flying with non-elliptic lift distributions
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5.1 Early efforts of the Hortens
Not much experimental research has been carried out on wings with NELDs. The pioneers in this
field are the Horten brothers, whose strong advocacy of flying wings prevails in their legacy of enig-
matic aircraft designs. Turbulent times had ignited the struggle for aeronautical innovation, and the
attractive possibilities that flying wings had unveiled was enough justification for them to dive into
the intricacies of such unconventional designs[118, 119]. The Hortens devised their aircraft through
intuition rather than on a theoretical basis. The challenge was addressed under the terms of handling
qualities by exploring planforms with careful non-linear wing twist distributions. To do so, they used
the Horten H.II[120] to assesses the aerodynamic characteristics of various circulation distributions,
which included various trigonometric curves, as well as the Normal and the elliptic distribution for a
given lift, fixed span and fixed wing area. The non-elliptic configurations would show lightly-loaded
wingtips, particularly the bell-shaped distribution, which was especially beneficial for tailless aircraft
to prevent wingtip stall. Nevertheless, other trigonometric curves provided either higher induced drag
or poor handling qualities that demanded great effort from experienced pilots.
Thus, the anticipated spanload, coined by them as ‘bell-shaped’, provided a downwash distribution
that would smoothly become upwash at the outboard wing while the lift remained positive. With this, it
was possible to produce induced thrust at the wingtips. Furthermore, it could be used to manipulate
the aircraft’s yawing moment to make a coordinated turn without the need of any vertical surface.
In effect, a combination of the upwash induced at the outboard wing together with an appropriate
aileron sizing could yield a drag differential that would cause a favourable yawing moment (proverse
yaw). Following this design philosophy, the Hortens conducted experimental research and observed
the behaviour of wool tufts along the wing, which pointed in the desired flight direction during turns.
With this, the previously required rudder correction would be reduced or even become unnecessary,
and so the structure of vertical stabiliser could be significantly reduced. However, the achievement of
proverse yaw was critically dependant on the position of the centre of gravity, and these tests were
also used to determine its correct position. Flying wings are strongly affected by the location of their
centre of gravity, which must closely correspond to the centre of lift in the longitudinal direction to pre-
vent large moments being induced in a flow separation scenario. Herein, the bell-shaped spanload
became especially beneficial, since it would readily satisfy this requirement. Moreover, the conse-
quent inboard shift of the centre of lift would improve lateral-directional characteristics[114]. During
the Horten H.III project, variable washout was implemented by operating several control surfaces at
different deflection angles. In this way, the necessary lift distribution could be attained more accu-
rately. This design vision allowed the Hortens to claim that the aileron and rudder could be completely
independent and that it was possible to achieve proverse yaw.

5.2 Proverse yaw implications
For the Hortens the elimination of adverse yaw became one of the primary justifications of adopting
the bell-shaped lift distribution. Adverse yaw is usually solved with the aid of flight control systems that
couple aileron and rudder deflections. By making use of additional drag, the manoeuvre becomes an
aerodynamically inefficient exercise. Still, this energy expense has not been considered significant
enough for engineers to invest time and effort. However, various amending devices have been con-
ceived to reduce the magnitude of adverse yawing moments, often at the expense of higher induced
drag and only effective within a limited range of the flight envelope. Here, the trade-offs arise from
the attached mechanical complexity, cost increase and weight penalty[121]. Along with flying wings,
adverse yaw can be particularly augmented in aircraft with high aspect ratio wings. Even though the
longer moment arm reduces the magnitude of the loads required to roll, a full rudder deflection is
sometimes still insufficient to compensate for adverse yaw.

Theoretical research on spanloads that minimise drag during turn are scarce. However, the potential
benefits of NELDs on aircraft handling qualities has drawn inquisitive minds towards the investigation
theoretical approaches for synthesised roll control and adverse yaw elimination. Nickel used lifting
line theory to investigate the existence of load distributions that could yield null yawing moment and
minimum induced drag for any prescribed lift and rolling moment[122]. This theory was tested ex-
perimentally with the construction of the Falter 1, an ultra-light glider with no vertical surfaces or drag
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rudders. Nickel wanted to proof that the motion around the vertical axis could be controlled by an
adequate distribution of induced drag caused solely by the deflection of horizontal control surfaces.
The design had two independent ailerons on each semi-span that would be covered with a single
fabric to produce a morphing effect. Such design enabled the pilot to hold control around the three
axes, where turn initiation would yield no adverse yaw and steady sideslip would be achieved without
any opposing moments.
Hunsaker et al. have recently carried out theoretical research in this field, building upon Prandtl’s
lifting-line theory and following a similar approach as that of Nickel. Specifically, the control of lateral-
directional flying characteristics was addressed through wing twist design, in which elliptic and non-
elliptic loadings were contrasted in the context of pure rolling motion. With this, the theory explored
contraints on turn initiation, steady rolling rate and transition[123]. Analytic solutions confirm that
a symmetric non-elliptic spanload must be superposed to the baseline lift distribution to achieve
proverse yaw, and can be implemented either in the clean configuration or through trailing edge
deflection. Moreover, this work concluded that no antisymmetric spanwise loads that can be added to
an elliptic spanload to produce proverse yaw[124], as derived from this analytical approach. Secondly,
for each asymmetric contribution with minimum drag there exists a symmetric load that will also yield
minimum induced drag[34]. Third, the induced drag present during roll will always be higher than
the induced drag of the clean configuration. As discussed in previous sections, any non-elliptic lift
contribution to a fixed wingspan will increase induced drag. Hence, the more elliptic is the symmetric
contribution to the roll, the more aerodynamically efficient the manoeuvre will be for a fixed wing. On
the other hand, the more non-elliptic, the more roll power and proverse yaw it will have[125].
These solutions are effectively applicable on wings equipped with morphing technologies that enable
a smooth and continuous twist distribution. On the other hand, the use of discrete ailerons can yield
a set of solutions that satisfy the elimination of adverse yaw for a given spanload. Hence, an aileron
design methodology was developed to provide insight into the impact of aileron sizing on the induced
drag distribution to provide proverse yaw[126]. This preliminary study assessed the lateral-directional
static stability characteristics of a conventional sailplane. The baseline configuration carried an elliptic
lift distribution and was compared to modified models, in which equivalent wings with NELDs were
retrofitted. In each case, the ailerons had been sized under the constraints of roll authority and
proverse yaw. Therefore, the stability and control derivative that quantifies yawing moment due to
aileron deflection was regarded as the metric for proverse yaw. The methodology provided a design
space of aileron geometries for the NELD configurations that satisfied these conditions, whereas no
solutions were obtained for the conventional elliptic wing. It is generally believed that the cause of
proverse yaw is brought by induced negative drag increasing with downwards aileron deflection[94].
This study showed that this is true for small deflections. However, larger aileron deflections increase
drag in both up-going and down-going motions, contrary to the induced drag differential observed in
any conventional wing. Instead, the additional drag contribution in each semi-span is almost identical,
being marginally bigger on the wing inside of the turn and consequently producing a favourable
yawing moment. Moreover, the increase in induced drag per area was found to be lower in relation
to that given by the elliptic case.
Proverse yaw was recently observed at NASA during a large series of flight tests performed with the
PRANDTL-D flying wing[94]. Here, Bowers and his team observed improved flying characteristics
and coordinated flight over a broad range of flight conditions. Onboard instrumentation data showed
that both rolling and yawing motions where headed in the same direction during turn initiation. With
this, they defend that these designs can attain induced thrust and proverse yaw[127], improving
efficiency over a wider region of the low-subsonic flight envelope.

The above theoretical and experimental results suggest that the design of wings with NELD can en-
able dynamic control with very small or absent vertical control surfaces[128, 129, 130, 131, 132].
Vertical tail design is directly linked to the aircraft’s directional stability and control, which are always
coupled with the lateral dynamics. Certainly, the elimination of the vertical surfaces will lead to uncon-
ventional approaches. It could be advantageous then to investigate the optimal compromise between
proverse yaw, induced drag and weight derived from the trade-off between spanload and rudder siz-
ing. The penalties associated with this surface can range from 5 to 10% in drag, and can add around
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25 to 50kg per m2 of projected side area[50, 133]. Nevertheless, vertical tails compensate these
losses through their reliability in providing directional control and stability and yaw damping. More-
over, they ensure safety during a crosswind landing or, more critically, a one-engine-out scenario,
which usually drives its design and sizing[134] on any conventional aircraft.

6. Current trends in conceptual design

Today the aerospace sector is predominantly focused on increasing efficiency to reduce fuel con-
sumption and emissions. Developments are being achieved through incremental improvements in
the various engineering disciplines, whilst the task of conceptual design is getting ever more complex
in attempts to de-risk potential solutions[135, 136, 137]. Within the MDO framework, the conceptual
design stage traditionally employs a range of empirical and low-fidelity models to reduce computa-
tional cost[138, 139, 140, 141, 142, 143] and puts forward high-level design parameters that will be
fixed and passed onto the preliminary design stage. Unplanned factors and decisions may also be
introduced at later stages, with significant development implications that lead to trade-offs between
aerodynamics, structures and systems. It is in this context that the characteristics of NELD presented
above can become beneficial, revolving around the provision of further insight on wing aero-structural
trade-offs while enlightening the relevant complexities of the design process. In a sense, the imple-
mentation of this approach is a proposal of return to the essence of wing design in order to reach the
revolutionary vision for the future of aviation and civil aircraft design.
Aero-structural wing design is one of the most complex and costly processes in MDO. Thus, a better
synergy between these disciplines at early stages has proven to be beneficial[144, 145, 146, 147,
148], where the related design space is usually highly constrained. Ideally, such considerations
should occur in parallel at each design stage and within each of the components to enable a fast
and reliable process. Implementation of the theory of non-elliptic lift distributions into conceptual
MDO could readily reveal many of the aero-structural compromises as well as ensure aero-structural
equivalence if later modifications are to be confronted.
The established desire to develop unprecedented civil aircraft is becoming more conceivable, and is
present in the vision for the near future generations of aircraft[149, 150, 151]. Aircraft configuration
is regarded as a critical factor that will redefine the way in which the current technological challenges
are addressed. So far, airliners have been restricted to the conventional cantilever-wing configuration
due to several limitations on structural and operational aspects, which have hindered revolutionary
changes in aviation. Based on the technological state-of-the-art, many trade space analyses and
system architecture assessments are identifying very high aspect wings as a near-term achievable
solution[152, 153, 154, 155, 156]. These proposals have now been extensively investigated and the
potential benefits they can bring on fuel consumption have been established. Nevertheless, such
configurations are still penalised by the complexity of the structural requirements, which become a
necessity to include reinforcement that increases weight and drag. Here, the integration of the the-
ory of NELD into the design process would allow span-extended configurations under optimal weight
considerations. The increasing interest on alternative configurations, such as high aspect ratio wings
or blended wing body aircraft[157, 158], aligns with the constant strive to reach a more organic flight
model (in which efficient bird-like flight and manoeuvring is possible without the requirement of addi-
tional drag or a vertical surface). Moreover, part of this future vision is targeting sub-transonic cruise
speeds in order to accommodate to the impending green propulsive technology. This, together with
the imminent leap towards urban air mobility, can open another design niche in which the potential
penalties derived from compressibility effects faced by wings designs based on NELDs will minimise.
Altogether, these approaches could benefit from more efficient cruise and optimal coordinated turns
that NELD seem to promise.
Solutions to the problem of time-varying lift distributions have become more relevant as materials,
manufacturing and control systems technologies are developed towards the removal of discrete
control surfaces. Morphing wings enable key geometric parameters to be changed to produce
optimal spanloads and alleviate loads at a wide range of flight conditions[159, 160, 161]. Many
configurations[162, 163, 164] have been experimentally tested and show performance and handling
qualities improvements while minimising airflow separation. Such adaptive wings could greatly bene-
fit from the theories discussed in this review. The methods expose the relation between spanload and
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its structural impact. Accordingly, a wing design under the principles of NELD could morph to pro-
duce the optimal lift distribution to satisfy the principal efficiency requirement at every flight condition,
whether it is aerodynamic, aero-structural, or linked to the aircraft’s flight dynamics.

7. Conclusions

Non-elliptic lift distributions promise the consolidation of wing designs with minimum induced drag,
optimal structural weight and improved handling qualities. Conventionally, the requirements to reduce
induced drag and structural weight are opposed, and current solutions to well-known adverse dynam-
ics are still dependant on the use of drag to correct unwanted aircraft responses. NELDs propose
a unified solution to these problems. Nevertheless, it is not straightforward to accept the preached
attributes without further validation. The past shortcomings of the Horten flying wings together with
traditional prediction methods, in which fixed span is readily presumed, might have narrowed the
flourishing of this theory.
The work presented in this paper derives its relevance from the renewed interest of researchers and
designers to challenge the fundamental assumptions underlying today’s conceptual design methods
in search for step improvements in aircraft efficiency. Ideas of structural equivalence together with
unconstrained span, first discussed in Prandtl’s 1933 paper, are revisited by the authors to propound
their capabilities within the current efforts to introduce high aspect ratio wings and morphing tech-
nologies. Still, the above overview highlights that the elegance of the foundational theories remain
relevant and are necessary to provide economic methods and insightful correlations between design
drivers at the conceptual design stage.
Growing attention is debouching these ideas into the broader pursuit of a holistic and green approach
to aircraft design. Researchers, such as Bowers at NASA, have combined these principles with
observations of bird flight to propose significant benefits in terms of flight dynamic characteristics,
while maintaining minimum induced drag and weight. Hunsaker et al. are integrating the theory into
the search for optimal spanloads for morphing wings. Others have converged to wings with NELDs
in their search for the planforms with high aero-structural efficiency. Aircraft manufacturers are also
showing interest and considering the impact of this approach on in-house design tools. However,
the effort to comprehend and then to transfer Prandtl’s ideas remains unsettled. It is hoped that this
review paper will present an opportunity for further technical debate and encourage new approaches
to this alternative design philosophy.
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