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“…Ithaca gave you the delightful voyage: 
without her you would never have set out: 
and she has nothing else to give you now. 

  
And though you should find her wanting, Ithaca 

will not surprise you; for you will arrive 
wise and experienced, having long since perceived 

the unapparent sense in Ithacas.” 
K.P. Kavafis, 1911
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ABSTRACT 

This research project aims to develop and apply appropriate methods dealing 

with risk and uncertainty at a technology and energy system level providing 

decision support to the various stakeholders involved in the planning, 

development and operation of sustainable energy investments. The thesis 

comprises a portfolio of research activities fulfilling the set research objectives. 

Outcomes of this research portfolio have been either published or are under the 

peer review process. 

More specifically, following a systematic literature review to identify the state-of-

the-art in risk-based methods for sustainable energy systems planning and 

feasibility studies, a cluster analysis was applied based on data from existing 

offshore wind energy installations in the UK, to distinguish investment strategies 

followed by equity investors. This study has identified three distinct clusters of 

investors, namely the late entry, pre-commissioning and build-operate-transfer 

investors. Subsequently, a high-fidelity lifecycle techno economic model was 

developed allowing for the temporal valuation of a renewable energy investment. 

This integrated model has allowed for a set of parametric equations to be 

developed through appropriate selection of approximation models linking global 

design parameters to key performance indicators. Furthermore, a stochastic 

extension of the financial appraisal model has allowed for a transition from the 

conventional deterministic terminology to a stochastic one, assigning confidence 

levels to key performance indicators (KPIs). Additionally, the development of a 

purpose-specific tool for the evaluation of the operational phase KPIs, such as 

the availability, operating cost and energy production losses due to planned and 

unplanned maintenance has allowed for the development of better-informed risk 

control policies. Finally, having analysed uncertainties at a technology level, a 

stochastic optimisation framework was developed for deriving optimal national 

power generation technology mixes taking into account uncertainties for a series 

of scenarios linked to national energy strategies through appropriate constraints 

in the analysis. 
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Part I: Overview of the research project 

1 INTRODUCTION TO THE THESIS 

1.1 Background on uncertainty modelling of sustainable energy 

systems 

Over recent decades, the European electric energy system has been undergoing 

a transition from a centralised paradigm to a competitive decentralised one, 

driven not only by energy security but also climate change mitigation targets. 

Political pressures to reduce carbon dioxide emissions and policy incentives to 

increase the share of renewable energy (RE) technologies in the power 

generation mix have rapidly increased the value of investments in RE over the 

last decade. 

Indeed, at a global level, at the Paris climate conference (COP21), 195 countries 

adopted the first-ever universal and legally binding global climate deal to limit 

warming to well below 2oC and to pursue efforts to limit it to 1.5oC. The EU climate 

and energy 2030 package requires member states to increase the share of 

energy produced from renewables by 27% by 2030 (in comparison to 1990 

levels), along with the limitation of greenhouse gas emissions (40% reduction) 

and energy efficiency (27% improvement). The target set at the UK level 

mandates the reduction in GHG emissions of at least 80% by 2050 [1].  

As a result of the political incentives, an estimated cumulative £37bn was 

invested in RE generation between 2010 and 2014, reaching an average of £7bn 

per year in the UK [2]. Global investment in renewable energy (RE) in 2017 

amounted to $279.8 billion, with China being the leading location for the 

installation of renewable energy investments (approximately 45% of global 

investments). Increasing investment activity in low carbon energy projects has 

induced the need for an improved valuation framework both at a technology and 

at an energy systems level.  

In this study, at a technology development level, offshore wind has been selected 

as the reference technology to be analysed further, as it is a very well-established 
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technology, with the UK being a recognised world leader. Europe’s total installed 

offshore wind capacity amounts to 15,780 MW, 43% of which is installed in the 

UK [3]. From a commercial viewpoint, offshore wind is widely accepted by 

institutional investors as a sensible portfolio component, with a constantly 

expanding supply chain. A diverse pool of investors operates in the offshore wind 

industry: Utilities, Original Equipment Manufacturers (OEMs), Independent 

Power Producers, Japanese Trading Houses, Pension Funds and Banks are 

some of the major investors.  

Broadly speaking, investors can be segmented based on their risk appetite 

(technology, country, and asset stage), return expectations (IRR and yield), 

holding length, and level of engagement [4]. It is often encountered that equity 

investors buy and sell their stakes at different stages of the offshore wind farm 

depending on the strategy followed. For instance, an investor may act as a turn-

key developer, bearing the construction risks through building the offshore wind 

farm, run it for 4 or 5 years, then sell the asset –once its operation can be 

safeguarded by warranties, with a risk premium- and exit the market. The latter 

type of investor has the flexibility to consider building a higher-CAPEX asset 

(more conservative designs through higher material factors in accordance to 

Industrial Standards) aiming at reducing the OPEX associated with inspections 

and maintenance (by increasing the intervals between consecutive inspections) 

and accordingly increase the value of the asset with the purpose of selling at a 

higher price (such an exercise has been conducted in the Conference paper [5]). 

Strike prices awarded through the second 2017 Contracts for Difference (CfD) 

auction for offshore wind energy projects, have fallen by nearly 50% since the 

first UK’s CfD auction in 2015. Indicatively, the average price awarded during the 

first CfD round (in 2015) for offshore wind was £117.14/MWh, while in the 2017 

CfD auction, Dong Energy was awarded a CfD deal amounting to £57.50/MWh 

for the development of Hornsea Project II, while Innogy secured the development 

of Triton Knoll project at the price of £74.75/MWh [6]. Not to mention the three 

zero-subsidy bids in the German auction delivered by Dong and EnBW, receiving 

only the market price of electricity paid out per unit of eligible electricity produced. 
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The above figures reflect the significant drop in offshore wind costs – rendering 

the technology more competitive than gas and nuclear energy. Nevertheless, it 

should be noted that the above bids were enabled by a number of circumstances. 

As such, in the zero-bid contracts, the realisation window is expanded to 2024, 

allowing developers to apply next generation wind turbine technologies of 

between 13-15 MW capacity (with currently operating turbines up to 8.25 MW); 

hence, the reason for low bids might be the expectation of a disruptive innovation, 

which will drive down costs. Furthermore, the grid connection costs were 

excluded in the specific cases [7].  

In existing literature, there is controversy regarding the actual costs of offshore 

wind energy and although long-term projections foresee a reduction in the 

levelised cost of electricity (LCOE), the reduction in total installation costs has 

been reported to incur in a slower pace. As such, the latest IRENA report 

suggests that between 2010 and 2017, total average LCOE was reduced by 13%, 

while the total installation costs only by 2% over the same period [8]. Figure 1-1 

and Figure 1-2, gather ranges of CAPEX and OPEX cost estimates for offshore 

wind installations based on historic data of installed projects and surveys of 

project developers. These figures suggest that there is significant scatter of data 

between different sources denoting a high degree of uncertainty across the 

industry. This is mainly caused by the ongoing development of the supply chain, 

upscaling of new generation offshore wind farms, increased demand of new 

assets pushing upwards the CAPEX and reduced confidence in the assessment 

of Operation and Maintenance (O&M) costs of aging assets.  
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Figure 1-1 Range of capital costs 

(£m/MW)  (Sources:[9]–[13]) 

Figure 1-2 Range of operating costs 

(£/MWh) (Sources:[9]–[13]) 

Although deterministic models can support decisions pertinent to the 

development and operation of an offshore wind farm, they lack the ability to 

systematically account for the inherent uncertainty of input parameters when 

predicting the economic feasibility of a wind power project. To this end, a 

probabilistic/stochastic approach can significantly increase the value of the 

outputs of the analysis, assigning confidence levels to the predictions towards 

better informed decisions. 

At an energy system development level, decision makers seek to develop 

methods that assist the power generation system planning through deriving 

optimal technology mixes. Optimising a performance indicator (such as 

minimizing the energy system cost), while at the same time satisfying a set of 

conditions related, for example, to the security of supply, the limitation of 

resources, the energy diversity, the environmental impact as well as the 

renewable technology capacity factors and the evolution of their costs, is a 

common method towards deriving optimal power generation mixes. It is apparent 

that numerous parameters included in the problem may be uncertain. Following 

this line of thinking, their uncertainty needs to be integrated in the analysis, and 

reflected in the results. 
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As the number of RE investments increases, so does the need to measure and 

account for the associated risks. Most relevant decisions throughout planning, 

construction and operation of offshore wind energy assets made by market 

agents involve a significant level of risk due to technical conditions and project 

externalities. According to ISO 31000, risk is defined as the effect of uncertainties 

on objectives [14].  

Risk in renewable power generation investments is multi-dimensional and 

depends on the perspective of different stakeholders and maturity level of 

technological options. Table 1-1 summarises the most cited risks by employing a 

structured political, economic, social, technology, legal and environmental 

(PESTLE) approach.  
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Table 1-1 Risks in renewable energy investment sector 

Risk Category Sub-category Risk factors/Events 

Political 

Country 
Changes in the national economy 

Political stability 

Regulatory 

Changes in policy support schemes  

Liability to third parties 

Contracting risk 

Bureaucracy 
Complex approval processes/Delay of 
permits 

Economic 

Market 
Variability of revenue due to electricity 
price 

Demand fluctuations 

Financial/Fiscal 

Generating costs (CAPEX, fixed and 
variable OPEX, pre-development costs) 

Interest rate swings 

Financing risks (insufficient access to 
investment and operating capital) 

Taxation regime 

Transaction costs 

Strategic/business Damage to reputation 

Social 
Lack of public 
acceptance 

Delays in the licence acquisition 

Health risks Accidents 

Technological 

Project development 

Revenue loss due to project delay for the 
commercial operation date (COD) 

Failure to obtain all required licences 

Failure to obtain grid access 

Construction 

Damage during transport or construction 

Damages due to natural hazards 

Unreliability of components (e.g. damage 
to turbines) 

Unavailability of skilled labour 

Operation/maintenance 

Damages caused by natural hazards 

Technological/innovation risk 

Higher OPEX (due to critical failures of 
components) 

Unscheduled plant closure due to the 
lack of resources 

Risk of components generating less 
electricity over time than expected 

Sabotage, terrorism and theft risk 

Resource risk 
Revenue because of the intermittent 
generation capacity 

Infrastructure 
Variability of revenue due to grid 
availability 

Decommission Decommission costs 

Legal 
Energy and climate 
change policy 

Changes in the national energy and  
climate change policy 

Environmental  
Risk of environmental damage 

Carbon footprint and life cycle 
assessment  
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1.2 Aim and Objectives 

In this context, this research project aims to qualify appropriate methods for 

dealing with uncertainty at a technology and energy system level providing 

decision support methodologies to different stakeholders. It develops high-fidelity 

risk-based valuation frameworks specifically for low carbon energy technologies 

and approaches the same research question from different stakeholder 

perspectives and at different levels of analysis.  

To fulfil this aim, the following activities/objectives were distinguished: 

 Assemble a state-of-the-art literature review of risk-based methods for 

sustainable energy systems planning and technology feasibility studies. 

 Distinguish different investment strategies followed by investors in the 

offshore wind energy industry. 

 Develop an integrated, high-fidelity lifecycle techno-economic model that 

allows for the temporal evaluation of a renewable energy investment, 

integrating (and developing) most relevant cost expressions. 

 Formulate relevant parametric equations through appropriate selection of 

approximation models for the conceptual design and analysis of offshore 

energy assets. 

 Expand the financial appraisal model to take into account uncertainties of key 

input parameters through selection and implementation of appropriate 

methods. 

 Evaluate weather uncertainty during the operational phase and visualise cost 

performance and production losses through scatter plots. 

 Develop and apply a stochastic optimisation framework for deriving optimal 

national energy technology mixes taking into account uncertainties of the 

system. 

1.3 Structure of the thesis 

This thesis comprises a portfolio of activities that reflects the objectives of the 

project and have been documented as stand-alone studies, which have been 
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published or submitted at the time of writing. Following the submission-by-paper 

format, the thesis has been divided into two parts.  

Part I includes five chapters: starting with an introduction to the thesis, followed 

by the methodological framework that has been developed and providing 

justification of the methods chosen. Then, key outcomes of the research are 

summarised and are, then, critically discussed. Finally, the conclusions and 

statement of contribution is included, commented on how the objectives of the 

project have been met and how original contribution has been achieved in 

aspects of novelty, scientific soundness and value of the findings. 

Part II is a collection of the publications authored throughout the EngD period, 

including the following papers: 

 Paper A assembles and analyses risk-based evaluation methods for 

low carbon energy technologies through employing a systematic 

literature review approach. 

 Paper B systematically maps key investor behaviours in the offshore 

wind energy market by employing a statistical cluster analysis. 

 Paper C develops an integrated, high-fidelity lifecycle techno economic 

model which allows for the temporal evaluation of the investment, 

taking into account (and develop) most suitable cost expressions. 

 Paper D extends the previous model to a series of parametric 

expressions for CAPEX, OPEX and LCOE as a function of key 

deployment parameters, aiming to assist investors, researchers and 

other stakeholders to undertake an initial estimate of CAPEX, OPEX 

and LCOE values for offshore wind farm projects with varying design 

parameters, as well as use them as reference for estimating the effect 

in the change of one of the selected design parameters. 

 Paper E reports the stochastic expansion of the techno-economic 

model to take account for the stochastic nature of certain variables 

using advanced numerical methods.  
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 Paper F investigates uncertainties present during the operation phase 

of offshore wind energy assets through developing and applying a 

parametric framework across a number of different locations in the 

south east coast of the UK, so as to demonstrate the effect of weather 

conditions and resulting downtime on a number of operational key 

performance indicators (KPIs). 

 Paper G investigates the problem of the development of an energy 

system, through developing a multi-stage stochastic optimization 

model that determines the medium-to-long term optimal electricity 

generation mix, taking into consideration the uncertainty in electricity 

demand, capital cost reduction for renewable technologies and fuel 

prices along the planning horizon. 

 

 The references of the papers outlined above are as follows: 

 Paper A: A. Ioannou, A. Angus, and F. Brennan, “Risk-based methods for 

sustainable energy system planning: A review,” Renewable and 

Sustainable Energy Reviews, vol. 74, pp. 602–615, Jul. 2017. 

 Paper B: A. Ioannou, C. Vaienti, A. Angus, and F. Brennan, “A cluster 

analysis of investment strategies in the offshore wind energy market,” in 

2017 6th International Conference on Clean Electrical Power (ICCEP), 

2017, pp. 362–369. 

 Paper C: A. Ioannou, A. Angus, and F. Brennan, “A lifecycle techno-

economic model of offshore wind energy for different entry and exit 

instances,” Applied Energy, vol. 221C, pp. 406–424, 2018. 

 Paper D: A. Ioannou, A. Angus, and F. Brennan, “Parametric CAPEX, 

OPEX, and LCOE expressions for offshore wind farms based on global 

deployment parameters,” Energy Sources, Part B Economics, Planning, 

and Policy, vol. 13, no. 5, pp. 281–290, May 2018. 
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 Paper E: A. Ioannou, A. Angus, and F. Brennan, “Stochastic valuation of 

offshore wind farms through the application of advanced numerical 

methods”. Under review in Renewable Energy Journal. 

 Paper F: A. Ioannou, A. Angus, and F. Brennan, “Informing parametric risk 

control policies for operational uncertainties of offshore wind energy 

assets”. Submitted to Ocean Engineering Journal. 

 Paper G: A. Ioannou, G. Fuzuli, F. Brennan, S.W. Yudha, A. Angus, 2018. 

“Multi-stage stochastic optimization framework for power generation 

system planning integrating hybrid uncertainty modelling”. Accepted with 

revisions in Energy Economics Journal. 

Finally, the submitted/published conference papers are included in Appendices 

A-C.
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2 METHODOLOGICAL FRAMEWORK  

2.1 Approach of the thesis 

This section provides an overview of the thesis approach and how each part of the 

portfolio of studies combines to fulfil the aim of this research. As outlined above, this 

thesis does not focus either on employing one single methodology, or on solving one 

single problem; rather, it combines different methods and approaches to solve at a 

technology and energy system/market development levels the problem of systematic 

consideration of uncertainties in the valuation of energy investments, as shown in 

Figure 2-1.  

The research project started with a review of risk-based methods for sustainable 

energy systems planning by means of a systematic literature review (paper A). The 

approach that was adopted allowed for a clear understanding of the relevant methods 

and an appreciation on how extensively and for what problems they have been 

employed in previous studies. To obtain a better understanding of the market trends 

and the identification of key investor behaviours in the offshore wind energy market, a 

statistical analysis of existing wind farms across the UK was carried out, resulting in 

the identification of three distinct investor clusters distinguishing their behaviours by 

means of their entry and exit strategies (paper B). For this study real data from 

operational wind farms were obtained through databases and project records to result 

in a meaningful analysis.  

At a technology level, and with a focus on offshore wind energy technology, a high-

fidelity lifecycle techno-economic model for different entry and exit instances was 

developed (paper C). The model compiled the most up-to-date expressions to predict 

costs throughout all phases of an offshore wind energy project’s lifecycle (design and 

consent, production and acquisition, installation and commission, operation and 

maintenance and, decommissioning and disposal), as well as developed new 

expressions when latest data were available. The commercial ECN O&M Tool was 

utilised for the accurate prediction of the operation and maintenance phase costs 

incorporating latest reliability data from literature. Discounted cash flow analysis was 

employed to evaluate the cash flows of the asset and sensitivity analysis to identify 

the main drivers of the asset’s value.  The paper also combined results of paper B to 
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apply the developed model to different entry and exit strategies, along with the 

respective cost of financing representing the different investors in the market. It should 

be noted, that the approach followed during developing the tool is generic and can be 

adopted for other types of high value energy investment.  

Next, the model developed in paper C was applied to generate a series of parametric 

expressions linking key global deployment variables, such as water depth and 

distance from port to financial KPIs (key performance indicators), such as LCOE 

(paper D). These parametric equations were derived through nonlinear regression 

from a number of simulations of the integrated cost model aiming to map the cost 

performance across the multi-dimensional domain of the independent variables. The 

expressions will be particularly useful for the preliminary assessment of available 

deployment sites, offering cost estimates based on global decision variables.  

In paper E, the stochastic expansion of the techno-economic model was undertaken 

to account for the stochastic nature of certain time dependent variables, such as the 

market price of electricity as well as some time independent parameters, such as the 

vessels’ significant wave height limit. Advanced numerical methods, namely the 

ARIMA for forecasting and ANNs for model approximation, were employed to allow 

the conversion of the deterministic model to its stochastic expansion in order to 

enhance the value of the model’s outputs through assigning confidence levels to the 

predicted values of the chosen KPIs.  

Next, an efficient model for the calculation of operational phase KPIs was developed 

with the aim to investigate the effect of uncertainties present during operation of 

offshore wind energy assets (i.e. related to the deployment conditions such as the 

wind and wave profile) on the actual potential revenue losses that an operator might 

face due to disruption of their activity. This allowed the visualisation of potential 

revenue losses around the UK offshore locations, which is an important element in the 

choice of the preferred risk control strategy from operators/investors through 

quantifying their exposure to certain hazards.  

Finally, at an energy system development level, a multi-stage stochastic optimisation 

of the power generation system at a national level was developed by taking into 

account stochasticity of selected variables such as the volatility of fuel prices, as well 
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as constraints related to energy security and climate change targets, among others. 

Uncertainty is modelled through an integrated scenario-tree configuration with Monte 

Carlo simulation, deriving probabilistically the optimised energy mix under certain 

policy scenarios. 

The remaining subsections of this section will introduce the fundamentals of the 

methods employed, together with a critical discussion reasoning why specific methods 

are the most suitable for the problem investigated as well as how their application was 

validated (where relevant). 

 

Figure 2-1 Structure of research 

2.2 Research methods 

This section provides a brief introduction to the research methods employed in this 

thesis for the investment decisions in low carbon energy investments under risk and 

uncertainty. The main approaches used in the methodological framework presented 

earlier comprise mainly quantitative/semi-quantitative models and methods 
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(discounted cash flow analysis, Monte Carlo, stochastic optimisation, cluster analysis, 

advanced optimisation methods and time series forecasting) and a systematic 

literature review which was adopted to distinguish the most relevant methods to meet 

the objectives of this research project. A relevant critical discussion on how each 

method was selected is also included at the end of this section. 

2.2.1 Systematic literature review  

The literature review was conducted on the basis of a systematic literature review 

(SLR) approach, which provides the synthesis of the research in a systematic, 

transparent, and reproducible manner, while also restricting the researcher’s bias [15]. 

To this end, a literature review protocol was developed to frame the research 

methodology. The literature review protocol outlines the aim and questions underlying 

the review, the search strategy, the inclusion and exclusion criteria and the plan for 

data extraction. Important criterion when selecting the keywords of the research was 

to be as inclusive as possible in order to avoid missing important studies.  

The review was conducted on the basis of five major stages: (1) Formulation of the 

research question, (2) Locating of studies, (3) Selection, analysis and appraisal of 

studies, (4) Analysis and synthesis of results and (5) Reporting and dissemination of 

results.  

Initially, a preliminary scoping study was conducted to identify the main domains of 

literature in the field and gain a better understanding on the contributions and identified 

gaps in knowledge in the research area of interest. Following the preliminary scoping 

study and the formulation of the research question, the research strategy was defined, 

namely the search strings of the review, as well as a number of inclusion/exclusion 

criteria of the papers retrieved to eliminate papers that fall outside the scope of the 

research topic. The search was limited to scientific peer-reviewed papers to ensure a 

collection of robust and validated works. Papers were retrieved through the Scopus 

search engine, while the final inclusion of papers considered for full-text analysis was 

determined following a quality assessment process (Figure 2-2). 
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Figure 2-2 Summary diagram of the systematic literature review process 

The initial literature was supplemented with additional works through a bespoke 

process, when further information to cover a particular topic was needed, or a key text 

in the literature had been omitted by the systematic review. 

2.2.2 Cluster analysis 

Equity owners of offshore wind energy projects tend to have different asset holding 

strategies according to their investment profiles. With the view to group the different 

behaviours in terms of the entry, exit, purchased and sold equity percentages, a 

statistical analysis of the relevant data was deemed appropriate. For the purposes of 

the analysis, data from 83 cases of investors investing or divesting part (or entirety) of 

their stake from a total of 27 operating wind farms, located in the United Kingdom, 

were collected through desktop research (e.g. 4C Offshore online database and 

market reports/online announcements such as: Centrica Company news). 
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The market mapping of the offshore wind energy sector was realised by means of a 

hierarchical cluster analysis. The cluster analysis groups cases of data based on the 

similarity of responses to different variables. The Euclidean Distance, 𝑑, is used as a 

measure of similarity between the cases. 

𝑑𝑖𝑗 = √∑(𝑥𝑖𝑘 − 𝑥𝑗𝑘)
2

𝑝

𝑘=1

 

 

(2-1) 

Equation (2-1) indicates the expression of the Euclidean distance between the scores 

of cases 𝑖 and 𝑗 on a variable 𝑘. Differences between scores of cases for each variable 

𝑘 are squared before their summation, in order to avoid the cancelling out of positive 

and negative differences. Then, the summation is square rooted to revert back to the 

original units of measurement. With Euclidean distances the smaller the distance, the 

more similar the cases. However, this measure is sensitive to variables with large size 

or dispersion differences. So, if the variables being tested have very different 

variances, the Euclidean distances will be inaccurate. It is, therefore, important to 

standardise scores before proceeding with the analysis.  

Once a similarity measure has been determined the next step is to identify the 

grouping method based on the similarity coefficients. In this analysis, Ward’s Method 

has been used, which aims to join cases so that variance within clusters is minimised. 

To this end, each case begins as its own cluster. Clusters are then merged so as to 

reduce the variability within a cluster. More specifically, two clusters are merged if this 

results in the minimum increase in the error sum of squares. To this end, the average 

similarity of the cluster is measured at each stage and the difference between each 

case within a cluster and the average similarity is calculated and squared. The sum of 

squared deviations is used as a measure of error within a cluster. A case is allowed to 

enter the cluster if its inclusion results in the cluster’s least increase in error. 

Figure 2-3 illustrates a typical cluster Dendrogram. The distance between merged 

clusters increases with the level of the merger, while the height of each node in the 

graph is proportional to the intergroup dissimilarity between its two children. 
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Figure 2-3 Example of Dendrogram  

2.2.3 Lifecycle costing and discounted cash flow analysis 

The development of a high-fidelity lifecycle techno-economic model for different entry 

and exit times was carried out in paper C through a discounted cash flow (DCF) 

analysis taking into account the lifecycle phases of an offshore wind investment (from 

the predevelopment and consenting to the decommissioning and disposal phases). 

For the modelling of O&M costs, the commercial ECN O&M Tool was used.  

The discounted cash flow (DCF) valuation approach provides a basis for assessing 

the value of the cash flows of a project. Other valuation approaches are: the relative 

valuation, which estimates the value of the asset by comparing the pricing of similar 

assets in relation to a common variable, such as earnings, cash flows, or sales; and 

the contingent claim valuation using option pricing model to measure the value of 

assets that share option characteristics [16]. DCF is the foundation on which all other 

valuation approaches are built. To perform relative valuation and apply option pricing 

models to value assets, we often begin with a DCF valuation. DCF is based on 

assessing the costs and revenues over the lifetime of the investment through 

discounting expected future cash flows to estimate the present value of the asset. The 

formula for calculating DCF is typically the following: 

𝑁𝑃𝑉 = −𝐶𝐹0 +∑
𝐶𝐹𝑡

(1 +𝑊𝐴𝐶𝐶𝑟𝑒𝑎𝑙)𝑡

𝑁

𝑡=1

 (2-2) 
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where, N is the lifetime duration of the investment, 𝐶𝐹0 is the cash flow in year 0, 𝐶𝐹𝑡 

are the free cash flows of time period 𝑡, namely the difference between costs and 

revenues including taxes, depreciation, etc. Inflation and interest rates are used to 

account for the time value of money. Inflation accounts for the reduction in the 

purchasing power of a unit of currency between two time periods, while the interest 

rate is the rate earned from a capital investment. In financial analysis, the nominal 

interest rate is the interest rate quoted by the banks, stock brokers etc. which includes 

both the cost of capital and the inflation. Real discount rate (or else real WAAC) 

integrates the inflation adjustment and the discount of cash flows according to Fisher 

Equation [17]: 

𝑊𝐴𝐶𝐶𝑟𝑒𝑎𝑙 =
1 +𝑊𝐴𝐶𝐶

1 + 𝑅𝑖𝑛𝑓𝑙
− 1 ≈ 𝑊𝐴𝐶𝐶𝑛𝑜𝑚 − 𝑅𝑖𝑛𝑓𝑙 (2-3) 

The discount rate is determined by the source of capital as well as the estimation of 

the financial risks associated with the investment. Projects gather their capital by 

raising funds through debt and equity. These sources of financing demonstrate 

individual risk-return profiles; hence their costs also fluctuate.  

Weighted average cost of capital (WACC) corresponds to the weighted average of 

cost of its equity and debt, with weights determined by the amount of each financing 

source. The weighted average cost of capital is calculated by the following expression 

[18]: 

𝑊𝐴𝐶𝐶 =
𝐸

𝑉
∙ 𝑅𝑜𝐸 +

𝐷

𝑉
∙ 𝑅𝑑 ∙ (1 − 𝑡𝑐) (2-4) 

Where, E: Market Value of Equity, D: Market Value of Debt, V=E+D, RoE: Return on 

equity, IR: interest rate on debt. The risk of the project significantly influences the 

amount of return on investment required by the investor. External capital is cheaper 

and thus it is often desirable to obtain the highest possible amount of debt; however, 

the cost of debt depends on the specific investment risk, namely the highest the 

investment risk, the lower the amount that banks will be willing to lend.  

Another key performance indicator widely used for calculating the profitability of the 

investment is the internal rate of return (or IRR). This is defined as the interest rate at 
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which the net present value of the cash flows of an investment equals to zero and is 

calculated by the following expression: 

0 = −𝐶𝐹0 +∑
𝐶𝐹𝑡

(1 + 𝐼𝑅𝑅)𝑡

𝑁

𝑡=1

 (2-5) 

The efficiency of an investment can also be measured by the Return on Investment 

(ROI), which equals to: 

𝑅𝑂𝐼 =
𝐺𝑎𝑖𝑛 𝑓𝑟𝑜𝑚 𝐼𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡 − 𝐶𝑜𝑠𝑡 𝑜𝑓 𝐼𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡

𝐶𝑜𝑠𝑡 𝑜𝑓 𝑖𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡
 (2-6) 

As such, the Project analysis using the Discounted Cash Flow (DCF) method follows 

a three-step process: 

1) Estimation of the amount and timing of future cash flows for each year of the 

project’s life  

2) Identification of a risk-appropriate discount rate  

3) Calculation of the present value of future cash flow and derive NPV along with 

other performance indicators to conclude on the valuation of the project. 

This approach provides a deterministic estimate of the project’s value and is an 

analysis that usually incorporates numerous assumptions in the inputs based on 

available knowledge. Hence, the initial DCF analysis should be viewed as the first level 

of the valuation process, followed by an exploratory analysis, which accounts for 

uncertainty and explores the main drivers on the value of the investment. To this end, 

sensitivity analysis and Monte Carlo simulation methods are later employed. The 

whole valuation model was modelled in an integrated Matlab code. 

2.2.4 Nonlinear regression 

Nonlinear regression aims to find a nonlinear relationship between the dependent 

variable and a set of independent variables. A nonlinear regression model can be 

expressed as: 

𝑌𝑖 = 𝑓(𝑥𝑖, 𝛽) + 𝜀𝑖 (2-7) 
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Where Y𝑖 represents the expected responses, which are nonlinear functions of the 

parameters, f(𝑥𝑖, 𝛽) is the regression/response function, 𝑥𝑖 is the vector of predictors 

(or independent variables), 𝛽 is the vector of unknown parameters, while ε𝑖 is an error 

term. In nonlinear models at least one of the derivatives of the expectation function 

with respect to the parameters depends on at least one of the parameters.  

In paper D, nonlinear regression was used to develop a series of parametric 

expressions for Capital Expenditure, Operational Expenditure and Levelised Cost of 

Energy as a function of key global deployment parameters of the wind farm such as 

the wind turbine rating, water depth, distance from port and wind farm capacity. 

Nonlinear regression was realised through SPSS software. After creating plots of each 

individual independent variable vs the CAPEX, OPEX and LCOE values, the most 

appropriate regression expressions were determined. Next, a set of overall 

relationships were developed for each of the dependent variables and the nonlinear 

coefficients were estimated through application of the maximum likelihood method for 

a pre-determined shape of the target equation. 

2.2.5 Monte Carlo simulation (MCS) 

MCS involves the random sampling of probability distributions of the model’s input 

parameters with the purpose of producing numerous random output values. The 

sampling from each parameter’s probability distribution is realised in a way that 

reproduces the shape of the resulting distribution; hence, the distribution of the output 

values deriving from the application of the method reflects the joint probability 

distribution of the outcomes [19]. It is a standard mathematical procedure, where 

random inputs are sampled and the output values are recorded for later processing 

through calculation that a desired event is realised in a number of occasions across 

the total iterations. Basic steps required to perform Monte Carlo simulation are as 

follows:  

1) Definition of the problem, evaluation of available data and outcome expectations,  

2) Definition of the system and creation of the parametric model,𝑦 = 𝑓(𝑥1, 𝑥2, … 𝑥𝑞),  

3) Definition of probability distributions for each of the inputs, number of simulations to 

accomplish the desired accuracy,  
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4) Generation of set of random inputs 𝑥𝑖1, 𝑥𝑖,2, … , 𝑥𝑖𝑞.,  

5) Execution of the deterministic model with the set of input parameters and recording 

of output value 𝑦𝑖. 

6) Repeat steps 4 and 5 for 𝑖 = 1 to 𝑚.  

7) Compilation of the joint probability distribution of the outputs 𝑦𝑖. 

There are numerous statistical distributions that can be utilised for engineering 

approximations and random number generations. Three basic distributions are the 

normal, uniform and the triangular distribution.  

The probability density of the Normal distribution is given by: 

𝑓(𝑥) = { 
1

𝜎√2𝜋
exp−(𝑥 − 𝜇)2/2𝜎2 (2-8) 

The continuous uniform distribution (also called rectangular distribution) is a 

distribution that has constant probability on the interval [a;b] and it is expressed by the 

following: 

𝑓(𝑥) = { 
1

𝑏 − 𝑎
             𝑎 ≤ 𝑥 ≤ 𝑏

      0                    otherwise  

 (2-9) 

The triangular distribution is used when a random variable can be defined by the 

minimum, the maximum and the most likely value, with values close to the most likely 

value having a higher probability of occurrence. The probability density distribution 

(PDF) of the triangular distribution is defined as follows: 

        𝑓(𝑥) =

{
 
 

 
 

 

2(𝑥 − 𝑎)

(𝑏 − 𝑎)(𝑐 − 𝑎)
             𝑎 ≤ 𝑥 ≤ 𝑐

2(𝑏 − 𝑥)

(𝑏 − 𝑎)(𝑏 − 𝑐)
             𝑐 ≤ 𝑥 ≤ 𝑏

           0                              otherwise  

 (2-10) 

Other PDFs commonly used are: binomial, Poisson, Pert, Geometric, Weibull and 

Gamma, among others. 
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2.2.6 Advanced Stochastic Processes 

Advanced numerical methods such as the ARIMA for forecasting and ANNs for model 

approximation, were employed to allow the conversion of the deterministic model to 

its stochastic expansion. Both methods were integrated in the Matlab main code. 

2.2.6.1 Time series forecast model 

This section looks at the forecasting method that was used to model electricity market 

prices, towards incorporating the uncertainty and variability in the cash flow model of 

the analysis. Time series techniques are usually based on extrapolating a set of 

historic observations to predict their behaviour in the future. In [20], electricity price 

forecast techniques are categorised into: multi-agent, fundamental methods, reduced-

form models, statistical approaches and computational intelligence techniques. 

Statistical methods forecast the current value of a time series by applying a 

mathematical correlation of the previous values with the current values.  

Geometric Brownian motion 

Financial time series are most commonly based on stochastic differential equations 

(SDEs) which are the most general descriptions of continuously evolving random 

variables. Geometric Brownian motion is the simplest and most common financial time 

series model, according to which the logarithm of the randomly varying quantity follows 

a Brownian motion with drift. 

Brownian motion (also called Wiener process) with drift parameter 𝜇 and volatility 𝜎  is 

a kind of Markov stochastic process 𝑾 = {𝑋𝑡: 𝑡 𝜖 [0,∞)} of the form: 

𝑋𝑡 = 𝜇𝑡 +  𝜎𝑊𝑡 (2-11) 

The Wiener process satisfies the following properties: a) The process starts from 0 

𝑋0 = 0 (with probability 1), b) 𝑾 has Gaussian increments, i.e. for  ℎ ≥ 0, 𝑋𝑡+ℎ − 𝑋𝑡 is 

normaly distributed with 𝜇 = 0 and variance 𝜎 (same distribution as 𝑋ℎ), c) 𝑾 has 

independent increments; that is, for 𝑡1, 𝑡2, . . , 𝑡𝑛 𝜖[0,∞) with 𝑡1 < 𝑡2 <, . . , < 𝑡𝑛, the 

random variables 𝑋𝑡1 , 𝑋𝑡2 − 𝑋𝑡1 , … , 𝑋𝑡𝑛 − 𝑋𝑡𝑛 −1 are independent, d) 𝑋𝑡 has a normal 

distribution with mean 𝑡𝑛  , e) 𝑾 has continuous paths, namely with probability 1, 𝑋𝑡 is 

continuous on [0,∞). 
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Using Itô’s lemma and integrating over time, the relationship between an initial value 

𝑆𝑡 and a later value 𝑆𝑡+𝑇 is the following: 

𝑆𝑡+𝑇 = 𝑆𝑡 ∙ exp [(𝜇 −
𝜎2

2
)𝑇 + 𝜎𝑊𝑡] 

(2-12) 

Above equation represents the GBM model.  This process has the advantage that it 

always remains positive and it can represent the characteristics of many variables. 

Geometric Brownian method has been used to stochastically assess the impact of 

volatile market electricity prices on the profitability assessment of offshore wind farms 

in a Conference paper accepted from the WindEurope Conference in October 2018, 

in Hamburg (see Appendix C). 

Mean-reverting jump-diffusion (MRJD) process 

The jump-diffusion model can be expressed by the following general stochastic 

differential equation for the increment of the electricity price (after removing 

seasonality and trend from the dataset): 

𝑑𝑋𝑡 = 𝜇(𝑋𝑡, 𝑡) +  𝜎(𝑋𝑡, 𝑡)𝑑𝑊𝑡 + 𝑑𝑞(𝑋𝑡, 𝑡) (2-13) 

where, 𝑑𝑊𝑡 represent the increments of a standard Wiener process (i.e. Brownian 

motion) and 𝑑𝑞(𝑋𝑡, 𝑡) are the increments of a jump process. 

When there is a high electricity demand, more expensive power generation 

technologies need to be brought online to cover the electricity load. During these 

periods, electricity prices exhibit jumps. In general, spot electricity prices are 

characterised by high volatility, seasonal cycles and occasional spikes. In mean-

reverting jump-diffusion processes, the drift term 𝜇(𝑋𝑡, 𝑡) can force reversion to long 

term mean levels. The Ornstein-Uhlenbeck process, which is the most applied mean-

reversion process (initially introduced in finance to model interest rate dynamics [21]), 

is expressed as: 

𝑑𝑋𝑡 = (𝛼 − 𝛽𝑋𝑡)𝑑𝑡 +  𝜎𝑑𝑊𝑡 (2-14) 

where, 𝛽 is the mean-reversion speed and 
𝛼

𝛽
  is the long term mean reversion level. 

Autoregressive Integrated Moving Average (ARIMA) 
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ARIMA or Box-Jenkins model [22] is a statistical method standing for autoregressive 

(AR) integrated (I) moving average (MA) and is a generalisation of the Autoregressive 

Moving Average model (ARMA), where “I” (standing for Integrated) is a differencing 

step that is used to remove trend or seasonality from the time series. ARIMA models 

use standard notation of ARIMA (p,d,q) and (P,D,Q) for their seasonal counterparts. 

In power systems applications, ARIMA models have been used for load forecasting 

[23], [24], with good results, as well as to model and forecast day-ahead electricity 

prices [25], [26] and weekly prices [27]. ARIMA method was deemed appropriate for 

this study considering the ability of the method to take into account the seasonal trend 

of the dataset of electricity prices. 

 The Autoregressive part (p) specifies which previous values from the data 

series are used to predict the current values or else the number of 

autoregressive orders. 

 The Difference part (d) specifies the order of differencing of the time series 

before the application of the model. To apply the ARIMA model, the dataset is 

required to be stationary; if not, a transformation of the series to the stationary 

form needs to take place. Differencing is one of the simplest ways to achieve 

this. Box and Jenkins (1976) introduced a model that contains not only the 

autoregressive and moving average parts, but also the differencing part [22]. 

 The moving average part (q) specifies the order of moving average orders in 

the model, namely how the mean values deviation of the previous time series 

is used to predict the current values. 

As such, the mathematical formulation of the ARIMA(p,d,q) model can be described 

using a lag operator notation (defined as 𝐿𝑖𝑋𝑡 = 𝑋𝑡−𝑖) as follows:  

𝜑(𝐿)(1 − 𝐿)𝑑𝑋𝑡 = 𝑐 + 𝜃(𝐿)𝜀𝑡 (2-15) 

where, 𝑋𝑡 is the price at time 𝑡, 𝑐 a constant term, 𝑑 the differencing order, 𝜀𝑡 is the 

random error at time 𝑡; further, 𝜑(𝐿) are the parameters of the AR model formulated 

as: 
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𝜑(𝐿) = 1 − 𝜑1𝐿−. . . −𝜑𝑝𝐿
𝑝 

(2-16) 

where, 𝑝 refers to the autoregressive terms, while 𝜃(𝐿) are the parameters of the 

MA(q) model expressed as: 

𝜃(𝐿) = 1 + 𝜃1𝐿+. . . +𝜃𝑞𝐿
𝑞 

(2-17) 

where, 𝑞 refers to the moving average terms [28]. 

2.2.6.2 Artificial Neural Network (ANN) modelling approach 

An Artificial Neural Network (ANN) is a powerful data modelling tool able to capture 

and simulate complex input/output relationships [29]. It comprises a large number of 

interconnected neurons with linear and nonlinear transfer functions and can be even 

used to predict the nonlinear behaviour of a system [30]. In general, the structure of 

ANNs consists of an input layer, one or more hidden layers and an output layer. 

Conventional mathematical models, such as common approximation models, use an 

algorithmic approach following a set of steps to solve a problem; unless these steps 

are known, the problem cannot be solved, restricting problem-solving capability of 

conventional models, often pre-assuming the shape of the response surface. ANN 

‘learns’ the relations between the inputs and outputs by training. 

The input to each neuron can be the network input from the input layer, the output of 

the neuron in the previous layer, and an externally applied bias [31]. The output of 

each neuron is the function of the weighted sum of the neuron inputs, with the 

hyperbolic tangent sigmoid transfer function (Eq. (2-18)) used in the hidden layer and 

the linear function (Eq. (2-19)) used in the output layer. The weights and bias are 

determined in the training process by minimising the error between the ANN outputs 

and the design matrix [32]. 

𝑓(𝜑) =
2

1 + 𝜀−2(∑ 𝑤𝑖∙𝑢𝑖
𝑘
𝑖=1 +𝜃)

− 1 (2-18) 
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𝑓(𝜑) =∑𝑤𝑖 ∙ 𝑢𝑖

𝑘

𝑖=1

+ 𝜃 (2-19) 

where, φ is the Neuron output; θ is the ANN layer bias; 𝑤𝑖 is the ANN node weight and 

𝑢𝑖 is the stochastic variable. 

In this analysis, the MATLAB Neural Network Fitting toolbox was used, with a two-

layer feed-forward ANN with ten sigmoid hidden neurons and linear output neurons, 

to map the system response generated from the process model (based on the design 

matrix inputs).  

To ensure an accurate prediction by the ANN, the data in the design matrix were 

divided between training (70%), validation (15%) and testing (15%) samples. Neural 

network training was performed to adjust the weights of all the connecting nodes until 

the desired network performance was reached. The evaluation of network 

performance is essentially an optimisation process and the objective function involves 

minimisation of an error function, e.g. mean squared error (MSE). In this study, the 

Bayesian Regularisation training algorithm was used as it can provide a better solution 

than other available algorithms for smaller problems to obtain the optimal values of the 

adjustable parameters, weights and biases. The MSE performance function (Eq. 

(2-20)) was used to assess the network performance. 

𝑀𝑆𝐸 =
1

𝑁
∑(𝑧𝑖 − 𝑦𝑖)

2 → 𝑚𝑖𝑛

𝑁

𝑖=1

 (2-20) 

Where, 𝑧𝑖: the targets, 𝑦𝑖: network outputs and 𝑁:data size. 

2.2.7 Efficient model for calculation of operational KPIs 

Accordingly, in paper F, a parametric framework was developed for the investigation 

of uncertainties present during the operation of offshore wind energy assets and 

calculation of operational KPIs. An overview of the integrated O&M analysis framework 

formulated in paper F is illustrated in Figure 2-4. The model consists of the following 
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modules: (1) the failure modelling module, (2) the weather modelling module, and (3) 

the cost modelling module.  

The failure modelling module is divided into the mean time to failure estimation 

(uptime) and the mean time to repair estimation throughout the planned and 

unplanned maintenance operations (downtime). The mean time to failure calculation 

is based on the annual failure rates, while the planned and unplanned maintenance 

operations require data related to the resources required for the repairs. Resulting 

downtime depends on the availability of the required resources for the repair, mission 

organisation time, duration of navigation and repair, as well as the required number of 

technicians’ shifts.  

The weather modelling module enables the prediction of the future sea states, namely 

future significant wave heights and wind speeds. Weather conditions play an important 

role in the total downtime of the wind farm, as when the related parameters surpass 

the set wave height and wind speed limits of the vessels, travelling to wind turbines 

and accessing them becomes impossible. Therefore, unfavourable weather conditions 

will delay repairs, thus increasing downtime and decreasing the wind farm’s 

availability.  

The cost modelling module takes into account the actual duration of all stages required 

to perform the repair and maintenance operations and uses vessel and crew day-

rates, along with material costs to predict the total O&M cost. Outputs of the model are 

the availability, operating cost and the power production losses, among others. 

A high-level validation based on the results of published cases has been performed, 

while further calibration of the model for more accurate results can take place through 

a specific case study. 
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Figure 2-4  Flowchart of O&M cost model 
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2.2.7.1 Failure modelling module 

In this thesis, the repair categorisation of Reliawind project [33] was adopted 

which classifies repair classes of subsystems into minor repairs, major repairs 

and major replacements. A total of 19 subsystems of the wind turbine were 

considered, while data used for the application of the model on failure rates, 

average repair times, average material costs and number of required personnel 

were retrieved from [34]. Assuming that the reliability of the turbine follows an 

exponential distribution, the probability of failure (PoF) can be expressed as: 

𝑃𝑜𝐹 = 1 − 𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 1 − 𝑒−𝑡𝑢𝑟𝑏∙𝑡 (2-21) 

𝑡 = 𝑀𝑇𝑇𝐹 = −
1

𝑡𝑢𝑟𝑏
𝑙𝑛 (1 − 𝑃𝑜𝐹) 

(2-22) 

where, 𝑡𝑢𝑟𝑏=∑ 𝜆𝑖
𝑆𝑢𝑏𝑠𝑦𝑠𝑡
𝑖=1 , is the sum of the failure rates of each turbine’s 

subsystems in series. Monte Carlo simulation is, then, performed to generate 

numerous random PoFs and subsequently returns an average MTTF value for 

each wind turbine. Once, MTTFs are calculated, Equation (2-21) can be used to 

estimate the probability of occurrence of each subsystem’s failure, as: 

𝑃𝑜𝐹𝑠𝑢𝑏𝑠𝑦𝑠𝑡 = 1 − 𝑒
−𝑠𝑢𝑏𝑠𝑦𝑠𝑡∙𝑀𝑇𝑇𝐹𝑠𝑢𝑏𝑠𝑦𝑠𝑡  (2-23) 

where, 𝑠𝑢𝑏𝑠𝑦𝑠𝑡 = ∑ 𝜆𝑖
𝑅𝑒𝑝𝑎𝑖𝑟 𝑐𝑙𝑎𝑠𝑠
𝑘=1  is the sum of the failure rates of the different 

repair classes of the subsystems. Once the probabilities of each subsystem’s 

failure is known, the model performs random weighted sampling to determine 

which subsystem will fail once the MTTF has elapsed along with the repair class, 

which is also randomly selected following the same logical process. Along with 

the MTTF calculation, the model calculates the absolute time set of the 

simulation, which is interpreted as the actual time from the beginning to the end 

of life of the wind farm. The duration of the individual activities is added to the 

absolute time set, enabling the calculation of the uptime and downtime of the 

turbine and registering the time when a certain failure happens. 
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Unplanned (corrective) maintenance is carried out following the occurrence of a 

failure on the turbine or the BOP, which may affect several turbines. The 

procedure after the occurrence of a new failure is illustrated in Figure 2-5. Once 

a failure has occurred on the first turbine, the availability check of the required 

main and support vessels takes place. It is assumed that a predetermined 

number of vessels will be continuously operating in the wind farm, hence they will 

be available to access the wind turbine that failed if the weather conditions allow 

so and the same applies for a predetermined number of personnel and the spare 

parts needed for the repair. If, however, all available vessels are occupied, the 

failure remains unresolved and the check is repeated once the required number 

of vessels are released from the previous mission. All required resources can 

also be inserted by the user as per each subsystem and repair class. Once the 

required vessels, crew and spare parts are available, the weather conditions are 

checked. Subsequently, the organisation of the mission, including the 

mobilisation of the vessel(s) (if required), take place. Once the crew accesses the 

subsystem that failed, the repair is carried out; it is assumed that one work shift 

lasts for up to 12 hours, which includes the total repair time, transitioning from 

harbour to the site and vice versa, as well as a mid-shift break. In case that more 

than one shifts are required, the crew returns to harbour and the mission restarts 

12 hours later. When the damage is restored, the wind turbine starts producing 

power again, and the MTTF of the subsystem is reset to its original value. Finally, 

the transit back to the harbour and the demobilisation time are added to the total 

downtime of the wind farm. The durations of all unplanned maintenance activities 

are registered and added to the absolute total time set. Once the absolute total 

time set equals the service life of the wind farm, the simulation stops.  

Planned maintenance (else calendar-based maintenance) operations are carried 

out periodically and deal not only with one subsystem of the wind turbine, but with 

groups of subsystems or the entire wind turbine. Planned maintenance can be 

scheduled ahead of time, to take place during periods of favourable weather 

conditions when delays to missions due to exceedance of vessels’ safety limits 

(weather window downtime) are not likely to occur. The same applies for vessels, 
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crew and spare parts unavailability downtimes. Calendar based maintenance is 

assumed to take place once every year with a deviation of ±1 month, to simulate 

the real life operations. Downtime due to planned maintenance is assumed to 

originate exclusively from the navigation and repair time, together with the 

potential downtime due to crew rest. It is, thus, expected that unplanned 

maintenance will incur higher downtimes in relation to planned maintenance 

considering the longer expected downtimes and types of maintenance activities.  

2.2.7.2 Weather modelling 

Commonly used methods for generating sea state time series comprise Gaussian 

and Langranian approaches for short term wave modelling, Autoregressive 

Moving Average (ARMA) methods and Markov-based models which work well for 

long term forecasting and can capture persistence of sea state parameters [35], 

[36].   

In this thesis, the discrete time Markov chains was chosen as the weather 

forecasting method. To this end, historic weather datasets from 1992 to 2017 with 

a 3-hour time step were retrieved from BTM ARGOSS database [37]. Discrete 

time Markov chains method is based on having a finite number of states in a 

system and estimating the probability, 𝑝𝑖,𝑗 of state i to evolve into state j. Markov 

probability matrices are generated for each month, to account for seasonality, as 

shown below: 

𝑃(𝑠𝑒𝑎 𝑠𝑡𝑎𝑡𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟)𝑚𝑜𝑛𝑡ℎ = (

𝑝11   𝑝12   …   𝑝1𝑛
𝑝21   𝑝22   …   𝑝2𝑛
  ⋮         ⋮     ⋱      ⋮ 
𝑝𝑛1   𝑝𝑛2   …   𝑝𝑛𝑛

)

𝑚𝑜𝑛𝑡ℎ

 (2-24) 

where, 𝑝𝑖,𝑗 equals the number of transitions of sea state parameter i to j, divided 

by the total number of times, state i appears. As such, initially, the weather data 

is discretised with a resolution of 0.2 m for wave height and 1 m/s for wind speed 

data, resulting in a finite number of possible values, namely 23 and 25 values, 

respectively. A time step of 3 hours is also considered for the forecast, during 

which wind speed and wave height are assumed to remain constant. Based on 
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the probabilities of each transition matrix, the wave height for the starting month 

is randomly selected, successively all sea state conditions are predicted as a 

function of the previous state and the transition probability. 

2.2.7.3 Cost modelling 

The cost modelling module gathers the data recorded during each iteration, 

required to estimate the O&M cost. For unplanned maintenance of wind turbines, 

the time that a failure occurs is registered with reference starting point the 

beginning of operation of the wind farm. Further, the subsystem that failed and 

the type of failure will define the required main and support vessels (to match the 

correct day rates) and the number of crew members required for the repair. 

Downtimes of crew unavailability, spare parts unavailability, weather window, 

navigation time and demobilisation time are accounted to estimate the total cost 

of vessels and crew.  

2.2.8 Multi-stage stochastic programming 

Finally, in paper G, the optimisation of the power generation technology mix was 

carried out through a multi-stage stochastic optimisation. The proposed model 

was developed using the constrained solver fmincon of MATLAB R2017a 

optimization toolbox, which is based on sequential quadratic programming [38]. 

The optimisation problem is schematically presented in Figure 2-5. 
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Figure 2-5 Schematic representation of the optimisation model 

The study system covers a time horizon of 4 periods and 3 stages of 4, 5 and 5 

years duration, respectively. Figure 2-6 demonstrates the multistage scenario 

tree that is developed by the three uncertainty variables (electricity demand, 

capital cost reduction and fuel price). The uncertainty of future demand and 

capital cost reduction is modelled by means of a scenario-tree configuration, 

whereas the uncertainty of fuel prices is approached through Monte Carlo 

simulation. Both the uncertainty of electricity demand and capital cost reduction 

are represented by three nodes: “Low”, “Medium” and “High” with assigned 

probability values 0.3, 0.5 and 0.2, respectively, as shown in Figure 2-6. 

Furthermore, each MC simulation sample is considered as a separate node with 

1/𝑛 probability. The integration of MC simulation to model the stochasticity of fuel 

prices was a methodological contribution of this study converting the possibilistic 

scenario-based uncertainty modelling to a probabilistic approach. A scenario (𝑠) 

is a route from the root node to a leaf node and the probability of scenario s (𝑝𝑠) 

equals the product of probability of occurrence realized from root node to leaf 

node: 

𝑝𝑠 = 𝑝𝑠,𝑡1 ∙ 𝑝𝑠,𝑡2 ∙ … ∙ 𝑝𝑠,𝑇 (2-25) 
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Hence, the probability of scenario 𝑠 is the joint probabilities of all uncertain 

variables. The sum of corresponding joint probabilities of all scenarios is equal to 

1. After reaching the leaf node at each stage, key decisions (installed capacity for 

each technology) from a set of 𝑛 scenarios are averaged to provide the input 

value for the next node. Hence, in each stage, 𝑛 ∙ 32 ∙ 𝑡 optimizations are 

performed, where 𝑛 is the set of random fuel price MC sample, assumed to follow 

a normal probability distribution and 𝑡 is the number of stages. Since fuel prices 

volatility is hard to model accurately by following a three-scenario-tree pattern, 

MC simulation was used to generate a random set of fuel prices based on their 

mean and standard deviation values of each technology’s fuel price. It should be 

highlighted that increasing the size 𝑛 of the MC generated samples can provide 

more robust results; however, it significantly increases the processing time. To 

identify the minimum sample size, a convergence study was implemented which 

indicated that results started to converge for 𝑛 = 150. 

 

Figure 2-6 Uncertain inputs represented by scenario tree with assigned 
probabilities under the baseline scenario 
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2.3 Critical discussion on the methods selected 

As described in the previous sections, this thesis encompasses a number 

methodologies and types of analysis, aiming at approaching the same research 

question from different stakeholder perspectives and at different levels of 

analysis. This section substantiates on the chosen methods and provides a 

critical discussion on alternative methods, advantages of the ones chosen, 

limitations of the methods and of the analysis. Finally, verification/validation 

approaches (where applicable and possible) are discussed.  

Hierarchical cluster analysis is a statistical method that seeks to identify patterns 

within the data. Its aim is to reduce the number of observations by finding groups 

of observations with minimum within-group variabilities and maximum among 

groups variability. This method was considered appropriate for identifying 

investors following similar asset holding strategies. Hierarchical clustering has a 

logical structure, is easy to read and interpret [39]. However, it may be regarded 

mostly as a descriptive technique. The solution is not unique and it strongly 

depends upon the analyst’s choices. In general, cluster analysis results should 

not be generalized bearing in mind that cases belonging to the same group are 

similar only with respect to the variables cluster analysis was based on. Data for 

cluster analysis don’t have to comply with all strict conditions for statistical testing. 

They only have to be defined on a numerical scale (rational, ordinal or even 

dichotomous). Cluster analysis is easily administered, primarily as a descriptive 

technique. Alternative methods considered were principal components analysis 

and factor analysis, which are variable reduction techniques, reducing the 

number of observed variables to a smaller number of principal components which 

account for most of the variance of the observed variables. Validity of the derived 

clusters was checked manually, confirming that investments within a defined 

cluster were linked through similar investors’ patterns across certain criteria. 

The lifecycle costing and DCF analysis model developed is a fully parametric 

model, allowing the prediction of total costs of investments of multiple scales. As 

mentioned in section 2.2.3, alternative valuation approaches could be the relative 
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valuation or the option pricing model; however, DCF is the foundation on which 

all other valuation approaches are built. The lifecycle overarching structure of the 

model is a comprehensive way to summarise all costs of the wind farm project. 

The high-fidelity parametric model is suited to accommodate different entry and 

exit strategies of investors. The model adopted the most up-to-date parametric 

equations found in the literature, while where latest data were available new 

parametric equations were developed. However, this is a deterministic model, 

unable to account for inherent uncertainties in the analysis, assuming mostly 

constant parameters (i.e. not accounting for volatility of WACCs, fluctuating 

electricity prices, cost of components, etc.). The parametric model was verified 

by the comparison of results with three different references namely [40]–[42]. 

Alternative approaches to the valuation of wind farm could include reliance on 

data from past investments however for an industry/application which is still 

maturing and the supply chain is not fully developed and costs depends on 

demand and deployment location, such approach would be inefficient. 

The shortcomings of the deterministic DCF approach highlighted above were 

addressed through paper E, where the stochastic valuation of offshore wind 

farms, through the application of advanced numerical methods, is carried out. To 

this end, time dependent and independent stochastic variables were simulated 

by means of an Autoregressive Moving Average and an Artificial Neural Network 

(ANN) approximation model integrating a Monte Carlo simulation framework to 

derive the joint probability distributions of the output variables. The derived 

models were verified through a number of bespoke cases where costs were 

analytically calculated through the high-fidelity cost model. 

On the one hand, Monte Carlo simulation is a widely used, versatile method to 

capture uncertainty, while it can conveniently expand deterministic models. On 

the other hand, it does not capture less likely outcomes and very low probabilities 

and it requires considerable data volume (definition of probability distribution 

functions) for random input variables or uncertain and predicted input parameters 

[43], and it cannot capture extremities [44]. As the problem investigated does not 

face such risks, Monte Carlo simulation approach was chosen as suitable. 
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Alternative methods considered were first and second order reliability methods 

which could derive results of low probabilities of occurrence. However, they are 

analytical methods and involve a further layer of approximation in the analysis 

reducing the accuracy of the results of nonlinear systems. Further, a detailed 

analytical expression is in most cases required for the calculations. 

Artificial Neural Network is a surrogate modelling method able to capture 

nonlinear relationships as a black box function, which can be easily integrated 

into a Matlab code. However, if number of available input data and the quality of 

data do not fulfil certain criteria, it can lead to overfitting and hence poor 

approximation. For the problem of generalising the outputs of the O&M costs, 

where nonlinear behaviour is expected in the input/output relationship, an ANN 

approach is highly effective. Alternative methods that could be considered include 

regression models, which, are unsuitable when the relationship between the 

dependent and the independent variables is nonlinear, complex and its shape 

cannot be pre-assumed. The interpolating capability of the ANN model that was 

derived was quantified through the calculation of R2 coefficients comparing actual 

and calculated values through the testing and training set, as well as an extra set 

of cases that were run through the commercial tool and approximated with the 

derived model, showing satisfactory results, as discussed later on in this thesis. 

To identify the best forecasting method for modelling the energy market prices, 

one has to determine the scope of the analysis. The present thesis focuses on 

stochastically calculating the long-term electricity market prices to estimate the 

profitability and planning of the offshore wind energy investment beyond the 

expiration of the CfD strike price support mechanism. Statistical methods, such 

as the Autoregressive Moving Average, have a strong underlying mathematical 

and statistical theory, accommodating temporal correlations between past 

observations and current prices; as such, they can attach some physical 

interpretation to their components. Nevertheless, they are often criticized for their 

limited ability to capture nonlinear behaviour of electricity prices and they have 

been reported to perform better for short-term predictions (i.e. forecasts from a 

few minutes up to a few days ahead) [20].  
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Electricity prices exhibit seasonality on a daily, weekly and seasonal level basis, 

which can be captured through the ARIMA process. However, statistical methods 

cannot capture the presence of spikes in the dataset, especially for price-only 

models, but also for models using fundamental variables. Mean-reverting jump-

diffusion (MRJD) processes are more appropriate to reproduce patterns of spikes 

and reversion to a long term mean level. However, they are considered to give a 

simplified picture of the price dynamics and are not expected to provide accurate 

results on an hourly basis, but rather recover main characteristics of the electricity 

prices at a daily time scale. Other available methods, such as Computational 

Intelligence techniques can be considered as they produce more accurate results 

(especially for day-ahead predictions of spot electricity prices), handling 

complexity and nonlinearity. Nevertheless, their application usually requires a 

larger dataset (in comparison to the price-only models) of fundamental drivers, 

including the system forecasted demand, weather related data, fuel costs, etc. 

Considering that an accurate prediction of short-term electricity prices is not 

under the scope of the present thesis, the accuracy criterion is more relaxed and 

therefore an ARIMA approach was considered efficient to predict the future 

electricity prices. 
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3 OUTCOMES OF THE RESEARCH 

This section reports and discusses the highlights of the research undertaken as part of 

the EngD thesis as per an energy system and a technology development level.  

3.1 Energy system development level 

3.1.1 Outcomes of review on risk-based methods for sustainable energy 

system planning 

Paper A reviews the risk-based methods employed for the planning and feasibility 

analysis of sustainable energy systems. It also aims to critically assess which risks have 

been analysed by which methods, what are the common outputs of these methods and 

which have been the target stakeholders. Methods have been classified into quantitative 

and semi-quantitative as shown in Figure 3-1. Quantitative risk-based evaluation 

methods deal with (statistical) risk factors that can be represented by probability 

distributions. Semi-quantitative methods have the flexibility to take into consideration 

statistical and non-statistical risks. Methods that were identified through the SLR are: 

MCDA and scenario analysis.  

 

Figure 3-1 Classification of the risk-based methodological approaches implemented in 
the field of sustainable energy planning and feasibility 

The paper also matches the risk-based methods with the risks/uncertainties identified 

by the systematic review providing guidance as to what methods are most suitable to 

address/model the specific risk and uncertainty factors listed. 

Goal programming 
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A comparative overview of the most significant outputs of each method are 

summarised in Figure 3-2. 

 

Figure 3-2 Common outputs of risk-based methodologies in energy planning and 
feasibility studies 

   

Paper A served as a basis for the further research in the thesis, providing an 

understanding of which methods have been applied to address the uncertainty in the 

valuation and planning of sustainable energy systems, as well as to identify untapped 

issues on relevant areas of research. 

3.1.2 Outcomes of cluster analysis of investment strategies in offshore 

wind energy market 

In paper B, results of the cluster analysis method applied to operating installations 

indicated the formation of three distinct clusters of investors following similar strategies 

in terms of their entry, exit, purchase (of equity stake of the investment) timing, as well 

as the stake purchased. Figure 3-3 illustrates the resulting Dendrogram which shows 

the sequence by which the observations and clusters were merged.
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Figure 3-3 Dendrogram of the hierarchical clustering 

Key characteristics of each cluster are summarised in Figure 3-4. From a financial 

point of view, each investor has a different risk profile, which is reflected through 

different WACCs, which in turn accounts for the profitability of an investment. The first 

cluster includes third party investors usually comprising institutional investors and 

infrastructure funds typically managing very large amounts of money (mostly in the 

scale of billions of £). Institutional investors are interested in owning projects during 

their operating life, maintaining a low risk profile reflecting costs of capital in the region 

of 6%-12% [45]. The second cluster comprises mostly independent power producers 

and OEMs/ECPI providers. Independent power producers (IPPs) develop, construct 

and operate offshore wind energy projects; accordingly, they usually sell the generated 

energy to the grid or to large scale power providers through Power Purchase 

Agreements (PPAs). They usually do not have as strong balance sheets as Utility 

companies and their cost of capital lies in the region of 10-20% (except for IPPs with 

a background in the offshore oil & gas industry). Finally, the Build-Operate-Transfer 

(BOT) cluster is dominated by major Utilities, able to finance the project from their own 

reserves or through corporate finance at a relatively low cost of capital (~8-10%). It 

should be noted that most offshore wind farms are less than 10 years’ old and the first 

wind farm was only decommissioned last year, so it is possible for a further cluster to 

be formulated in the future with investors aiming to profit from the service life extension 

stage.

A A’
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Figure 3-4 Key characteristics of three investor clusters 

3.1.3 Outcomes of stochastic optimisation of the power generation mix 

Outcomes of the next study carried out at an energy system development level were 

derived from the application of the multi-stage stochastic optimisation framework 

(presented in section 2.2.8) to the Indonesian power generation mix (paper G). 

Indonesia was selected as the reference case study for determining the optimum 

power generation expansion planning due to the availability of data on the existing 

installed power plants as well as because it is a rapidly developing economy with 

projected electricity growth of 8.5% per year until 2025 and significant renewable 

energy resource potential [46]. 

The proposed model was initially applied to determine the optimal power generation 

mix under a baseline case and accordingly to another three representative cases 

calling for: the “Least cost option”, the “Policy Compliance option” and the “Green 

Energy Policy option”. The different sets of constraints that were imposed for each 

planning option (PO) are summarised in Table 3-1.  

 

 

Cluster 1: Late entry 
investors

• Third party capital investors

• Corporate investors, 
infrastructure funds and 
institutional investors

• Undertake exclusively 
operational risks and avoid 
construction risks, retaining a 
low risk profile with stable 
returns

• Purchased stakes are in 
general minority stakes

• Long exit timing

• Cost of capital in the region of 
6%-12% 

Cluster 2: Pre-
commissioning investors

• Independent energy 
companies, EPCIs contractors, 
and OEMs 

• Entrance:  beginning of the 
project

• Exit: prior the commissioning of 
the wind farm

• Turnkey developers entering 
the venture at an early stage of 
its lifecycle, in order to get 
involved in the construction and 
installation stage, and following 
the commission, they tend to 
sell the stake they own exiting 
during the operating stage of 
the asset. 

• Cost of capital lies between 12-
14%

Cluster 3: Build-Operate-
Transfer investors

• Build the asset

• Keep the operating assets in 
their balance sheet

• Divest part of their stake 
(minority stakes) during the 
operating stage of the asset

• Major Utilities and Independent 
power producers

• Low cost of capital (~8-10%)
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Table 3-1 Set of constraints for each PO 

Constraint Baseline case 
Least 
cost 

option 

Policy 
Compliance 

option a 

Green Energy 
Policy option 

Peak demand √ b √ √ √ 

Consumption 
demand 

√ √ √ √ 

Renewable 
potential limit 

√ √ √ √ 

Annual 
construction limit 

√ √ √ √ 

Minimum 
proportion c  

x x 

Coal: 30% in 
2025 

29% in 2030  
NG: 22% in 2025  

x 

Maximum 
proportion c 

45% for each 
technology 

x 

Oil: 25% in 2025     
24% in 2030 

Rest of 
technologies: 

45%  

45% for each 
technology 

Renewable 
penetration target 

16% in 2020 
23% in 2025 
25% in 2030 

x 
16% in 2020 
23% in 2025 
25% in 2030 

24% in 2020 
35% in 2025 
38% in 2030 

CO2,eq emission 
limit 

750 m ton in 
2020 

1000 m ton in 
2025 

1250 m ton in 
2030 of 

CO2,eq/year  

x 

26% CO2,eq 
reduction in 

relation to 2020, 
2025 and 2030 

BAU 

30% reduction 
in relation to 
2020, 2025 

and 2030 
Baseline case 

Carbon pricing x x x 
$ 30 /metric 

ton of CO2,eq 
a Source: [47], [48]. 
b “√” means that the constraint is included in the simulation, “x” means constraint is excluded. 
c Proportion of each technology within the total power generation mix. 

It should be noted that for the derivation of the planning options, location-specific 

literature has been studied in depth through a review of national and international 

regulations and communications with key stakeholders in the Ministry of Energy and 

Mineral Resources of Indonesia, who provided detailed data on the installed capacities 

per different technology and per different plant. To this end, this dataset also 
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constitutes original contribution as high-fidelity analysis cannot be achieved only with 

data available within the public domain. 

Under the baseline case, the optimised stochastic power generation mix for all leaf 

nodes run for the planning period 2025 is shown in Figure 3-5 and it includes coal 

20.0–45.0% of total power generation mix, natural gas 9.0–32.0%, oil 3.5–17.5%, 

hydro 9.0-12.5%, geothermal 8.8–12.3%, biomass 2.3-11.9%, onshore wind 2.7–

4.1%, offshore wind 0%-0.14% and solar PV 0%-8.0%. It has to be noted that results 

shown in this figure do not depict the likelihood of occurrence of each scenario. To 

identify the weighted mean proportion of power generation produced from each 

technology, 𝜏, during time period, 𝑡, each observation is multiplied by the probability 

of occurrence of its originating scenario 𝑠𝑘 (where 𝑘 is a specific combination of 𝑠𝐷 , 𝑠𝐶 

and 𝑠𝐹 scenarios) and the products are, then, summed up. For instance, the weighted 

mean proportion of power generation derived from technology 𝜏1 is calculated as: 

�̅�𝜏1 =∑(𝑝𝑠1𝑥𝜏1,𝑠1 + 𝑝𝑠2𝑥𝜏1,𝑠2 +⋯+ 𝑝𝑠𝑘𝑥𝜏1,𝑠𝑘)

𝐾

𝑘=1

 (3-1) 

In Figure 3-6, the optimised stochastic power generation mix across the whole 

simulation period is illustrated. Total weighted mean power installed capacity was 

calculated 72.2 GW in the 2020 baseline case, increasing to 166 GW in 2030 because 

of growing energy demand. Outliers have been removed from the box plot 

representation, while the weighted mean proportions of the different technologies in 

the power generation mix are denoted by a red asterisk. The central red mark in the 

whisker charts represents the median, while the bottom and top edges of the blue 

boxes indicate the 25th and 75th percentiles, respectively. The black whiskers cover 

the non-outliers that represent the most extreme data points. Constraints imposing the 

renewable technologies contribution, as well as lower carbon emission levels appear 

to enforce the decrease of fossil-fuels-based technologies over time. In fact, coal, NG 

and oil installed capacities are reduced by 11%, 45% and 34% from 2020 to 2030 time 

periods, while hydro, geothermal, biomass and onshore wind are increased by 58%, 

117% and 112%, respectively (as shown in Figure 3-7). Furthermore, the new 

weighted installed capacity was estimated 80.5 GW, weighted RES share was 35%, 

CO2,eq emissions 570 million tons and weighted total discounted cost $ 471 billion in 
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year 2030. The model failed to find an optimum solution for around 5% of the total 

uncertainty scenarios, meaning that not all constraints could be satisfied under these 

scenarios. Results illustrated here were, thus, cleansed and their probabilities were 

readjusted to sum up to one. 

 

Figure 3-5 Power generation mix across different scenarios (for year 2025) 

 

Figure 3-6 Optimised stochastic power generation mix throughout the simulation 
period under the Baseline Case 
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Figure 3-7 Weighted average installed capacity under the baseline case 

The proposed model was, then, applied to determine the optimal power generation 

mix for three Planning Options (POs): Least cost, Policy compliance and Green 

Energy Policy option.  

To illustrate the effect of the different bounds on the set of constraints, the Least Cost 

PO results are discussed here, while the rest of the results can be found in paper G. 

The Least Cost PO focuses on minimizing the cost of the power generation system, 

while no carbon emissions limit, renewable contribution and fuel diversity targets are 

in place. The power generation mix is dominated by coal power, since there is no 

imposed carbon emission restriction or renewable penetration target. Even though the 

renewable penetration of this option is not as high and varied as in other options, it 

can still fulfil the 25% renewable penetration target for 2030, because of the high 

contribution of the relatively low cost of hydropower, as well as the contribution of 

geothermal, biomass and onshore wind power plants. According to the results, overall 

power generation in 2030 will rely heavily on the three most cost-efficient technologies: 

coal (57.1%), geothermal (13.2%) and hydropower (13.1%). The rest of the power 

generation originates from gas (5.9%), onshore wind (4.6%), biomass (3.2%) and 

diesel power (2.9%). Cost-effectiveness accounts both for the total cost of the 

technology integrating the capital, fixed operational, variable operational and fuel cost, 

as well as for the total lifetime duration and the capacity factor of each technology. As 
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can be seen from Figure 3-8, to satisfy the increasing demand at the least cost, coal 

installed capacity will keep growing rapidly throughout the planning horizon. On the 

other hand, natural gas and diesel consumption experience a decreasing trend as their 

contribution is slowly superseded by coal and hydropower. 

 

Figure 3-8 Power generation mix for Least cost option 

3.2 Technology development level 

3.2.1 Outcomes of the lifecycle techno-economic model of offshore wind 

energy assets 

In paper C, the high-fidelity cost revenue model is developed taking into account the 

life cycle phases of the offshore wind energy investment. The model is particularly 

developed to account for the different entry and exit strategies of different investors. 

To demonstrate the model’s applicability, a case study of a representative offshore 

wind farm located in European waters, was employed. Key assumptions of the wind 

farm site are included in Table 3-2. The 504MW capacity wind farm is located in the 

North Sea region, 36km away from the port. Weather data (3-hourly data over a 3-

year period) were retrieved from BTM ARGOSS [37] for modelling the operational 

phase of the asset. A wind farm of approximately 500MW capacity was considered a 

reasonable selection, since there are a number of studies that have considered the 
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same wind farm capacity in their baseline scenario, such as [40], [49], which can allow 

comparison of results. 

Table 3-2 Case study wind farm specifications 

Wind farm characteristics Values  

Wind farm 

Total wind farm capacity,  𝑃𝑊𝑇 504MW 

Projected operational life of the wind farm, 𝑛 25years 
Construction years, 𝑇𝑐𝑜𝑛𝑠𝑡𝑟 5years 

Number of turbines, 𝑛𝑊𝑇 140 

General Site 
characteristics 

Distance to port, 𝐷 36km 

Water depth, 𝑊D 26m 

Wind turbine 

Rotor diameter, 𝑑 107m 

Hub height, ℎ 77.5m 
Pile diameter, 𝐷𝑝𝑖𝑙𝑒 6m 

Rated power 3.60MW 
Cut-in speed 4m/s 
Cut-out speed 25m/s 

The total undiscounted CAPEX encompassing costs during the Development and 

Consenting (D&C), Production and Acquisition (P&A), Installation and Commissioning 

(I&C) and Decommissioning and Disposal (D&D) phases amounts to £1.675 billion, 

while the undiscounted annual OPEX was estimated £56.6 million. 

In Figure 3-9, the relative contribution of the 5 different phases of the life cycle to the 

total LCOE is presented. It is indicated that the costs incurred during the P&A phase 

have the largest share of the total costs (46%), followed by the O&M costs (30%). 

These results are consistent with a number of previous studies [40], [50].  

 

Figure 3-9 Life cycle cost breakdown of reference wind farm 
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For the sensitivity analysis of the model, the wind farm general specifications and site 

characteristics were considered as design parameters (parameters that remain 

unchanged) and the sensitivity of other variables were tested with respect to their 

influence on the NPV of the investment (as opposed to other works testing sensitivity 

of design parameters [40], [51]). This allows a targeted investigation of the impact of 

parameters that can be influenced during the lifecycle of a wind farm of a given 

location. 

The results of the sensitivity analysis are illustrated in Figure 3-10 (a)-(d). The graphs 

include parameters which have an influence of at least ±2% (cut-off point) on the NPV 

upon a 20% increase/decrease in their values. For reference, under the baseline 

scenario, NPV of the investment was calculated £284.3 million at a real discount rate 

of 6.15% with an IRR= 10.3%. Further, LCOE was estimated £109/MWh.  

The most influential CAPEX parameters appeared to be the wind turbine acquisition 

cost, the working hours of the personnel during the I&C phase and the foundation 

acquisition cost, followed by the day rate of the jack up vessels and the weather 

adjustment factor. As far as the OPEX parameters are concerned, the MTTF and the 

workboat wave height limit appeared to have the greatest influence on the NPV of the 

investment. Considering the significant effect of this factor on the feasibility of the 

project, the operator could consider measures to limit this risk. For example, by leasing 

workboats, which could provide safe access at higher wave heights or through hiring 

other modes of transportation. The NPV demonstrated high sensitivity to the WACC 

(with a 20% decrease in WACC more than doubling the NPV of the investment) and 

as a result, to its composing parameters (e.g. equity to debt ratio). In fact, a 20% 

decrease in these parameters, namely the return on equity, the interest rate on debt 

and the equity ratio increase NPV by 52%, 44% and 32%, respectively.  

The last observation stresses the importance of financing costs on the feasibility of the 

investment. It is also noted that cost of equity is almost always expected to be higher 

than the cost of debt; thus, as the debt ratio increases, the WACC is expected to drop. 

Nevertheless, third party financing stakeholders would expect to see a reasonable 

equity being invested in the project to increase confidence in the investment. Hence, 

the final equity to debt ratio would be a balance of these opposite forces.
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(a) CAPEX parameters 

 

(b) OPEX parameters 

 

(c) Revenue parameters 
 

(d) FinEX parameters 

Figure 3-10 Sensitivity analysis results 
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FinEX and revenues parameters appear to have the greatest impact on the NPV 

of the investment in comparison to the other two modules of the model, with 

WACC, net energy production and strike price having the greatest impact.  

An objective of this thesis was to assess the expected financial returns from an 

OW farm asset for investors who are investing and divesting at different times 

across the service life. Implementation of the model for the respective investment 

strategies can provide, among other outputs, information regarding the financial 

return that different investor classes can expect from an investment in an OW 

farm.  

Figure 3-11 (a)-(c) illustrate cumulative cash flow profiles for the three different 

investor classes (Late entry investors, Pre-commissioning investors, Build-

Operate-Transfer investors) identified in paper B. The “Build-Operate-Transfer” 

(BOT) type of investor suggests that a single investor owns the asset from the 

consenting up to the decommissioning phase; hence, this is the typical case that 

financial appraisal studies usually consider. The temporal cost/revenue profile of 

the BOT investor is illustrated in Figure 3-11 (a). To account for the range of 

potential WACC values this investor cluster is likely to accommodate, results for 

WACCs equal to 8% and 10% (representing lower and upper expected levels of 

WACC respectively for the specific cluster of investors) are presented. The graph 

provides an estimate of the value of the asset across its life; the estimated break-

even year can be found in the intersection of the cumulative cost and cumulative 

revenue curves (highlighted with the purple circle mark).  

The model was, subsequently, applied to the other two investor profiles. “Pre-

commissioning” (PC) investors undertake the development and construction of 

the wind farm, acting as turn-key developers, while they tend to sell the asset 

once the project is commissioned. Figure 3-11(c) illustrates cumulative costs 

(dashed red and blue lines) and revenues (solid red line) for an investor entering 

from year 1 of the asset lifecycle (P&C phase) and exiting at the end of year 5. 

As expected, since PC investors sell the asset following its commissioning (i.e. 
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before it starts to produce energy), revenues are expected to be zero before the 

sixth year of the project’s life cycle.  

The setting of the sale price of the asset needs to at least cover the construction 

cost and financing outlay to that point. This cluster of investors comprising OEMs 

and EPCI contractors have generally weaker balance sheets in comparison to 

big power producers (belonging to the BOT cluster of investors), and hence, have 

less financial strength to provide corporate finance to the project. Considering a 

WACC in the region of 12-15% [45], their cost/revenue profile for the construction 

period of the wind farm (from year 1 to year 5) is illustrated in Figure 3-11 (c) for 

the lower and upper bounds of potential WACC values. Assuming a 100% 

ownership, the PC investor is anticipated to balance the cost spent for the 

development of the asset and the financing cost (determined by the WACC 

values), to assess the minimum selling price of the asset. The application of the 

model indicated that the seller should ask for a minimum price of £1,078 million 

for a WACC=15% under the baseline scenario, while the minimum asking price 

when WACC=12% should be £1,170.5 million.  

On the other hand, “Late entry” (LE) investors should consider future expected 

costs and revenues to evaluate the maximum price they can purchase the asset 

for. Taking into account the fact that this class of investors have more liquidity 

and stronger balance sheets, their WACC range is lower, approximately between 

6% - 12% [45]. In Figure 3-11 (b), the cost/revenue profiles of the asset from year 

6 (commissioning year) up to the D&D phase are outlined for WACC values 6% 

and 12%. Further, the cumulative costs (dotted lines) have been translated to 

intersect with the cumulative revenues (solid lines) at the end of the service life 

of the asset (i.e. year 31st). This means that the break-even point is found at the 

extreme end of the service life and, hence, the NPV=0. The blue dotted line 

corresponds to the translated cumulative costs for WACC=6%, while the red 

dotted line for WACC=12%. Correspondingly, the blue and red solid lines reflect 

the cumulative revenues for the lower and upper WACC limit, respectively. 

Cumulative costs are discounted to the year of acquisition (i.e., beginning of year 

6). The translation of the cumulative costs enables the identification of the 
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extreme purchase price of the asset at the commissioning point, which will allow 

the late entry investor to make marginal profit. The translation of the cumulative 

cost is realised by the following expression: 

𝐷𝐶𝐶𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑒𝑑,𝑡 = 𝐷𝐶𝐶𝑡 + (𝐷𝐶𝑅𝑡=31 − 𝐷𝐶𝐶𝑡=31), ∀𝑡 = 6, 7, 8, … , 31 (3-2) 

where, 𝐷𝐶𝐶𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑒𝑑,𝑡 is the discounted translated cumulative cost at year 𝑡, 𝐷𝐶𝐶𝑡 

is the discounted cumulative cost and 𝐷𝐶𝑅 is the discounted cumulative revenues 

at time 𝑡.  

If the acquisition price, at the point of the purchase, is less than this extreme, the 

two curves will be intersecting at a time earlier than the service life of the asset 

(i.e. the 31st year) and the profit margin will increase. For example, as illustrated 

in Figure 3-11 (b), if the acquisition price of the asset at year 6 (or else the 

discounted translated cumulative cost at year 6) amounts to £2 billion, the 

breakeven point will be reached during the 18th year, which is the intersection of 

the cumulative cost (black dotted line) with the cumulative revenues denoted by 

the blue solid line, assuming that WACC=6%.  

Considering the upper and lower WACC bounds considered for this type of 

investor, the maximum price of purchase is, thus, £1,770 million for WACC=12% 

and £ 2,668 million for WACC=6%, as indicated by the red and blue dotted lines 

at the beginning of year 6, respectively. Therefore, it is deemed that the final price 

of the asset would, most probably, lie in the region between the minimum selling 

and the maximum purchase price, estimated by the PC and the LE investors, 

respectively. For the above-mentioned example, the price of the wind farm is, 

thus, expected to lie in the region £1,078 million-£2,668 million, depending on the 

cost of capital of both investors.  

However, it must be highlighted that the “price” and the “value” of the asset 

represent different concepts, with the price of the asset being determined by 

supply and demand, while the value is estimated by accounting for the cost and 

the return of an investment [45]. 
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(a) 

 

 

(b) 

 

(c) 

Figure 3-11 Cumulative cost return profiles of the asset from the different 
investor perspectives 
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3.2.2 Outcomes of parametric expressions for CAPEX, OPEX and 

LCOE values 

Paper C formed the basis for papers D and E, with the former comprising the 

development of a set of parametric expressions linking global deployment 

parameters with key financial performance indicators and the later performing the 

stochastic expansion of the lifecycle techno-economic model by the employment 

of advanced numerical methods. 

As such, in paper D, the integrated cost model was applied to a number of 

scenarios aiming to map the cost performance across the multi-dimensional 

domain of the four independent variables. Subsequently, a set of nonlinear 

relationships was assumed based on the observation of the relationship between 

the input global parameters and the output variables (CAPEX, OPEX and LCOE), 

ensuring a realistic approximation and avoiding cases of overfitting which may 

reduce accuracy in the results. Once the most appropriate regression 

expressions were determined, a set of overall relationships were developed for 

each of the dependent variables and the nonlinear coefficients were estimated 

through application of the maximum likelihood method for a pre-determined 

shape of the target equation. The analysis also returned the overall value for the 

regression coefficients providing an indication on the overall quality of fit of the 

quantities considered. Based on the above, the following three expressions are 

proposed, considering the most up to date information and high-fidelity cost 

modelling structure in order to link the macro-variables, namely 𝑃𝑊𝑇 (MW), 𝑊𝐷 

(m), 𝐷 (km) and 𝑃𝑊𝐹 (MW) to the OPEX, CAPEX and LCOE figures. 

dOPEX = −6.349 ∙ 108 ∙ PWT
0.187 + 2.595 ∙ 10−19 ∙ exp(0.830 ∙ D) +

8.413 ∙ 105 ∙ PWF + 9.506 ∙ 10
8, in £ 

(3-3) 

dCAPEX = −1.485 ∙ 1011 ∙ PWT
0.001 + 2.353 ∙ 106 ∙ WD + 2.530 ∙ 106 ∙

D + 2.451 ∙ 106 ∙ PWF + 1.487 ∙ 10
11, in £ 

(3-4) 

LCOE = 110.370 ∙ PWT
−2.260 + 0.167 ∙ WD + 0.004 ∙ D2 + 0.001 ∙ D +

2.889 ∙ 109 ∙ PWF
−3.399 + 95.045, in £/MWh 

(3-5) 
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The R2 for each of the expressions are 0.986, 0.999 and 0.983 respectively, 

denoting a satisfactory fit to the original data. Furthermore, the data for the 

independent variables for the different scenarios were used as predictors using 

the regression coefficients and the average value of the absolute errors that were 

measured in each case were 1.62%, 0.83% and 0.82%. Finally, a series of 

separate test scenarios were run in order to test the performance of the model 

while interpolating and the results are summarised in Table 3-3. 

Table 3-3 Testing scenarios and results produced by model and parametric 
expressions 

Testing scenario #t1 #t2 #t3 #t4 

𝐏𝐖𝐓 6 3.6 3.6 3.6 

𝐖𝐃 26 15.6 26 15.6 

𝐃 36 36 21.6 21.6 

𝐏𝐖𝐅 504 504 504 302.4 

𝐝𝐎𝐏𝐄𝐗 
(£) 

Par. 
expression 

4.872E+08 5.680E+08 5.680E+08 3.984E+08 

Cost 
model 

5.036E+08 5.590E+08 5.569E+08 3.909E+08 

Error (%) -3.3% 1.6% 2.0% 1.9% 

𝐝𝐂𝐀𝐏𝐄𝐗 
(£) 

Par. 
expression 

1.269E+09 1.336E+09 1.324E+09 8.055E+08 

Cost 
model 

1.293E+09 1.325E+09 1.313E+09 8.108E+08 

Error (%) -1.8% 0.8% 0.8% -0.7% 

𝐋𝐂𝐎𝐄 
(£/MWh) 

Par. 
expression 

108.4 110.9 109.3 116.3 

Cost 
model 

107.6 111.1 107.2 115.7 

Error (%) 0.8% -0.2% 1.9% 0.5% 

3.2.3 Outcomes of stochastic expansion of the techno-economic 

model 

Moving forward, in paper E the stochastic expansion of the parametric model was 

carried out. To this end, advanced numerical methods, namely Artificial Neural 

Network (ANN) approximation model and an Auto-Regressive Integrated Moving 

Average (ARIMA) time series model were combined with Monte Carlo simulations 

in order to assess the impact of the system uncertainties on the performance of 

the asset. Joint probability distributions of the output variables, namely the NPV, 

capital cost, annual operating cost and LCOE are presented, providing insights 

regarding the profitability of the asset within defined confidence intervals. 
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The joint probability distributions of the NPV, LCOE, CAPEX and annual OPEX 

are plotted in Figure 3-12,Figure 3-13, Figure 3-14 and Figure 3-15. Because of 

the significant impact of the strike price on the NPV of the investment, probability 

plots under three different scenarios of strike prices, namely 100, 120, 140 

£/MWh, are presented. The resulting NPVs demonstrated an approximate normal 

distribution. As expected, increasing the guaranteed tariff (strike price) on the 

wind farm energy output shifts the NPV probability distribution to the right, 

towards higher NPVs, thus, increasing the total value of the asset. As such, while 

for a strike price of £140/MWh, there is only 1% chance for the investment to yield 

a negative NPV, it is deemed that a strike price of £100/MWh would render the 

investment no longer profitable for the investor, since the chance of a positive 

NPV would fall below 1% under the specifications of the baseline scenario. 

 
Figure 3-12 Probabilistic results of NPV under three different strike prices (£100, 

120 and 140/MWh).   

Furthermore, the probability plot of LCOE is illustrated in Figure 3-13 and it 

demonstrates there is a high probability at a 90% confidence interval the cost of 

energy lies within £93.6-115.5/MWh. The deterministic analysis of the LCOE has 

indicated a value of £108.9/MWh; nevertheless, according to the probabilistic 

analysis, it is deemed that there is an approximately 20% probability that the NPV 
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can achieve higher values. Accordingly, the probability plot of investment cost 

approximates a normal distribution shape as depicted in Figure 3-14. The CAPEX 

output lies in the range of £1.60-1.77 billion at a 90% confidence interval (CI). 

The outcome of the deterministic model (£1.67 billion) was concluded to lie in 

approximately the median value of the distribution derived from the stochastic 

analysis. The probabilistic results of annual OPEX (Figure 3-15) indicated a range 

of £55.0-58.4 million per year for a CI of 90%.  

 

Figure 3-13 Probabilistic results of LCOE (£/MWh) 
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Figure 3-14 Probabilistic results of Capital costs 

 

Figure 3-15 Probabilistic results of O&M costs 

A sensitivity analysis of the variability of the stochastic variables was accordingly 

employed, based on the assessment of an increase/decrease of 20% of the 

standard deviations of the key statistic parameters on the NPV. Considering the 

mean NPV resulting from the probabilistic analysis under strike price=140£/MWh 
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(reaching a value of £ 266.1 million) as the baseline case, the outcomes of the 

sensitivity analysis are presented in the Tornado plot in Figure 3-16. It should be 

noted that since strike prices were modelled by means of scenarios and electricity 

prices by means of time series the sensitivity of NPV on their variability has not 

been included in this analysis. 

 

Figure 3-16 Tornado Chart - Sensitivity Analysis of standard deviations on NPV 

(£) 

Variables whose variance appeared to have notable impact on the NPV were in 

descending order of impact: the cost of turbine component, the mean time to 

failure, the cost of foundation, the working hours and the weather adjustment 

factor. The general conclusion that can be drawn from this graph is that the 

increase in the standard deviation of key variables, results in increasing 

investment risk, hence reducing the confidence on the profitability of the 

investment. Nevertheless, increasing the variance of some parameters such as 

the return on equity and the contingency costs appears to result in slightly higher 

NPVs, which can be explained by the randomness of each Monte Carlo 

simulation. As shown above, considerable differences compared to the standard 

deterministic sensitivity analysis were observed, where the return rates of equity 
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and debt, the MTTF, the share of equity, the cost of turbine, the inflation rate, and 

the working hours per shift were among the most significant variables. 

3.2.4 Outcomes of the development of risk control policies for 

operational uncertainties of offshore wind energy assets 

Finally, paper F uses the same wind farm characteristics summarised in Table 

3-2 to apply the model developed for the calculation of operational KPIs 

(presented in section 2.2.7) across a number of different locations in a region by 

the south east coast of the UK.  

Weather data were obtained from the BTM ARGOS database for a set of 204 

different locations with latitude and longitude coordinates ranging between 

[0.000o, 2.667o] and [50.000o, 53.667o], respectively as shown in Figure 3-17. 

This region was selected due to its high concentration of currently operating and 

under construction Round 1, 2 and 3 wind farms [52].  

 

Figure 3-17 Focus region located in the south east coast of the UK 

Existing ports near the locations of the focus region were identified from 4C 

offshore [53] and their coordinates are summarised in Table 3-4. It was assumed 

that each wind farm (located to each of the 204 locations) is served by its closest 

port. The cost of main and support vessels, crew and materials were adopted 

from [54].  
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Table 3-4 Coordinates of nearby ports 

Port Longitude Latitude 

Wells 52.954 0.853 

Great Yarmouth 52.583 1.735 

Lowestoft 52.473 1.755 

Harwich Navyard 51.948 1.288 

Sheerness 51.443 0.748 

Ramsgate 51.327 1.412 

Newhaven 50.7903 0.0546 

Shoreham 50.8311 0.2381 

 

3.2.4.1 Operational KPIs for a specific location 

The model was initially applied for the prediction of the operational KPIs of the 

reference wind farm installed in the location with coordinates [0o, 50.334o]. The 

power output of each of the 140 turbines as well as the breakdown of downtimes 

are illustrated in Figure 3-18 and Figure 3-19, respectively.  

 

Figure 3-18  Power output per each turbine 

Total power output was calculated 38,823 GWh and the total downtime 

3.6658∙106 hours with a power-based availability of 90.3% and a time-based 

availability of 89.1%. The downtime due to weather unsuitability had the highest 

share of the total downtime (21%) followed by the repair time (18.3%) and the 

spare availability downtime (12.6%). 
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Figure 3-19 Breakdown of downtimes 

Total wind farm O&M cost during the entire service life was estimated at £686.5 

million. Above results on the availability and O&M total costs show good 

agreement with a benchmarking study estimating O&M costs of an offshore wind 

farm located also in the south coast of the UK [55].  

3.2.4.2 Parametric estimation of operational KPIs 

Accordingly, the results from the application of the model for the 204 locations in 

the south east coast of the UK (corresponding to a respective historic weather 

dataset) were used to derive a number of location-specific colour-coded plots, 

illustrating resulting operational KPIs across the whole region.  

The production-based wind farm availability results are plotted in Figure 3-20(a) 

for each of the 204 sets of coordinates under investigation. Higher availability 

levels can be observed in areas closer to the coast of the specified region (noting 

that half a degree is equivalent to 56 km). This can be attributed to the smaller 

distances between the port and the wind farm site, as well as the lower 

magnitudes of significant wave height and wind speed limits, improving the 

accessibility of the maintenance vessels for the performance of unplanned 

maintenance, hence reducing the total downtime of the asset. In general, results 

demonstrate a smooth transition from high availability values in locations 

positioned closer to the coast to gradually decreasing further from shore. 

Nevertheless, a number of outliers can be observed, for example the location 
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point [2.000o 53.334o], where an availability peak is noted; this could be the result 

of measurement uncertainty of the historic met ocean data.  

Figure 3-20 (b) illustrates the breakdown of downtimes for the location with the 

lowest and highest availability. Weather downtime appears to have the greatest 

contribution to the total downtime for the lowest availability location, while repair 

time is the main contributor for the highest availability location. 

   

(a) (b) 

Figure 3-20 Production-based availability (%) around the focus area of the study 

and (b) contribution of downtime categories to the highest and lowest availability 

locations 

Figure 3-21 illustrates the total O&M cost per MWh, revealing a more uniform 

distribution of unit cost in relation to the availability values across the different 

locations. This is due to a trade-off of higher power generation due to better wind 

speed profiles and higher O&M costs due to decreasing accessibility of vessels 

for maintenance operations. Nevertheless, exceptions of this observation can be 

found, for example, in the areas positioned in the southern part of the specified 

region, where high availability together with relatively low unit costs can be 

observed.  
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Finally, the expected total power production loss due to the wind farm downtime 

is plotted in Figure 3-22. Production loss reflects the total revenue loss due to 

downtime, as it is calculated by subtracting the power produced during uptime 

from the potential power produced both during uptime and downtime (wind speed 

profile of the location is also taken into consideration); it is therefore a parameter 

with a great impact on the financial performance of the investment. The power 

production loss plot was found to follow a similar to the availability plot pattern, 

with locations closer to shore indicating lower revenue potential losses due to the 

reduced downtime of the wind farm.  

 

Figure 3-21 O&M cost per MWh scatter 

plot around the focus area (£/MWh) 

 

Figure 3-22 Production loss scatter 

plot around the focus area (MWh) 

3.2.4.3 Weather risk control policy options  

Traditional insurance products available for renewable energy projects typically 

protect against natural disasters [56] and physical losses during 

construction/operating phases [57]. Furthermore, academic literature on the 

effects of weather risks on offshore wind energy projects also focuses on 

analysing the effect of extreme weather events [58]–[60].  

Risk management against the effect of seasonal fluctuations in climatic 

conditions, such as variation in wind speeds, temperature and wave height is 

becoming more relevant as investors are inclined to reduce their risk exposure. 
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Weather risk hedging products are usually financial contracts which can be 

executed in the form of insurance or weather derivatives structured as swaps, 

futures and options that are based on a weather related index [61]; in the case of 

offshore wind, significant wave height and wind speed could be relevant weather 

related indices. The seller of the weather derivative bears the risk of potential 

financial losses as a result of the weather conditions in exchange of an upfront 

premium. If the pre-determined limit of the index is surpassed, over a specified 

period, the project owner is compensated the downtime financial losses. 

The index-based policy structure has the advantage of simplicity, although there 

may exist some ambiguity in terms of the actual financial impact caused by the 

exceedance of the specified threshold. In the case of offshore wind, for example, 

exceedance of the threshold of the significant wave height limit over a specified 

period of time may not necessarily lead to financial losses. On the contrary, power 

production loss due to downtime could be a risk index easier-to-translate into 

resulting revenue losses over a period of time, while relevant data can be 

retrieved by SCADA (Supervisory Control and Data Acquisition) systems installed 

in the wind farm.  

Figure 3-23 illustrates the resulting power production losses due to the downtime 

on a monthly basis for the reference wind farm installed in the location [0.000o, 

50.334o]. A threshold of 45,000 MWh over the period of a month was assumed, 

above which the buyer of the risk transfer product is compensated for the revenue 

loss corresponding to this threshold. The estimation of the premium should be 

based on the probability of exceedance of the specific limit. With a 5.9% monthly 

probability of exceedance, the risk of the investor is estimated (in terms of 

production losses) 45,000∙5.9% = 2655MWh. Assuming a strike price of 100 

£/MWh, the maximum premium that the buyer would be willing to pay is therefore 

£265,500 per month. 
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Figure 3-23 Monthly power production losses as a function of time for the 

location with coordinates [0.000o, 50.334o] 

The exceedance probability (EP) curve is used by insurers to estimate the 

probable maximum loss (PML) for a portfolio of investments in a given period of 

time. The PML is a bespoke risk metric and is associated with a probability of 

exceedance reflecting the insurer’s acceptable level of risk. As such, the insurer 

can use the EP curve to determine the magnitude of loss at the desired probability 

of exceedance level. In Figure 3-24, the monthly EP curve of the reference wind 

farm is demonstrated. The EP curve can also assist the distribution of losses 

between stakeholders. As such, the project owner would retain the first part of 

the loss (i.e. the deductibles), for example losses up to 45,000MWh, while the 

insurer covers monthly production losses occurring in excess of this amount. 
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Figure 3-24 Exceedance probability 

curve 

 

 

Figure 3-25  Probability of 

exceedance of monthly power 

production loss threshold  

Setting the above threshold of monthly power production losses (i.e. 45,000 

MWh) across all sets of coordinates of the designated region, the distribution of 

the exceedance probabilities is illustrated in Figure 3-25. For areas closer to the 

coast, the probability of exceedance does not surpass the level of 6%, while in 

areas further from shore probability reaches 18%. Comparing the scatter plot of 

probability of the production loss exceedance threshold with the production 

losses one (in Figure 3-22), it becomes evident that the amount of power 

production losses throughout the service life of the asset is not necessarily 

proportional to the entailed risk of surpassing a threshold set on a monthly or 

even annual basis. This map can provide a basis for screening which locations 

are likely to incur higher insurance premiums for weather related parametric risk 

control products.  
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4 CONTRIBUTION OF THE RESEARCH 

This section aims to consolidate the findings and substantiate the contribution of 

the EngD thesis and the approach followed to fulfil the objectives. The overall 

contribution of this work is organised into three pillars: novelty, scientific 

soundness and value to different stakeholders. 

Table 4-1 summarises the objectives of the research project, how these are 

addressed through the various research activities, along with the contribution of 

each objective in terms of novelty, scientific soundness and value to different 

stakeholders. 

The first objective was addressed through a systematic literature review 

responding to a novel research question: which methods have been employed to 

address/model/incorporate risk and uncertainty attributes (related to energy 

security, generating costs, market risks, climate change risks, etc.) in sustainable 

power generation planning and feasibility studies? Furthermore, the assignment 

of the most appropriate methods to the particular types of risks was an additional 

outcome of this study. The systematic literature review approach was adopted, 

through the determination of keywords that would allow access to all relevant key 

references in a systematic, transparent, and reproducible manner, while also 

restricting the researcher’s bias [15]. This review will benefit researchers and 

academics in decision support systems for sustainable energy planning and 

feasibility studies, but also investors and policy makers who seek to identify the 

methods that can be most suitable to capture specific risks.  
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Table 4-1 Contribution of research analysed by means of novelty, scientific soundness and value per each set objective 

Set Objective 

  

Novelty Scientific Soundness Value to different stakeholders 

What is new? 
What methods have been used and how 

have they been validated? 
Who will benefit from this part of the 

work? 

Assemble a state-of-the-art 
literature review of risk-
based methods for 
sustainable energy systems 
planning and technology 
feasibility studies 

The produced review paper responds to a 
unique research question: Which methods can 
be adopted for decision making under 
uncertainty for energy investments. 
Furthermore, it aims to find which methods are 
more suitable to address each type of risk. 

The systematic literature review methods that 
was adopted allows to distinguish the relevant 
papers based on a set of predefined words, 
alleviating the bias of the reviewer and ensuring 
that all key references are included in the 
analysis. 

This review can be valuable primarily to 
researchers and academics in decision 
support systems in energy related problems, 
listing latest applications of different methods 
and highlighting benefits and limitations of 
each method. 

Distinguish different 
investment strategies 
followed by investors in the 
offshore wind energy 
industry through a multi-
attribute cluster analysis 

This analysis has collected real data from all 
existing wind farms in the UK and based on 
this data distinguished three distinct clusters of 
investors with common investment/divestment 
behaviour. 

The systematic multi-attribute cluster analysis 
method that has been adopted in combination 
with the high quality of data that have been 
gathered ensure validity of the derived clusters.  

This work can be relevant to researchers and 
policy makers which target policies and 
financial products which can be targeted to 
each of the clusters identified. 

Develop an integrated, high-
fidelity lifecycle techno 
economic model which 
allows for the temporal 
evaluation of a renewable 
energy investment, 
integrating (and developing) 
most relevant cost 
expressions 

The life cycle costing approach that has been 
followed stands for the most analytical financial 
analysis presented to-date combining the 
detailed costing of all phases in the service life 
of an asset with modelling of revenues and 
temporal effect of cash in-flows and out-flows. 
Application of the appraisal model for different 
types of investors is also an achievement of 
this work. 

This work has investigated detailed cost 
expressions qualifying the most relevant ones to 
the latest generation wind farms and derived 
new ones, where necessary, based on reliable 
data retrieved from existing wind farms. The cost 
of financing has been analytically modelled and 
a baseline application of the framework has 
been validated with parallel studies and 
published data. 

This financial appraisal framework will be of 
value to investors aiming to appraise wind 
energy investments as well as consultants 
and researchers aiming to benchmark the 
effect of different technological options to the 
overall profitability of an investment. The 
framework developed can be transferred to 
other technological options, i.e. marine and 
onshore energy applications.  

Formulate relevant 
parametric equations 
through appropriate selection 
of approximation models for 
the conceptual design and 
analysis of offshore energy 
assets 

A set of new, convenient to use parametric 
equations have been developed, linking global 
input variables (i.e. distance from port, 
capacity of wind turbine) to output KPIs such 
as CAPEX, OPEX and LCOE. These 
expressions have applicability relevant to the 
current and next generation wind energy 
investments. 

The expressions have been derived based on 
the validated high-fidelity financial appraisal 
method that was developed earlier. Nonlinearity 
of expressions has allowed for a good fit of the 
resulting curves as indicated by relevant 
statistical metrics and a series of testing cases 
that have run for validation of the resulting 
model. 

These expressions can be of value to 
practitioners (investors, policy makers, 
researchers and academics) who aim for a 
high-level assessment of the cost of an 
offshore wind farm investment at the 
conceptual stage, once limited information is 
available. 
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Set Objective 

  

Novelty Scientific Soundness Value to different stakeholders 

What is new? 
What methods have been used and how 

have they been validated? 
Who will benefit from this part of the 

work? 

Expand the financial 
appraisal model to consider 
uncertainties of key input 
parameters through selection 
and implementation of 
appropriate methods 

A stochastic expansion of the high-fidelity 
financial appraisal model has allowed to assign 
confidence levels to the expression of the 
resulting financial KPIs, as a result of 
uncertainties present in the analysis. This 
approach can be expanded to other 
deterministic models as it follows a staged 
approach to link the different stage of the 
expansion approach. 

The Monte Carlo simulation method that has 
been adopted is a versatile method allowing the 
convenient expansion of deterministic models, 
once high numbers of probability are expected to 
be calculated. Forecasting of whole sale 
electricity price has been modelled through 
ARIMA, a suitable method for long term 
forecasting, using real historical data. The ANN 
method has been applied for generalisation of 
the O&M costs as a suitable approximation 
method for complex and nonlinear systems. The 
individual methods have been validated for 
specified test cases. 

The stochastic expansion approach can be 
of value to investors, policy makers and 
researchers investigating systems with high 
uncertainties. The method can be applicable 
to a wide variety of engineering applications 
where different tools can be adopted for 
each stage of the analysis, alleviating the 
need for a fully integrated code to account 
for stochasticity of inputs. 

Evaluate weather uncertainty 
during O&M and visualise 
cost performance and 
production losses through 
scatter plots 

The developed module allows for the 
parametric calculation of operational key 
performance indicators (KPIs) and allows for 
recurring simulations for different locations, 
enabling the visualisation of the KPIs in scatter 
plots. Furthermore, the model can estimate the 
probability of exceedance of a set production 
loss threshold, evaluating the risk for 
deployment in different locations. 

The development of the module includes a 
weather module for the forecasting of 
environmental conditions using Markov Chains 
and a structured approach for O&M planning to 
allow calculations of MTTR, MTTF and 
availability. The module was verified through 
comparison of availability and operating cost 
results for a baseline case against a 
benchmarking study. 

The model that is developed is of value to 
researchers and practitioners who work on 
the planning and evaluation of O&M activities 
related to the operation of offshore wind 
energy assets. It can be particularly relevant 
to the insurance industry as new parametric 
risk control products can be qualified relevant 
to revenue cost modelling and risk transfer 
strategies offered to investors. 

Develop and apply a 
stochastic optimisation 
framework for deriving 
optimal national energy 
technology mixes taking into 
account uncertainties of the 
system 

An optimisation approach has been developed 
to allow for the derivation of the optimum 
energy mix under the presence of uncertainty. 
The approach can consider multiple 
constraints to reflect energy policy strategies, 
and contextual factors and can be applied to 
different locations. The novelty of this work lies 
in the extension of the possibilistic uncertainty 
modelling approach to a stochastic one 
allowing for certain random variables to be 
represented through continuous probability 
density functions, leading to a more realistic 
representation of uncertainty. 

The multi-stage probabilistic approach that has 
been adopted and expanded to also account for 
a set of stochastic variables through Monte 
Carlo simulations can systematically account for 
uncertainty in the analysis. Particularly for the 
application presented, high quality data have 
been used for appropriate contacts that were 
consulted. 

This work can be relevant primarily to policy 
makers who aim to translate energy policy 
strategies into a mix of technologies that 
should be added to/removed from the 
existing technological mix. The expansion of 
the method to account for stochastic 
variables (rather than only probabilistic 
expression) can more accurately represent 
potential future scenarios and can be applied 
in multiple relevant problems. 
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Paper B produced a cluster analysis, which classified 83 cases of investors investing 

or divesting part (or entirety) of their stake from a total of 27 operating wind farms 

located in the United Kingdom, disclosing the existence of distinct entry and exit 

investor strategies. The cluster analysis preceded the development of the lifecycle 

techno-economic model is the first attempt in the literature to clearly distinguish distinct 

investor profiles. Existing literature on the financial returns from renewable energy 

projects assumes that there is a single investor who owns the asset (e.g. the wind 

farm) throughout its entire service life [62]–[65]. However, as indicated from the cluster 

analysis, it is often the case that equity investors buy and sell their stakes at different 

phases of the OW farm service life, depending on their investment strategy [4], [66]. 

This output can help those wishing to develop customised commercial products and 

optimisation of financial schemes and financing parameters, which can later influence 

investor’s and policy makers’ future decisions and strategies.  

The risk appetite of each cluster of investors can be quantified and then reflected to 

the return on investment expectation. It should be noted that similar profiles can be 

distinguished in similar industries involving high value assets such as the offshore oil 

and gas industry from which we can infer/anticipate further clusters of interest to be 

developed as offshore wind energy assets approach their end of lives and with a view 

to service life extension. 

Following on from the cluster analysis, the third objective of this research was the 

development of a model that predicts temporal returns and can be applied for different 

entry and exit instances to simulate equity investors’ strategies. This model is useful 

for investors and policy makers wishing to estimate the viability of an investment and 

to predict its temporal return profile. The high-fidelity financial appraisal model that was 

developed follows a systematic and transferable approach distinguishing key cost 

components to higher granularity, integrating in parallel the time relevance of financial 

cash in and out flows, revenue modelling and cost of finance allowing for different 

appraisal models to be derived for different investor profiles.  

This unique approach can provide initial estimates for the value of a defined asset from 

a buyer’s and a seller’s perspective in the case of an asset acquisition, setting logical 
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thresholds which can drive investment negotiations, setting as benchmark the NPV=0. 

The high-fidelity financial valuation model together with the purpose developed O&M 

tool can formulate an integrated fully parametric financial valuation model, which allows 

further advanced studies to be completed, including optimisation of CAPEX to OPEX 

ratio and supports decisions towards selection of end of life scenarios for return on 

investment maximisation.  

Next, the financial appraisal model was used to produce a number of parametric 

expressions linking key financial performance indicators with global deployment 

parameters, with the view to provide initial estimates of the profitability of the 

investment requiring a limited number of inputs. The derived generalised expressions 

will be of value to investors, researchers and other stakeholders to undertake an initial 

estimate of CAPEX, OPEX and LCOE values for offshore wind farm projects with 

varying design parameters, as well as use them as reference for estimating the effect 

of the change in one of the selected design parameters. The framework developed can 

be directly transferred to other technological options, i.e. marine and onshore energy 

applications. 

With the deterministic high-fidelity financial appraisal model as a starting point, an 

extension to a stochastic model, systematically accounting for stochasticity of inputs in 

the cost revenue model resulted to more meaningful expressions of the financial KPIs 

of interest. More specifically, it allows for a transition in terminology from a conventional 

deterministic assessment which results in a single deterministic output value (for a set 

of constant input values), to a stochastic evaluation with a confidence level according 

to which the set KPIs lie within predetermined thresholds (in the presence of uncertain 

inputs expressed as appropriate statistical distributions). For example, the transition 

from expressing an LCOE value of £108.9/MWh for a set of fixed input variables to a 

90% confidence level that LCOE lies within £93.6-115.5/MWh, allows an 

investor/decision maker to better appreciate the expected performance of the 

asset/investment in an uncertain environment. 

Furthermore, the parametric O&M model that was derived has allowed the evaluation 

of the sensitivity of the deployment selection and associated revenue loss risk 



 

86 

 

exposure for investors, qualifying potential risk transfer financial instruments that would 

safeguard the balance sheet of energy investors. In parallel, this evaluation can stand 

as the basis from an underwriter’s perspective for the development of better-informed 

risk control policies, through parametrically estimating the probability of exceedance of 

a specified revenue loss threshold, qualifying for the underwriting portfolio related to 

business interruption due to adverse weather conditions. 

Uncertainties involved at an energy system development level are important as they 

include future trends for key decision factors and can influence determined policies 

and strategies. The final objective of this thesis was achieved through the development 

of an optimisation approach which allows for the derivation of the optimum power 

generation mix in the presence of uncertainty. The probabilistic approach that was 

adopted and expanded to a stochastic approach through integration of Monte Carlo 

simulations has allowed the incorporation of uncertainty in inputs as potential 

outcomes with assigned probabilities or fully stochastic variables as statistical 

distributions resulting to an evaluation of the energy mix taking into account the joint 

probability values. Through appropriately selecting the constraints, different policy 

targets and strategies can be translated into a specific mix of technological decisions. 

This approach could assist policy makers derive useful insights regarding optimal 

planning pathways towards sustainable energy systems, taking into account uncertain 

inputs changing over the planning horizon.  

The scientific soundness of the selected methods has been discussed in sections 2.2 

and 2.3. Selection of the most appropriate methods followed a systematic literature 

review which permitted the author to evaluate different applications, advantages and 

limitations, and variations of each method. Where possible, methods and/or their 

applications as they have been applied and documented in this thesis have been 

validated and verified against real data to additional testing simulations. One of the 

factors on the selection of the methods has also been their versatility ensuring that the 

different applications can be transferred to different technologies and contexts. 

Figure 4-1 distils the thesis’ customised outcomes from the different stakeholders’ 

perspectives. Industrial actors comprise project developers, manufacturers, insurers, 
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and other financial actors. The high-fidelity financial appraisal model can be of benefit 

to both investors and industrial actors, allowing for the fairer valuation of the offshore 

wind energy asset, as well as the valuation of cost impact of various technological 

variations/innovations to the total LCC of investments. Incorporating uncertainty in the 

financial appraisal analysis can increase the confidence of investors and the value of 

the outputs of the analysis, by assigning confidence levels to the predictions towards 

better informed decisions. Results of the cluster analysis could potentially be of great 

importance to policy makers and financing actors towards delivering customised 

policies and financing products, respectively, throughout the different phases of the 

lifecycle of the asset. The high-level parametric expressions can be used by investors 

and policy makers for an initial estimation of the expected cost of an investment as a 

function of global deployment parameters needing a small number of input variables. 

The proposed parametric framework linking deployment conditions (wind and wave 

profile) to the actual potential revenue losses that an operator might have due to the 

disruption of their activity can assist insurers in delivering better-informed parametric 

risk control policies towards hedging the financial impact of unforeseen weather 

conditions on a business. The development and application of methods systematically 

accounting for uncertainties, along with the systematic literature review on methods 

relevant to decision support in energy applications, can be of value to researchers and 

academics working on relevant fields of research. Finally, the stochastic multi-stage 

optimisation framework developed can stand as a useful tool for policy makers in order 

to derive the power generation optimum mix under a set of constraints and policy 

priorities.  
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Figure 4-1 Customised benefits for target groups 

Policy makers

• Identification of distinct 
clusters of investors

• Derivation of energy mix in 
uncertain environments 
and for different policy 
strategies

• High level parametric 
equations to link global 
input variables to financial 
KPIs

Investors

• High-fidelity financial 
appraisal method 
applicable to different 
investor profiles

• Systematic consideration of 
uncertainty in the financial 
appraisal analysis

• Approximation of O&M 
costs for given deployment 
locations

Researchers and 
academics

• Systematic literature review 
on methods relevant to 
decision support in energy 
applications

• Stochastic expansion of 
deterministic cost models

• Stochastic expansion of the 
multi stage probabilistic 
optimization methods

Industrial actors

• Assessment of resulting 
losses due to 
environmental and 
deployment location 
conditions

• Evaluation of cost impact of 
various technological 
variations/innovations to 
the total LCC of 
investments.
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5 CONCLUSIONS AND OUTLOOK 

5.1 Main Conclusions 

The research carried out within this thesis has sought to address the question of how 

appropriate methods dealing with uncertainty can provide decision support at a 

technology and energy system level to different stakeholders. The thesis comprises a 

portfolio of research activities, which contributed towards the fulfilment of the set 

research objectives. Outcomes of this research portfolio have been either published, 

are under the peer review process or will be submitted for publication imminently. 

In papers B, C, D, E and F offshore wind was used as the technology of reference. 

This is because offshore wind has been recognised as one of the leading technology 

options to decarbonise the UK’s energy system, as well as the relatively mature market 

that has been established, comprised by numerous, large investors where risk 

implications are seriously considered in investment decisions. 

The main conclusions of each study undertaken to address the research question are 

summarised as follows: 

 Methods that have been widely employed to address/model/incorporate risk 

and uncertainty attributes (related to energy security, generating costs, market 

risks, climate change risks, etc.) in sustainable power generation planning and 

feasibility studies were initially investigated. It was concluded that MVP, ROA, 

MCS and (stochastic) optimisation methods are usually employed to 

address/model statistical risk factors, while semi-quantitative methods such as 

scenario analysis and MCDA may also be employed to address non-statistical 

parameters such as social factors and the emergence of competitive 

technologies. Financial risks (e.g. variations in the investment return [67] or 

energy sale prices) have been widely accounted for in MVP and MCS methods; 

while the emergence of competing energy technologies (i.e. nuclear power) has 

been principally captured through scenario analysis [68]. 

Technology/innovation risk parameters are usually encountered in studies 

employing ROA, MCS, optimisation and scenario analysis by means of 

variation in future technology costs (learning curve effects). Stochastic 
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optimisation models are frequently applied to assist policy makers in the 

definition of optimum energy mixes, taking into consideration uncertainties in 

the energy demand (i.e. macroeconomic factors), variation in electricity prices, 

generating costs, fuel risks, technological risks and carbon emission reduction 

targets. Finally, technical risks, such as reliability of components and access to 

the grid have been found to be frequently modelled by goal programming (i.e. 

MCDA methods) and optimisation methods. It was concluded that most recent 

literature tends to adopt more advanced methods that incorporate uncertainty.  

 The cluster analysis of investor strategies in offshore wind market, employed in 

this doctoral thesis, indicated the existence of three distinct clusters: the late-

entry investors, the Precommissioning investors and the Build-operate-transfer 

investors. It was found that late-entry investors represent corporate investors, 

infrastructure funds and institutional investors who tend to invest equity capital 

a few years following the commissioning of the plant or, less often, during the 

late construction. Being, on the most part, a risk adverse group of stakeholders, 

they tend to avoid construction risks. Long term returns of offshore wind energy 

assets match with the long-term liabilities of institutional investors (such as 

pension funds), while the high costs of due diligence reports urge third party 

financing stakeholders to prefer investing in fewer capital intensive assets 

rather than numerous less expensive ones. Furthermore, pre-commissioning 

investors include independent energy companies and OEMs/EPCI contractors, 

who enter the venture at the beginning of the project’s lifecycle, in order to 

contribute their technical expertise and knowledge deriving from long term 

experience in the development of energy projects. An additional incentive for 

OEMs to invest in the early stage of the development of the wind farm is to 

ensure the sales of their equipment as well as the O&M contracts of the wind 

farm. This group usually lacks the balance sheet strength (except for large oil 

and gas IPPs) to provide large amounts of equity and rely on third party 

financing for the funding of the project. Finally, “Own-build-transfer investors” 

represent principally Utilities; however, IPPs and Sovereign wealth funds were 

also found to follow a similar trend in terms of the examined criteria. In general, 

Utilities hold a very strong position in offshore wind energy market operating 
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across the value chain of the wind energy asset. Their strategy focuses on 

developing the offshore wind farm from the initial stage, and operate it following 

its commission, divesting mostly minority stakes to institutional and 

infrastructure investors after a few years of operation.  

 This thesis developed a life cycle cost/revenue model, which is decomposed 

further into CAPEX, OPEX and FinEX components and applied it for the 

different investor clusters identified in the offshore wind energy market. The 

sensitivity analysis of the model has revealed that financial and revenue 

parameters have greater influence on the NPV of the investment in comparison 

to CAPEX and OPEX parameters. More in specific, the WACC along with the 

strike price and the energy production were found to cause the highest 

deviation, while the mean time to failure and the workboat wave height limit 

were the OPEX parameters with the highest impact. As far as CAPEX is 

concerned, reduction in the acquisition cost of wind turbines and foundations 

can yield the highest increase in the NPV of the investment.  Implementation of 

the lifecycle cost/revenue model from the perspective of different investors can 

contribute towards the fairer temporal valuation of the wind energy asset.  

 The expansion of the high-fidelity deterministic lifecycle techno-economic 

model to account for numerous time independent and dependent uncertain 

inputs by applying advanced numerical methods was then carried out. To this 

end, following a global sensitivity analysis of the deterministic model, the most 

influential parameters were indicated and further modelled as either time-

dependent or independent stochastic variables. The probabilistic analysis 

highlighted the strike price impact over the total value of the asset, indicating 

that a strike price of 140 £/MWh can give 99% probability for a profitable 

investment, while when this value decreases by 14%, the respective probability 

falls to 53%.  Furthermore, a significant deviation between the deterministic 

NPV of the project (estimated £284.36 million) and the probabilistic mean value 

(£ 266.1 million) was observed under the specifications of the baseline case. A 

sensitivity analysis of the variability of the stochastic variables was accordingly 

applied, based on an assessment of an increase or decrease of 20% of the 

standard deviations. Result of the indicated that variables whose variance 
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appeared to have notable impact on the NPV were in descending order of 

impact: the cost of turbine component, the mean time to failure, the cost of 

foundation, the working hours and the weather adjustment factor. Stochastic 

analysis has proven to be more insightful than a deterministic approach since 

instead of returning a deterministic value with limited context, it can respond 

with an evaluation of performance for an associated confidence interval. 

 A set of parametric equations linking wind turbine capacity, water depth, 

distance from port and wind farm capacity with the discounted total OPEX, 

CAPEX and LCOE figures were developed, based on a number of high-fidelity 

cost simulations and regressions of the results. These high-level expressions 

are expected to assist investors, researchers and other stakeholders to derive 

initial estimates for wind farm projects based on global variables within the 

applicability range as defined above. Furthermore, it characterises the effect of 

these variables to CAPEX, OPEX and LCOE.    

 This thesis also investigated uncertainties present during the operation phase 

of offshore wind energy assets with a view to inform risk control policies for 

hedging of the incurring losses. To this end, a parametric framework was 

developed for the calculation of operational KPIs, such as downtime, uptime, 

availability, operation costs and production losses across a number of different 

locations in the south east coast of the UK, so as to demonstrate the effect of 

deployment conditions. Higher availability levels were observed in areas closer 

to shore of the specified region, while the distribution of O&M cost per MWh 

demonstrated a general trade-off of higher power generation in locations further 

from shore due to better wind speed profiles and higher O&M costs, as a result 

of the decreasing vessels accessibility. The probability of exceedance of a 

specified power production loss threshold was also estimated across all 

locations of the south east coast, deriving insights regarding the distribution of 

the risk level of financial losses due to weather condition uncertainties and 

maintenance downtime across the designated region.  It was highlighted that 

the amount of power production losses throughout the service life of the asset 

is not necessarily proportional to the entailed risk of surpassing a set threshold. 

This work aims at informing risk control products which can potentially transfer 
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operators’ loss of revenue risks, through hedging the financial impact of 

adverse weather, during the operational phase of the asset.  

 Finally, a multi-stage stochastic optimisation model was developed to derive 

optimum power generation mixes at a national level, accounting for uncertain 

energy demand, fuel prices (coal, natural gas and oil) and, capital cost of 

renewable energy technologies. The novelty of this work lies in the extension 

of the possibilistic (scenario-based) uncertainty modelling approach to a 

stochastic one allowing for certain random variables to be represented through 

continuous probability density functions, leading to a more realistic 

representation of uncertainty. The model was, then, applied in the Indonesian 

context incorporating detailed existing power capacity data to determine the 

optimal power generation mix under three planning options: Least Cost, Policy 

Compliance and Green Energy Policy option. Across all cases simulated, coal 

appeared to play a dominant role within the next 13 years as a result of its 

relatively low construction and operation cost. The results indicated that to 

achieve the sustainability target set by the policy, Indonesia needs a major 

expansion in renewable-based power generation capacity to meet the future 

demand as the conventional fossil-based power generation is capped up to a 

certain level to meet the CO2,eq reduction target. Enhancing the renewable 

energy and environmental impact mitigation targets can increase the RES 

share in the energy mix but it might jeopardise the security of the energy 

system. A more secure power generation system can be achieved by 

diversifying the generation capacities and accommodating fast start and flexible 

gas-fired power plants.  

5.2 Future work 

This thesis constitutes a step forward in the research on risk implications on valuation 

and decision support for sustainable energy investments. The objectives that have 

been achieved in this thesis can form the basis of future studies. Untapped issues that 

could be further explored are summarised below: 
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 Cluster analysis can be further applied for other geographic regions to identify 

market trends in different counties and potentially different clusters as we 

approach the end of the service life of these assets. 

 Having derived the financial appraisal and customised O&M tool developed, a 

fully integrated appraisal model can be derived allowing for optimisation of 

CAPEX to OPEX ratio for offshore wind energy assets. 

 The integrated cost/revenue model developed can be expanded to floating 

structures. The developed model can be adjusted to benchmark and valuate 

floating support structures such as spar and semi-sub configurations. 

Customised limits for maintenance missions as well as the appropriate 

installation processes should be considered. 

 Investigation of the performance of other stochastic forecasting models for time 

dependent stochastic variables could be carried out. Furthermore, other 

variables can also be considered as stochastic time dependent, such as the 

cost of labour and the vessel cost, once historic data of these variables become 

available.  

 Furthermore, more complex and context appropriate parametric expressions 

can be developed. 

 The proposed model developed for the calculation of operational KPIs could be 

coupled with the lifecycle techno-economic model to derive the parametric 

profitability of wind turbine assets.  

 Future work to stochastic optimisation could apply the methodology to different 

locations and investigate the effect of alternative constraints to the resulting mix 

such as technological factors (responsiveness of technologies) and socio-

political factors (job creation, land footprint, health indicators). 
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A B S T R A C T

The value of investments in renewable energy (RE) technologies has increased rapidly over the last decade as a
result of political pressures to reduce carbon dioxide emissions and the policy incentives to increase the share of
RE in the energy mix. As the number of RE investments increases, so does the need to measure the associated
risks throughout planning, constructing and operating these technologies. This paper provides a state-of-the-art
literature review of the quantitative and semi-quantitative methods that have been used to model risks and
uncertainties in sustainable energy system planning and feasibility studies, including the derivation of optimal
energy technology portfolios. The review finds that in quantitative methods, risks are mainly measured by
means of the variance or probability density distributions of technical and economical parameters; while semi-
quantitative methods such as scenario analysis and multi-criteria decision analysis (MCDA) can also address
non-statistical parameters such as socio-economic factors (e.g. macro-economic trends, lack of public
acceptance). Finally, untapped issues recognised in recent research approaches are discussed along with
suggestions for future research.

1. Introduction

Global investment in renewable energy (RE) in 2015 increased by
5% to $285.9 billion in relation to 2014, surpassing the last record of
$278.5 billion in 2011 [1]. The annual increase in power capacity has
also reached its highest level across all regions in 2015. Wind and solar
photovoltaics (PV) account for an approximately 77% of new capacity,
with hydropower accounting for most of the rest [2].

As the number of RE investments increases, so does the need to
measure the associated risk and uncertainty from the perspective of
different stakeholders throughout planning, construction and opera-
tional phases [3]. Energy developers, investors and policy makers face a
future that implicitly involves technological, financial and political risks
and uncertainties. Although, RE technologies potentially have a lower
risk profile than conventional energy sources because they are dis-
connected from fossil fuel prices, they still entail considerable techno-
logical, financial and regulatory risk exposure, depending on the
technology, country and regulatory regime. Fluctuation of cost compo-
nents of power generation units, volatile crude oil prices,1 electricity
price and carbon costing in the context of the global climate change
mitigation strategy, are examples of uncertainty components encoun-
tered by energy developers, investors and policy makers investors in

the energy sector [4]. Often these risks are mitigated by governments in
the form of price protection, but this can have a large budgetary
burden, which often passes on to consumers through taxes and
electricity bills [5].

Another stream of studies has focused on the identification and
assessment of risks and uncertainty, as well as risk management
solutions for sustainable energy projects [3,7,8,17–19]. In general,
risk in the power generation investment sector is considered to be
multi-dimensional and depends on the perspective of different stake-
holders [9]. An array of analytical methods has been used to analyse
various aspects of risk from the perspectives of different stakeholders.
This results in a bewildering mix of studies that look at different sides
of the same problem. However, there has been no systematic review of
which techniques are most appropriate for reviewing individual, or
groups of risks and how useful the outputs are to various stakeholders.

The aim of this paper is to provide an extensive, systematic
literature review (SLR) of how risk and uncertainty has been analysed
with respect to sustainable energy system planning. This will focus on
identifying the attributes of risks (or modelled uncertainties) that each
analytical method is most suited to address, as well as a critical
comparison of the main outputs of such studies. The outputs of this
review will map appropriate analytical techniques to specific risks, as
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well as comment on their application from the perspective of different
stakeholders. The outputs are intended to provide a guide to research-
ers as to common practice in the assessment of risk and uncertainty for
sustainable energy developments as well as indicating any possible
gaps or new avenues for research.

The rest of this paper is set out as follows: Section 2 presents an
overview of risk/uncertainty factors affecting investment decision-
making in sustainable power generation planning and feasibility
studies, along with an overview of the different perspectives among
stakeholders. The risk-based evaluation methods are introduced in
Section 3, and the cross-method comparison is conducted in Section 4.
Finally, Section 5 summarises the findings of this work and suggests
some focal points for future research.

2. Overview of risks and stakeholders’ perspectives in
sustainable energy generation systems

Risk in the power generation investment sector is generally
considered to be multi-dimensional and depends on the perspective
of different stakeholders. The “Comprehensive Actuarial Risk
Evaluation – CARE” paper produced by the International Actuarial
Association (IAA) provides a comprehensive taxonomy of risks faced by
enterprises [9]. Among other classification schemes, the paper suggests
a new perspective for risk categorisation into statistical and non-
statistical risks. The former are the risks that can be measured or
modelled with mathematical or statistical methods, such as stochastic
modelling, while the latter are those that are difficult to model with
existing knowledge.2

Risks associated with sustainable energy projects depend largely on
a number of factors that are technology-, country- and regulatory-
specific, while they also vary according to different stakeholders’
perspectives. Authors working on risk identification, analysis and
management in the sustainable energy investment sector have devel-
oped different risk categorisation schemes according to their intended
focus. Table 1 summarises the most cited risks by employing a political,
economic, social, technology, legal and environmental (PESTLE)
approach.

Stakeholders involved in the field of RE investments comprise:
project developers, project investors, insurers, manufacturers, consu-
mers, affected local communities and policy makers. Each stakeholder
tends to have different concerns and objectives from renewable energy
investments. This means that risks will vary in importance across these
different groups.

From a project developer's perspective, the objective is to make a
sufficient return on investment (capital and other resources) through
the sale of an RE project to an investor [12]. Investors are mostly
interested in minimising risks of technical reliability, costs and risks of
revenue disruption [14], while policy makers are concerned with
designing efficient and effective policy schemes, which would provide
the appropriate level of incentives to potential investors of RE projects
that allow government targets to be met [15]. As such, risk analysis in
RE projects has been performed in a generalised style covering
numerous RES technologies and stakeholders’ perceptions by some
authors [6,16–19], while others distinguish risks through the related
stakeholders’ perspective (e.g. from the investor's and developer's view)
[20] or by technology-specific risk factors [3,21].

3. Results of the literature review

Studies in this area tend to focus on the analysis of specific risk(s)
from the perspective of a stakeholder or stakeholders. Therefore, the

results section will map this research area in terms of which risks have
been analysed by which methods and which stakeholders have been
included.

3.1. Overview of the methods

The literature review was conducted on the basis of a SLR
approach, which provides the synthesis of the research in a systematic,
transparent, and reproducible manner, while also restricting the
researcher's bias [22]. A description of the main steps followed to
conduct the SLR approach is summarised in Appendix A. Analysis of
the SLR results finds several methods used in the analysis of risk
involved with sustainable energy generation systems. Table 2 provides
a tally of how many times a paper using a particular method was
identified by the systematic review process. This paper takes these
methods forward for further analysis. As indicated in Appendix A, the
total number of references considered for the review was 161 out of
which, 113 originated from the SLR process, while the rest 48
references were identified through additional checks (e.g. via citation
tracking or journal websites searching) in order to complement
information on a particular topic which was not fully covered by the
systematic review.

The review focuses on critically assessing which risks have been
analysed by which methods, what are the common outputs of these
methods and which stakeholders have been included in a number of
widely cited representative risk-based methodologies applied in sus-
tainable power generation planning and feasibility studies. These
methods have been classified, for reasons of simplicity, into quantita-
tive and semi-quantitative methodologies (see Fig. 1).

Quantitative risk-based evaluation methods deal with (statistical)
risk factors that can be described by probability distributions. Widely
cited methods falling into this category are: Mean-variance portfolio
(MVP) theory, Real options analysis (ROA), stochastic optimisation
methods, and Monte Carlo simulation (MCS). Semi-quantitative meth-
ods have the flexibility to take into consideration statistical and non-
statistical risks. Semi-quantitative methods that were identified
through the SLR are: MCDA and scenario analysis.

Table 3 matches the risk-based methods with risks/uncertainties as
identified by the systematic review. The table can potentially provide
guidance as to what methods are most suitable to address/model the
specific risk and uncertainty factors listed.

3.2. Quantitative methods

3.2.1. Mean-variance portfolio analysis (MVP)
MVP is an established method of economic theory, based on the

pioneering work of Harry Markowitz, who focused on the diversifica-
tion of securities towards the construction of efficient portfolios, which
would correspond to high expected return and low variance [97,98].
Later, Awerbuch [51] applied MVP for deriving optimal (or efficient)
energy generation portfolios yielding maximum expected return in
combination with minimised risk.

An energy generation portfolio constitutes a mix of generating
assets put together to reduce total investment risks; as such, an efficient
portfolio of energy generation technologies (with higher RE shares)
reduces the threat of abrupt supply disruptions, hence reinforcing
energy security through the mitigation of volatile fossil fuel price
dependence.

Diversifying the power generation portfolio has been highlighted by
a number of authors [18,20,99–102] as an effective strategy of risk
hedging due to the creation of portfolio effects resulting in efficient
power generating portfolios (i.e. optimum shares of different energy
technologies in the portfolio resulting in a minimum level of risk
towards attaining a given generating-cost objective). Diversification
dimensions may be geographical, technological or value chain related.
Numerous reports by international agencies, organisations, as well as

2 Statistical risks include: market, credit, insurance, asset liability and liquidity risks,
while examples of non-statistical risks are: reputational, opportunity, strategic, paradigm
shift and black swan risks.
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scientific papers [23,24,49,51,55,103–105] have stressed the impor-
tance of de-emphasising stand-alone energy generating costs and
levelized cost assessments in generation planning, since these ap-

proaches do not capture the contribution of renewable and non-fossil
fuel technologies to the electricity portfolio, in terms of reducing the
variability of electricity costs and hence their impact on economic
activity. At any point, some assets in the energy generation mix may
have higher costs than others; yet, in another instance, the combination
of alternatives serves to minimise overall expected generating cost
relative to the expected risk.

Portfolio risk is usually measured as the standard deviation of historic
annual outlays for fuel, operation and maintenance (O&M) and con-
struction period costs examined on the basis of historical data [50].
Numerous papers have attempted to generate models that consider risks
as the cost variance of a technology portfolio [23,49–52,103,105–107].

Huang and Wu [52] introduced portfolio risk by means of volatile fuel
prices and uncertainty of technological change and capital cost reduction,
while another MVP paper deemed market electricity prices and wind

Table 1
Risks in renewable energy investment sector.
(Sources:[3,10–13]).

Risk category Sub-category Risk factors/Events

Political Country Changes in the national economy
Political stability

Regulatory Changes in policy support schemes (for example changes in levels of tax credit or RPS targets)
Liability to third parties
Contracting risk

Bureaucracy Complex approval processes/Delay of permits
Economic Market Variability of revenue due to electricity price

Demand fluctuations
Financial/Fiscal Generating costs (CAPEX, fixed and variable OPEX, pre-development costs)

Interest rate swings
Financing risks (insufficient access to investment and operating capital)
Taxation regime
Transaction costs

Strategic/business Damage to reputation
Social Lack of public acceptance Delays in the licence acquisition

Health risks Accidents, acute diseases
Technological Project development Revenue loss due to project delay for the commercial operation date (COD)

Failure to obtain all required licences
Failure to obtain grid access

Construction Damage during transport or construction
Damages due to natural hazards
Unreliability of components (e.g. damage to turbines)
Unavailability of skilled labour

Operation/maintenance Damages due to natural hazards
Technological/innovation risk
Higher OPEX (due to critical failures of components)
Unscheduled plant closure due to the lack of resources
Risk of components generating less electricity over time than expected
Sabotage, terrorism and theft risk

Resource risk Revenue loss due to intermittency
Infrastructure Variability of revenue due to grid availability
Decommission Decommission costs

Legal Energy and climate change policy Changes in the national energy and climate change policy
Environmental Risk of environmental damage

Carbon footprint and life cycle assessment

Table 2
Frequency of each method appearing in the SLR (representing the number of studies that
were assessed as more relevant).

Methods Frequency of papers reviewed
using a particular method

Mean variance portfolio 16%
Optimisation methods 31%
Real options analysis 13%
Monte Carlo simulation 9%
Scenario analysis 11%
Multi-criteria decision analysis 21%

Risk-based 
methods

Quantitative 

Mean-variance
portfolio theory

Real options 
analysis

Monte Carlo 
simulation

(Stochastic) 
Optimisation 
techniques

Semi-
quantitative

Multi-criteria 
decision 
analysis

Scenario 
analysis

Fig. 1. Classification of the risk-based methodological approaches implemented in the field of sustainable energy planning and feasibility.

A. Ioannou et al. Renewable and Sustainable Energy Reviews 74 (2017) 602–615

604



T
a
b
le

3
R
is
k
an

d
u
n
ce
rt
ai
n
ty

p
ar
am

et
er
s

1
ad

d
re
ss
ed

by
ri
sk
-b
as
ed

m
et
h
od

s.

R
is
k
-b

a
se

d
m

e
th

o
d
s
→

M
e
a
n

v
a
ri
a
n
ce

p
o
rt
fo

li
o

O
p
ti
m

is
a
ti
o
n

m
e
th

o
d
s

R
e
a
l
o
p
ti
o
n
s

a
n
a
ly
si
s

M
o
n
te

C
a
rl
o

si
m

u
la
ti
o
n

S
ce

n
a
ri
o
a
n
a
ly
si
s

M
u
lt
i-
cr

it
e
ri
a
d
e
ci
si
o
n

a
n
a
ly
si
s

R
is
k ca
te
g
o
ri
e
s

P
ol
it
ic
al

ri
sk
s

C
li
m
at
e
ch

an
ge

p
ol
ic
y
ri
sk
s

[6
,2
3–

25
]

[2
6
–
32

]
[3
3–

40
]

[4
1]

[2
4,
42

–
45

]
[4
6
–
48

]
E
co
n
om

ic
ri
sk
s

P
ow

er
ge
n
er
at
in
g
co
st
s

[5
,6
,2
3,
49

–
52

]
[2
6,
53

,5
4]

[3
3,
55

]
[4
1,
56

–
59

]
[4
3]

[4
7,
60

,6
1]

F
in
an

ci
al

ri
sk
s

[6
2]

[5
6,
57

,6
3,
64

]
[4
6,
48

]
M
ar
ke

t
ri
sk
s

[2
5,
50

]
[3
2,
65

–
72

]
[3
3,
55

,7
3–

75
]

[4
1,
58

,5
9,
63

,6
4]

[2
6,
44

,7
6–

80
]

[4
7]

F
u
el

ri
sk
s

[5
,6
,2
3,
43

,4
9,
50

,5
2,
81

]
[2
6,
29

,3
1,
53

,6
7,
82

,8
3]

[3
4,
35

,3
7,
38

,8
4]

[4
1,
56

,6
3]

[2
6,
44

,8
0]

[1
4,
47

,8
5,
86

]
U
n
ce
rt
ai
n
m
ac
ro
ec
on

om
ic

p
ar
am

et
er
s

[2
6,
28

,3
2,
53

,5
4,
87

,8
8]

[5
8,
63

,6
4,
89

]
[4
5]

[4
7]

So
ci
al

ri
sk
s

So
ci
al

ri
sk
s

[4
7,
48

,6
1,
90

]
T
ec
h
n
ol
og

ic
al

ri
sk
s

T
ec
h
n
ic
al

ri
sk
s

[6
,2
5]

[6
7,
70

,8
3,
91

]
[5
5]

[5
6–

58
,6
4,
89

,9
2]

[4
3]

[1
4,
46

,4
8,
61

,9
3]

E
m
er
ge
n
ce

of
co
m
p
et
in
g

te
ch

n
ol
og

ie
s

[2
4,
26

,4
4]

T
ec
h
n
ol
og

ic
al
/i
n
n
ov

at
io
n

ri
sk

[4
3,
52

]
[2
8
–
30

,3
2]

[4
1,
58

,6
3,
89

]
[2
4,
26

,4
2,
44

,4
5,
94

,9
5]

[1
4]

R
es
ou

rc
e/
p
ow

er
ou

tp
u
t

ri
sk

[6
,2
5]

[3
2,
66

,6
7,
70

,7
1]

[5
5,
74

]
[5
6–

58
,6
4,
89

,9
2]

[4
3,
79

,8
0,
96

]
[1
4,
46

,9
3]

E
n
vi
ro
n
m
en

ta
l
ri
sk
s

E
n
vi
ro
n
m
en

ta
l
ri
sk
s

[6
]

[2
6,
31

]
[4
2,
43

,9
4]

[1
4,
47

,4
8,
61

,8
5,
86

,9
0,
93

]

1
R
is
k
an

d
u
n
ce
rt
ai
n
ty

fa
ct
or
s
ad

d
re
ss
ed

by
th
e
ou

tl
in
ed

m
et
h
od

s
m
ay

be
su

m
m
ar
is
ed

as
:

•
C
li
m
at
e
ch

an
ge

p
ol
ic
y
ri
sk
s
m
ai
n
ly

in
cl
u
d
e
fl
u
ct
u
at
io
n
s
in

C
O
2
p
ri
ce
s
an

d
re
d
u
ct
io
n
ta
rg
et
s,

ch
an

ge
s
in

th
e
cl
im

at
e
ch

an
ge

p
ol
ic
y
sc
h
em

es
(e
.g
.
(r
et
ro
sp

ec
ti
ve
)
ch

an
ge
s
in

R
E
S
su

bs
id
y/
p
ro
m
ot
in
g
p
ol
ic
ie
s)
.

•
V
ar
ia
ti
on

in
p
ow

er
ge
n
er
at
in
g
co
st
s
m
ay

in
cl
u
d
e
va

ri
at
io
n
in

p
re
-d
ev
el
op

m
en

t
co
st
s,

fi
xe
d
an

d
va

ri
ab

le
op

er
at
io
n
al

an
d
ca
p
it
al

co
st
s
of

th
e
p
ow

er
ge
n
er
at
io
n
te
ch

n
ol
og

y.

•
F
in
an

ci
n
g/
fi
sc
al

ri
sk
s
re
fl
ec
t
th
e
u
n
ce
rt
ai
n
ty

in
th
e
fi
n
an

ci
n
g
of

th
e
p
ow

er
ge
n
er
at
io
n
in
ve
st
m
en

t,
va

ri
at
io
n
in

ta
xe
s
an

d
in
te
re
st

ra
te
s,

sa
le
s
an

d
re
ve
n
u
es

as
w
el
l
as

va
ri
at
io
n
in

th
e
in
ve
st
m
en

t
p
ro
fi
ta
bi
li
ty

(e
.g
.
va

ri
at
io
n
s
in

IR
R
).

•
M
ar
ke

t
ri
sk
s
ar
e
re
fe
rr
ed

to
in

th
e
li
te
ra
tu
re

u
su

al
ly

by
m
ea
n
s
of

va
ri
ab

il
it
y
of

re
ve
n
u
e
d
u
e
to

u
n
ce
rt
ai
n
el
ec
tr
ic
it
y
m
ar
ke

t
p
ri
ce
s
an

d
fl
u
ct
u
at
io
n
s
of

el
ec
tr
ic
it
y
d
em

an
d
.

•
F
u
el

ri
sk
s
u
su

al
ly

ca
p
tu
re

va
ri
at
io
n
s
in

fu
el

p
ri
ce
s,

in
fu
el

p
ro
d
u
ct
io
n
,
in

th
e
fu
el
/o

u
tp
u
t
ra
ti
o,

d
is
ru
p
ti
on

s
in

fu
el

d
el
iv
er
y/
su

p
p
ly
,
as

w
el
l
as

fu
el

tr
an

sp
or
ta
ti
on

ri
sk
s
in

p
ow

er
-p
la
n
t
op

er
at
io
n
.

•
M
ac
ro
ec
on

om
ic

p
ar
am

et
er
s
m
os
tl
y
se
ek

to
re
fl
ec
t
u
n
ce
rt
ai
n
ty

in
m
ac
ro
ec
on

om
ic

m
et
ri
cs
,
su

ch
as

in
fl
at
io
n
ra
te

an
d
G
D
P
.

•
So

ci
al

ri
sk
s
ca
n
p
ot
en

ti
al
ly

in
vo

lv
e
ri
sk
s
as
so
ci
at
ed

w
it
h
th
e
la
ck

of
p
u
bl
ic

ac
ce
p
ta
n
ce
,
as

w
el
l
as

h
ea
lt
h
ri
sk
s
(e
.g
.
oc
cu

rr
en

ce
of

ac
ci
d
en

ts
).

•
T
ec
h
n
ic
al

ri
sk
s
in
vo

lv
e
la
ck

of
ac
ce
ss

to
th
e
gr
id
,
co
n
st
ru
ct
io
n
ri
sk
s,

re
li
ab

il
it
y
of

co
m
p
on

en
ts

(e
.g
.
d
am

ag
e
to

tu
rb
in
es
),
va

ri
at
io
n
in

ca
p
ac
it
y
fa
ct
or
s,

an
d
u
n
av

ai
la
bi
li
ty

of
p
ow

er
p
la
n
ts

an
d
sk
il
le
d
la
bo

u
r.

•
T
ec
h
n
ol
og

ic
al
/I
n
n
ov

at
io
n
ri
sk
s
re
la
te

to
co
st

u
n
ce
rt
ai
n
ti
es

d
u
e
to

le
ar
n
in
g
cu

rv
e
eff

ec
ts
.

•
R
es
ou

rc
e/
p
ow

er
ou

tp
u
t
ri
sk
s
ca
n

be
as
so
ci
at
ed

w
it
h
re
ve
n
u
e
lo
ss

d
u
e
to

in
te
rm

it
te
n
cy
,
av

ai
la
bi
li
ty

of
n
at
u
ra
l
re
so
u
rc
es
,
p
h
ys
ic
al

su
p
p
ly

d
is
ru
p
ti
on

s,
cu

rt
ai
lm

en
t
of

p
ow

er
ge
n
er
at
io
n
so
u
rc
es

an
d
/o

r
el
ec
tr
ic

p
ow

er
p
ro
d
u
ce
d
(i
n
cl
u
d
in
g

in
te
rm

it
te
n
cy

of
R
E
S)
.

•
E
n
vi
ro
n
m
en

ta
l
ri
sk
s
m
ay

en
ta
il
gl
ob

al
w
ar
m
in
g
(G

H
G

em
is
si
on

s)
eff

ec
ts
,
en

vi
ro
n
m
en

ta
l
d
am

ag
es

(e
.g
.
C
O
2
em

is
si
on

s)
an

d
n
at
u
ra
l
h
az
ar
d
s.

A. Ioannou et al. Renewable and Sustainable Energy Reviews 74 (2017) 602–615

605



resource availability as uncertain inputs represented by probability
distributions with approximately normally distributed probability func-
tions to compare the relative attractiveness of investing in a wind park
under two RE policy support instruments, namely, feed-in tariffs (FiT)
and feed-in premiums (FiP) [25].

Adopting a private investor's perspective, some authors have used
cash flow models to calculate risk in terms of earnings, costs of O &M,
credits, depreciation of facilities, and benefits [49,62,108]. Muñoz et al.
[62] used the Internal Rate of Return (IRR) to represent the returns on
investments, while the associated portfolio risk was reflected by the
standard deviation of IRR. IRR proved to be a useful measure of the
return from the real project, capable also of considering the uncertainty
in electricity prices and future subsidies (introduced as stochastic
inputs in the cash flow model). Roques et al. [109] concluded that in
the absence of long-term power purchase agreements, optimal portfo-
lios for a private investor are significantly different from socially
optimal portfolios; since, from a private investor's viewpoint, there is
little diversification value in a portfolio of mixed technologies, due to
the high empirical correlation between electricity, gas and carbon
prices. Bearing the above in mind, MVP theory is a method well suited
to the problem of electricity generation portfolio planning and evalua-
tion at a national and regional level (hence from a policy maker's
viewpoint), since it can be used to derive efficient power generating
portfolios, which reduce generating costs and enhance energy security,
while the method has also been used to assess the maximum losses (or
returns) of a private investor's (portfolio) investment within a specified
confidence level.

3.2.2. Real-options analysis (ROA)
ROA is particularly applied to the analysis of the impact of

uncertainty on investment decisions when management actions can
be timed flexibly. This enables the investor to evaluate available options
and take capital budgeting decisions (such as deferring, abandoning,
expanding, staging, or contracting) as new information arises and
uncertainty about market conditions and future cash flows is reduced
[110]. ROA supplements the information provided by static discounted
cash flow analysis and is based on the concept that it may be preferable
to postpone irreversible decisions (e.g. in capital intensive investments)
and wait to make a better informed decision at a future point in time
[109]; hence, adding the ability of an investor to respond dynamically
to changing market conditions. Common applications of ROA in low
carbon energy projects include investigating the impact of climate
policy uncertainty on private investors’ decision-making in the power
sector [33–36,111], such as the diffusion of various emerging RE
technologies [73] or the investment timing and capacity choice for RE
projects [33].

In more detail, [33] adopts ROA to analyse the flexibility of the
investment timing (based on the investor's right to postpone invest-
ment once the licence is granted if the economic environment is not as
favourable as desired) and capacity selection for RE projects under two
different subsidy schemes (feed-in tariffs and RE certificate trading), by
examining investment behaviour under these conditions. The option of
investment timing and capacity choice is assessed taking into account
the special characteristics of RE sources (wind power, solar power, and
run-of-river hydropower), namely the intermittency of these power
sources, as well as the uncertainties in capital costs, subsidy payments
and electricity prices. Kumbaroğlou et al. [73] presented a policy
planning model based on the ROA method featured through a dynamic
programming process for recursively evaluating a set of investment
alternatives on a year-by-year basis under uncertainty. They used the
operational and cost data for existing power plants, electricity price
data and capacity expansion structure, in order to derive annually
added capacities and technologies from 2006 up to 2025 under
different scenarios. The dynamic programming model allowed them
to check the impact of uncertainty and technical change on the
diffusion of various emerging RE technologies, concluding that market

actors need, in the short-term, financial incentives to achieve a more
widespread adoption of RES technologies in the longer run.

Other applications of the method focus on the impact of market
uncertainty on investment electricity industry decision-making. Market
uncertainty is expressed into stochastic CO2 prices and policy uncer-
tainty [36,55,111]. Authors in [36,111] emphasise the distinction
between uncertainty coming from fluctuations in CO2 prices around a
known trend, which would arise in a market with emissions permits,
and uncertainty emanating from the absence of clear policy signals. It
has been shown that some market uncertainty may induce earlier
investments in carbon capture and storage (CCS) equipment than in
the case of perfect information. However, policy uncertainty may also
lead to prolonged accumulation of CO2 emissions in the atmosphere,
since investors prefer to wait for the final decision of government
before investing in climate change mitigation technologies. Hence, a
clearer, long-term policy plan would leverage emission abatement
actions. In both [34] and [35] the uncertainty is represented by carbon
price uncertainty, which is modelled through stochastic variations in
the carbon price. Results from Blyth et al.’s work [34] demonstrated
that such uncertainty creates a risk premium for electricity investments
which needs to be offset with extra incentives in order to overcome the
effects of uncertainty on the timing of the investment decision. An
important conclusion of their work suggests: the shorter the time
before a future climate policy event, the higher the impact of climate
change policy risks on the investment decision (a conclusion also
reported in [35]). It is thus concluded that the method can derive useful
outputs for both investors and policy makers. On the one hand,
investors can evaluate available options and take capital budgeting
decisions on the best timing; on the other hand, policy makers could be
assisted to better understand the impact of market uncertainty (e.g.
costs induced by an environmental policy) on the investment decisions
of investors.

3.2.3. Stochastic optimisation techniques
Stochastic optimisation has been extensively used in a number of

energy planning and feasibility problems, such as the determination of
optimal energy mix planning at a national level (i.e. Indonesia [26],
China [112], Korea [29], and Croatia [113]), expansion planning of
sustainable energy systems [65,69,82,114–119], design of hybrid
systems [120,121], and numerous others energy systems-related
problems like unit commitment, energy storage management, bidding
energy resources, pricing electricity contracts [122], introducing un-
certainty in one or more of the input parameters subject to stochas-
ticity. In this review, we focused on problems that are associated
principally with the deployment of stochastic optimisation methods in
investment planning decisions. Usually, the constraints considered in
these problems depend on the perspective of the stakeholder. As such,
studies looking at the problem from a policy maker's perspective, seek
to develop least-cost optimisation models to allocate energy sources for
sustainable development, under constraints such as energy security
(demand), renewable penetration, satisfaction of greenhouse gas
(GHG) emission reduction targets, budget constraints and maximum
technology capacity [26,30,112]. An investor would aim at minimising
both the cost (or alternatively maximising the revenues) and invest-
ment risk (e.g. by minimising CVaR measure), while the potential
constraints would further include risk-aversion constraints
[70,83,123,124]. Uncertainties that are usually represented include
market electricity prices, fuel prices, production costs of existing and
future power plants, CO2 emission policy, energy demand, technologi-
cal efficiency, and utilisation factors [26,30,112]. Stochastic optimisa-
tion problems are characterised by an array of fragmented modelling
approaches, such as fuzzy, (dynamic) stochastic and interval mathe-
matical programming [125], often leading to inconsistent and inaccu-
rate results [122].
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3.2.4. Monte Carlo Simulation (MCS)
MCS involves the random sampling of probability distributions of

the model input parameters with the purpose of producing numerous
scenarios. The sampling from each parameter's probability distribution
is realised in a way that reproduces the shape of the output distribu-
tion; hence, the distribution of the values deriving from the application
of the method reflect the joint probability distribution of the outcomes
[126]. MCS offers many advantages but it also requires a considerable
range of data as input variables, such as the probability density
functions of uncertain or fuzzy values or forecasted variables. There
are numerous studies performing risk analysis of sustainable energy
systems with MCS in the literature [56,57,59,63,89,92,127,128].
Existing works disclose a number of advantages of the method, such
as the ability to obtain fast results when modifying the variables of the
problem, the ability to calculate the risk undertaken because of
uncertain or stochastic input variables, as well as the ability to model
the correlations and other interdependencies of the system. Input
variables need to be statistically independent; otherwise the simula-
tions will lead to inaccuracies and shortcomings in the interpretation of
the results. In studies employing MCS, the best fitting probability
density function (PDF) assigned to the input variables is determined
either by using historical data of the variable (statistical or experi-
mental methods) [5], or by using subjective judgements (e.g. perform-
ing interviews with experts) on the empirical worst, base and best case
estimates (confidence intervals) usually interpreted as quantiles of a
probability density function [57]; most often, both methods are used in
order to derive the PDF of numerous variable inputs [56,89,128].

Studies performing stochastic financial risk analyses of sustainable
energy systems by means of the MCS method tend to derive joint
probability distributions of annual energy production and investment
profitability metrics (i.e. net present value (NPV), IRR) at a plant level
[92]. For the selection of input variables, a sensitivity analysis method
can initially be carried out for checking the effect of a number of
potential input variables on the NPV. Risks/Uncertainty factors that
have been taken into consideration include fluctuations in wind
resource potential, wind curtailment, access to the grid and macro-
economic parameters [89]. MCS integrated in a typical financial model
can assist investors to perform a first exploratory analysis to decide
whether and where to invest and policy makers to assess policy
parameters and explore possible scenarios of investing in an RE
technology. For example, Pereira et al. [57] evaluated the risk in
project implementation, under stochastic equipment costs, market
financial conditions, O &M costs, and policy implications. They con-
sidered as independent variables the total initial costs, the interest rate
and the value of energy produced and sold to the grid or utility;
matching them with exponential, triangular and Bradford probability
distribution functions, respectively, while NPV and the produced
energy cost have been defined as the dependent variables.

3.3. Semi-quantitative methods

Along with the quantitative risk-based methods dealing with
statistical risk and uncertainty in decisions associated with sustainable
energy planning and feasibility problems, scenario analysis and MCDA
have been identified by the SLR as methods that can consider non-
statistical risks.

3.3.1. Scenario analysis
The potential impact of risks on the profitability of RE investments

can be evaluated by the discounted cash flows under various scenarios,
reflecting different potential future developments. A scenario incorpo-
rates the dynamics and the drivers resulting in a specific conceptual
future [129]. Usually, these scenarios represent either the most
probable situations (situations that are most likely to occur) or extreme
cases (worst-case, and best-case scenarios). Each scenario usually
assumes values of elements, such as the future price of electricity,

CO2 costs, and produced electricity among others. The elements used
for the construction of the scenario depend on the area on which the
researcher seeks to focus [129].

Scenario analysis can potentially assist the planning of robust
energy technology portfolios that will achieve set objectives under a
range of future scenarios [42,76,130]. For example, [42] considered
three scenarios, reflecting strong, mediocre and poor technological
breakthrough and policy support for the development of the RE
industry. This allowed the encompassing of uncertainties with regard
to the relationships among the technology alternatives and the decision
values of elements. The latter were divided into two dimensions: the
importance of each technology (assessed through the market value, and
the compound market growth) and the technology risk (indicators
considered were the position of the technology and the manufacture
capability). Conclusively, technology portfolio planning implications
were derived for each of the three scenarios generated. On the other
hand, Kannan [130] investigated the uncertainties in the future UK
power generation mix via a range of power sector-specific parametric
sensitivities under a ‘what if?’ scenario analysis framework, to provide a
systematic exploration of least-cost energy system configurations, while
[76] investigated the impact of energy price uncertainties on the supply
structures of four EU countries using a stochastic risk function
incorporated into a partial equilibrium energy systems model.
Scenario analysis has also been used for the quantification of policy
risks in the wind power industry [131].

3.3.2. Multi-criteria decision analysis (MCDA)
MCDA is a family of decision support methods which has been

widely used in the energy sector and specifically in the evaluation of
alternative energy sources as well as the consideration of risk percep-
tions, due to their ability to incorporate multiple actors’ opinions,
bringing along multiple different criteria, stemming from the political,
economic, social, technological and environmental context [13,132–
135]. MCDA methods rely on relationships such as priority, outranking
and distance among the alternatives and factors (i.e. criteria) that
influence the decision. These methods are categorised as semi-quanti-
tative since they can also accommodate criteria or attributes whose
numerical values are hard to obtain or even cannot be quantified
(intangible criteria) through the deployment of qualitative scales (i.e. a
Likert scale) [136]. An example of a work using both quantitative and
qualitative attributes can be found in [137]. Several authors have
carried out reviews on MCDA methods with applications in the field of
sustainable energy systems [132,138,139].

A few common outputs of these applications associated with
sustainable energy generation technologies when risk and uncertainty
is embedded in the investment decision, include: evaluation/ranking of
the different RE technologies according to a number of risks/criteria
[90,136,140,141], prioritisation of feasible projects through a risk
analysis process [46] and risk prioritisation of RE technologies [13].

Types of uncertainty encountered in such problems stem from
either the inherent valuation uncertainties (i.e. problem-specific tech-
nical parameters determined by the decision maker) or from the
technical empirical uncertainties related to the data (such as the
carbon emissions and technology costs) which are outside the decision
maker's control [86].

Apart from the basic MCDA methods which are usually set to assess
the strengths and weaknesses of the pre-determined energy options
without re-defining them, another group is the continuous MCDA
models seeking to identify the optimal design of the option. These
methods are usually employed to deal with problems comprising
multiple (usually conflicting) objectives, where decision variables are
infinite variables, subject to constraints and are known as multi-
objective optimisation methods. These methods have also received
considerable attention in sustainable energy applications
[14,47,85,86,93,142]. Goal programming is a category of multi-objec-
tive optimisation methods assimilating LP to handle problems with
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multiple, potentially conflicting objectives. For example, goal program-
ming can be used to address the compromise between the cost per kWh
of an electricity generation portfolio and the total risk for an investor-
owned utility [14]. A common application of the method in the field of
sustainable energy system planning is to forecast optimum RE supply
percentages under different conditions of portfolio risk and cost
[14,83,143]. For example, in [14] the authors presented a multi-
objective model for determining the share of different energy genera-
tion assets in an investor-owned utility portfolio that reduces risk while
providing the lowest cost per kWh of electricity generation possible.
The failure mode and effects analysis (FMEA) was employed to assign
risk priority numbers (RPNs) to each risk. Subsequently, the share of
each type of energy (i.e. solar, coal, and natural gas) in the mix was
determined through a multi-objective model for the minimisation of
levelized cost of electricity (LCOE) and minimisation of the aggregated
RPN of each technology.

It is often encountered that the numerical values of the criteria or
attributes are not easy to obtain and there is therefore a need to express
them in linguistic terms. In this case, fuzzy logic is employed to address
the uncertainty in human judgement by applying membership func-
tions to vague information. There are numerous studies in the
literature using fuzzy analysis in energy planning [61,144–149].

As mentioned above, we recognise that there are also other methods
dealing with risks and uncertainties in investment decision making; for
example, parametric sensitivity analysis can be employed to identify
sensitive input parameters (focusing on uncertainty in technical
empirical parameters) by analysing their effects on the model output
[86]. However, here we focus our review on methods – exported
through an SLR – widely implemented to solve planning and feasibility
problems seeking to investigate: the risks/uncertainties each method is
best suited to cover, the stakeholder perspective each method ad-
dresses; while also critically assess their most common outputs and
reveal advantages/disadvantages regarding content and methodology.

3.4. Combinations of quantitative and semi-quantitative methods

Methods described above are frequently combined with each other
or with other methods in order to produce different kinds of results,
e.g. in ways that the output of the one method works as the input for
the other method. Subsequently, we present indicative papers combin-
ing different risk-based methods in the field of energy system planning
and feasibility.

A number of studies have combined ROA with portfolio theory in
order to derive optimal portfolio strategies towards meeting specific
climate change stabilization targets under different socio-economic
scenarios [37,38]. Fuss et al. [37] employed the real options model, in
order to analyse the impact of uncertainty on investment decisions at
the plant level. The Greenhouse Gas Initiative (GGI) Scenario Database
was considered as a starting point for obtaining optimal technology
portfolios which are robust across a number of socio-economic
scenarios and across climate change targets. In [38], a multidimen-
sional table indicating the best option (regarding the retrofit of a fossil
fuel-fired plant and a biomass plant with CCS units) for each time
period, possible state and possible carbon price realised during that
period was produced. The implementation of the ROA resulted in the
distribution of coal, gas, and biomass technology costs (for given
parameters on fuel and CO2 prices), which subsequently entered a
portfolio optimisation model to provide the optimal strategy across all
possible scenarios.

Methods employing portfolio theory are usually combined with
optimisation methods, such as linear programming (LP) to determine
optimum RE technology percentages under different conditions of
portfolio risk and cost. Bhattacharya and Kojima [5] used the method
of MVP risk analysis to create experimental electricity supply portfolios
with high diversity (more fuel choices) and conducted a special type of
optimisation method, namely simulation optimisation, in order to

incorporate the various stochastic variables in their model so as to
minimise the risk of the supply portfolio. The major sources of risk that
were identified during the development and operation of power
projects in Japan were the variation in capital costs, fuel costs, O &M
costs, along with the price of CO2 traded in the world market. Kumar
et al. [105] determined optimum portfolios through the minimisation
of portfolio fuel cost, portfolio fuel risk and CO2 emission by employing
a multi-objective genetic algorithm. They concluded that the limitation
of the MVP theory from the perspective of a developing nation such as
India lies in the fact that the method only considers risks associated
with cost components while neglecting barriers associated with the
implementation of projects; thus, a comprehensive risk barrier index is
needed to indicate the combined impact of risks and implementation
barriers associated with each portfolio.

A number of studies have combined scenario analysis with other
methods as a way to incorporate uncertain situations emerging from
political, economic, environmental, technological and environmental
futures. Such methods include: portfolio theory [23,24,43,52,103],
ROA [33,37,38,73], energy system modelling [76,130] and MCDA
[148,150]. The latter study concerns the application of multiple criteria
decision analysis to prioritise investment portfolios (with the overall
objective of the generation mix corresponding to the anticipated
electricity demand while fulfilling specified constraints), while at the
same time testing the robustness of the prioritisation against several
scenarios. Each portfolio reflects the distribution of the alternatives’
power generation capacity denoted as X p p=[ ,…, ]i i ni1 where pki is the
proportion of each energy asset capacity of portfolio Xi to be gained by
alternative ak belonging to a set A a a=[ ,…, ]n1 of n technologies.
Performance criteria alternatives are assessed against economic, tech-
nical (e.g. availability and energy security risks) and environmental
dimensions, with the goal to rank technologies and portfolios and then
apply scenarios to validate the sensitivity of the results.3 Emerging
conditions considered for the construction of scenarios (elements)
concern, among others, different projections on electricity consump-
tion annual growth and high price volatility for natural gas and oil, as
well as combinations of these. A similar approach is followed by
Heinrich et al. [86] ranking power expansion alternatives for given
multiple objectives and uncertainties, using a value function multi-
criteria approach, across different scenarios yielding information
regarding the power expansion alternatives’ relative performance and
credibility. Energy system models are also often used in combination
with scenario analysis in relevant studies [76].

4. A cross-method comparison

4.1. Risk measures and common outputs of the methods

Having laid out widely cited and applied risk-based evaluation
approaches from the literature (Section 3), this section discusses and
summarises the key findings of the literature review by providing a
comparative overview of the most significant outputs of each method as
well as by highlighting the weaknesses and strengths of each approach
as identified by authors that employed them in sustainable energy
technology planning and feasibility problems. Fig. 2 illustrates the
main outputs of the bulk of the studies that have employed these
methods.

MVP method measures risk in several ways [151]. Usually, the
standard deviation of historic periodic returns calculated through the
Sharpe ratio, which is defined as the ratio of expected excess return to
standard deviation of the return [152], is used; this definition assumes
that financial returns follow a normal distribution, hence the prob-

3 Alternatives (power generation portfolios) are assessed against the performance
criteria by means of a Likert scale rating measuring the degree the alternative meets each
criterion (1-High, 0.5-Low, 0-Blank).
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ability dimension of the portfolio risk cannot be accurately reflected
through this measure. However, Value-at-risk (VaR) is another tradi-
tional risk measure utilised by MVP theory approximating the prob-
ability that the value of an asset or portfolio will drop below a particular
value over a specified confidence level and in the context of a planning
horizon. The method can be applied to a power generation asset
portfolio with available periodic market parameter values not necessa-
rily following a normal distribution. Given the probability distributions
of all portfolio assets, VaR values can be used to approximate the
maximum loss for the whole portfolio. Being a widely used risk
measure embraced not only by risk managers and actuaries but also
by researchers and in investment banking, VaR (also known as
percentile risk measure) is always specified with a given confidence
level α (usually with values 90%, 95% or 99%) and can be used for
portfolio optimisation when the cost/return distributions of the
different technologies are not necessarily normal (in contrast to the
Sharpe ratio metric). In the majority of MVP studies, risk is approached
by the variability of the generation cost components originating from
the market (deviations in demand for power, electricity price, fuel
price), economic and financial (CAPEX, OPEX, project delay, capacity
factor, energy generation) and political (such as retroactive/prospective
regulatory changes, uncertain CO2 prices) contexts. The method's
applicability is subject to the availability of historic data of cost
components and other statistical parameters of the RE project, as well
as the availability of correlation values of risks among assets [109].

ROA supplements the information provided by static evaluation
approaches, by recognising that in an uncertain future one needs to
have the flexibility to adjust the timing of the investment decision
[109,153]. Real options methods help to evaluate the value of waiting
as part of the decision-making problem. The method commonly uses
dynamic programming which allows the sequence of investment
decisions to break down into options and systematically derive and
compare the expected NPVs from immediate investment, waiting and
all subsequent remaining decisions. In most studies in the domain of
energy technology evaluation, uncertainty is introduced by means of
forecasted input fuel prices, average wholesale price of electricity,
uncertainties in policy support schemes (e.g. subsidy payments) and
capital costs. The output of ROA can subsequently inform portfolio
optimisation, while the importance of different energy technology
options under specific political, technological and socio-economic
circumstances can be captured by scenario analysis, providing valuable
insight for policymakers about the incentive mechanisms needed to
promote robust long-term climate risk mitigation.

Optimisation methods with stochastic inputs have been widely
implemented to the problem of allocating optimal power generation
assets. This may apply to long-term optimal energy mix planning in a
national level, minimising total discounted (annualized) cost against a
number of constraints ensuring the energy security, attainment of

environmental targets, maximum capacity of different technologies,
etc. This is thus a method that can be potentially derive policy
recommendations for more efficient energy technology roadmaps
[26]. The method can, however, be useful from an investor's (energy
producer) viewpoint, e.g. for the determination of the optimal expan-
sion planning of the power generation capacity over a long term
horizon [65].

Scenario analysis recognises that altering individual variables
whilst holding the remainder constant is not realistic. Depending on
whether scenario analysis is embedded in a qualitative or quantitative
methodological framework, risks considered may vary. Empirical
scenario analysis techniques can provide a first-step in understanding
inherent risks and uncertainties of future energy systems under
different socio-political scenarios [154]. Outcomes of scenario analysis
in empirical studies could also be the rating of electricity generation
technologies and their mixes across different scenarios. Scenarios
simulate the development trajectory of RES technologies between a
status quo (current projection) and alternative scenarios which deviate
from the status quo because of considering a different development in a
number of driving forces, e.g. technology progress, climate change
policy and situation of global warming. Although scenario analysis,
when used on its own (potentially in an empirical framework) lacks the
scientific rigour for assessing the frequency and quantified impact of
risk and uncertainty on the RE technology value; when combined with
other methods, such as portfolio theory and ROA, it can be a valuable
tool to simulate various interconnected conditions. In this case,
scenarios can derive optimal technology portfolios across different
socio-economic scenarios resulting in different stabilization targets
[37].

Monte Carlo is a method that allows accounting for numerous
stochastic or uncertain input parameters and can be employed to
produce probabilistic valuation models which incorporate risk assess-
ment in the evaluation of RE technologies. Thus, it is a method that can
capture statistical fluctuations of input variables and derive probability
density distributions of cash flows.

MCDA establishes preferences between project options in accor-
dance with a set of criteria and objectives, normally stemming from
policy/project objectives as well as other financial, social, technological,
and environmental factor considerations. MCDA is often applied as an
alternative risk assessment technique because it is able to accommo-
date multiple criteria and is not constrained to use only monetary
values; rather, subjective scales can be employed to rate each option
(such as Likert scales). For example, when considering the problem of
deciding on whether to invest in a power plant project and determine
the order of priority of the projects in the company's portfolio, an
investor has to consider a number of risk factors, such as the country
risk (the political and economic instability as well as the level of
corruption), risk of change in energy policy which may undermine the
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Fig. 2. Common outputs of risk-based methodologies in energy planning and feasibility studies.
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reliability of the project's economic feasibility, risk of changes in policy
premiums, etc. [46], which may be hard to monetise and therefore the
application of appropriate multi-criteria methods can prioritise the
alternatives through pairwise comparisons in terms of each risk factor
(e.g. Analytic Hierarchy Process).

4.2. Strengths and weaknesses

This section outlines briefly some of the strengths and weaknesses
of the risk-based evaluation methods, which were not explicitly
examined in the previous sections.

As such, the Sharpe ratio has been widely used as a metric for risk-
adjusted return in power generation and feasibility studies employing
MVP methods [25]. However, the metric has received much criticism
since it assumes that financial returns follow a normal distribution, as
well as the assumption that investors only focus on the mean and
variance of costs of an investment. Nevertheless, several studies have
shown that financial returns of assets very often have non-normal
characteristics, such as (negative) skewness. This shortcoming of the
method can be potentially overcome by using alternative risk measures
such as the VaR reflecting the amount that losses will not exceed a
specified confidence level over a predetermined time schedule, while
another measure often used is the Conditional value-at-Risk (CVaR)
(also known as Tail-VaR, mean excess loss and mean shortfall) which is
considered a more consistent measure of risk than VaR [155]. From an
applicability perspective, the method lacks managerial flexibility since
the investors are not able to assess the dynamics of the investment
environment and take decisions on the portfolio rebalancing – within
the specified investment timeframe – accordingly. Additionally, con-
ventional MVP theory disregards costs of moving from inefficient to
efficient energy asset portfolios. Nevertheless, these costs are essential
for electricity generation portfolios since there are usually significant
salvage and decommissioning costs for existing technologies. The
decommissioning cost might be included in the cost of energy, but
the costs of shifting from one set of technologies to another are not
explicitly addressed.

On the one hand, probabilistic approaches (such as MCS) provide
the flexibility to assign probability density functions to input variables
using historical data to foresee future developments of parameters; on
the other hand, they cannot capture the extremities which might have a
critical impact on the power generation system [108]. Each point on
the output distribution represents the outcome of the joint probability
function of the uncertain input variables. It should be noted that
accuracy in the result depends on the appropriate statistical modelling
of the stochastic input variables as well as the proper selection of the
quantile value for the joint probability distribution function.

Investment planning decision making problems involving determi-
nistic mathematical programming have been developed in standardised
modelling frameworks, facilitating the validation and reproducibility of
results. Nevertheless, the introduction of uncertainty in one or more of
uncertain input parameters has generated a fragmented number of
works following different approaches to modelling uncertainty leading
to significant lack of precision and conflicting results [122].

Finally, scenario analysis does not provide the flexibility of prob-
abilistic analyses while the uncertainties are not specifically integrated
into the solutions explored [86]. Nevertheless, when combined with
other risk-based methods, it can be a valuable tool to simulate various
interconnected conditions. Further, the strengths and weaknesses of
the methods cited above are outlined in Table 4.

5. Conclusions

The analysis of different risk factors (technological, political, social,
environmental, etc.) assists stakeholders (developers, investors, utili-
ties) in the RE sector to speak the same language in reference to what
risks are associated with a sustainable power generation project and

which of these can be transferred, mitigated, avoided or accepted.
The present paper brings together an array of methods that has

been widely employed to address/model/incorporate risk and uncer-
tainty attributes (related to energy security, generating costs, market
risks, climate change risks, etc.) in sustainable power generation
planning and feasibility studies. It was observed that MVP, ROA,
MCS and (stochastic) optimisation methods are usually employed to
address/model statistical risk factors, while semi-quantitative methods
such as scenario analysis and MCDA may also be employed to address
non-statistical parameters such as social factors and the emergence of
competitive technologies.

Financial risks (e.g. variations in the investment return [62] or
energy sale prices) have been widely accounted for in MVP and MCS
methods; while the emergence of competing energy technologies (i.e.
nuclear power) has been principally captured through scenario analysis
[26]. Technology/innovation risk parameters are usually encountered
in studies employing ROA, MCS, optimisation and scenario analysis by
means of variation in future technology costs (learning curve effects).
Stochastic optimisation models are frequently applied to assist policy
makers in the definition of optimum energy mixes, taking into
consideration uncertainties in the energy demand (i.e. macroeconomic
factors), variation in electricity prices, generating costs, fuel risks,
technological risks and carbon emission reduction targets. Finally,
technical risks, such as reliability of components and access to the grid
have been found to be frequently modelled by goal programming
methods (i.e. MCDA methods) and optimisation methods.

A general conclusion of the review process is that no modelling
approach can combine every element of the problem. Each approach
requires different assumptions and views from different perspectives of
the socio-techno-economic systems depending on what it attempts to
investigate. As an example, microeconomic analysis models (such as
ROA) cannot replace models with a wider view of national or regional
markets (such as energy system models), rather these methods should
complement each other [159]. Untapped issues recognised in the
recent methodological approaches reviewed dealing with risk and
uncertainty in sustainable power generation planning are summarised
below:

• MVP theory is one of the key methods advocated to support that
diversification of energy technologies can ensure long-term electri-
city generation under a balanced risk-return relationship [160]. Yet,
an important issue neglected to date in the technique is the
consideration of the load structure of the technology combination
so that technologies can cover demand during peak hours [37];
hence results derived by the method may ultimately not be insightful
for policy makers and practitioners. For providing recommendations
on the optimal energy mix, the load structure of the technology mix
needs to be incorporated in the model, for example by introducing
minimum constraints on peak-load technologies.

• Scenario analysis is particularly useful for explicitly modelling trend
uncertainties and plausible future technology developments, espe-
cially when conducted according to industry's perceptions, since
their actions are grounded on their perceptions, while scenarios
constructed by policy makers should be used to derive the expected
behaviour of the agents that participate in the market.

• Long-term uncertainties (those that cannot be hedged in forward
markets) are usually represented by stochastic input parameters
(such as energy demand, electricity price, CO2 costs) and modelled
through probabilistic methods (such as MCS), assuming that they
follow a probability distribution. However, the development of their
values critically depends on future policies and/or macroeconomic
developments, so one has to be sceptical regarding the stochastic
process assumption.

• Diversification of technologies has been widely cited as an effective
risk mitigation technique also for investor-owned utilities which
usually distribute their investments among different power genera-
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tion technologies. Methods employed to address risk/uncertainty in
investor-owned power generation utilities mostly emphasise the
statistical risks. However, it is increasingly accepted that non-
statistical risks are frequently the drivers of failures (such as policy
instability, economic instability, lack of public acceptance, restric-
tions in terms of land availability) [105]. Translating non-statistical
risks (e.g. aggregated through a risk priority number) into a cost per
kWh for a number of sustainable energy technologies could con-
tribute towards deriving more cost-effective solutions [14]. The
quantification of such risks could be achieved with the support of
expert opinions.

In the absence of data, risk factors identified in reference to a
sustainable power generation project could be used to create specific
scenarios (or else failure modes) that experts could possibly rate in
terms of their probability of occurrence and impact [131]. Accordingly,

quantitative risk impact evaluation methods could be employed to take
advantage of the obtained values. The development of a structured risk-
based evaluation framework, focusing on determining the risk-cost
profile of sustainable energy generation technologies and mixes of
technologies could, thus, constitute a focal point that future research in
modelling risk and uncertainty in energy planning and feasibility
studies should take into consideration.

Acknowledgements

This work was supported by grant EP/L016303/1 for Cranfield
University, Centre for Doctoral Training in Renewable Energy Marine
Structures (REMS) (http://www.rems-cdt.ac.uk/) from the UK
Engineering and Physical Sciences Research Council (EPSRC). No
new data were collected in the course of this research.

Table 4
Strengths and weaknesses of risk-based methods.

Methods Strengths Weaknesses

MVP theory 1. VaR and CVaR are widely recognised risk metrics allowing for
assessing the maximum losses of the portfolio within a specified
confidence level [38,156]

1. Focuses on monetary risk attributes [105]
2. Static approaches can understate, if not ignore, managerial flexibility

[109]
3. The Sharpe ratio assumes that financial returns follow a normal

distribution [25]
ROA 1. Investment timing consideration [110]

2. It can evaluate in depth risk factors likely to occur in the future [157]
1. Complicated numerical calculations
2. Reliance on quantitative data [158]

Stochastic
optimisation

1. More suitable than deterministic optimisation approaches for a
number of decision making problems in energy systems in presence
of uncertain inputs [125]

1. Lack of a standardised way to model uncertainties often leading to
significant lack of precision in the results [122]

MCDA 1. Incorporates important non-statistical risk attributes [136] 1. Criteria, weights and values are difficult to accurately estimate and
greatly depend on subjective judgements

Scenario analysis 1. Provides information on the impact of potential risks which contribute
most to the overall risk.

1. Cannot account for the probability of occurrence of a scenario [86]

Monte Carlo
simulation

1. Allows accounting for numerous varying stochastic or uncertain input
parameters simultaneously

2. Allows calculating probabilities of a parameter (such as NPV) being
below or above a certain target value or within a desired confidence
interval [126]

3. Commercial software available to automate the tasks involved in the
simulation

1. Requires considerable data volume (definition of probability
distribution functions) for random input variables or uncertain and
predicted input parameters [57]

2. Difficult to capture extremities
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Appindx A. Description of systematic review approach

The literature review was conducted on the basis of a systematic literature review (SLR) approach, which provides the synthesis of the research
in a systematic, transparent, and reproducible manner, while also restricting the researcher's bias [22]. To this end, a literature review protocol was
produced to frame the research methodology. The literature review protocol outlines the aim and questions underlying the review, the search
strategy, the inclusion and exclusion criteria and the plan for data extraction.

Important criterion when selecting the keywords of the research was to be as inclusive as possible in order to avoid missing important studies.
Key words selected, were clustered into four (4) different thematic categories: 1. energy & power & electricity & renewable* & fuel (5 keywords),
2. Risk* & uncertain* & stochastic* & fuzzy (4 keywords), 3. Method* & model*(2 keywords) and 4. Feasibility & planning & portfolio & mix &
expansion*(5 keywords). Terms belonging to the same category were inserted with a Boolean operator ‘OR’ in the search box, while accordingly
terms of Categories 1,2,3 and 4 were combined via a Boolean operator ‘AND’, resulting in 5*4*2*5=200 search strings.

After the search strategy was defined, a number of inclusion/exclusion criteria as regards the papers retrieved was determined to eliminate
papers that fall outside the scope of the research topic. The search was limited to scientific peer-reviewed papers to ensure a collection of robust and
validated works. Papers were retrieved from Scopus, while the final inclusion of papers considered for full-text analysis was determined following a
quality assessment process (Fig. 3).

The initial literature was supplemented with additional works through a bespoke process, when further information to cover a particular topic
was needed, or a key text in the literature had been missed by the systematic review.
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Abstract—This paper maps different investor strategies in 
the offshore wind energy market based on data from existing 
wind farms in the UK. This is realized through the 
employment of cluster analysis, which classifies offshore 
wind energy investors – who have purchased equity stakes- 
in terms of the entry timing, exit timing, purchase timing and 
stake purchased. We, then, perform a SWOT analysis to 
identify the major strengths, weaknesses, opportunities and 
threats encountered by each cluster of stakeholders. Cluster 
analysis revealed the existence of three distinct investment 
strategy profiles: i) Late entry investors, ii) Pre-
commissioning investors, and iii) Own-build-transfer 
investors. Corporate and institutional investors tend to be 
late entry investors, whose strategy is based on buying assets 
while they are fully operational avoiding construction risks, 
retaining a risk aversion profile. The exit timing of OEMs 
and EPCI contractors usually takes place before or right 
after the commissioning of the wind farm. Finally, major 
Utilities tend to keep the operating assets on their balance 
sheet and divest only part of them (mostly minority stakes) 
during the operating stage; Independent energy companies 
are found in both 2nd and 3rd cluster; however, exceptions 
may be observed. 

Keywords — equity capital investors, offshore wind, cluster 
analysis, entry and exit timings, investment strategies, SWOT 

I.  NOMENCLATURE

CfD:  Contracts for Difference  
OEM:  Original Equipment Manufacturer  
EPCI:  Engineering, Procurement, Construction and            

Installation 
WACC:  Weighted average cost of capital 
PPA:  Power purchase Agreement 
O&M:  Operation and Maintenance 
LEI:  Late-entry investors 
PCI:  Pre-commissioning investors 
OBTI:  Own-build-transfer investors 

II.  INTRODUCTION

Wind energy has become a significant part of the energy 
mix within the UK and Europe. It is now established as a 
mainstream rather than a developing technology, with a 
mature supply chain. Offshore wind offers favorable 
conditions for high yield energy production with higher 
wind shear, abundant available space and limited social 

This work was supported by grant EP/L016303/1 for Cranfield University, Centre for 
Doctoral Training in Renewable Energy Marine Structures (REMS) (http://www.rems-cdt.ac.uk/) 
from the UK Engineering and Physical Sciences Research Council (EPSRC). 

impact. Currently, offshore wind farms with capacities 
similar to those of conventional energy technologies are 
already built, with higher capacity projects in the pipeline. 

Within the existing market, a variety of investors exists 
with different investment strategies and appetite for risk. 
Acknowledging the vast uncertainties within the offshore 
wind energy sector, it becomes pertinent to identify means 
to systematically assess uncertainty with respect to service 
life valuation, hence supporting decisions of investors. 
Each investor develops their bespoke assessment and 
valuation framework projecting revenues and costs, in 
order to decide effectively their potential entry and exit 
instances of the offshore wind farm life-cycle.

As far as revenues are concerned in the United 
Kingdom, there is currently a transition from the 
Renewables Obligation (RO) scheme (set to finish on the 
31st of March 2017) to the Contracts for Difference (CfD) 
scheme. According to the CfD scheme, an electricity 
generation party with CfD is paid the difference between 
the constant “strike price” and the average UK market 
price for electricity - “reference price”. If the reference 
price is higher than the strike price, the generation party 
has to pay back the difference. Bottom line is that company 
always gets the strike price for electricity generated. The 
scheme lasts for 15 years (while the average lifetime of an 
offshore wind energy asset is 25 years), after which the 
electricity output is sold on the average UK electricity 
market price, hence imposing uncertainty to the revenues 
yielded by the investment after the 15th year of operation 
[1]. 

The present paper aims at mapping different investor 
strategies followed by stakeholders in the offshore wind 
industry in terms of a number of factors through a cluster 
analysis [2], by processing data obtained from industry for 
existing installations; we, then, distinguish the major 
strengths, weaknesses, opportunities and threats applied to 
each cluster of stakeholders. The study focuses on offshore 
wind farms installed in the UK sites, but the methodology 
can be applied in different regions. 
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III. THE EXISTING LANDSCAPE OF THE UK OFFSHORE
WIND ENERGY INVESTORS

Offshore wind (OW) is one of the most rapidly growing 
markets of all RE technologies. By the end of 2016, there 
are 3,589 offshore wind turbines with a combined capacity 
of 12,631 MW fully grid connected in European waters in 
82 wind farms across 11 countries, including 
demonstration sites [3]. The UK is the world’s largest 
generator of electricity from offshore wind, meeting 
around 5% of annual demand, which is expected to reach 
10% by 2020 [4]. Total installed capacity is 5,156MW, 
representing 40.8% of the total installed capacity 
worldwide.

Although offshore wind is a proven technology with an 
expanding supply chain, with the technology’s levelised 
cost of electricity still being relatively high, in the region 
of 118£/MWh [5], the issue of financing is of major 
importance. To this end, debt and equity investors along 
with innovative financing structures are required to 
support the further deployment of offshore wind. 

During the initial stages of the offshore wind market 
development, major Utilities have been the main investors,
bearing all risks from the consenting up to the 
decommissioning stage of the investment. With the scaling 
up of the market, new entrants became active in different 
aspects of the business. Currently, market comprises of a 
diverse pool of equity investors: Utilities, OEMs (Original 
Equipment Manufacturers) and EPCI contractors 
(Engineering, Procurement, Construction and 
Installation), Independent Power Producers, Pension 
Funds, Infrastructure Funds, Institutional investors, and 
Sovereign wealth funds. Different classes of investors 
usually accept to uptake risks of higher or lower magnitude 
and of different nature; while, a considerable number of 
Banks have gained experience in lending to projects and 
taking construction risks as well [6], improving the 
financial landscape of  the sector. 

Corporate finance is dominant in the European offshore 
wind energy sector, according to which both debt and 
equity are raised at corporate level (owner’s balance 
sheet), with the corporation’s weighted average cost of 
capital being the weighted average of the required returns 
as determined by the market. On the other hand, in project 
finance, funding is raised at the level of each project, 
individually. Since, project finance investments apply only 
to the given project, the cost of capital considered provides 
a good insight for the effective cost of capital of the project 
and hence the discount rate [7]. Nevertheless, project 
finance has been underused by power producers since it 
was considered too expensive; further, the risk of
damaging their credit rating is higher, while the due 
diligence processes are quite time consuming [6].  

. CLUSTER ANALYSIS OF INVESTORS IN THE OFFSHORE
WIND INDUSTRY 

Cluster analysis partitions data into groups so that 
everything within a group are similar, but different to 
everything outside that group [8]. A cluster analysis of 

investors in the offshore wind industry was employed to 
identify whether specific elements from specific groups of 
investors can be detected. The analysis gathers knowledge 
gained by the existing UK offshore wind installations 
based on data collected from desktop research (e.g. 4C 
Offshore online database [9] and market reports/online 
announcements such as: Centrica Company news).  

A. Selection of variables and data collection 
The ‘objects’ to be clustered in this analysis are the 

offshore wind energy investors who have acquired a stake 
in offshore wind energy projects and the ‘observations’
are: entry timing, exit timing, purchase timing and stake 
purchased. There are numerous additional variables that 
could be considered depending on the aim of the grouping 
task. Such variables include: the value of stake, the 
capacity of the wind farms, the O&M costs, the capital 
cost, the corporate WACC, the divestment stakes and 
timings, among others. We, nevertheless, focused on 
above-mentioned parameters since the focus of the study 
is to explore whether there are distinct trends of investment 
timings throughout the life of the offshore wind farm, 
along with the ownership share that different types of 
investors are willing to buy. 

To normalize the data acquired from all currently 
operating UK offshore wind energy projects investigated 
(so as to eliminate specificities of each project with regards 
to the timing of the investment e.g. due to delays during 
the licensing process or other stages), a scaling of the 
timing was adopted which is illustrated in Table . The 
scaling was considered appropriate, taking into account 
that offshore wind projects have often very different 
characteristics to each other. For instance, the construction 
of a project with high total power capacity (over 500MW) 
will probably last longer (since it would require more 
complex installation operations) than the construction of a 
lower capacity one, while a project whose location is more 
likely to cause public opposition or has higher 
environmental impacts may be subject to longer licensing 
processes. Since this study focuses on the stage each type 
of investor enters, exits and purchases stake, rather than 
the actual year before or after the commission of the 
project, the time scaling of Table  was assigned to the 
observations (exit, entry, purchase timing). 

Offshore wind energy life stages Scaling
Consenting period (from pre-consenting up to consent 
authorization) -3

Production and acquisition -2
Construction and installation -1
Commissioning 0
Operation and maintenance (throughout the 5 year 
OEM warranty) 1

Operation and maintenance (following the 5 year OEM 
warranty) 2

Long Term Operation (towards Decommissioning) 3

B. Results 
Cluster analysis starts with a data matrix, where objects 
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are rows and observations are columns. Results of the 
cluster analysis method applied to operating installations, 
indicated the formation of distinct groups following 
similar strategies in terms of their entry, exit, purchase (of 
equity stake of the investment) timing, as well as the stake 
purchased.  

The resulting scores in the afore-mentioned 
observations vary among the different stakeholders. A
hierarchical cluster analysis was employed, using SPSS 
software, to maximize the variability between clusters and 
minimize distance between objects of the same cluster [2]. 
Following the calculation of the distances between the 
objects (using the “squared Euclidean distance”), next step 
in the clustering process is to determine the number of 
clusters. The dendrogram in Fig. 1 shows the sequence by 
which the observations and clusters were merged. As 
mentioned above, the objects of the analysis are the equity 
capital investors who have purchased stakes in the UK 
offshore wind sector, while the underscore number refers 
to the relevant offshore wind energy project. A list of the 
projects that were considered for the analysis is presented 
in Appendix A.  Figure 2 indicates the composition of the 
different investor classes found in each cluster along with 
the mean values of the observations applying to each 
cluster. 

Finding the suitable number of clusters can be 
determined through a variety of statistical methods. Yet, 
the clustering should ultimately fit the purpose of the 
analysis [2, 10] to conceptually support the relevance of 
the objects of the same cluster. A three-cluster solution 
was thus adopted and the distinct investor strategy 
scenarios are documented below: 

i) Late entry investors
The first group of investors primarily comprises third 

party capital investors. Third party financing originates 

from investors seeking to contribute equity capital without 
having an involvement on the core activities of the asset. 
Corporate investors (Marubeni corporation, BlackRock 
Investment Management, TCW), infrastructure funds 
(Green Investment Bank) and institutional investors 
(Development Bank of Japan, AMF Pensionsförkäkring) 
tend to be late entry investors, buying equity stakes usually 
a few years after the plant is fully commissioned or, less 
often, during the late construction phase. The strategy of 
institutional investors is traditionally based on undertaking 
exclusively operational risks and avoiding construction 
risks, retaining a low risk profile with stable returns [6]. 
The purchased stakes are in general minority stakes (a 
mean value of 40.7% stake was calculated as shown in 
Fig.2) and the exit timing is usually long term, most 
frequently surpassing the 5 year-warranty period of the 
offshore wind farm. A representative case is the 
consortium consisted of Green Investment Bank and 
BlackRock Investment Management in the Lynn and Inner 
Dowsing offshore wind project, who purchased 61% and 
39% equity stake respectively, from Centrica and EIG 
Global Energy Partners during the 7th year of operation of 
the above offshore wind project, while Centrica is 
committed to purchase 100% of the power produced and 
50% of the Renewable Obligation Certificates until 2024 
[11]. A 49.9% equity stake was sold to Marubeni 
Corporation on operation year 1 of the Gunfleet Sands 
wind farm, while 2 years later the Development Bank of 
Japan purchased the 25% of Marubeni’s stake. 

ii) Pre-commissioning investors
Independent energy companies (AMEC Offshore wind 

power, Statkraft, Warwick Energy & Partners, Shell 
WindEnergy, Eurus Energy, Ecoventures, SLP energy, 
Eclipse Energy, WIND Prospect Ltd, Enxco AS, Zilkha 
Renewable Energy), as well as EPCI (Engineering, 

A A’

Cluster 1 Cluster 2 Cluster 3
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Procurement, Construction and Installation) contractors,
and Original Equipment Manufacturers (OEMs) (GE 
Wind and Samsung Heavy Industries, GREP, SLP and 
Shell Wind Energy) are the majority of investors included 
in this cluster. Investors in this cluster enter the investment 
at the beginning of the project’s lifecycle, usually from the 
tendering process of the offshore wind site; the exit timing 
also takes place prior the commissioning of the wind farm 
either during the pre-construction (Consent submission, 
consent authorization, pre-construction period) or during 
the construction period. The exit year often coincides with 
the year of disinvestment suggesting that the percentage of 
stakes disinvested usually amounts to 100%, with the 
exception of SLP energy and Ecoventures, who have 
initially disinvested half their stake from Sheringham 
Shoal project during the initiation of the project 
(preconstruction phase) and the rest of their stake during 
the construction stage. On the other hand, the SeaScape 
Energy joint venture formed to develop the later called 
Burbo Bank was a venture among: Zilkha Renewable 
Energy, Enxo AS and WIND Prospect Ltd. Nevertheless, 
the full ownership and development rights were sold to 
DONG Energy during the preconstruction stage of the 
asset. 

iii) Own-build-transfer investors
The third group represents investors/project developers 

who tend not to divest their assets once fully permitted or 
constructed; rather, they prefer to keep the operating assets 
in their balance sheet and divest part of their stake 
(minority stakes) during the operating stage of the asset. 
The majority of this group consists of Major Utilities like 
DONG Energy, RWE, Vattenfall, SSE Renewables and 
E.ON and Independent power producers. As such, this 
cluster tends to invest equity from the licensing period,
work on the development and operation of the wind farm, 
and divest minority stakes usually during the construction 
period; holding, however, their remaining share of equity 
capital for longer periods. Nevertheless, this cluster also 

includes investors who act as turnkey developers entering 
the venture at an early stage of its lifecycle, in order to get 
involved in the construction and installation stage, and 
following a few years after the project is fully 
commissioned, they tend to sell the majority (if not the 
entire) stake they own exiting during the operating stage of 
the asset. A representative example of such an investor 
type is Centrica acting as a turnkey developer, assuming 
the project development risks, running the wind farm for 
the first years of its operation and exit usually before the 
end of the 5-year warranty period provided from the wind 
turbine manufacturer (OEM) [12].  

V. SWOT ANALYSIS OF DIFFERENT PROFILES OF 
INVESTORS’ STRATEGIES

A SWOT (Strengths, Weaknesses, Opportunities, and 
Threats) analysis was further developed in order to map 
the characteristics of the different investor strategies.  

A. SWOT analysis of “late-entry investors” 
As shown in Fig. 2 Corporate investors, infrastructure 

funds and institutional investors account for approximately 
70% of the “late entry investors” cluster. Institutional
investors consist of pension and life insurance funds.
Infrastructure funds’ motivation to join the sector is driven 
by a requirement to promote green energy; hence, they 
typically invest during the late construction or early 
operation of the wind farm contributing corporate 
financing and using their corporate WACC to evaluate the 
investment. 

Strengths: Institutional investors and infrastructure 
funds typically manage very large amounts of money 
(mostly in the scale of billions). Institutional investors are 
interested in owning projects during their operating life 
and the cost of capital for this class of investors lies in the 
region of 6%-12% [6, 13]. This group benefit from the lack 
of construction risk and known factors that affect 
operational risks (thoroughly investigated through due 
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diligence reports). Institutional investors are interested in 
making long term investments so as to meet their 
commitments in terms of pension and insurance claims [6]. 

Weaknesses: Because of the nature of their business 
model, third party financing investors are low risk, low 
return investors. They require warranties (mostly from 
partners power producers) to cover risks such as power 
price, construction, variability of wind speeds and O&M 
costs; however, this results in relatively low returns (low 
profit margins) also due to unanticipated contingencies.
Institutional investors are generally unexperienced in 
directly investing in infrastructure projects and hence need 
to employ high cost due diligence surveys in order to 
evaluate the investment and account for entailed risks 
when taking on stakes during the operating stage [6]. 
Nevertheless, recently under project finance deals, 
infrastructure and institutional funds have started taking 
construction risks while working together with major 
power producers who can evaluate in detail the entailed 
risks. A representative example is PGGM & Ampere 
Equity Fund refinancing of their 24.8% stake bought from 
Dong Energy in Walney offshore wind farm [14]. 

Opportunities: Offshore wind can be a suitable 
investment for corporate and institutional investors for a 
number of reasons. Considering the costs of due diligence 
and their business model orientation, managing fewer 
large-scale investments is more cost-effective than 
numerous cheaper ones. Additionally, pension and 
insurance funds are suitable for providing financing to 
investments yielding long term returns (until investees 
claim their life insurance or pension), constituting a good 
match with the offshore wind energy investments, whose 
revenues are paid out over the lifetime of the asset (namely 
20-25 years), while the break-even of the investment has 
already taken place and the institutional funds can fulfill 
their liabilities [6]. 
Threats: The investment period usually exceeds the 
subsidy contract period, following which revenues are 
calculated based on undefined market electricity spot 
prices. Therefore, the period beyond which power sales are 
contracted, called merchant tail [15], is difficult to predict,
impeding the accurate estimation of the internal rate of 
return of the project. There are still no reference projects 
to allow for a confident estimation of decommissioning 
costs and further for an accurate assessment of O&M costs 
of assets within the second half of their service life. 

B. SWOT analysis of “Pre-commissioning investors” 
The second cluster comprises mostly of independent 

power producers and OEMs/ECPI providers. Independent 
power producers (IPPs) develop, construct and operate 
offshore wind energy projects; accordingly, they usually 
sell the generated energy to the grid or to large scale power 
providers through Power Purchase Agreements (PPAs). 
Nevertheless, there is a considerable number of IPPs 
(found in the 3rd cluster), tending to keep the operating 
assets on their balance sheet or divest smaller stakes. 

OEMs/ECPI providers bring technical expertise not only 
during the construction and installation stage of the project 
but also during the maintenance operations of the wind 
farm. Nevertheless, above stakeholders contribute equity 
capital mainly up to the construction and early operation.  

Strengths: IPPs with a background in the offshore oil & 
gas industry (such as Shell) can bring their long experience 
in the sector. OEMs/ECPI providers’ investment strategy 
is aligned to their business model, gaining profit margins 
from the installation, manufacture and maintenance of the 
wind farm. The latter type of investor has the flexibility to 
consider building a higher-CAPEX asset (more 
conservative designs through higher material factors in 
accordance to Industrial Standards [16]) aiming at 
reducing the OPEX associated with inspections and 
maintenance (by increasing the intervals between 
consecutive inspections) and accordingly increase the 
value of the asset aiming at selling it to another investor at 
a higher price. OEMs dominate the offshore wind O&M 
activity and the main reason is the warranties that are sold 
alongside the procurement of the turbines. These 
warranties refer to minimum levels of availability and have 
a typical duration of five years [12].

Weaknesses: IPPs do not have as strong balance sheets 
as Utility companies and their cost of capital lies in the 
region of 10-20% (with the exception of IPPs with a 
background in the offshore oil & gas industry) [6]. They,
therefore, seek for third party financing or sell their 
consent-authorized projects to other parties able to inject 
cash for the construction of the wind farm, keeping part of 
the ownership. OEMs and EPCI providers invest equity 
primarily to ensure the sales of their equipment and 
technical services for the project; nevertheless, projects 
they invest equity in, need to be reliable in order to fulfill 
certain return requirements [17]; indicative risk adjusted 
return of this class of investor lies between 12-14% [13]. 
OEMs and EPCI contractors with weak balance sheets 
typically do not intend to be long-term owners; they, 
rather, exit either during the construction, commission or a 
few years following the commission of the asset. However, 
they may be required by the debt covenants not to divest 
their stake at an early stage and therefore usually 
investment in offshore wind projects are taken by 
OEMs/EPCI providers with strong balance sheets.  

Opportunities: EPCI providers and OEMs can mitigate 
risks by providing turnkey solutions and demonstrating 
successful track records in their balance sheets, which will 
contribute to attract new sources of equity and debt 
funding. Although multi-contracting might be an attractive 
solution to sponsors, lenders prefer to reduce contract 
interface risks (increasing counterparty risks) [6]. 
Following the 5-year warranty period, increasing 
opportunities for ECPI providers and OEMs are disclosed 
to increase their market share, diversifying their business 
and secure additional revenues [18]. Independent power 
producers’ need for capital can also attract financing 
innovation. By bringing their experience in renewable 
energy projects, they can create partnerships with equity 
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providers who lack the technical knowledge, such as 
institutional investors and infrastructure funds. 

Threats: OEMs face barriers related to entry in the 
supply chain due to the significance of the reputation of the 
firm, keeping the supply of main equipment closed to large 
manufacturers such as Vestas and Siemens (~65% of total 
installed capacity) [6]. A study conducted by Deloitte [18] 
highlighted that one of the biggest challenges in the wind 
services sector is the lack of qualified technicians to 
undertake O&M activities. 
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C.  SWOT analysis of “Own-build-transfer investors” 
The Own-build-transfer group is dominated by major 

Utilities, Independent energy companies and Sovereign 
wealth funds.

Strengths: Utilities hold a very strong position in 
offshore wind energy market. Their strategy focuses on 
developing the offshore wind farm from the initial stage, 
and operate it following its commission, divesting mostly 

minority stakes to institutional and infrastructure investors 
after a few years of operation. Major Utilities follow a 
vertical integration business model, operating across the 
value chain from energy production to retail and trading 
(to end customers), which drives synergies and places a 
competitive advantage of the company, while also meeting 
the requirements under the Renewable Obligations 
scheme. They are able to finance the project from their 
own reserves or through corporate finance at a low cost of 
capital (~8-10%) [6]. Sovereign wealth funds are state 
funds and hence their cost is typically low, while they 
typically have large amount of capital to invest in their 
disposal. 

Weaknesses: Although Utilities still dominate the 
offshore wind energy market, their financial performance 
has been impacted by the financial crisis, and they hence 
need to look for other sources of equity and debt financing. 
To this end, other financing schemes are gaining 
popularity such as project financing and joint ventures.  

Opportunities: The political consensus on promoting 
clean energy technologies creates great opportunities for 
big energy companies to participate in the transformation 
of the energy system. Opportunities lie within the creation 
of strategic agreements and partnerships, as well as the 
reduction of the cost of energy. 

Threats: Stakeholders within this group operate under 
a competitive environment, while since they get involved 
from the development to the operation stage, they need to 
manage all risks entailed: complex approval processes 
causing delays or higher payments, regulatory/policy risks 
related to the uncertainties in policy support schemes, 
counterparty risks either from equipment/O&M services 
suppliers or from PPAs not kept, revenue variability due to 
the intermittency issues or/and due to the grid availability, 
and electricity price risk, among others [19].  

V . DISCUSSION

Results of the cluster analysis have highlighted the 
existence of three distinct clusters. Considering that the 
earlier developed wind farms are now reaching the middle 
of their service lives, i.e. approximately 10 years, we might 
expect to see another cluster forming concerning investors 
choosing to enter or exit the market as the assets approach 
the end of their service life with the view to repowering or 
proceeding to the service life extension of the assets. This 
paradigm has been observed in onshore wind energy assets 
where a secondary market has developed. Moving on to 
the next generation to offshore wind energy assets, their 
potential to allow multiple entry/exit points could be built 
in even from the planning and design stage. 

Typical example comprises the potential decision to 
employ appropriate provisions of standards to initially 
over-design the assets or decide to install appropriate 
integrity monitoring systems with a view to reduce 
required inspection and unplanned maintenance, hence 
reducing expected CAPEX. Such an approach will also 
allow certification, which is a pertinent provision towards 
transferring risks during operation. 
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It becomes apparent that evaluating an offshore wind 
energy project needs to take into account the presence of 
risk, through appropriate analytical methods [20]. For 
instance, common industry practice in order to account for 
the uncertainty in electricity prices after the 15 years 
(during which revenues are determined by the strike price 
secured) is to apply forward curves to predict future 
electricity prices and sensitivity analysis in key input 
parameters, such as cost of capital, CAPEX and OPEX 
components, etc.  

VI. CONCLUSION

As the offshore wind energy market expands and the 
number of operating wind farms increases, commercial 
aspects begin to receive a lot of attention. Currently, 
investors from different backgrounds and with different 
strategies seek for opportunity instances throughout the 
lifecycle of the asset to invest by purchasing stake of the 
ownership and contribute equity capital. To better 
understand whether specific trends can be observed by the 
different stakeholders, we performed a cluster analysis, 
where objects were assumed to be investors who have 
purchased stake in offshore wind energy projects and the 
observations were the entry timing, exit timing, purchase 
timing and stake purchased. This process indicated three 
distinct clusters: the late-entry investors, the pre-
commissioning investors and the Own-build-transfer 
investors.  

Late-entry investors represent corporate investors, 
infrastructure funds and institutional investors who tend to 
invest equity capital a few years following the 
commissioning of the plant or, less often, during the late 
construction. Being, on the most part, a risk adverse group 
of stakeholders, they tend to avoid construction risks. Long 
term returns of offshore wind energy assets match with the 
long term liabilities of institutional investors (such as 
pension funds), while the high costs of due diligence 
reports urge third party financing stakeholders to prefer 
investing in fewer capital intensive assets rather than 
numerous less expensive ones.  

Pre-commissioning investors include independent 
energy companies and OEMs/EPCI contractors, who enter 
the venture at the beginning of the project’s lifecycle, in 
order to contribute their technical expertise and knowledge 
deriving from long term experience in the development of 
energy projects. An additional incentive for OEMs to 
invest in the early stage of the development of the wind 
farm is to ensure the sales of their equipment as well as the 
O&M contracts of the wind farm. This group usually lacks 
the balance sheet strength (with the exception of large oil 
and gas IPPs) to provide large amounts of equity and rely 
on third party financing for the funding of the project. 

Finally, “Own-build-transfer investors” represent 
principally Utilities; however, IPPs and Sovereign wealth 
funds were also found to follow a similar trend in terms of 
the examined criteria. In general, Utilities hold a very 
strong position in offshore wind energy market operating 

across the value chain of the wind energy asset. Their 
strategy focuses on developing the offshore wind farm 
from the initial stage, and operate it following its 
commission, divesting mostly minority stakes to 
institutional and infrastructure investors after a few years 
of operation.   

Similar clusters can also be observed in the offshore oil 
and gas industry where assets have been operated 
significantly beyond the end of their service life and an 
additional cluster is present offering opportunity to invest 
or disinvest as the assets approach their nominal service 
life. 

APPENDIX

A.  OFFSHORE WIND ENERGY PROJECTS

1.Greater Gabbard 15. Lincs
2. Lynn and Inner
Dowsing

16. London Array Phase One

3. Barrow 17. Teesside
4. Gunfleet Sands 1
& 2

18. West of Duddon Sands

5.Robin Rigg 19. Gwynt Y Mor
6. Thanet 20. Humber Gateway
7. Walney 1 21. Kentish Flats Extension
8. North Hoyle 22. Levenmouth Demonstration

Turbine (Energy Park Fife)
9. Kentish Flats 23. Westermost Rough
10. Rhyl Flats 24. Scroby Sands
11. Burbo Bank 25. Beatrice Demonstrator
12. Ormonde 26. Blyth Offshore
13. Sheringham
Shoal

27. Gunfleet Sands
Demonstration Project

14. Walney 2
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H I G H L I G H T S

• A lifecycle techno-economic model of an offshore wind farm is developed.

• Analytical consideration of OPEX linking latest reliability data to ECN O&M tool.

• Sensitivity analysis specified the most sensitive parameters on the investment NPV.

• The model was applied to different investor clusters in the wind energy market.

• Insights regarding potential minimum asking and maximum offered price are derived.

A R T I C L E I N F O

Keywords:
Offshore wind
Techno-economic model
Lifecycle
Strategic investment decision support
Investor clusters
Entry and exit timing

A B S T R A C T

The offshore wind (OW) industry has reached reasonable maturity over the past decade and the European
market currently consists of a diverse pool of investors. Often equity investors buy and sell stakes at different
phases of the asset service life with a view to maximize their return on investment. A detailed assessment of the
investment returns taking into account the technical parameters of the problem, is pertinent towards under-
standing the value of new and operational wind farms. This paper develops a high fidelity lifecycle techno-
economic model, bringing together the most up-to-date data and parametric equations from databases and lit-
erature. Subsequently, based on a realistic case study of an OW farm in the UK, a sensitivity analysis is performed
to test how input parameters influence the model output. Sensitivity analysis results highlight that the NPV is
considerably sensitive to FinEX and revenue parameters, as well as to some OPEX parameters, i.e. the mean time
to failure of the wind turbine components and the workboat significant wave height limit. Application of the
model from the perspective of investors with different entry and exit timings derives the temporal return profiles,
revealing important insights regarding the potential minimum asking and maximum offered price.

1. Introduction

With 92 wind farms in operation across European countries (in-
cluding sites with partial grid-connected offshore wind (OW) turbines
[1]), the OW market and supply chain have been rapidly expanding,
attracting a diverse pool of investors that include Utilities, Original
Equipment Manufacturers (OEMs), Independent Power Producers, Ja-
panese Trading Houses, Pension Funds and Banks [2]. Broadly
speaking, these investors can be segmented based on their attitude to
risk (technology readiness level, track record, portfolio diversity,
country, and asset phase), return expectations (Internal Rate of Return
(IRR) and yield), holding length, and level of engagement [2,3].

Numerous authors have conducted research in the technical and

economic feasibility of OW farms [4–9] and related innovative concepts
[10,11], and the development of cost models for OW farms [12–15]. In
[4], a feasibility study was performed for the development of an OW
farm installed in the Northern Adriatic Sea, in order to test the suit-
ability of the region for the development of the technology, while [9]
refers to a feasibility study off the Turkish coast. Another study de-
termining the profitability of an OW energy investment across different
areas of Chile was performed in [8]. Kaiser and Snyder have developed
models for the installation and decommissioning costs of offshore wind
farms, based on existing data in European wind farms [13,16]. Myhr
et al. developed a lifecycle cost model with the aim to predict the LCOE
of a number of offshore floating wind turbine concepts and compare
them with their fixed monopile counterparts [5]. One of their
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conclusion was that LCOE is particularly sensitive to the distance from
shore, load factor and availability. Authors in [7] develop a metho-
dology for the life-cycle costing of a floating OW farm and apply it to
analyse a location in the North-West of Spain and indicate the best
platform option. Dicorato et al. formulated a general model to evaluate
the costs in pre-investment and investment stages of OW farms and then
employed this method to indicate the most suitable wind farm layout
[12]. A review of offshore wind cost components was performed by
[17], summarising parametric expressions and data available in lit-
erature including the acquisition and installation of wind turbines and
foundations, the electrical system, the predevelopment costs, etc.
Shaffie et al. have also developed a parametric whole life cost model of
offshore wind farms, which requires less input data in relation to other
tools available [14], aiming to provide a simple framework for esti-
mating the LCOE of the investment. Data were also trained in order to
provide expressions for the estimation of the cost of materials used in a
wind turbine, as well as the cost of the offshore substation. Finally,
sensitivity analysis was performed in order to indicate the most im-
pactful parameters of the model on LCOE.

Existing literature on the financial returns from renewable energy
projects assumes that there is a single investor who owns the asset (e.g.
the wind farm) throughout its entire service life [7,9,18,19]. However,
recent research [3], as well as market reports [2,20,21] show that
equity investors buy and sell their stakes at different phases of the OW
farm life, depending on their investment strategy. To this end, a model
that predicts returns over time could be useful for investors and policy
makers to check the viability of the investment and to predict the
temporal return profile of the investment. Additionally, the analytical
consideration of the capital expenditure (CAPEX), operational ex-
penditure (OPEX) and financial expenditure (FinEX) variables could
contribute to the identification of input parameters that have the
highest impact on the feasibility of the project.

This paper aims at addressing this challenge through developing a
lifecycle techno-economic assessment framework for the prediction of
lifecycle costs of OW farms, which incorporates up-to-date models for the
estimation of key cost components, taking into consideration technical
aspects associated with the installation and maintenance of the asset. The
model developed takes into account the time that expenses occur as well
as the time value of money. The high-fidelity model predicts the different
costs of a typical OW farm in a lifecycle-phase-sequence pattern, by:

• adopting the most up-to-date parametric equations found in the
literature;

• developing new parametric equations where latest data are avail-
able;

• including the use of industry standard ECN O&M Tool [22] for the
prediction of operation and maintenance costs in conjunction with
latest reliability data from [23].

Compared to existing literature related to the life-cycle cost assessment
of OW farms, the novelty of this paper lies on, firstly, the consideration of
different equity investors with different investment strategies that buy and
sell stakes at different time instances during the life of an OW farm project
and the development of a relevant tool that enables such investors to as-
sess the viability of their investment [3]; secondly, the prediction of the
maintenance cost of the OW farm by linking the latest reliability data
published in literature to the industry standard ECN O&M tool, which can
account for site specific details (such as the wind profile of the location
which affects the available weather window for maintenance interven-
tions); and, finally the derivation of cumulative cost and revenue curves
which can reflect the temporal value of the asset, providing a decision
support framework to investors and, deriving insights on expected upper
and lower bounds for the OW farm price setting.

Although the focus of this study is placed on Europe and especially the
UK, a country with significant technical resource [24], as well as a mature
market with significant secondary sales activity, the proposed

methodology can be applied to other country contexts (such as Japan,
Korea and China which are regarded as significant emerging players in the
OW market), provided the corresponding policy regime and cost adjust-
ments (personnel cost, material costs, etc.) are taken into consideration. It,
thus, needs to be highlighted that results should be treated with caution as
input data have been adopted from wind farms mainly installed in North
Europe, while no data currently exist for the USA or Asian offshore wind
farms. Furthermore, for regions of Asia and the USA (where the frequency
of hurricanes and typhoons is much higher than in Europe), existing de-
sign standards should also be potentially adjusted to ensure that extreme
weather phenomena are properly accounted for.

2. Methodological approach

2.1. Investor profiles in the European offshore wind market

Within the existing market, there is a variety of investors with different
investment strategies and appetite for risk. OW power plants are subject to
a number of uncertainties of both technical and financial nature [25],
which can be encountered across the whole life of the asset by means of
variability in the energy performance, capital costs, operational costs, and
economics of the LCOE model [26]. As such, during the predevelopment
phase, investor faces uncertainties associated with the legal, environmental
survey and project management costs, among others. During the procure-
ment phase, there is uncertainty in the prediction of the cost of materials of
the different components of the wind farm, while during construction,
variability in the cost of labour, availability and cost of installation vessels,
weather conditions, along with the duration of the installation operations
induce additional risk in the evaluation of the investment. Damages to the
wind turbines during the operation and maintenance phase result in un-
certain repair costs and loss of revenues due to downtime. Finally, varia-
bility in the cost of capital can have a significant effect on the LCOE. Ac-
knowledging above uncertainties within the OW energy sector [27], it
becomes pertinent to identify means to systematically assess uncertainty
with respect to service life valuation, hence supporting decisions of in-
vestors [28]. Each investor develops their bespoke assessment and valua-
tion framework projecting revenues and costs, in order to decide effectively
their potential entry and exit strategies.

An analysis [3] of investor strategies, based on data from existing
OW farms in the UK indicated the existence of three distinct profiles: (i)
Pre-commissioning investors, (ii) Build-Operate-Transfer investors, and
(iii) Late entry investors.

Late entry investors comprise third party capital investors, who are
investors seeking to contribute equity capital without having an involve-
ment on the core activities of the asset, such as corporate investors, in-
frastructure funds and institutional investors. They undertake exclusively
operational risks, entering after the commissioning of the wind farm, thus
avoiding construction risks. This strategy is generally consistent with a low
risk profile with stable returns. They principally purchase minority stakes
in wind farm assets (mean value of 40.7%).

Pre-commissioning investors principally comprise independent energy
companies, EPCI (Engineering, Procurement, Construction and Installation)
contractors, and Original Equipment Manufacturers (OEMs). They can be
considered as turnkey developers entering the venture at an early phase of
its lifecycle to get involved in the construction and installation phase.
Further, they tend to sell the majority (if not the entirety) of their stake and
exit few years after the project is fully commissioned.

Finally, Build-Operate-Transfer investors comprise major utilities
and independent power producers, who build and then keep the oper-
ating assets in their balance sheet. Further, they tend to divest part of
their stake (minority stakes) during the operating phase of the asset.

Accurate prediction of the temporal returns profile of the invest-
ment is useful for the different types of investor clusters to conduct the
techno-economic assessment of the asset during the specific year of
purchase or divestment. To this end, a parametric life cycle techno-
economic model was developed to accommodate the different investor
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strategies with the view to identify temporal return profiles of the asset.

2.2. Overview of the developed techno-economic model for the valuation of
an offshore wind energy project

In this section, the different components or programming modules
of the techno-economic model of the OW energy farm are presented.
The 5 main phases of an OW farm project considered are: Development
and Consenting (D&C), Production and Acquisition (P&A), Installation
and Commissioning (I&C), Operation and Maintenance (O&M) and
Decommissioning and Disposal (D&D).

The methodological approach followed in this paper consists of the
modules illustrated in Fig. 1, namely: (i) the CAPEX module, which in-
cludes costs during the D&C, P&A, I&C and D&D phases of the OW farm,
(ii) the general site characteristics module with details on the weather
conditions, site water depth, distance from port, vessels, cost of personnel
etc., (iii) the FinEx module with parameters related to the financing ex-
penditures, namely the Weighted Average Cost of Capital (WACC), infla-
tion rate, equity and debt ratio, etc., (iv) the OPEX module considering
reliability data from literature, cost of personnel, materials, vessels and
related maintenance processes, which will provide availability, and O&M
cost estimates pertinent for the cost analysis and (v) the revenue module,
which considers the net power generation, the energy policy scheme in
place for supporting the technology, namely the Contracts for difference
(CfD) scheme, and the market electricity price (the scheme mandates that
revenues are calculated on the basis of the strike price during the first
15 years of operation of the asset and the market electricity price over the
rest of its life) to derive the revenues yielded by the investment. Outputs of
the model are temporal cumulative return profiles of the investment,
which can support the appraisal of investment opportunities for different
types of investors in various periods of a wind farm service life, taking into
account the technical parameters of the problem.

3. Case study site characteristics, weather, vessel and personnel
data

This section outlines the assumptions and characteristics of the re-
ference wind farm, corresponding to a realistic OW farm in the UK. It also
compiles data that apply to multiple phases of the lifespan of the asset,

such as the specifications of vessels and the cost of personnel. Key as-
sumptions of the wind farm site are included in Table 1. The 504MW
capacity wind farm is located in the North Sea region, 36 km away from
shore. Weather data (3-hourly data over a 3-year period) were retrieved
from BTM ARGOSS [29] for modelling the operational phase of the asset.
Weather delays during the I&C and the D&D phases were modelled by the
use of an adjustment factor (ADJWEATHER), which will be described in
more detail in Section 4.1.3. A wind farm of approximately 500MW ca-
pacity was considered a reasonable selection, since there is a number of
studies that has considered the same wind farm capacity in their baseline
scenario, such as [5,14], which could facilitate comparison of results.

3.1. Vessel data

Vessel data encompass the cost (and key characteristics) of vessels
chartered for carrying out the I&C, O&M and D&D phases of the project.
The specifications of the vessels (for instance, speed, day rates and mo-
bilisation costs) employed for the completion of above phases are in-
tegrated in Table 2, while further data regarding the number and the type
of vessels used per phase and task is clarified in the respective Sections of
the paper. The wind speeds are referenced at 10m above the mean water
level, while the mobilisation and demobilisation activities comprise the

Fig. 1. Methodological framework.

Table 1
Case study wind farm specifications.

Wind farm characteristics Values

Wind farm Total wind farm capacity, PWT 504MW
Projected operational life of the wind
farm, n

25 years

Construction years, Tconstr 5 years
Number of turbines, nWT 140

General Site characteristics Distance to port, D 36 km
Water depth, W D 26m

Wind turbine Rotor diameter, d 107m
Hub height, h 77.5 m
Pile diameter, Dpile 6m
Rated power 3.60MW
Cut-in speed 4m/s
Cut-out speed 25m/s
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cost and time allocated to the planning, preparing and modifying a vessel
for a marine operation (mobilisation), and then to restoring it for release
and reassignment to other operations (demobilisation).

3.2. Personnel cost

Apart from the vessel crew, additional personnel is hired to perform
mechanical/electrical operations for the installation, erection and other
services at a rate of £270/day [5,37]. Offshore personnel works on a
shift pattern of 2 weeks “on” followed by 2weeks “off” according to
working time regulations for offshore workers [38]. Finally, a total of
12 working hours per day is assumed [5].

4. Integrated techno-economic model

4.1. CAPEX module

As previously mentioned, the CAPEX module includes costs during
the D&C, P&A, I&C and D&D phases of the OW farm, which are further
analysed in the following Sections.

4.1.1. Development and consenting phase (D&C)
Development and consenting costs include all costs prior to the point of

financial close (i.e. the point when all financing agreements of the project
have been signed and the conditions have been met) including project
management, surveys (environmental, coastal process, Met station, sea
bed, human impact), legal authorisation, front-end engineering and design
and contingency costs [14,39]. Costs during D&C of the wind farm vary
significantly across different sites; thus, different values of costs can be

found in literature. Indicatively, in [39] a total of £60million for a
500MW wind farm is reported, while in [14] costs were estimated
£202.8million for a wind farm of the same capacity. Myhr et al. [5] as-
sumed a cost of £89.9million/500MW, while in [40] a total cost of
£156.5million/500MW was estimated, when adjusted to the respective
currency and inflation rate. In the examined case study with the total
windfarm capacity of 504MW, the cost breakdown of [14] is adopted as
shown in Table 3, as a more conservative scenario.

4.1.2. Production and acquisition phase (P&A)
4.1.2.1. Wind turbines. The acquisition of a fully equipped turbine is
one of the most expensive cost components of the P&A phase of the
wind farm. Cost is usually expressed as a function of the turbine
capacity and different parametric models have been developed to
predict the cost of different sizes of turbines [11,12,15,17]. Within
the context of the reference case study, the following expression has
been formulated for the estimation of the wind turbine cost [14]:

= −c P3·10 ln( ) 662,400,in£/turbineT pa WT,
6 (1)

where, PWT is the capacity of the wind turbine (MW). For a wind turbine
of 3.6MW, Eq. (1) results to £3.1804million/turbine, while by adding the
tower cost into the total turbine costs (which according to [39] is of the
order of £1million for a 5MW turbine), total cost for the acquisition of the
turbine and the tower accounts for approximately £3.90million/turbine.

4.1.2.2. Foundations. A monopile configuration was assumed for the
reference case study as it remains the most popular substructure up to
date with a cumulative amount of 87% of all installed foundations in
2017 [1]. The cost of foundation depends largely on the type of
foundation, the depth of the site, the seabed characteristics as well
as, to a lesser extent, the turbine capacity, the wave and wind
conditions [17]. The cost of foundation, cF pa, , was estimated by
means of a parametric expression linking the foundation cost to the
turbine geometry (hub height, h and rotor diameter, d) and the water
depth (WD) according to [41]:
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Application of the above expression to the reference case study resulted
in £1.52million/foundation. Other parametric expressions, found in
the literature, link foundation cost with water depth, turbine capacity,

Table 2
General data for O&M vessels and transportation equipment.

Vessel type Technician space Vessel speed
(knots)

Weather limits Mob./demob. Cost
(k£)

Mob./demob. Time
(h)

Day rate (k£/day)

Sign. wave height
(m)

Wind speed
(m/s)

Crew transfer vesseli 12 26 1.8iii 16iii – – 3.25ii

Jack-up vesselsiii – 10iv 2 10 405 720/48 112.6
Heavy lift vesselvi – 9 – – 500ix – 135
Helicopterv 6 – 99 20 4.7 8/4 4.7
Diving support vessel (DSV)iii – 16 2 25 185 360v 60
Cable laying vessel iii – 14 1 10 445iii 720v 80 (Array), 100 (Export)
Rock dumping vessel – 13.5vii – – 10.6viii – 13.8viii

i Source: [30].
ii Source: [31].
iii Source: [32].
iv Source: [33].
v Source: [22].
vi Source: [13].
vii Source: [34].
viii Source: [35].
ix Source: [36].

Table 3
Cost breakdown of P&C costs.

Cost components Total cost (£
million)

Percentage over total P&C
cost (%)

Legal costs, Clegal pc, 16.7 8.1%
Environmental survey costs,

Csurveys pc,

19.2 9.3%

Engineering costs, Ceng pc, 1.14 0.6%

Contingency costs, Ccont pc, 126.4 61.4%
Project management cost,

Cproj pc,

42.3 20.6%
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as well as cost of material usage and fabrication [5,12,17]. For example,
application of [17] to the baseline case study gives £1.14million/
foundation.

4.1.2.3. Transmission system. The transmission system of the wind farm
consists of: the collection system of the generated power by means of
array cables, the integration of the power through an offshore
substation, the transmission of the electricity from the offshore
substation to shore through the export cables. Two kinds of export
cables are distinguished: the offshore export cables transmit the
electricity from the offshore substation to the onshore substation, and
the onshore export cable which transport the power to the grid
connection point.

4.1.2.3.1. Cables. Array cables organise turbines in clusters
adopting various different grid schemes, such as the radial design
according to which, turbines of each cluster are interconnected in a
‘string’ ending at an offshore substation.

Mean Voltage (MV) submarine cables are most frequently used as
array cables, while High Voltage (HV) export cables carry the stepped
up voltage from the offshore substation to the grid connection point.
MV cable unit costs, similarly to HV cable unit costs vary according to
the cable section (i.e. data summarised in Table 4) and nominal voltage
(as shown in [12]).

Export cables can be either high-voltage alternating current (HVAC)
or high-voltage direct current (HVDC) depending on a number of fac-
tors and especially the distance from shore. Generally, if the distance
from shore is less than 50 km, AC cables would be preferred while for
longer distances and in more remote wind farms, DC cables are used
since HVDC cabling has no reactive power requirements resulting in
lower power losses [40,43].

In general, the total cost of the cables, Ccables pa, , is calculated by the
product of the unit-length price of the cable, ci (£/m), with the number
of cables, Ni, and the average length of each cable, Li (km). Protective
equipment (such as J-tube seals, passive seals, bend restrictors etc.) is
required to protect the cables [14].

∑= +
=

C c L N C( · · ) ,in £cables pa
i

i i i protection,
1

3

(3)

where, i denotes the cable type of the wind farm, namely: the MV array
cables (i =1), the HV subsea export cables (i =2) and the HV onshore
export cables (i =3).

Retrieving data from 4C Offshore [44], a linear equation with two
predictors namely, the number of wind turbines, nWT and the rotor
diameter d (in m) was produced as follows:

= + − =L n d1.125· 1.055· 122.64 (R 0.959),in kmWT1
2 (4)

The length of the subsea export cable, L2, is assumed equal to the dis-
tance between the centre of the OW farm (where the offshore substation
is located) and the shore (where an onshore substation is located), an
assumption also taken in [45], which for the baseline case study is
36 km. Finally, the length of the onshore export cable, L3, is equal to the
distance from the onshore substation to the grid connection point (as-
sumed to be 10 km long each). The electrical system is comprised of

33 kV array cables and two offshore substations of 336MW HVAC
transmission system. Further, the transmission assets are connected to
the onshore substation by three 800mm2 132 kV subsea export cables.
The resulting costs of the electric system are summarised in Table 5.

4.1.2.3.2. Substations. The most cost efficient electric power
transmission method to reduce cable losses is by means of an offshore
substation, which is considered appropriate for projects located at a
distance of> 20 km offshore [40]. The total offshore substation cost
has been estimated by a number of authors [14,17] who derived
parametric expressions linking the offshore substation cost to the total
installed capacity of the wind farm. In the present study, the offshore
substation cost, CoffSubst pa, , was estimated based on [12], which breaks
down the cost of offshore substation to: (1) the MV/HV transformer
cost, CTR, (2) MV switchgear cost, CSG MV, , (3) HV switchgear cost,
CSG HV, , (4) HV busbar cost, cBB, (5) Diesel generator cost, CDG to supply
essential equipment when the OW farm is off, and (6) substation
platform cost, CoffSubst pa, f . The expressions of the individual cost
components are the following:

=C n A·(42.688· )TR TR TR
0.7513 (5)

= +C V40.543 0.76·SG MV n, (6)

= +C P21.242 2.069·DG WF (7)

= +C P2534 88.7·offSubst pa WF, f (8)

= + + + + +C C C n c c C C·(2· ) ( )offSubst pa TR SG MV TR SG HV BB DG offSubst pa, , , , f

(9)

where, nTR is the number of transformers, Vn is the nominal voltage and
ATR is the rated power of the transformers. Using Eq. (5)–(9) the total
cost of offshore substation was calculated £60.67million. In the context
of the case study, 2 offshore substations are assumed to be placed in
order to transmit the power at 132 kV. Platform 1 contains three
transformers each rated 180MVA, while Platform 3 has two 90MVA
transformers installed. Finally, the export cables connect the offshore
substations with an onshore substation which further transforms power
to grid voltage (e.g. 400MW). Onshore substation cost was assumed to
be half the cost of the offshore substation according to [14,39].

4.1.2.4. Control system. More recent wind farms have integrated
supervisory control (including health monitoring) and data
acquisition (SCADA) systems, with the view to optimise wind turbine
life and revenue generation [39]. Health monitoring of wind turbines is
performed by means of sensors and control devices, gathering data that
can be used for optimising operation and maintenance operations. Cost
of monitoring was estimated CSCADA pa, =75 k£/turbine [12].

4.1.3. Installation and commission phase (I&C)
This phase refers to all activities involving the transportation and in-

stallation of the wind farm components, as well as those related to the
port, commissioning of the wind farm and insurance during construction.

Once a suitable number of components are in the staging area, the
offshore construction starts with installation of the foundations, tran-
sition piece and scour protection, followed by the erection of the tower
and the wind turbines. Accordingly, the installation of the offshore

Table 4
Unit costs of AC submarine cables from companies A and B.
Source:[42].

Conductor size (mm2) 95 150 400 630 800

Collection system unit cost (£/m)
Company A 142 213 356 534 561
Company B 426 462 570 594 684

Transmission system (£/m)
Company A 706
Company B 805

Table 5
Electric system cost components.

Cost component Total cost (k£) Total length of cables
(km)

Array cables 28,039 147.7
Offshore export cables 84,002 108
Onshore export cables 7,778 30
Offshore substation (x2), Coff subst pa, , 121,340 –

Onshore substation, Con subst pa, , 30,334 –
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substation, the array cables and finally the export cables and onshore
substation takes place.

4.1.3.1. Foundation and wind turbine installation. Installation costs are a
function of the vessel day rates, the usage duration and the personnel
costs required for carrying out the operations. Vital components of both
the wind turbine and the foundation installation cost are the vessel day
rates and the duration of the installation processes. The total time per
trip of an installation vessel is broken down to: the travel time, the
loading time, the installation time and the intra-field movement time.

For the installation of monopiles a jack-up vessel can be employed
with an assumed deck capacity of =VC 4F JU, foundations. After foun-
dations are secured, the transition pieces are lifted and placed on the
top of the foundation pile and are then grouted. In the context of the
present case study, it is assumed that the installation of monopiles and
the placement of transition piece can be realised by the same vessel.

The total installation time of foundations was estimated by the
following expression:

= + + + +

+

T N T n T n T T T

n T

2· · 2· · ·

·

F Instal F voy j port WT j site WT F Load porttofarm betwtrb F

WT F Lift

, , , , , ,

, (10)

where, NF voy, is the number of voyages, Tj port, is the time of jacking at
port (up/down), nWT is the number of turbines,Tj site, denotes the time of
jacking at installation site, TF Load, denotes the monopile foundation
loading time, Tporttofarm is the travel time from port to farm, Tbetwtrb F, re-
presents the time to travel between turbines, and TF Lift, is the offshore
lift/installation time of the monopile. More details on the calculation
steps for the estimation of the foundation installation cost are included
in Appendix A.

Turbines are installed after foundations have been placed. The
vessel used both transports turbines in the installation site and performs
installation. Turbines typically consist of seven components, namely
nacelle, hub, 3 blades, and 2 tower sections. Onshore assembly of some
of the parts of the OWT is usually performed in order to reduce lifts
offshore, which can be considered risky and prone to cause delays due
to wind speeds. The installation process of OW turbines is composed by
the following time steps: 1. Travel/transportation time, 2. Lifting op-
eration time, 3. Assembly operation time (onshore and offshore), and 4.
Jacking up operation time. The pre-assembly (i.e. onshore assembly)
strategy followed determines the total time of turbine installation,
along with the distance from the port, the number of turbines, the
nameplate capacity, etc. Characteristics of different pre-assembly
methods are summarised in Table 6.

For this reference case study, preassembly method 5 was used en-
tailing 3 offshore lifts. Total installation time was estimated by the
following expression [46]:

=
+ + +

T
T T T T

VT Instal
T Travel j T Assemb T Lift

N JU
,

, , ,

, (11)

where, TT Travel, represents the travel/transportation time of turbines, Tj
is the jacking up operation time,TT Assemb, is the assembly operation time,
TT Lift, is the lifting operation time, and VN JU, symbolizes the number of
identical jack up vessels. Considering 12 h of total working hours, ef-
fective installation time was estimated 264 days, equivalent to

1.89 days/turbine, which is in agreement with mean installation times
found in literature [13]. The individual time components of the tur-
bines installation time are presented in Appendix B.Finally, for the in-
stallation of the tower and the Rotor Nacelle Assembly (RNA), 30 ad-
ditional offshore workers are employed, and another 30 for the
installation of the foundations and transition pieces. An overview of the
results produced by the model on the installation costs of OW turbines
and foundations is given in Table 7. A weather adjustment factor of
ADJWEATHER =0.85 was assumed in the baseline scenario to account
for delays due to unpredictable unfavourable weather conditions.

4.1.3.2. Scour protection installation. The scour phenomenon takes place
around structures undergoing steady current conditions, and is associated
with the increase in the sediment transport capacity and erosion [47]. To
ensure structural stability of the wind turbine foundation (as well as
protection of cables), scour protection is usually applied. Available options
to protect from scour are: placement of geotextile containers/sandbags,
concrete armour units/block mattresses, grout bags/mattresses and rock
armour (among others), which cover a particular area of the seabed [48].
The scour protection option employed is site-specific, i.e. at some locations
the amount of protection varies with sediment and current conditions,
while in others scour protection may not be needed. The input data used
for the estimated mass of scour protection [49], the vessel leased for
installation and the total installation time were adopted from [13,50,51].

The total effective duration for the installation of scour protection
takes into account the lead time due to potential adverse weather
conditions during the installation operations. As such, the total effective
days were calculated by the following equation:

=T
T N

ADJWEATHER
· /24

Effectdays Scour
Scour Inst trips scour

,
, ,

(12)

The total effective days correspond to the actual number of days that
the rock-dumping vessel should be leased to perform the operations. As
such, the installation cost of scour was estimated based on the vessel
day rate and mobilisation cost (included in Table 2). Table 8 presents
inputs and outputs related to the calculation of the total cost and in-
stallation time of the scour protection.

4.1.3.3. Cables installation. A dedicated Cable Laying Vessel (CLV)
needs to be leased for the installation of the inner array and export
cables. Average installation rates of inner-array and export cables were

Table 6
Pre-assembly methods characteristics.

Installation method Sub-assemblies No of onshore assemblies No of lifts/assemblies during installation N( )Lj

1 (Nacelle+ hub)+3 blades+ tower in 2 pieces 1 6
2 (Nacelle+ hub)+3 blades+ tower in 1 piece 2 5
3 Nacelle+ (hub+3 blades)+ tower in 2 pieces 3 4
4 (Hub+nacelle+ 2 blades)+ tower in 2 pieces+ 1 blade 4 4
5 (Nacelle+ hub+2 blades)+ 1 blade+ tower in 1 piece 4 3
6 (Nacelle+ hub+3 blades+ tower in 1 piece) 6 1

Table 7
Summary of results on foundations and turbines installation.

Parameter Value

Total effective days of foundations installation, TEffectdays F, 292 days
Total effective days of turbines installation, TEffectdays T, 264 days
Total effective days per foundation+ transition piece 2.08

foundation
effective days

Total effective days per turbine 1.89
turbine

effective days

Cost of personnel employed for the installation of foundations £2.36million
Cost of personnel employed for the installation of turbines £2.14million
Total installation cost of foundations, CF ic, £102.2million
Total installation cost of turbines, CT ic, £62.6 million
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calculated by taking into account historic data from past projects on the
total length (in km) of the cables and total installation time (in days)
[13]. Average installation rates were estimated approximately 1.6 and
0.6 km/day for export and inner array cables, respectively. For the
installation of the subsea cables, a trenching ROV (Remotely Operated
underwater Vehicle) was employed for the post–lay burial of the cables
with a daily charter rate of 82.5 k£ [39]. The installation cost of export
and array cables was, thus, estimated based on the total duration of the
installation operation, and the day rates of the CLV and the trenching
ROC. As such, the installation cost of array and export cables were
calculated by the following expressions:

= + +− − −C T V V V·( )C array ic C array Inst DR CLV array DR Trench Mobil CLV, , , , , (13)

= + +− − −C T V V V·( )C export ic C export Inst DR CLV export DR Trench Mobil CLV, , , , , (14)

Input and output data for the cable installation are summarised in
Table 9.

4.1.3.4. Substation installation. Substation is assumed to be barged on
site and get installed by a Heavy-Lift vessel (HL). The installation time
is comprised of the jacket foundation installation time, the grout
application (if applicable) and, the installation of the substation
topside. The voyage time from the port to the installation site and
vice versa is estimated by:

=T D
V

2·HL voy
S HL

,
, (15)

where, VS HL, is the speed of the heavy lift vessel used for the installation
of the substation units. The total installation time of the substation is
calculated as:

= + +T n R D T T( · · )Subst Inst Subst pile Subst pile pile reposit Substjacket Inst, , , , (16)

The symbols of Eq. (16), the input data used in the context of the case
study, along with the derived results concerning the transportation and
installation time of the substation foundation/topside are demonstrated
in Table 10. To estimate the weight of a typical substation topside, a
dataset from existing OW farms was established consisting of the
substation topside weights for various wind farms whose capacities
range from 60 to 630MW (data retrieved from [52] from deployed
wind farms) and a linear regression model was trained based on this
dataset. As a result, the mass of the topside substation can be
approximated by the following linear equation (shown in Fig. 2):

= + =W P R3.5129· 388.85( 0.9011)Subst top WF,
2 (17)

The weight of the topside substation will determine the vessel that will
be required with the appropriate crane capacity as shown in Table 10.
Instead of assuming one topside substation of 2160 ton, two identical
substations of 1080 ton were assumed. The estimation of the
installation cost of the substation was based on the total effective
duration of the installation operation, TSubst Inst, , and the HL vessel day
rate, VDR HLV, , and mobilisation cost, VMobil HLV, , as expressed below:

= +C T V V·OffSubst ic Subst Inst DR HLV Mobil HLV, , , , (18)

Input and output data for the substation installation are summarised in
Table 10.

4.2. OPEX module

4.2.1. Failure modes and latest reliability databases utilised
For the prediction of O&M total cost, an updated database of failure

rates, number of technicians required for repairs and cost of repairs was
used as input. A number of onshore wind reliability analysis exists in lit-
erature, covering the whole onshore turbine as well as its subassemblies

Table 8
Input and output data for scour protection installation.
Sources:[16,34,50,51].

Parameter Value

Inputs
Tonnage of scour protection per unit, SPU 6,890 ton/

turbine
Rock-dumping vessel capacity, VCscour 24,000 ton
Number of trips required to the installation of scour protection,

Ntrips scour,

41

Total transportation time of scour protection by rock-dumping
vessel, TScour Tr,

2.97 h/trip

Dumping time per trip, TScour Dump, 16 h/trip (4 h/
turbine)

Loading time per trip, TScour Load, 12 h/trip
Mobilisation cost of rock-dumping vessel, Vscour Mobil, £10,650

Outputs
Total time for scour protection installation,

= + +T T T TScour Inst Scour Tr Scour Dump Scour Load, , , ,

31 h/trip

Total effective days for scour protection installation,
TEffectdays Scour,

62 days

Installation cost of scour protection, CScour ic, £872,600

Table 9
Input and output data for cables installation.

Parameter Description Value

Cables installation – inputs
Installation rate of export cable 1.6 km/day
Installation rate of array cables 0.6 km/day

Cables installation – outputs
Effective days required for the installation of export cables,

−TC export Inst,

147 days

Effective days required for the installation of array cables,
−TC array Inst,

537 days

Installation cost of export cables, −CC export ic, £27.3 million
Installation cost of array cables, −CC array ic, £87.7 million

Table 10
Input and output data for offshore substation installation.

Parameter Value

Offshore substation installation – input
Number of piles per substation foundation, nSubst pile, 4
Rate of piling the piles of the substructure, RSubst pile, 0.115 h/m
Depth of pile under the soil, Dpile 36m
Reposition time of the vessel, Treposit 8 h
Installation time of the substation’s jacket, TSubstjacket Inst, 20 h

Offshore substation installation – output
Total effective installation days for one substation, TSubst Inst, 13 days
Total installation cost (for the 2 substations), COffSubst ic, £3.99million

y = 3.5129x + 388.85
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Fig. 2. A linear model for offshore substructure topside mass used in a wind
farm (data retrieved from [52]).
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[53–56]. As far as the reliability analysis of OW turbines is concerned, in
[23] authors have gathered information from around 350OW turbines
with nameplate capacities ranging from 2 to 4MW and ages between 3
and 10 years old. The failure rates used in the present analysis are pro-
vided in a per turbine per year format, defined as:

∑ ∑

∑
= = =

=

λ e

E

k

K
n
N

e

E
T

1 1

1
8760

e k

T e

e

,

,

(19)

where, λ denotes the failure rate per turbine per year, E is the number of
intervals for which data are collected, K is the number of subassemblies,
ne k, the number of failures during the specific interval, NT e, the number of
turbines that were examined, and Te represents the total time period in
hours.

∑ ∑= =e
E

k
K n

N1 1
e k

T e

,

,
denotes the total number of failures in all periods per

turbine while ∑ =e
E T

1 8760
e is equal to the sum of all time periods in hours

divided by the number of hours within a period of a year.
Repairs are classified as minor repairs (repairs that cost up to

1,000€), major repairs (1,000–10,000€) or major replacements
(> 10,000€); a categorisation adopted by the Reliawind project which
has registered failure rate data for onshore wind turbines [57]. Data on
the failure rates, average repair times, number of required technicians
and material costs are enclosed in Table 11.The “No cost data” category
refers to repairs for whose cost data are not registered.

The mean time between failures (MTBF) is a commonly used re-
liability metric for repairable items and it can be expressed as the in-
verse of the failure rate, as follows:

=MTBF
λ
1

(20)

As demonstrated in Fig. 3, MTBF is connected to the mean time to re-
pair (MTTR) and the Mean Time To Failure (MTTF) as follows [58,59]:

= +MTBF MTTF MTTR (21)

The MTTF represents the reliability of the system while the MTTR de-
notes the competence of the maintenance strategy to recover the system
back to normal operation (as well as the weather window to perform
maintenance operations). The latter is hence a stochastic quantity that
available reliability data cannot capture and needs to be processed in

detail as will be described in Section 4.2.2. Since wind turbine com-
ponents undergo failures usually less than once a year (therefore
MTBF > 365 days), while the MTTR usually lasts for much shorter
time, above expression can be assumed equivalent to ≅MTBF MTTF ,
which is the simplification that needs to be made in the application of
the ECN O&M tool as will be described below.

4.2.2. Specification of settings for O&M costs
The detailed estimation of the O&M annual costs, downtime because

of O&M activities and revenue losses caused by energy production loses
was carried out through the ECN O&M tool [60], which has been used
by numerous project developers and turbine manufacturers in the OW
industry, and it is considered as the most comprehensive tool for O&M
analysis to date [61]. It generates an average yearly estimation of the O
&M cost over the lifetime of the wind farm; hence, long term average
values of failure rates (as the ones outlined in Table 11) are needed as
input to determine annual operating costs.

Apart from the general characteristic values of the wind farm (i.e. the
number of turbines, the wind farm capacity, the power curve, etc.), met
ocean data were also inserted in the software for an indicative installation
site located in North Sea. Software allows for 1-hourly or 3-hourly sig-
nificant wave height and mean wind speed data to be introduced; to this
end, 3-hourly data was supplied by BTM ARGOSS [29].

For framing the maintenance strategy of the reference OW farm, a

Table 11
Average repair times (h), number of required technicians, material cost for different turbine components and repair category. FR: Failure rates (failures/turbine/
year), ART: Average repair times (h), RT: Required technicians, MC: Material cost (€).
Source: [23].

No cost data Minor repair Major repair Major replacement

FR ART RT FR ART RT MC FR ART RT MC FR ART RT MC

Pitch/Hyd 0.072 17 2.8 0.824 9 2.3 210 0.179 19 2.9 1900 0.001 25 4 14,000
Other Components 0.15 8 2.3 0.812 5 2 110 0.042 21 3.2 2400 0.001 36 5 10,000
Generator 0.098 13 2.4 0.485 7 2.2 160 0.321 24 2.7 3500 0.095 81 7.9 60,000
Gearbox 0.046 7 2.2 0.395 8 2.2 125 0.038 22 3.2 2500 0.154 231 17.2 230,000
Blades 0.053 28 2.6 0.456 9 2.1 170 0.01 21 3.3 1500 0.001 288 21 90,000
Grease/oil/cooling liq. 0.058 3 2 0.407 4 2 160 0.006 18 3.2 2000 0 0 0 0
Electrical components 0.059 7 2.4 0.358 5 2.2 100 0.016 14 2.9 2000 0.002 18 3.5 12,000
Contactor/circuit/breaker/relay 0.048 5 2 0.326 4 2.2 260 0.054 19 3 2300 0.002 150 8.3 13,500
Controls 0.018 17 3.2 0.355 8 2.2 200 0.054 14 3.1 2000 0.001 12 2 13,000
Safety 0.015 2 2 0.373 2 1.8 130 0.004 7 3.3 2400 0 0 0 0
Sensors 0.029 8 2.7 0.247 8 2.3 150 0.07 6 2.2 2500 0 0 0 0
Pumps/motors 0.025 7 2.5 0.278 4 1.9 330 0.043 10 2.5 2000 0 0 0 0
Hub 0.014 8 2.4 0.182 10 2.3 160 0.038 40 4.2 1500 0.001 298 10 95,000
Heaters/coolers 0.016 5 2.7 0.19 5 2.3 465 0.007 14 3 1300 0 0 0 0
Yaw System 0.02 9 2.4 0.162 5 2.2 140 0.006 20 2.6 3000 0.001 49 5 12,500
Tower/foundation 0.004 6 2.3 0.092 5 2.6 140 0.089 2 1.4 1100 0 0 0 0
Power supply/converter 0.018 10 2.7 0.076 7 2.2 240 0.081 14 2.3 5300 0.005 57 5.9 13,000
Service items 0.016 9 2.2 0.108 7 2.2 80 0.001 0 0 1200 0 0 0 0
Transformer 0.009 19 2.8 0.052 7 2.5 95 0.003 26 3.4 2300 0.001 1 1 70,000

Fig. 3. Illustration of the MTTR, MTTF and MTBF.
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number of operational decisions (common within the O&M strategies of
OW projects) needs to be taken. As such:

• Four workboats (crew transfer vessels, (CTVs)) are available for O&
M operations and are permanently leased on a fixed contract. CTVs
are used for the transportation of personnel and small components
with 26knots maximum speed and maximum capacity of 15
workers.

• One helicopter is chartered to transfer technicians when response
time is critical. Typically three technicians plus their equipment can
be transferred by helicopter (top speed 245 km/h) [62].

• One jack-up vessel (heavy maintenance vessel) is chartered in the
spot market in order to transfer and instal heavy components.

• One diving support vessel is chartered on the spot market to perform
underwater inspections.

• One cable laying vessel for replacing any damaged power cables
when required.

The site is close enough to shore ( =D 36 km) and the maintenance
activities are staged out of the O&M port; thus, an accommodation vessel
(or mother vessel) was not considered necessary in the baseline case study
and the access time for minor repairs and inspections as well as the fair
weather window were evaluated in reference to the distance from shore.

General data such as maximum wave heights, wind speeds for the
transportation equipment and vessel costs are shown in Table 2. Values
included in the table have been retrieved and cross checked through a
number of references [5,61,63–65], including a report [66] completed
by the National Renewable Energy Laboratory (NREL) and the Energy
Research Centre of the Netherlands (ECN) as well as from real data
retrieved from 4C Offshore website [44].

The ECN O&M tool considers three types of O&M strategies, namely
calendar-based, condition based and unplanned corrective. For un-
planned corrective maintenance each component of the system (wind
turbine and the Balance of the Plant (BOP)) is assigned an annual
failure frequency. This may consist of several failure modes (fault type
classes, (FTC)) with different severities and frequencies. The failure
frequencies of each component of the system are introduced in the
software through the MTTF. Annual failure rates from Table 15 are
hence transformed on a per hour basis, as follows:

=MTTF
λ

8760 ,in h
(22)

In the context of the baseline scenario, the components of the system
considered are the ones summarised in Table 11, while the different
FTCs are categorised as minor repairs, major repairs or major replace-
ments (according to the Reliawind categorisation) with relative failure
frequencies (RFF) calculated as:

∑
=

=

RFF
λ

λ
(%)

·
·100fc

fc

fc

numberofFTC

fc
1 (23)

where, fc denotes the number of FTC. Apart from the RFF defined per
FTC, the priority level as well as the repair and spare control strategy
need to be defined; we set major repairs and major replacements to be
of high priority and the rest to be of normal. Further data used for the
definition of the unplanned corrective maintenance strategy constitute
the average repair times, number of required technicians and material
costs which were retrieved from Table 11. Finally, the logistic time for
major replacements for unplanned corrective maintenance was as-
sumed around 250 h. Due to the multiple uncertainties as well as the
lack of data for predicting condition based maintenance activities, this
maintenance type was ignored.

The period for calendar based maintenance is set between 01-May
to 30-September to take advantage of the expected favourable weather
conditions. For calendar based maintenance, all wind turbines are

assumed to be maintained on an annual basis, through a lower cost
maintenance mission, while every 5 year a larger preventive main-
tenance mission is assumed to take place.

The estimation on the total number of technicians to perform the O&M
operations was based on having the maximum number of manpower for 4
workboats, resulting in a total of 4 · 12=48 technicians. The annual fixed
technician’s salary is 95 k£ for unplanned corrective maintenance, while
additional crew for the calendar-based maintenance is hired with hourly
wage £120/hour in the base case scenario [67].

4.2.3. Operation and maintenance phase (O&M) cost estimation
The costs for maintaining the OW farm were determined by both

unplanned and corrective maintenance. The parameters exported
through the tool were, among others, the range of availability of the
wind farm, and the average annual repair cost and the power produc-
tion. Results are summarised in Table 12.

4.3. Decommissioning and disposal phase (D&D)

Energy companies are obliged to remove all structures and verify the
clearance of the area upon the termination of the lease. Decommissioning
activities relate to the removal of the wind turbine (i.e. nacelle, tower and
transition piece) as well as the balance of the plant (substation, cables and
scour protection). Removal of the wind turbine and tower is done using a
reversed installation method while the removal of foundation is carried
out by the use of a cutting tool that removes the transition piece, while an
ICM (Internal Cutting Manipulator) is used to cut the monopile at 2m
below the mud-line [68]. Cranes are used to lift the cut pieces of the
turbine. Removal of mud and internal cutting can be realised by means of
a workboat, while the lifting of the structure is performed by a jack up
vessel. Two jack up vessels with deck space to load 5 complete WTGs with
foundations are assumed. For the removal of the substation topside a
heavy lift vessel is required while the jacket support structure of the
substation also needs to be cut (the 4 piles) in order to get removed. As far
as cables are concerned, they can be partially or wholly removed, de-
pending on whether they are buried or not [69]. Cables can be cut in
several sections while they are removed, hence, less expensive vessels can
be employed, such as Special Operations Vessels (SOVs) or barges. In this
analysis, 50% of the initial length of cables are assumed to be left in situ
after the decommissioning of the wind farm (an assumption derived from
discussions with wind farm operators). The scour protection may also be
left in situ in order to conserve the marine life that would have grown on
it. Site clearance is the final stage during decommissioning and it en-
compasses the removal of the debris accumulated in a specified radius of
the structure throughout the 25 years of life of the wind farm. Vessels
employed for the decommissioning of the structures are assumed to have
similar characteristics to the ones summarised in Table 2. Input and output
values of the removal process are included in Table 13.

Further to the removal of the wind turbine components, the balance of
the plant and the clearance of the area, removed items need to be trans-
ported and disposed. Cost of transportation is a function of the total mass
of the wind farm components, Wcomponents, the cost per ton-mile of the
transportation truck, −Ctruckperton mile, the capacity of truck, Wtruck, and the
distance of port from the waste facility, −Dport facility, as follows [14]:

=
∑

−C
W
W

D·transp dd
components

truck
port facility, (24)

Table 12
Summary of OPEX in the baseline scenario.

OPEX estimation Values

Availability (%) 92.5/92.2%
Repair costs £28.38million/year
Net annual energy production 1,734,792MWh/year
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4.4. Revenue module

Levelised cost of electricity (LCOE) models consider the costs
throughout the whole life of the asset. However, investors emerging in
different phases of the OW farm are interested in the profitability
profile of the investment from the purchasing instance until their exit
point from the investment. Assessing the profitability of investing in an
OW farm in different phases of its service life requires the estimation of
the temporal profile of the revenues that the investment yields.

As far as the policy instruments supporting the OW industry are con-
cerned, the Contract for Difference (CfD) scheme is currently in effect in
the United Kingdom, which is a private law contract between a low carbon
power producer and the Low Carbon Contracts Company (LCCC), a gov-
ernment-owned company. According to the CfD scheme, the low carbon
power producer sells the produced electricity, as usual, through a Power
Purchase Agreement (PPA), to a licenced supplier or trader at an agreed
reference market price. However, in order to reduce investors’ exposure to
variations in electricity market prices, the CfD mandates that the power
producer is paid the difference between a pre-determined “strike price”
and the reference market price. If the reference price is lower than the
strike price, the power generator receives the difference from LCCC; re-
versely, if the reference price is higher, the power producer has to pay
back the difference. The bottom line is that the power producer always
gets the strike price for the electricity generated. CfDs are awarded to

power producers in allocation rounds and the amount of the strike price is
determined through an allocation process, which is either based on ad-
ministrative strike prices set by the Government (provided there are suf-
ficient funds) or by means of a competitive auction run by the National
Grid. The auctions ensure that the least expensive projects are awarded,
reducing, thus, the cost passed to consumers. The scheme lasts for 15 years
(while the average lifetime of an OW energy asset is 25 years), after which
the electricity output is sold on the average UK electricity market price,
hence imposing uncertainty to the revenues yielded by the investment
after the 15th year of operation [70]. To this end, appropriate modelling of
the cash inflows, along with the taxation imposed to the income needs to
be conducted. For the reference case study, the baseline strike price value
considered amounts to £140/MWh (which corresponds to the adminis-
trative strike price for 2018/19 [71]).

4.5. FinEX module

4.5.1. Depreciation and tax
Tax depreciation is available through the capital allowances regime,

according to which =d 18%rate of qualifying expenditure on equipment
is reduced [72]. Depreciation is a term used in accounting in order to
spread the cost of the capital assets over the life span of the investment,
so that the net profit in any year will reflect all the costs required to
produce the output. The effect of depreciation is estimated by dividing
the equipment cost of the wind farm, Cequipment, over the total life span of
the asset and deducting the 18% of this annual cost from the tax pay-
ment. The net tax, tnet, can then be calculated by deducting the depre-
ciation credit, dcredit , from the yearly tax payment, tpayment , as shown
below:

=d
C

n
d·credit

equipment
rate (25)

= −t t dnet payment credit (26)

=t t P·payment c gr (27)

where, =t 17%c is the nominal corporate income tax rate paid every
year and Pgr represents the gross profit. Accordingly, the Net profit, Pnet ,
of the investment can be calculated as:

= −P P tnet gr net (28)

4.5.2. WACC and inflation
Inflation and interest rates are used to account for the time value of

money. Inflation accounts for the reduction in the purchasing power of
a unit of currency between two time periods, while the interest rate is
the rate earned from a capital investment. In financial analysis, the
nominal interest rate is the interest rate quoted by the banks, stock
brokers etc. which includes both the cost of capital and the inflation.
Real discount rate (or else real WAAC) integrates the inflation adjust-
ment and the discount of cash flows according to Fisher Equation [73]:

= +
+

− ≈ −WACC WACC
R

WACC R1
1

1real
infl

nom infl
(29)

The discount rate is determined by the source of capital as well as the
estimation of the financial risks associated with the investment. Projects
gather their capital by raising funds through debt and equity. These
sources of financing demonstrate individual risk-return profiles; hence
their costs also fluctuate. The cost of capital will correspond to the
weighted average of cost of its equity and debt, with weights de-
termined by the amount of each financing source. The WACC is cal-
culated by the following expression [74]:

= + −WACC VE
V

RoE VD
V

Rd tc· · ·(1 ) (30)

where, VE is the market Value of Equity, VD is the market Value of
Debt, = +V VE VD, RoE denoted the Return on Equity, and Rd the

Table 13
Removal costs of wind turbine.

Parameter Value

Turbine and foundation removal – inputs
Remove time per turbine with a self-propelled jack up vessel 15 h/turbine
Complete turbines (including foundations) capacity of a Jack up

vessel
5 turbines/trip

Number of jack up vessels for the removal of the wind turbines 3
Number of workboats employed for the decommissioning of the

turbines
2

Number of technicians per workboat 5
Offloading time of turbines/monopiles 8 h/item
Time to cut the foundation 6 h/foundation
Time to lift the item and place on the deck 11 h/item

Turbine and foundation removal – outputs
Total duration of each trip which equals the sum of the travel

time to and from site, the removal time of turbines and
monopile, the loading time and the intra-field movement
time of the jack up vessel

244 h

Total time per trip (adjusted to weather and working hours) 26 days
Total effective days for turbines and monopiles removal divided

by the number of vessels, −TEffectdays TF Rem,

243 days

Total cost of hiring technicians and workboats during the
decommissioning of the wind turbines, Cvessel dd,

£4.13million

Total cost for removing all wind turbines with monopiles,CTF dd, £83.5 million

Offshore substation removal – inputs
Pile diameters of jacket substructure 2.6m
Cutting rate of the pile 1 h/m
Lifting time of topside substructure 3 h
Cut time of topside 12 h
Reposition time of vessel to each leg of the jacket substructure 8 h

Offshore substation removal – outputs
Time to cut the 4 piles 10.4 h
Total time for the removal of the two substations,

−TEffectday Substat Rem,

8.7 days

Total cost for removing the two substations, CoffSubst dd, £1.18million

Cables removal
Rate of removal of inner-array cables 600m/day
Rate of removal of export cables 875m/day
Cost of cables removal, Ccables dd, £11.9 million

Site clearance
= − + +Area d n51.5 0.41· 0.65· WT , in km 83.37 km2

Total cost for site clearance, Cclear dd, £5.38million
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interest rate on debt. The risk of the project significantly influences the
amount of return on investment required by the investor. External ca-
pital is cheaper and, thus, it is often desirable to obtain the highest
possible amount of debt; however, the cost of debt depends on the
specific investment risk, namely the highest the investment risk, the
lower the amount that banks will be willing to lend. Average values for
the components of WACC were retrieved from [75,76] for OW energy
and are summarised in Table 14. Further, the real WACC is calculated
by taking into account the inflation rate (inflation rate was estimated
equal to 2.5% in the baseline case study, which is a realistic assumption
according to UK inflation rate predictions for 2017–2018 [77]).

5. Results and discussion

5.1. Cost breakdown

In this Section, an overview of the case study results is presented.
Table 15 summarises the cost estimates of the different lifecycle phases.
The total undiscounted CAPEX encompassing costs during the P&C, P&
A, I&C and D&C phases amounts to £1.675 billion, while the annual
OPEX was estimated £56.6 million.

In Fig. 4, the relative contribution of the 5 different phases of the life
cycle to the total LCOE is presented. It is indicated that the costs in-
curred during the P&A phase have the largest share of the total costs
(46%), followed by the O&M costs (30%). These results are consistent
with a number of previous studies [14,78].

5.2. Sensitivity analysis

For the sensitivity analysis of the model, we have considered the wind
farm general specifications, presented in Table 1 as design parameters
(parameters that remain unchanged) and we have tested the sensitivity of
variables found in the other modules of the model with respect to their
influence on the Net Present Value (NPV) of the investment (as opposed to
other works testing sensitivity of design parameters on the economic
performance of the wind farm [14,79]). This should allow a targeted in-
vestigation of the impact of parameters that can be influenced during the
lifecycle of a wind farm of a given location.

The results of the sensitivity analysis are illustrated in Fig. 5(a)–(d).
The graphs include parameters which have an influence of at least±
2% (cut-off point) on the NPV upon a 20% increase/decrease in their
values. Under the baseline scenario, NPV of the investment was cal-
culated £2.843million at a real discount rate of 6.15% with an
IRR=10.3%. Further, LCOE was estimated £109/MWh.

Most influential CAPEX parameters appeared to be the wind turbine
acquisition cost, the working hours of the personnel and the foundation
acquisition cost increasing the NPV by 28% in absolute terms, upon a
20% decrease in their values, followed by the day rate of the jack up
vessels and the weather adjustment factor inducing an approximately
9% change in the NPV.

As far as the OPEX parameters are concerned, the MTTF and the
workboat wave height limit appeared to have the greatest influence on
the NPV of the investment. In fact, a 20% drop of the wave height limit
of the workboat, decreases NPV by 16%. Considering the significant

effect of this factor on the feasibility of the project, the operator could
consider measures to limit this risk; for example, through leasing
workboats which could provide safe access at higher wave heights or
through hiring other modes of transportation, which would allow rapid
access to the WTGs regardless of weather (e.g. helicopters).

Table 14
Input data for the cost of capital calculation model.
Sources: [74–76].

Values (%)

Share of equity, VE
V

30

Share of debt, VD
V

70

RoE 15.8
Rd 7
WACCnom 8.8

Table 15
Overview of case study results.

Name Value

CAPEX in k£
Total P&C costs, CP C& 205,750
Project management cost Cproj,pc 42,327
Legal costs, Clegal,pc 16,698
Environmental surveys costs Csurveys,pc 19,162
Engineering costs, Ceng,pc 1,144
Contingency costs, Ccont,pc 126,419
Total P&A costs, CP A& 1,040,230
Wind turbine cost, CT,pa 546,056
Foundation cost, CF,pa 212,699
Cables cost, Ccables,pa 120,525
Offshore substation (x2), CoffSubst,pa 121,337
Onshore substation, ConSubst,pa 30,334
SCADA cost, CSCADA,pa 9,278
Total I&C costs, CI C& 305,742
Installation of wind turbines (tower, hub, nacelle and blades), CT,ic 62,619
Installation cost of foundations, CF,ic 102,224
Installation cost of cables, CCables,ic 115,070
Installation cost of substation, CoffSubst,ic 3,991

Installation cost of scour protection, CScour,ic 873
Insurance cost during installation Cinsur,ic 20,966
Total D&D costs, CD&D 122,860
Removal cost of turbines and monopile foundations, CTF,dd 83,526
Cable Removal, Ccables,dd 11,907
Removal of offshore substation, CoffSubst,dd 1,176
Scour Protection removal, Cscour,dd 1,612
Grout removal, Cgrout,dd 60

Transportation cost, Ctransp,dd 21

Disposal cost, Cdisposal,dd 2,452

Site Clearance, Cclear,dd 5,376
Cost of hiring vessels and personnel, Cvessel,dd 4,130
Port preparation, Cport dd, 12,600

OPEX in k£/year
Total O&M costs, CO&M 56,597
Repair cost, Crepair,om 28,403
Rent cost, Crent,om 5,040
Insurance cost, Cinsur,om 7,338
Project management cost, Cproj,om 15,816

Fig. 4. Life cycle cost breakdown.
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Net present value demonstrated high sensitivity to the WACC value
(with a 20% decrease in WACC more than doubling the NPV of the
investment) and as a result, to its composing parameters. In fact, a 20%
decrease in these parameters, namely the return on equity, the interest
rate on debt and the equity ratio increase NPV by 52%, 44% and 32%,
respectively. The last observation stresses the importance of financing
costs on the feasibility of the investment, indicating that cost of equity
is almost always expected to be higher than the cost of debt; thus, as the
debt ratio increases, the WACC is expected to drop. Nevertheless, third
party financing stakeholders would expect to see a reasonable equity
being invested in the project in order to increase confidence in the in-
vestment. Hence, the final equity to debt ratio would be a balance of
these opposite forces. Further, the inflation rate and the corporate tax
appeared to have an effect of up to −26% and +13% in NPN upon a
20% decrease in their values, respectively.

A general observation from the four sensitivity analysis graphs is
that FinEX and revenues parameters appear to have the greatest impact
on the NPV of the investment in comparison to the other two modules
of the model, with WACC, net energy production and strike price
having the greatest impact.

5.3. Investor specific cost/revenue profiles

As mentioned above, one of the objectives of this paper is to assess
the expected financial returns from an OW farm asset for investors in-
vesting and divesting the asset at different time instances across the
entire lifecycle. Implementation of the model for the respective in-
vestment strategies can provide – among other outputs – information
regarding the amount of return different investor classes will be looking
to earn to get involved in the investment.

Fig. 6(a)–(c) illustrate cumulative cash flow profiles for the three dif-
ferent investor classes (Late entry investors, Pre-commissioning investors,
Build-Operate-Transfer investors) identified in [3]. The “Build-Operate-
Transfer” (BOT) type of investor suggests that a single investor owns the
asset from the D&C up to the D&D phase; hence, this is the typical case
that financial appraisal studies usually consider. The temporal cost/

revenue profile of the BOT investor is illustrated in Fig. 6(a). In order to
account for the range of potential WACC values this investor cluster is
likely to accommodate, results for WACCs equal to 8% and 10% are
presented. The graph can provide an estimate of the value of the asset
across its life; the estimated break-even year can be found in the inter-
section of the cumulative costs and cumulative revenues curves (high-
lighted with the purple circle mark). As such, for WACC=8% break-even
year is the 18th year from the initiation of the project (including the pre-
commissioning phase), while for WACC=10% break-even year becomes
the 20th year.

Departing from the BOT scenario, the model was, subsequently, applied
to the other two investor profiles. “Pre-commissioning” (PC) investors
undertake the development and construction of the wind farm, acting as
turn-key developers, while they tend to sell the asset once the project is
commissioned. Fig. 6(c) illustrates cumulative costs (dashed red and blue
lines) and revenues (solid red line) for an investor entering from year 1 of
the asset lifecycle (P&C phase) and exiting at the end of year 5. As ex-
pected, since PC investors sell the asset following its commissioning (i.e.
before energy starts to be produced and injected to the grid), revenues are
expected to be zero before the sixth year of the project’s life cycle. The
setting of the sale price of the asset needs to cover at least the construction
cost of the asset plus their financing costs to that point. This cluster of
investors comprising OEMs and EPCI contractors have generally weaker
balance sheets in comparison to big power producers (belonging to the
BOT cluster of investors), and hence, they have less financial strength to
provide corporate finance to the project. Considering a WACC in the region
of 12–15% [21], their cost/revenue profile for the construction period of
the wind farm (from year 1 to year 5) is illustrated in Fig. 6(c) for the lower
and upper bounds of potential WACC values. Assuming a 100% ownership,
the PC investor is anticipated to balance the cost spent for the development
of the asset and the financing cost (determined by the WACC values), in
order to assess the minimum selling price of the asset. The application of
the model indicated that the seller should ask for a minimum price of
£1,078million for a WACC=15% under the baseline scenario, while the
minimum asking price when WACC=12% should be £1,170.5million.

On the other hand, “Late entry” (LE) investors should consider future

(a) CAPEX parameters (b) OPEX parameters 

sretemarapXEniF)d(sretemarapeuneveR)c(

Fig. 5. Sensitivity analysis results.
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expected costs and revenues, in order to evaluate the maximum price they
can purchase the asset for. Taking into account the fact that this class of
investors have more liquidity and stronger balance sheets, their WACC
range is lower, approximately between 6% and 12% [21]. In Fig. 6 (b), the
cost/revenue profiles of the asset from year 6 (commissioning year) up to
the D&D phase are outlined for WACC values 6% and 12%. Further, the
cumulative costs (denoted with the dotted lines) have been translated, so
that they intersect with the cumulative revenues (solid lines) at the end of

the service life of the asset (i.e. year 31st). This means that the break-even
point is found at the extreme end of the service life and, hence, the NPV of
the investment equals to zero. The blue dotted line corresponds to the
translated cumulative costs for WACC=6%, while the red dotted line
represents the translated cumulative costs for WACC=12%. Corre-
spondingly, the blue and red solid lines reflect the cumulative revenues for
the lower and upper WACC limit, respectively. Cumulative costs are dis-
counted to the year of acquisition (i.e., beginning of year 6). The trans-
lation of the cumulative costs enables the identification of the extreme
purchase price of the asset at the commissioning point, which will allow
the late entry investor to make marginal profit. The translation of the
cumulative cost is realised by the following expression:

= + − ∀ = …= =DCC DCC DCR DCC t( ), 6,7,8, ,31translated t t t t, 31 31 (31)

where, DCCtranslated t, is the discounted translated cumulative cost at year t ,
DCCt is the discounted cumulative cost and DCRt is the discounted cu-
mulative revenues at time t . If the acquisition price, at the point of the
purchase, is less than this extreme, the two curves will be intersecting to a
time earlier than the service life of the asset (i.e. the 31st year) and the
profit margin will increase. For example, as illustrated in Fig. 6(b), if the
acquisition price of the asset at year 6 (or else the discounted translated
cumulative cost at year 6) amounts to £2 billion, the breakeven point will
be reached during the 18th year, which is the intersection of the cumu-
lative cost (black dotted line) with the cumulative revenues denoted by the
blue solid line, assuming that WACC=6%. The intersection point of the
two lines is indicated by the purple circle mark. As such, the maximum
acquisition price at the commissioning year of the wind farm (namely, the
6th year) can be calculated by subtracting the cumulative revenues of the
asset from the translated cumulative costs at that year. Taking into account
the upper and lower WACC bounds considered for this type of investor, the
maximum price of purchase is £1,770 for WACC=12% and 2668million
for WACC=6%, as indicated by the red and blue dotted lines at the be-
ginning of year 6, respectively. Therefore, it is deemed that the final price
of the asset would, most probably, lie in the region between the minimum
selling and the maximum purchase price, estimated by the PC and the LE
investors, respectively. For the above mentioned example, the price of the
wind farm is, thus, expected to lie in the region £1,078–£2,668million,
depending on the cost of capital of both investors.

However, it must be highlighted that the “price” and the “value” of
the asset represent different concepts, with the price of the asset being
determined by supply and demand, while the value is estimated by
accounting for the cost and the return of an investment. In general, it is
deemed that the price of an asset should be a result of adding a rea-
sonable profit to a cost, which, however, is not always the case. Setting
a price for an asset simply on the basis of its costs and revenues can,
therefore, be considered a simplistic approach, although it makes sense
to assume that the price is set by the value. The demand for investing in
OW energy assets is influenced by a number of factors, in example the
stability of the regulatory framework for the promotion of the tech-
nology, the lack of grid availability (particularly in markets where
project sponsors are not in charge of the grid connection), etc. [21].

6. Conclusions

Offshore wind investments have reached reasonably maturity over the
past decade. With 92 wind farms in operation in European countries,
distinctive clusters of investors can be observed with new clusters expected
to focus on the second half of the operational life of wind farms; in ex-
ample, investors who will purchase assets approaching the end of their
commercial life, at a low cost and extend its life in expense of higher O&M
costs [80]. A detailed assessment of the returns is pertinent towards un-
derstanding the real cost and opportunity of investing in new or existing
operational wind farms. Such an assessment could facilitate fair valuation
of assets, supporting relevant investment/divestment decisions.

This paper has developed a methodological framework for the
techno-economic analysis of a wind farm allowing for the assessment of

(a)

 (b) 

(c) 

Fig. 6. Cumulative cost return profiles of the asset from the different investor
perspectives.
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the investment value from the perspective of different classes of in-
vestors. To this end, a life cycle cost/revenue model, which is decom-
posed further into CAPEX, OPEX and FinEX components, has been de-
veloped and applied for different investor classes.

The sensitivity analysis of the model has revealed that financial and
revenue parameters have greater influence on the NPV of the invest-
ment in comparison to CAPEX and OPEX parameters. More in specific,
the WACC along with the strike price and the energy production were
found to cause the highest deviation, while the mean time to failure and
the workboat wave height limit were the OPEX parameters with the
highest impact. As far as CAPEX is concerned, reduction in the acqui-
sition cost of wind turbines and foundations can yield the highest in-
crease in the NPV of the investment.

Although several previous studies focus on the life-cycle cost assess-
ment of OW farms and their economic feasibility, the consideration of
different equity investors with different investment strategies that buy and
sell stakes at different time instances during the life of an OW farm project,
and the development of a relevant tool that enables such investors to as-
sess the viability of their investment has not been previously investigated.
Furthermore, in relation to other academic models in literature, the pre-
sent study provides an integrated lifecycle cost revenue model of high
fidelity aiming to increase accuracy of results, while there is, currently, no
study to date to link the cost model to investment decisions. This is an
element that is addressed from operators who have developed their own
cost tools, but these are not included in the current body of literature.

Implementation of the lifecycle cost/revenue model from the

perspective of different investors can contribute towards the fairer tem-
poral evaluation of the wind energy asset. As such, the BOT class of in-
vestors (typically consisting of Major Utilities like DONG Energy, RWE,
etc.), tend to keep the (majority stake of the) operating assets in their
balance sheets. The temporal cost/revenue profile of the project can be
used to estimate its value throughout its lifespan and derive the breakeven
year. The PC investor cluster typically consists of OEMs and EPCI con-
tractors with relatively higher costs of capital (in the range of 12–15%)
than the BOT cluster. They would normally seek to sell the asset at a
higher price in comparison to its construction cost to compensate for the
risk to carry out the procurement and construction works. On the one
hand, LE investors typically comprising third party capital investors, such
as pension funds, are more likely to seek for a low risk investment with
stable returns. When it comes to appraising the asset, they will need to
assess the expected future costs and revenues and come up with an offer
that will be lower than the breakeven point derived from the cash flow
model. Above analysis, takes into account the different cost of capital
values applicable to each investor class.
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Appendix A. Installation of foundations

The number of voyages (from the staging port to the installation site and vice versa) is calculated as:

=N n
VCF voy

WT

F JU
,

, (A.1)

where, VCF JU, is the jack up vessel capacity of foundations. The time of jacking at port can be estimated as:

=T
WD

Vj port
port

j
,

(A.2)

where, WDport denotes the water depth at the port (m) and Vj the jacking up speed (in m/h). The jacking (up/down) time at the wind farm site is
estimated as:

=T WD
Vj site

j
,

(A.3)

where, WD is the water depth at wind farm site (m). The time to travel from port to farm can be found as:

=T T N2· ·port to farm JU voy F voy, , (A.4)

The voyage time, Tj voy, is estimated by taking into account the vessel speed, VS JU, (in km/h), and the distance, D (in m), between the wind farm site
and the port:

=T D
VJU voy

S JU
,

, (A.5)

The time to travel between turbines can be estimated as:

= −T VC T N( 1)· ·F mov F JU betwtrb F F voy, , , , (A.6)

The travel between turbines time is estimated by:

=T d
Vbetwtrb F

trb

S JU
,

, (A.7)

where, dtrb is the mean distance between consecutive turbines. Assuming 12 working hours per day, Tworkhrs, along with a time adjustment factor for
the consideration of potential adverse weather conditions during the offshore operations (ADJWEATHER), the number of effective days was esti-
mated as:

=T
T

T ADJWEATHER·effectdays F
F Instal

workhrs
,

,

(A.8)

Input data that were used for the calculation of installation time of foundations are summarised in Table A.1.
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Appendix B. Installation of wind turbines

The cost components throughout the turbine installation are outlined in this Appendix. Calculations were based on the work of [46] under the
conditions described below. The total travel time for transporting the turbines was calculated by the following expression:

⎜ ⎟= ⎡

⎣
⎢ − + ⎛

⎝
⎞
⎠

+ + ⎤
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−
T n
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V d t V V
·
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,

·( 2)
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where, nWT represents the number of wind turbines, VS JU, is the vessel speed (km/h), VN JU, is the number of vessels, tPL symbolizes the pre-loading
time in the port (h), tFS is the pre-loading time at site, ATj is the area required for one reference turbine with rated power 2MW during transport (m )2 ,
A is the free deck area for transportation of components (m )2 , and q1 is the constant coefficient (0.1019). The total lifting time was estimated by the
following expression:
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where, =b Llog( )
log2

R with the learning rate =L 0.95R , <b 0, NLj is the number of lifts for each turbine during loading or installation, q2 is a constant

(0.3214), RL is the lifting rate ( )40 m
hour , α1 is a constant (0.5714), b1 is a constant (0.7714), c1 is also a constant (77.12), and HJU represents the jack up

height [m]. The total assembly (onshore and offshore) time is further described below:
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where, RA is the rate of assembly assembly
h

1
2

, M is the number of parts in each turbine (7) and W is the weather multiplier for offshore lift. Finally, the
total jack up time is calculated by the following equation: (See Table B1)
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Table A.1
Parameters used for the calculation of installation
time of foundations.

Parameter Value

VCF JU, 4 Units/trip
VN JU, 3
WDport 20m
Vj 30m/h
TF Load, 2 h/turbine
Tworkhrs 12 h
TF Lift, 4 h/turbine
RF pile, 0.65 h/m
DF driv, 30m
ADJWEATHER 0.85
dtrb 800m
nworkers 30

Table B.1
Parameters used for the calculation of installa-
tion time of wind turbines.

Parameter Value

M 7
W 2
VN JU, 2
A 7000m2

ATj 550m2

NLj 3
tPL 5 h
tFS 1 h
RL 40 m

h
RA 1 assembly

2 h
HJU 35m
LR 0.95
q1 0.1019
q2 0.3214
α1 0.5714
b1 0.7714
c1 77.12
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Appendix C

(See Table C1).

Table C.1
List of symbols.

A Free deck area for transporting equipment (m )2

ATj Area required for one reference turbine with rated power
2MW during transport (m )2

ATR Rated power of transformer (MVA)
α1 Constant
ADJWEATHER Weather adjustment factor
b1 Constant (0.7714)
CCables ic, Total installation cost of cables (£)
Ccables dd, Total cost of cables removal (£)
Ccables pa, Total cost of cables (£)

−CC export ic, Installation cost of export cables (£)

−CC array ic, Installation cost of array cables (£)
Cclear dd, Total cost for site clearance (£)
Ccont pc, Contingency costs (£)
CDG Diesel generator cost (£)
Cdisposal dd, Disposal cost (£)
Ceng pc, Engineering costs (£)
Cequipment Cost of equipment (capital assets) over the lifetime of the

investment (£)
CF ic, Total installation cost of foundations (£)
Cgrout dd, Grout removal cost (£)
Cinsur ic, Installation insurance cost (£)
Cinsur om, Operation insurance cost (£)
Clegal pc, Legal costs (£)
CoffSubst ic, Total installation cost of the two substations (£)
CoffSubst paf, Substation platform cost (£)

CoffSubst pa, Cost of offshore substation (£)
ConSubst pa, Cost of onshore substation (£)
CoffSubst dd, Total cost for removing the two substations (£)
Cproj pc, Project management cost during predevelopment and

consenting (£)
Cproj om, Project management cost during operation of the wind farm

(£)
CD D& Total disposal and decommissioning costs (£)
cF mat, Cost of materials for foundations (£/foundation)
cF manuf, Cost of manufacturing of foundations (£/foundation)
cF pa, Unit cost of foundation (£/foundation)
CI C& Total installation and commission costs (£)
CP A& Total production and acquisition costs (£)
CP C& Total predevelopment and consenting costs (£)
Cprotection Cost of protective equipment for cables (£)
Cport dd, Cost of port preparation (£)
Crepair om, Repair costs (£/year)
Crent om, Rent costs (£/year)
CSG HV, HV switchgear cost (£)
CSGMV MV switchgear cost (£)
CSCADA pa, Cost of monitoring (£/turbine)
CScour ic, Total installation cost of scour (£)
CScour dd, Scour protection removal cost (£)
Csurveys pc, Environmental survey costs (£)
CTF dd, Total cost for removing all wind turbines with monopiles

(£)
CTR MV/HV transformer cost (£)
Cvessel dd, Total cost of hiring technicians and workboats during the

decommissioning of the wind turbines (£)
Ctransp dd, Total cost for the transportation of decommissioned parts

(£)
−Ctruckperton mile Cost per ton-mile of the transportation truck (£/ton/mile)

CT ic, Total installation cost of turbines (£)
cT pa, Unit cost of wind turbine (£/turbine)
CTF dd, Removal cost of turbines and monopile foundations (£)
cBB HV busbar cost (£)
ci Unit cost of the cable (£/km)

(continued on next page)
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Table C.1 (continued)

c1 Constant
D Distance of installation site from port (km)
Dpile Depth of pile under the soil (m)

−Dport facility Distance of port from the waste facility (km)
DF driv, Distance of monopile driven into the seabed
DCCtranslated t, Discounted translated cumulative cost at year t (£)
DCCt Discounted cumulative costs at year t (£)
DCRt Discounted cumulative revenues at year t (£)
d Rotor diameter (m)
dcredit Tax depreciation credit reduced from the total tax payment

(£)
drate Tax depreciation rate (%)
dtrb Mean distance between consecutive turbines (m)
E Number of intervals for which reliability data are collected
FTC Fault type classes
HJU Jack up height (m)
h Hub height (m)
K Number of subassemblies
Li Length of cable of type i (km)
L1 Length of array cables (km)
L2 Length of export subsea cables (km)
L3 Length of export onshore cables (km)
LR Learning rate
M Number of parts comprising each turbine
MTBF Mean time between failures (h)
MTTF Mean Time To Failure (h)
MTTR Mean time To Repair (h)
Ni Number of cables of type i
NF voy, Number of voyages for the transportation of foundations
NLj Number of lifts for each turbine during loading or

installation
NT e, Number of turbines that were examined for deriving the

failure rates
Ntrips scour, Number of trips required for the installation of scour

protection
n Lifetime of the investment (years)
ne k, Number of failures
nSubst pile, Number of piles per substation foundation
nTR Number of transformers
nWT Number of turbines
nworkers Number of workers
PWF Capacity of the wind farm (MW)
PWT Capacity of the wind turbine (MW)
Pgr Amount of gross profit (£)
Pnet Amount of net profit of the investment (£)
q1 Constant coefficient 1 (0.1019)
q2 Constant coefficient 2 (0.3214)
RFFfc Relative failure frequencies (%)
RA Assembly rate (assembly/hour)
Rd Interest rate on debt (%)
Rinfl Inflation rate (%)
RL Lifting rate (m/hour)
RoE Return on Equity rate (%)
RSubst pile, Rate of piling the piles of the substructure (h/m)
RF pile, Rate of piling the monopile (h/m)
SPU Tonnage of scour protection per unit (ton/turbine)

−TC array Inst, Effective days required for the installation of array cables
(days)

−TC export Inst, Effective days required for the installation of export cables
(days)

TEffectdays F, Number of effective days for the installation of the
foundations (days)

TEffectdays Scour, Total effective days for scour installation (days)

−TEffectdays Substat Rem, Total effective days for the removal of the substations
(days)

−TEffectdays TF Rem, Total time effective days for the removal of turbines and
monopiles (days)

TEffectdays T, Total effective days of turbines installation (days)
TF Instal, Total installation time of foundations (h)
TF Lift, Offshore lifting time (h)
TF Load, Pile loading time (h)
Treposit Reposition time of the vessel (h)
THL voy, Voyage time of heavy-lift vessel from the port to the

installation site (h)

(continued on next page)
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ABSTRACT
Installed wind energy capacity has been rapidly increasing over the last
decade, with deployments in deeper waters and further offshore, with higher
turbine ratings within new farms. Understanding the impact of different
deployment factors on the overall cost of wind farms is pertinent toward
benchmarking the potential of different investment decision alternatives. In
this article, a set of parametric expressions for capital expenditure, operational
expenditure, and levelized cost of energy are developed as a function of wind
turbine capacity (PWT ), water depth (WD), distance from port (D), and wind
farm capacity (PWF). These expressions have been developed through a series
of simulations based on a fully integrated, tested cost model which are then
generalized through the application of appropriate nonlinear regression equa-
tions for a typical offshore wind farm investment and taking into account
most current published cost figures. The effectiveness of the models are
countersigned through a series of cases, estimating the predicted values
with a maximum error of 3.3%. These expressions will be particularly useful
for the preliminary assessment of available deployment sites, offering cost
estimates based on global decision variables.

KEYWORDS
CAPEX; LCOE; nonlinear
regression; offshore wind
farm; OPEX; parametric
expressions

Introduction

Latest targets for Europe as reported from Wind Europe aim for 320 GW of wind energy
capacity to be installed by 2030, 66 GW of which is planned to come from offshore wind (OW)
energy (EWEA 2015). Deployment in deeper waters and further offshore is driven by the higher
wind speeds, unrestricted space, and lower social impact in the marine environment (Kolios
et al. 2016; Regueiro-Ferreira and Villasante 2016), where it is estimated that the same wind
turbine can produce around 50% higher power output compared to onshore. High construction
costs, especially foundation and electrical connection, and limitations in operation and main-
tenance are key barriers that need to be overcome in order to deploy in such environments in a
cost-effective way. Figure 1 presents processed data from commissioned wind farms with respect
to deployment depth, distance from shore, and wind farm capacity, while Figure 2 shows the
increase in installed wind turbine ratings from 1995 to 2017 based on data from 4C Offshore
2017.

Reference to cost figures across the life cycle of existing wind farms has been limited to date with
high volatility of cost components, primarily due to the fact that the industry and its supply chain
have not yet been fully developed. Understanding, however, the impact of different deployment
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factors to the overall cost of wind farms becomes pertinent toward benchmarking the potential of
different investment decision alternatives.

This article reports the development of a set of parametric models for capital expenditure
(CAPEX), operational expenditure (OPEX), and levelized cost of energy (LCOE) as a function
of a set of global variables for potential deployment sites. These account for the wind turbine
capacity (PWT), water depth (WD), distance from port (D), and wind farm capacity (PWF).
These variables were selected due to their significant effect on the cost-effectiveness of the
investment (Shafiee et al. 2016). After mapping the multidimensional cost domain based on
these variables, through a series of simulations performed by a fully integrated and tested cost
model developed by the author, results are translated into analytical expressions to interpolate
cost figures for potential wind farms within the applicability range of the expressions. A
parametric analysis and a number of test cases illustrate the effectiveness of the models,
drawing useful conclusions.

Figure 1. Water depth vs. distance to shore vs. wind farm capacity.

Figure 2. Turbine rating vs. wind farm year of commissioning.
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These expressions are expected to assist investors, researchers, and other stakeholders to under-
take an initial estimate of CAPEX, OPEX, and LCOE values for OW farm projects with varying
design parameters, as well as use them as reference for estimating the effect in the change of one of
the selected design parameters. The cost model developed incorporates the most up-to-date available
parametric expressions in the literature, while where such equations were not available, most recent
data were gathered in order to model specific costs.

Cost model of OW farm with fixed monopile

The main components of the life-cycle cost of a fixed OW farm are distinguished and further
decomposed to cost subcomponents as shown in Figure 3, while in Figure 4, the cost model
framework that has been developed is presented. Throughout the model, the most up-to-date
expressions for cost subcomponents have been employed. The life-cycle phases under which costs

Lifecycle costs (LCC)
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consent

C1.1-Project 
management

C1.2-Legal

C1.3-Engineering

C1.4-
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surveys

C1.5-Contingency
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C2.2-Foundations 
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C2.4-Control 
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commissioning
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C3.2-Tower and 
turbine

C3.3-Scour protection

C3.4-Electric system
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Figure 3. Breakdown of life-cycle costs.

Figure 4. Integrated cost model structure.
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were categorized are as follows: design and consent (C1), production and acquisition (C2), installa-
tion and commission (C3), operation and maintenance (C4), and decommissioning and disposal (C5),
a categorization scheme adopted by numerous recent studies (Myhr et al. 2014; Shafiee et al. 2016;
The Crown Estate 2010). Total life-cycle cost is, thus, defined as

LCC ¼ C1 þ C2 þ C3 þ C4 þ C5 (1)
The design and consent costs were further decomposed to legal (C1:1), environmental survey (C1:2),
engineering (C1:3), contingency (C1:4), and project management (C1:5) costs. The costs of this stage
were considered to be proportional to the wind turbine capacity (PWT) according to Shafiee et al.
2016, although other parameters such as the water depth and marine life in the installation location
can also affect the cost because of the lack of data.

The production and acquisition stage can be further decomposed to the following: the acquisition of
the turbine (C2:1), the foundation (C2:2), the electric system (C2:3), and the control system (C2:4). The cost
of the turbine was estimated as a function of the wind turbine capacity (C1 ¼ f PWTð Þ, while the cost of
foundation as a function of the PWT , WD, h, and d (C2:2 ¼ f PWT;WD; h; dð Þ; Dicorato et al. 2011).

The cost of the electric system comprises the cost of array, export and onshore cables (C2:3:1), and the
cost of the substation (C2:3:2); the first, depending on the number of the wind turbines (NWT), the rotor
diameter (d), and the distance from shore (D)—C2:3:1 ¼ f NWT; d;Dð Þ; the second, depending on the
number of the wind turbines, rated power of transformer (ATR), the nominal voltage transformer (Vn),
and the wind farm capacity (PWF) according to Dicorato et al. 2011—C2:3:2 ¼ f NWT;ATR;Vn; PWFð Þ.
Onshore substation cost was assumed to be half the cost of the offshore substation. The control system
cost was also taken from the same source to be equal to C2:4 = 75 k£/turbine.

Next, the installation and commissioning costs of the OW farm comprise the installation of the
wind turbine and tower (C3:1), foundation and transition piece (C3:2), scour protection (C3:3), electric
system (C3:4), and the insurance costs (C3:5), a categorization also used by BVGA 2010, Dicorato
et al. 2011, and Shafiee et al. 2016. The installation cost of the wind turbines is a function of the
vessel day rates (VDR), the number of vessels (workboats, heavy lift vessels, Special Operations
Vessels (SOVs), and jack up vessels; Nv), the duration of the installation (TInstal), and the cost for the
personnel (Cpers) required for carrying out the installation. Specifically for the installation of the
wind turbines, the onshore pre-assembly method (MAssemb;T) is also expected to greatly affect the
cost of installation (Sarker and Faiz 2017). Although installation usually takes place during spring
and summer time in order to avoid adverse weather conditions, they still play an important role to
activities taking place offshore (Kaiser 2009); hence, for estimating the final installation cost of the
wind farm, a weather adjustment factor (AdjW) was also considered, an approach used also by other
authors in the literature (Sarker and Faiz 2017; Kaiser and Snyder 2012). Therefore, the cost is
expressed as C3:1 ¼ f VDR;Nv; TInstal;T;Cpers;T;MAssemb;T;AdjW

� �
. Roughly, the installation of all

components of the wind farm depends on similar factors; nevertheless, vessels with different load
capacity and different procedures are followed for the installation of each component.

The operation and maintenance stage of the life cycle is further decomposed into the repair (C4:1),
the rent (C4:2), the insurance (C4:3), and the project management cost (C4:4). The estimation of the
repair cost was carried out through the Energy Research Centre of the Netherlands Operation and
Maintenance (ECN O&M) tool (Van De Pieterman et al. 2011), which divides O&M strategies into
calendar-based, condition-based, and unplanned corrective operations. For unplanned corrective
maintenance, each structural component of the system is assigned a number of failure modes bearing
different severity and frequency levels, which is introduced in the software by means of a mean time
to failure. The different fault type classes are classified as minor repairs, major repairs, and major
replacements following the Reliawind categorization scheme (Wilkinson et al. 2010). Further data
needed for the prediction of the unplanned corrective maintenance costs include the average repair
times, number of required technicians, and material costs, which were adopted from Carroll et al.
2016. For the condition-based maintenance, a certain number of repairs can be set for inclusion,
while the calendar-based maintenance applies to all turbines of the wind farm. For calendar-based
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maintenance, a yearly small maintenance operation and a longer one occurring every 5 years were
considered.

Decommissioning and disposal cost of the wind farm includes the following: the removal of the
wind turbine (nacelle, tower, and transition piece) as well as the balance of the plant (foundations,
scour protection, cables, and substations; C5:1), the site clearance (C5:2), the onshore transportation
to the disposal sites (C5:3), the port preparation (C5:4), the disposal process (C5:5), and finally the
hiring vessels costs (C5:6). To accomplish this stage of the life cycle, jack-up vessels are used to
transport the removed items to shore, as well as workboats to transfer personnel who will support
the operation. Substations are also removed by means of a reverse installation process (with the
support of a heavy lift vessel), and the jacket foundations are also cut and removed. Removal costs
depend on the removal duration per turbine (trem), the capacity of the jack-up vessel (VC), the
vessels’ day rate (VDR), the number of vessels (workboats, heavy lift vessels, SOVs, and jack-up
vessels) (Nv), and the cost of technicians (Cpers). As such, C5:1 ¼ f trem;VC;VDR; Nv; Cpers

� �
. The

site clearance cost depends mainly on the area of the wind farm, which can be calculated by taking
into account the rotor diameter and the number of wind turbines, as well as a mean clearance cost
per km2 (cclear), as in (Kaiser and Snyder 2012) C5:2 ¼ f d;NWT ; cclearð Þ. The transportation cost is
associated to the total mass of the wind farm components (Wcomp), the truck cost per ton-mile
(Ctr;ptm), the capacity of truck (CPtr), and the distance of port from the waste facility
(Dp�f ): C5:3 ¼ f Wcomp;Ctr;ptm;CPtr;Dp�f

� �
.

Case study presentation and application

Key assumptions of the wind farm site under the baseline scenario are included in Table 1. The
504 MW wind farm is located in the North Sea region. For the calculation of the energy produced
under the baseline scenario, the availability factor derived from analysis through the O&M simula-
tion was used (calculated 91.2%). Further, an efficiency factor of 90% was assumed accounting for
losses due to wake effects, cable losses, and so on. The electrical system consists of 33 kV array cables
and two offshore substations of 336 MW HVAC transmission system. Additionally, the transmission
assets are connected to the onshore substation by three AC export cables of 132 kV.

The total undiscounted CAPEX aggregating C1, C2, C3, and C5 were estimated equal to 1,698.3 M
£, while the mean undiscounted annual OPEX was found around 56.3 M£/year under the baseline
scenario. Nevertheless, the above figures need to be adjusted for the inflation rate and the interest
rate, in order to account for the time value of money considering that the service life of an OW farm
is approximately 25 years. All costs were therefore discounted and inflated with the real discount rate
(WACCreal) integrating the nominal cost of capital (WACCnom) with the inflation rate (Rinfl),
according to Fisher equation (Barro 1997)

Table 1. Baseline specifications.

Characteristic values of the 3.6 MW wind turbine used for the baseline scenario

Total wind farm capacity, PWF 504 MW
Nameplate capacity, PWT 3.6 MW
Distance to port, D 36 km
Water depth, WD 26 m
Service life of the wind farm 25 years
Rotor diameter 107 m
Hub height 77.5 m
Pile diameter 6 m
Rated wind speed 13.5 m/s
Cut-in wind speed 4 m/s
Cut-out wind speed 25 m/s
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WACCreal ¼ 1þWACC
1þ Rinfl

� 1 � WACCnom � Rinfl (2)

where WACCnom was assumed equal to 8.81% (BVGA 2015) and Rinfl 2.5%. Further, the levelized
cost of energy (LCOE), which estimates the net present value of the unit cost of electricity produced
over the lifetime of the OW asset, can be calculated as

LCOE ¼
PTfarm

t¼0
LCCt

1þWACCrealð Þt
PTfarm

t¼0
E

1þWACCrealð Þt
; in =MWh (3)

where Tfarm (£) is the life time duration of the wind farm (from construction to decommissioning)
and E (MWh) is the total energy produced. Taking the above into consideration, the baseline LCOE
was estimated 112.6 £/MWh, the discounted total OPEX (dOPEX) 559 M£, and the discounted
CAPEX (dCAPEX) 1,351.9 M£. The above results conform well with the literature levelized cost
estimates for Round 3 OW projects commissioned in 2020 (BEIS 2016). Finally, the resulting
capacity factor was calculated (38.8%).

The parametric relationships linking the four key design parameters—namely, the wind turbine
capacity, water depth, distance from port, and wind farm capacity with the OPEX, CAPEX and
LCOE figures—were derived through nonlinear regression from a number of simulations of the
integrated cost model aiming to map the cost performance across the multidimensional domain of
the four independent variables. A set of complex relationships was assumed for this study based on
the observation of the relationship between the input global parameters and the output variables
(dCAPEX, dOPEX, and LCOE), ensuring a realistic approximation and avoiding cases of overfitting
which may reduce accuracy in the results. The outcome of the finite number of scenarios that were
run in order to map the cost domain is listed in Table 2, where the effect of the variable variation on
CAPEX, OPEX, and LCOE can also be observed. It was shown that wind turbine and wind farm
capacity have the greatest effect on CAPEX, OPEX, and LCOE. In fact, doubling the PWT while
keeping the rest of the variables stable results in 14%, 5.2%, and 5.8% decrease in the respective
investment performance indicators; the corresponding effect of PWF resulted in 77%, 92.3%, and
−2.4% variation from the baseline case. The next most impactful variable on LCOE proved to be the
distance from port.

Results and discussion

Based on the data presented in Table 1, which illustrate the results of the different scenarios derived
from the high fidelity cost model, each of the chosen variables (PWT , WD, D, and PWF) was studied

Table 2. Results from the application of the model to a number of scenarios.

Scenario PWT (MW)x1 WD (m)x2 D (km)x3 PWF (MW)x4 dOPEX (£) dCAPEX (£) LCOE (£/MWh)

Baseline 3.6 26 36 504 559,000,000 1,351,900,000 112.6
#1 1.8 26 36 504 709,750,000 1,512,500,000 135.2
#2 7 26 36 504 481,420,000 1,281,400,000 106.1
#3 5.3 26 36 504 510,370,000 1,274,100,000 110.3
#4 3.6 13 36 504 559,000,000 1,318,500,000 110.7
#5 3.6 52 36 504 559,000,000 1,418,800,000 116.6
#6 3.6 39 36 504 559,000,000 1,385,400,000 114.6
#7 3.6 26 18 504 557,590,000 1,303,500,000 107.6
#8 3.6 26 72 504 573,260,000 1,448,700,000 126.9
#9 3.6 26 54 504 559,390,000 1,400,300,000 115.0
#10 3.6 26 36 252 341,250,000 743,920,000 130.0
#11 3.6 26 36 1008 989,090,000 2,600,300,000 109.9
#12 3.6 26 36 756 771,040,000 1,970,300,000 111.2

Note: Bold numbers indicate which values change (in relation to the baseline case) at each scenario analysed.
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independently in order to qualify the most appropriate regression expression to capture the trend in
the overall dependent variables. This allowed for a series of nonlinear expressions to be developed,
which would better represent these trends not only for interpolation between the limits that were set
through the different scenarios but also for extrapolation near these limits. More specifically, it was
found from the results of the scenarios that for variable PWT , all three dependent variables were
better fitted through power equations. For WD, OPEX was constant (independent from water
depth), while CAPEX and LCOE were better fitted through linear equations. Accordingly, for D,
OPEX and LCOE were fitted through exponential and polynomial equations, respectively, while for
CAPEX a linear equation was chosen. Finally, for PWF, linear equations were fitted for CAPEX and
OPEX and a power equation for the LCOE.

Once the most appropriate regression expressions were determined, a set of overall relationships
were developed for each of the dependent variables, and the nonlinear coefficients were estimated
through application of the maximum likelihood method for a predetermined shape of the target
equation. The analysis also returned the overall value for the regression coefficients, providing an
indication on the overall quality of fit of the quantities considered. Based on the above, the following
three expressions are proposed, considering the most up-to-date information and high-fidelity cost
modelling structure in order to link the macro variables, namely PWT (MW), WD (m), D (km), and
PWF (MW) to the OPEX, CAPEX, and LCOE figures.

dOPEX ¼ �6:349 � 108 � PWT
0:187 þ 2:595 � 10�19 � exp 0:830 � Dð Þ þ 8:413 � 105 � PWF þ 9:506 � 108; in (4)

dCAPEX ¼ �1:485 � 1011 � PWT
0:001 þ 2:353 � 106 �WDþ 2:530 � 106 � Dþ 2:451 � 106 � PWF

þ 1:487 � 1011; in (5)

LCOE ¼ 110:370 � PWT
�2:260 þ 0:167 �WDþ 0:004 � D2 þ 0:001 � Dþ 2:889 � 109 � PWF

�3:399

þ 95:045; in =MWh
(6)

The R2 for each of the expressions are 0.986, 0.999, and 0.983, respectively, denoting a satisfactory fit
to the original data. Further, the data for the independent variables for the different scenarios were
used as predictors using the regression coefficients, and the average value of the absolute errors that
were measured in each case were 1.62%, 0.83%, and 0.82%. Finally, a series of separate test scenarios
were run in order to test the performance of the model while interpolating, and the results are
summarized in Table 3.

Following the test scenarios that were run, a series of plots were also produced and are presented
in Figure 5, illustrating the effect of each of the independent variables to the dependent ones.

Increase in the wind turbine rating results in an inverse exponential reduction in all three costs:
CAPEX and OPEX due to the fact that less units need to be installed and maintained, and LCOE due
to the reduced costs and increased expected power production. Distance from shore increases

Table 3. Testing scenarios and results produced by model and parametric expressions.

Testing scenarios #t1 #t2 #t3 #t4

PWT 6 3.6 3.6 3.6
WD 26 15.6 26 15.6
D 36 36 21.6 21.6
PWF 504 504 504 302.4

dOPEX (£) Par. expression 4.872E+08 5.680E+08 5.680E+08 3.984E+08
Cost model 5.036E+08 5.590E+08 5.569E+08 3.909E+08
Error (%) −3.3% 1.6% 2.0% 1.9%

dCAPEX (£) Par. expression 1.269E+09 1.336E+09 1.324E+09 8.055E+08
Cost model 1.293E+09 1.325E+09 1.313E+09 8.108E+08
Error (%) −1.8% 0.8% 0.8% −0.7%

LCOE (£/MWh) Par. expression 108.4 110.9 109.3 116.3
Cost model 107.6 111.1 107.2 115.7
Error (%) 0.8% −0.2% 1.9% 0.5%

Note: Bold numbers indicate which values change (in relation to the baseline case) at each scenario analysed.
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CAPEX linearly, while OPEX and LCOE increase exponentially. Increase in water depth does not
affect OPEX, while it results in almost a linear increase in CAPEX and LCOE mainly due to the
additional cost of the foundation and support structure as well as installation. Finally, increase in
total wind farm capacity increases proportionally the amount of OPEX and CAPEX, while presents
an inverse exponential reduction trend to LCOE for the given wind turbine rating due to the higher
energy production and the reduced costs per wind turbine. It should be noted that the applicability
range of these equations yields mainly for interpolation of values for independent variables, i.e.,
selection of values within the upper and lower limits included in Table 2. Extrapolating for values
significantly out of this range would introduce higher errors as coefficients should be calibrated
following a new set of initial simulations with the integrated cost model.

Conclusions

As the OW energy industry is developing, understanding the key cost factors of wind farm
developments is a pertinent condition toward benchmarking the suitability of different deployment
options. In this work, a set of parametric equations linking wind turbine capacity, water depth,
distance from port, and wind farm capacity with the discounted total OPEX, CAPEX, and LCOE
figures were developed, based on a number of high-fidelity cost simulations and regressions of the
results. Further, this article characterizes the effect of these variables on CAPEX, OPEX, and LCOE.
It was shown that wind turbine and wind farm capacity have the greatest effect on CAPEX, OPEX,
and LCOE. A future expansion of the model could potentially include more variables, so as to
increase the accuracy of results, such as the interest rate which has a considerable effect on LCOE
and on the discounted values of capital and operational costs. Further, the inclusion of the wind
resource of the installation site could potentially improve the energy output prediction and hence,
provide a better informed expression for LCOE; while the inclusion of the soil conditions, aero-
dynamic, and wind and wave loads at the installation site would increase the accuracy of the
production and acquisition cost of the foundations and wind turbines, leading, however, to more
complex relationships requiring more input data.

The high-level expressions developed in this work are expected to assist investors, researchers,
and other stakeholders to derive initial estimates for wind farm projects based on global variables
within the applicability range as defined above. Additionally, it should be highlighted that results
from the above expressions should be treated with caution as input data have been adopted from
wind farms mainly installed in North Europe, since no data currently exist for the USA or Asian OW
farms.
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Abstract 

Increasing investment activity in offshore wind energy projects has induced the need 

for an improved valuation framework of the assets. As opposed to the deterministic 

valuation models currently available, a probabilistic analysis can provide decision 

support with assigned confidence levels, taking into account uncertainties inherent in 

the analysis. To this end, departing from an integrated lifecycle techno-economic 

model developed by the authors, the present study develops a probabilistic approach 

considering time-dependent and independent stochastic variables. To this end, 

advanced numerical methods, namely Artificial Neural Network (ANN) approximation 

model and an Auto-Regressive Integrated Moving Average (ARIMA) time series model 

are combined with Monte Carlo simulations in order to assess the impact of the system 

uncertainties on the performance of the asset. Joint probability distributions of the 

output variables, namely the NPV, capital cost, annual operating cost and LCOE are 

presented, providing insights regarding the profitability of the asset within defined 

confidence intervals. 

Keywords: offshore wind; stochastic valuation; ARIMA; Artificial Neural Networks; 

Monte Carlo simulation 
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1 Introduction 

WindEurope’s Central Scenario projects 323 GW of cumulative wind energy capacity 

to be installed in the EU by 2030, out of which 253 GW will originate from onshore and 

70 GW from offshore wind (OW) energy installations [1]. In 2017, 3,148 MW net 

additional offshore wind capacity was installed in Europe, reaching a cumulative 

capacity of 15,780 MW, corresponding to approximately 22.5% of target attainment, 

while almost half of this capacity (7.1GW) is installed in the UK. Investments in 

offshore wind amounted to 7.5 billion Euros, reaching cumulatively 74.3 billion Euros 

since 2010 [2]. For the aforementioned ambitious targets to be achieved, accurately 

assessing the costs of offshore wind generation is pertinent towards evaluating the 

economic aspect of the offshore wind technology and associated investments.    

Offshore wind levelized cost of electricity (LCOE), which is the net present value of 

the unit-cost of electricity over the lifetime of a generating asset, can be estimated by 

calculating the following components: 1) capital expenditures (CAPEX), 2) operating 

expenditures (OPEX), 3) financial expenditures (FINEX) and 4) the amount of energy 

production. Fig. 1 and 2, gather ranges of CAPEX and OPEX cost estimates for 

offshore wind installations based on historical data of installed projects and surveys of 

project developers. These figures suggest that there is significant scatter of data 

between different sources denoting a high degree of uncertainty across the industry. 

This is mainly due to the ongoing development of the supply chain, upscaling of new 

generation offshore wind farms, increased demand of new assets pushing upwards 

the CAPEX and reduced confidence in the assessment of Operation and Maintenance 

(O&M) costs of aging assets.  

Literature in cost modelling of offshore wind energy assets has been recently 

expanding. In [3] a general cost model taking into account the pre-investment and 

investment stages of OW farms is proposed; the model is, then, applied to indicate the 

most suitable wind farm layout. Installation and decommissioning costs of offshore 

wind farms have been analysed by Kaiser and Snyder, based on existing data of 

European wind farms [4,5]. A lifecycle cost model of different offshore floating wind 

turbine concepts was developed in [6]. Authors in [7] have developed a parametric 
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whole life cost model of offshore wind farms, which requires less input data compared 

to other models available, aiming to provide a simple framework for estimating the 

LCOE of the investment. Finally, Ioannou et al [8] have proposed a high-fidelity cost 

model taking into account the different stages and key cost components of the life 

cycle costing of an offshore wind farm, based on the most up to date available 

parametric equations and developing further ones based on available real data.   

  

Figure 1 Range of capital costs (£m/MW)  
converted to 2015 £ currency 
(Sources:[9–13]) 

Figure 2 Range of operating costs 

(£/MWh) converted to 2015 £ currency 

(Sources:[9–13]) 

Several tools have been developed to date to predict costs of offshore wind energy. A 

basic LCOE prediction tool has been developed by BVGA [14] in the context of the 

Department of Energy and Climate Change (DECC) Offshore Wind Programme to 

enable identification of high-impact (in terms of LCOE reduction) technological 

developments in offshore wind farm reaching financial investment decision (FID) in 

2020. The tool incorporates a number of benchmark base case scenarios with a few 

predetermined design parameters: nameplate capacity, water depth, foundation style, 

currency year. It can be used for evaluating the impact of change in OPEX, CAPEX, 

decommissioning costs, energy generation and WACC (weighted average cost of 

capital) on the final cost of energy. A stochastic expansion of the last model through 

the employment of Monte Carlo simulations was performed in [15]. Another model 

widely available is the Cost of Renewable Energy Spreadsheet Tool (CREST) 
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provided by the National Renewable Energy Laboratory (NREL), which calculates the 

cost of energy (COE) and the LCOE for a range of solar, wind and geothermal 

electricity generation projects [16]. System Advisor Model (SAM) is a performance and 

financial model designed to facilitate decision making in the renewable energy 

industry. SAM includes several libraries of performance data and coefficients that 

describe the characteristics of system components such as photovoltaic modules and 

inverters, parabolic trough receivers and collectors, wind turbines, and biopower 

combustion systems. For those components, the user can simply choose an option 

from a list, and SAM applies values from online databases [17]. ECN has developed 

an offshore wind energy costs and potential (OWECOP) model, evaluating the cost of 

energy for offshore wind energy using a GIS database. A probabilistic analysis was 

implemented into the OWECOP cost model to form OWECOP-Prob [18].  

Although deterministic models can support decisions pertinent to the development and 

operation of an offshore wind farm, they lack the ability to systematically account for 

the inherent uncertainty of input parameters when predicting the economic feasibility 

of a wind power project. To this end, a probabilistic/stochastic approach can 

significantly increase value of the outputs of the analysis, assigning confidence levels 

to the predictions towards better informed decisions. Stochastic cost modelling of 

power generation technologies has been applied in numerous studies focusing on 

fossil fuel [19], nuclear [20] as well as renewable power plants [21]. A probabilistic cost 

model for a solar power plant in USA was developed in [22]. Pereira et al. [23] 

presented a methodology based on Monte Carlo simulation to estimate the behaviour 

of economic parameters and applied it in a rooftop photovoltaic system in Brazil. 

Arnold et al. [24] and Amigun et al. [25] focused on analysing economic uncertainties 

regarding renewable energy technologies with a case study on bio-energy 

infrastructure. The profitability of wind energy investments was investigated by Caralis 

et al. [26] for different regions in China. Wind intermittency related to long-term cost 

analysis that compares the wind power to non-renewable generating technologies was 

studied by Li et al. [27]. 

The aim of this paper is to develop a stochastic financial valuation framework for 

offshore wind energy investments based on a high-fidelity techno-economic model, 
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incorporating the uncertainties arising from stochastic inputs systematically. For this 

to be achieved Monte Carlo simulations have been adopted to account for time-

independent stochastic variables, while Auto-Regressive Integrated Moving Average 

(ARIMA) time series model has been considered for time dependent stochastic 

variables. Adoption of a machine learning algorithm, Artificial Neural Network (ANN), 

allowed for regression from a finite number of simulations of the O&M costs, to reduce 

the complexity of the model and hence allow for a computationally efficient iterative 

process. Although employment of these methods is reported independently in 

literature, there is limited reference for their application in the systematic stochastic 

cost modelling of renewable energy applications. This work will be of value to 

researchers and practitioners working on the planning and optimisation of offshore 

wind energy assets, while the approach followed can be extended to a wide spectrum 

of similar applications. 

The rest of the paper is structured as follows; section 2 provides an overview of the 

high-fidelity deterministic cost model and the methodological approach that was 

followed for the stochastic expansion of the model. In section 3, the advanced 

numerical methods applied to model stochastic inputs (time dependent and 

independent variables) are analysed, while in section 4 we present the case study 

characteristics, the stochastic variables that were modelled as well as the outputs of 

the deterministic cost model under the baseline scenario. Finally, in section 5, the 

results of the stochastic analysis are described and section 6 includes the main 

conclusions of this work. 

2 Deterministic lifecycle techno-economic model 

2.1 Structure of the model 

The profitability of an offshore wind farm is evaluated through a high-fidelity 

deterministic lifecycle (LC) techno-economic model developed by the authors [8]. The 

conceptual framework of the model is illustrated in Fig. 3. Briefly, the model consists 

of: (a) the CAPEX module, compiling  costs throughout the development and 

consenting (D&C), production and acquisition (P&A), installation and commissioning 

(I&C) and decommissioning and disposal (D&D) stages of the OW farm, (b) the 
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general site characteristics module with details on the weather conditions, site water 

depth, distance from port,  etc., (c) the FINEX module with parameters related to the 

financing expenditures, namely the Weighted Average Cost of Capital (WACC), 

inflation rate, corporate tax and the equity to debt ratio, (d) the OPEX module 

incorporating latest reliability data, vessels weather limits data and vessel and 

technician costs, in order to derive O&M cost estimates and (e) the revenue module 

which encapsulates the net power generation and the selling price of power output. 

In more detail, for the CAPEX costs, the design and consent (D&C) phase costs 

consist of the legal, environmental survey, engineering, contingency and project 

management costs. The production and acquisition (P&A) phase can be further 

decomposed to: the acquisition of the turbine, the foundation, the electric system and 

the control system. The cost of the electric system comprises the cost of array, export 

and onshore cables and the cost of the substation. The installation and commissioning 

(I&C) costs of the OW farm comprise the installation of the wind turbine and tower, 

foundation and transition piece, scour protection, electric system, and the insurance 

costs. For the development of the CAPEX module and the estimation of total capital 

costs, the most up-to-date parametric expressions were integrated from literature 

while where latest data were available, new parametric equations were developed. 

The OPEX module has been modelled by the use of the commercial ECN O&M Tool  

[28]. Inputs required by the tool include: an updated database of failure rates, the 

weather limits of the vessels, the number of technicians required for repairs, cost of 

repairs, and historic weather data, among others. Output of the analysis is the 

availability of the wind farm and the annual O&M costs to be integrated to the LC cost 

assessment. 

Finally, for the decommissioning and disposal (D&D) cost of the wind farm the 

following aspects are taken into account: the removal of the wind turbine (nacelle, 

tower and transition piece) as well as the balance of the plant (foundations, scour 

protection, cables and substations), the site clearance, the onshore transportation to 

the disposal sites, the port preparation, the disposal process and finally the hiring 

vessels costs.  
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Figure 3 Overview of deterministic techno-economic model 

The deterministic techno-economic model has been programmed in Matlab, to 

facilitate parametric simulations and visualisation of the results. It derives a series of 

cost outputs for each of the five phases described above, as well as costs and key 

profitability indicators for the lifecycle cost/revenue profile of the offshore wind farm 

(OWF) investment, namely the net present value (NPV), internal rate of return (IRR), 

break-even point, as well as the levelised cost of electricity (LCOE). The model has 

been verified through comparison with available data and can be considered a reliable 

option for further analysis [7,29,30]. Within this present work, this cost model is 

extended to allow for a number of iterative Monte Carlo simulations to be executed to 

evaluate the effect of stochasticity of inputs to the outputs. For this to be achieved, a 

surrogate model is constructed through an ANN, based on a finite number of numerical 

simulations, in order to avoid the time consuming high-fidelity simulations required for 

the O&M tool initially employed; further, consideration of the electricity price will be 

modelled through an Auto-Regressive Integrated Moving Average (ARIMA) model to 
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account for the time-dependent variability of this specific variable. These additional 

features are presented in detail in section 3. 

2.2 Stochastic expansion of the lifecycle techno-economic model 

The approach followed herein constitutes a non-intrusive formulation allowing for a set 

of well-established discrete steps to be followed. In order to extend the applicability of 

the model, an approximation model will be adopted integrating Artificial Neural 

Networks (ANNs) in order to link deterministic inputs with outputs alleviating the need 

of analytical calculations through the analytic O&M tool and also allow for combination 

of Monte Carlo simulations at a reasonable computational effort and further 

consideration of the ARIMA model to derive forecasting values for the future electricity 

market price which is a time-dependent stochastic variable. The sequence of steps to 

be followed is shown in Fig. 4 and presented further below. 

i. Development of cost model: This step accounts for the high-fidelity 

deterministic cost model that has been presented in section 2.1 and in 

reference [8]. 

ii. Identification of stochastic input variables: Selection of the stochastic variables 

should be carefully selected as their number will significantly influence the 

computational effort required for the analysis. The selected variables have been 

chosen following a sensitivity analysis and setting of a cut-off point, gradually 

increasing/decreasing by 20% the value of each variable and comparing with a 

baseline case. 

iii. Identification of key output variables: For the expression of the results of this 

study, the NPV, IRR, cumulative cost/revenues, break-even point, LCOE are 

relevant. 

iv. Generalization of the O&M costs through an ANN model: In order to be able to 

integrate the high-fidelity O&M tool initially employed, a surrogate model will be 

developed based on a series of deterministic simulations in order to map the 

response of the system. Starting from a baseline case, a series of combinations 

of the stochastic variables will be planned in order to provide an appropriate 

data set of input and output values that will later on be approximated. Selection 

of the total number of simulations will be a compromise between the number 
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and computational effort required per simulation. A finite number of simulations 

is then executed in the commercial O&M tool as described above and data will 

be recorded in an inputs/targets format. Then, an Artificial Neural Network 

(ANN) is developed. Outcome of this model is a non-analytic expression that 

can provide approximations of key outputs as a function of given inputs. 

v. For time dependent stochastic variables, the Auto-Regressive Integrated 

Moving Average (ARIMA) approach is adopted to generate time series based 

on available historical data. This will allow for a random data set of values of 

electricity price to be considered, for each of the simulations that will run. 

vi. For time independent stochastic variables, appropriate probability distribution 

functions will be assigned. In the absence of real data, normal and uniform 

distributions will be chosen for the analysis, which is a common practice 

followed by other researchers such as in [31]. 

vii. Run a number of Monte-Carlo Simulations: Once the above steps are 

completed, a series of Monte Carlo simulations will be executed in order to 

derive the joint probability distribution of the key performance indicators 

determined in step (iii). Following a convergence study, it was found that 10,000 

iterations would be sufficient for results that converge in specific values. 

Transition from deterministic to stochastic expression of results, implies that 

instead of a set of fixed output values (i.e. LCOE) derived from a deterministic 

set of input values, the output is expressed as the probability that the output 

value lies within a set threshold. 

viii. Interpretation of results and sensitivity analysis: Once the algorithm has been 

developed, a sensitivity analysis of the input variables will take place 

distinguishing those with the higher impact to the output variables as well as 

investigating the impact of statistical modelling of input variables. Results are 

best presented through tornado graphs. 
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Figure 4 Methodological steps 
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3 Advanced numerical methods for stochastic modelling 

3.1 Development of approximation models for O&M costs 

3.1.1 Artificial Neural Network (ANN) modelling approach 

An Artificial Neural Network (ANN) is a powerful data modelling tool able to capture 

and simulate complex input/output relationships [32]. It comprises a large number of 

interconnected neurons with linear and nonlinear transfer functions and can be even 

used to predict the nonlinear behaviour of a system [33]. In general, the structure of 

ANNs consists of an input layer, one or more hidden layers and an output layer. 

Conventional mathematical models, such as common approximation models, use an 

algorithmic approach following a set of steps to solve a problem; unless these steps 

are known, the problem cannot be solved, restricting the problem-solving capability of 

conventional models. ANN ‘learns’ the relations between the inputs and outputs by 

training. 

The input to each neuron can be the network input from the input layer, the output of 

the neuron in the previous layer, and an externally applied bias [34]. The output of 

each neuron is the function of the weighted sum of the neuron inputs, with the 

hyperbolic tangent sigmoid transfer function (Eq. (1)) used in the hidden layer and the 

linear function (Eq. (2)) used in the output layer. The weights and bias are determined 

in the training process by minimising the error between the ANN outputs and the 

design matrix [31]. 

𝑓(𝜑) =
2

1 + 𝜀−2(∑ 𝑤𝑖∙𝑢𝑖
𝑘
𝑖=1 +𝜃)

− 1 (1) 

𝑓(𝜑) =∑𝑤𝑖 ∙ 𝑢𝑖

𝑘

𝑖=1

+ 𝜃 (2) 

where, φ is the Neuron output; θ is the ANN layer bias; 𝑤𝑖 is the ANN node weight and 

𝑢𝑖 is the stochastic variable. 
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In this analysis, the MATLAB Neural Network Fitting toolbox was used, with a two-

layer feed-forward ANN with ten sigmoid hidden neurons and linear output neurons, 

to map the system response generated from the process model (based on the design 

matrix inputs).  

To ensure an accurate prediction by the ANN, the data in the design matrix were 

divided between training (70%), validation (15%) and testing (15%) samples. Neural 

network training was performed to adjust the weights of all the connecting nodes until 

the desired network performance was reached. The evaluation of network 

performance is essentially a nonlinear optimisation process and the objective function 

involves minimisation of an error function, e.g. mean squared error (MSE). In this 

study, the Bayesian Regularisation training algorithm was used as it can provide a 

better solution than other available algorithms for smaller problems to obtain the 

optimal values of the adjustable parameters, weights and biases. The MSE 

performance function (Eq. 3) was used to assess the network performance. 

𝑀𝑆𝐸 =
1

𝑁
∑(𝑧𝑖 − 𝑦𝑖)

2 → 𝑚𝑖𝑛

𝑁

𝑖=1

 (3) 

where, 𝑧𝑖: the targets, 𝑦𝑖: network outputs and 𝑁:data size. 

ANNs have been commonly applied in energy-related problems. Kalogirou has 

performed a literature review in energy systems applications, including solar steam 

generators and water heating systems, photovoltaic systems, as well as in forecasting 

and prediction of solar radiation and wind speed, among others [35]. In the more recent 

literature, a number of studies have used ANN for estimating building energy 

consumption [34,36,37]. In [38], authors present a methodology to forecast the diurnal 

cooling load for institutional buildings, by training and forecasting with ANNs the next 

day energy use based on five previous days’ data. Smrekar et al. developed ANN 

models of a coal-fired boiler of a CHP plant in Slovenia in order to predict mass flow, 

pressure and temperature of steam exiting the boiler [33]. ANNs were also used in 

[39] to solve a number of problems in photovoltaic systems applications. A recent 

study combined ANN approximation models and Monte Carlo simulations (MCS) to 
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map the response domain of an innovative energy recovery system under varying 

inputs [31]. 

The ANN method was employed in this study as a robust approximation method that 

can derive outputs relevant to the O&M phase of the investment in an efficient way 

through mapping the response of the system under varying sets of input parameters. 

This method was considered appropriate since stochastic analysis through the high-

fidelity O&M Tool would require a large number of direct simulations to take place. 

Hence, this study utilises the deterministic O&M tool to produce a design matrix which 

is accordingly used to generate the ANN approximation model. The latter is, then, able 

to use the input variables to return the output values, even when their relationship is 

nonlinear. In this study, input parameters were considered the following: the average 

repair cost, the Mean Time To Failure (MTTF), the workboat significant height limit, 

the workboat work day rate, the jack up (JUV) vessel day rate, the JUV mobilisation/ 

demobilisation cost and the fixed annual cost per technician. Output variables were: 

the repair cost, the total OPEX and the net power production of the wind farm.    

3.1.2  Accuracy of the ANN model 

To validate the capacity of the derived ANN to accurately predict the values of the 

dependent variables, a series of tests were run as part of the analysis. Firstly, the 

regression plots, which can be found in Fig. 5 display the network outputs with respect 

to targets for training, validation, and test sets. As shown in Fig. 5, all data fall along 

the fit line, indicating that the network outputs are equal to the targets. In this case, the 

outputs of the networks are: the repair cost, the net energy production and the annual 

operating cost. This is summarised to obtained R values equal to 1. 
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Figure 5 Regression plots 

Further, an error histogram is compiled (Fig. 6) providing an indication of outliers, 

which are data points where the fit is significantly worse than the majority of data. In 

this case, the mode bar coincides well with the zero-error value, denoting a good fit 

with a very small number of values lying outside the range of this bar. The process 

was repeated to account for the stochasticity of the process and similar results were 

obtained. An analysis of the performance of the network calculating the mean square 

error of the prediction, shows converging trend in performance after epoch 150, 

denoting a sufficient number of epochs selected (i.e. 1,000). Finally, on an additional 

analysis of the ANN capability, using the inputs of the initial decision matrix to predict 

the outputs has returned an average absolute error in prediction of 0.05%. 
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Figure 6 ANN error plot 

3.2 Stochastic modelling of electricity prices  

3.2.1 ARIMA model approach 

In this section, the modelling approach of monthly wholesale electricity prices is 

presented. Electricity prices appeared to have a considerable impact on the 

profitability of the investment according to the sensitivity analysis on the Net Present 

value (as will be presented later on). Further, considering the zero-subsidy bids lately 

awarded to offshore wind projects [40], it becomes evident that accurate forecasting 

of market electricity prices can significantly contribute towards a more informed 

assessment of revenues.   

Numerous forecasting techniques for electricity prices can be found in literature. In 

[41], electricity price forecast techniques are categorised into: multi-agent, 

fundamental methods, reduced-form models, statistical approaches and 

computational intelligence techniques. Statistical methods forecast the current value 

of a time series by applying a mathematical correlation of the previous values with the 

current values. ARIMA or Box-Jenkins model [42] is a statistical method standing for 

autoregressive (AR) integrated (I) moving average (MA) and it is a generalisation of 
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the Autoregressive Moving Average model (ARMA), where “I” (standing for Integrated) 

is a differencing step that is used to remove trend or seasonality from the time series. 

ARIMA models use standard notation of ARIMA(p,d,q) and (P,D,Q) for their seasonal 

counterparts. In power systems applications, ARIMA models have been used for load 

forecasting [43,44], with good results, as well as to model and forecast day-ahead 

electricity prices [45,46] and weekly prices [47]. ARIMA method was deemed 

appropriate for this study considering the ability of the method to take into account the 

seasonal trend of the dataset of electricity prices. 

 The Autoregressive part (p) specifies which previous values from the data 

series are used to predict the current values or else the number of 

autoregressive orders. 

 The Difference part (d) specifies the order of differencing of the time series 

before the application of the model. To apply the ARIMA model, the dataset is 

required to be stationary; if not, a transformation of the series to the stationary 

form needs to take place. Differencing is one of the simplest ways to achieve 

this. Box and Jenkins (1976) introduced a model that contains not only the 

autoregressive and moving average parts, but also the differencing part [42]. 

 The moving average part (q) specifies the moving average orders in the model, 

namely how the mean values deviation of the previous time series are used to 

predict the current values. 

As such, the mathematical formulation of the ARIMA(p,d,q) model can be described 

using a lag operator notation (defined as 𝐿𝑖𝑋𝑡 = 𝑋𝑡−𝑖) as follows:  

𝜑(𝐿)(1 − 𝐿)𝑑𝑋𝑡 = 𝑐 + 𝜃(𝐿)𝜀𝑡 (4) 

where, 𝑋𝑡 is the price at time 𝑡, 𝑐 a constant term, 𝑑 the differencing order, 𝜀𝑡 is the 

random error at time 𝑡; further, 𝜑(𝐿) are the parameters of the AR model formulated 

as: 

𝜑(𝐿) = 1 − 𝜑1𝐿−. . . −𝜑𝑝𝐿
𝑝 (5) 
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where, 𝑝 refers to the autoregressive terms, while 𝜃(𝐿) are the parameters of the 

MA(q) model expressed as: 

𝜃(𝐿) = 1 + 𝜃1𝐿+. . . +𝜃𝑞𝐿
𝑞 (6) 

where 𝑞 refers to the moving average terms [48]. 

3.2.2 Application of ARIMA model  

In this study, monthly data of the wholesale electricity prices were collected from 

different sources [49,50] to compile a monthly dataset starting from March 2003 to 

February 2018. The dataset (178 observations) was divided into two parts, the first 

consisting of 142 observations, which was used to build the model and the second of 

36 observations for testing the model (corresponding to a ratio 80% (for building) / 

20% (for testing the model)). 

In order to identify the best-fitting ARIMA model for the monthly electricity prices, the 

time series Expert Modeler of SPSS was used, eliminating the need to identify an 

appropriate model through a manual trial and error process [51]. The tool indicated an 

ARIMA(2,1,2)(1,0,1) model consisting of non-seasonal and seasonal parts with a 

periodicity set to 12, while the tool was also set to automatically detect outliers of 

different types. Above notation means that the series was differenced once at lag-1; 

further, the model includes 𝑋𝑡−2 and 𝜀𝑡−2, as well as a seasonal lag-12 AR term and a 

seasonal lag-12 error term. Accordingly, we simulated 10,000 sample paths from the 

ARIMA model. The 50% upper and lower confidence limits of the resulting model for 

the first part of the dataset, as well as the observed data for 2015-2017 (2nd part of the 

dataset) are illustrated in Fig. 7. The mean absolute percentage error between the 

observed data and the average values of the forecasted data (mean annual probability 

distributions of forecasted prices are depicted in Fig. 8) was calculated 7%, indicating 

a relatively good fitness of the model to the dataset.  
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Figure 7 Testing of ARIMA(2,1,2)(1,0,1)12 model for the prediction of wholesale 

electricity prices 

 

Figure 8 Mean annual probability distributions of forecasted electricity prices between 

2015-2017 

Assuming that the power output of the offshore wind farm is sold on the wholesale 

electricity prices from 2018 onwards for ten years, the ARIMA model built, was further 

applied to forecast values of wholesale electricity prices from 2018 to 2027. Table 1 

summarises the goodness-of-fit measures of the time series model. The R-squared 

value is an estimate of the proportion of the total variation in the series that is explained 

by the model; hence values closer to 1 signify a better fit. The stationary R-squared 

measure is an appropriate measure when there is a trend or a seasonal pattern in the 

time series, since it compares the stationary part of a model with a simple average 

model [52]. The mean absolute percentage error of the model (MAPE) was estimated 

7.5%, i.e. a similar magnitude of the deviation found when testing the model by means 
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of the two dataset parts. MaxAPE stands for the maximum average percentage error 

and captures the worst-case scenario of the forecast. Further, the Ljung-Box statistics 

showed that the model is specified correctly by returning a significance value of greater 

than 0.05. Finally, after simulating 10,000 sample paths of the model for the period 

2015-2017, the mean annual probability distributions were included in Fig. 9, while 

Fig. 10 illustrates the 50% upper and lower confidence limits of the forecasted values. 

Predicted mean annual values illustrated in Fig. 9 were introduced in the stochastic 

cost model to predict cost inflows after the 15-year period that CfD tariff scheme is in 

effect. 

Table 1 Model statistics 

Fit Statistic Model Fit 

Stationary R-squared 0.669 

R-squared 0.930 

MAPE 7.448 

MaxAPE 32.746 

  

Figure 9 Mean annual probability distributions of forecasted electricity prices between 

2018-2027 
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Figure 10 Applying the ARIMA(2,1,2)(1,0,1)12 model for forecasting the 2018-2025 

wholesale electricity prices 

4 Case study 

4.1 Specifications of the case study 

The baseline case study refers to a 504 MW wind farm located in the North Sea region, 

36km away from shore. Weather data were retrieved from BTM ARGOSS [53] for 

modelling the operational phase of the asset. In Table 2, the wind farm specifications 

are summarised.  

Weather limits of the vessels, along with the day rates, speed, mobilisation/ 

demobilisation time/cost are included in Table 3. The wind speed limit measurements 

are referenced at 10m above the mean water level. The mobilisation activities refer to 

the planning and modifying of a vessel for a marine mission, while the demobilisation 

to the restoring of the vessel for release and reassignment to other operations. As far 

as the personnel cost is concerned, a rate of £270/day is assumed for additional 

professionals hired to perform mechanical/electrical operations for the installation, 

erection and other services [6,54]. 
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Inputs required by the ECN O&M tool include: an updated database of failure rates, 

the weather limits of the vessels, the number of technicians required for repairs, cost 

of repairs, and historic weather data, among others. The classification scheme of 

repairs was adopted from the Reliawind project [55]. As such, repairs were divided 

into minor repairs (up to 1,000€), major repairs (1,000€-10,000€) or major 

replacements (>10,000€). Data on the failure rates, average repair times, number of 

required technicians and material costs were retrieved from [56].  

Table 2 Case study wind farm specifications 

Wind farm characteristics Values  

Wind farm 

Total wind farm capacity 504MW 

Projected operational life of the wind farm 25years 

Construction years 5years 

Number of turbines 140 

General Site  

characteristics 

Distance to port 36km 

Water depth 26m 

Wind turbine 

Rotor diameter 107m 

Hub height 77.5m 

Pile diameter 6m 

Rated power 3.60MW 

Cut-in speed 4m/s 

Cut-out speed 25m/s 

Table 3 Transportation equipment specifications (Source: [8]) 

Vessel type 
Technician 

space 

Vessel 
speed 
(knots) 

Weather limits 
Mob. / 

Demob. 
Cost (k£) 

Mob. / 
Demob. 
Time (h) 

Day rate 
(k£/day) 

Sign. 
wave 
height 

(m) 

Wind 
speed 
(m/s) 

Crew transfer 
vessel 

12 26 1.8 16 - - 3.25 

Jack-up vessels - 10 2 10 405 720/48 112.6 
Heavy lift vessel - 9 - - 500 - 135 
Helicopter 6 - 99 20 4.7 8/4 4.7 
Diving support 
vessel (DSV) 

- 16 2 25 185 360 60 

Cable laying 
vessel  

- 14 1 10 445 720 
80 (Array) 

100 (Export) 
Rock dumping 
vessel 

- 13.5 - - 10.6 - 13.8 
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4.2 Deterministic profitability assessment  

The results of the evaluation of the profitability of the investment in deterministic terms 

are presented in this section. The total CAPEX was estimated £1.67 billion, annual 

OPEX £56.6 million, NPV=£284.36 million at a real discount rate of 6.15%, while the 

LCOE=108.9 £/MWh. The results indicate that P&A costs have the highest 

contribution to the LCOE value, accounting for 46%, while O&M costs correspond to 

30% of the total cost. A breakdown of the costs per Phase of the wind farm under the 

baseline case is illustrated in Fig. 11. 

 

Figure 11 Lifecycle costs breakdown 

4.3 Selection of stochastic variables 

A global sensitivity analysis (Fig. 12) of the deterministic cost revenue model was 

conducted using a ± 10/20% increase or decrease in the mean value of the key 

statistical parameters to determine their effect on the net present value. It was 

concluded that there are 23 input variables that can have a considerable effect on the 

NPV of the investment (>2% cut-off point). Particularly influential parameters appeared 

to be the strike price, the return rates of equity and debt, the MTTF, the share of equity, 

the cost of turbine, the inflation rate, the working hours per shift, the wholesale 

electricity prices and the workboat significant wave height limit, inducing an absolute 

variation of higher than 15% to the NPV of the investment. 
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Figure 12 Global sensitivity analysis of the deterministic model (variables are listed in 

descending order of effect on NPV) 

Above listed variables were assumed to be normally distributed, when the distribution 

of the random variables was unknown, with mean value their initial deterministic value 

and a 10% coefficient of variation (COV). The cost of turbines and foundations was 

calculated based on the different up-to-date parametric expressions available in 

literature as shown below. Wind turbine cost is usually expressed as a function of the 

turbine capacity and different parametric models have been developed in literature (as 

shown in Table 4). 
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Table 4 Wind turbine cost prediction expressions 

Source Parametric model Reference case study * 

[7] 𝑐𝑊𝑇 = 3 ∙ 106 𝑙𝑛(𝑃𝑊𝑇)  −  662,400 3.90 m£ / turbine 

[3] 
𝑐𝑊𝑇 = −255016 + 2 ∙ 106 ∙ log (PWT) 

in € (2011) 
£ 2.85 million/turbine plus the tower cost 

[57] 𝑐𝑊𝑇 = 1374 ∙ PWT
0.87 in k€ (2016) 

£ 3.37 million/turbine for the acquisition, 
shipping and assembling, and electrical 
installation 

* Costs are adjusted to a single currency (Pounds) at a single year (2017) to allow meaningful comparisons. 

Further, Table 5 summarises results from the application of different expressions 

found in the literature, linking foundation costs with water depth, turbine capacity, hub 

height and rotor diameter. 

Table 5 Foundation cost prediction expressions 

Sources Parametric model 
Reference case 

study* 

[57] 𝑐𝑓 = 363 ∙  PWT
1.06  , in  k€ (2017) 

1.14 £ 
million/foundation 

[3] 𝑐𝑓 = 8.17 ∙ WD + 389.3, in k€ (2011) 
2.77 £ 

million/foundation 

[6] 

𝑐𝑓 = 320 ∙ 1000 ∙  𝑃𝑊𝑇 ∙  (1 + 0.02 ∙ (𝑊𝐷 − 8))

∙ (1 + 8 ∙ 10−7 ∙ (ℎ ∙ ((
𝑑

2
)
2

− 100000))) 

2.07 £ 
million/foundation 

* Costs are adjusted to a single currency (Pounds) at a single year (2017) to allow meaningful comparisons. 

Uniform distributions were assumed for modelling the cost of foundations and turbines, 

by considering as the upper and lower limits, the highest and lowest costs respectively 

from the expressions summarised in Tables 4 and 5. Table 6 presents the stochastic 

variables, probability functions and the characteristic values of their probability 

distribution. 

The average repair costs of all wind turbine components were extracted, as mentioned 

above, from [56], while in order to account for the stochasticity of this set of parameters 

a multiplier following a normal distribution with mean value 1 and 10% COV was 
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applied to all average repair costs of each sub-assembly/component. The same 

approach was followed for the MTTF variable. 

Table 6 List of stochastic input parameters 

Variable 
Type of 

distribution 
Characteristic values 

CAPEX parameters   

Cost of wind turbine (million £/unit) Uniform Min: 2.85, Max: 3.37  

Cost of foundation (million £/unit) Uniform Min: 1.14, Max: 2.77  

Technicians shift duration (hours) Normal μ= 11, σ=1.1 

Weather adjustment factor Normal μ= 0.85, σ=0.085 

Contingency costs (million £) Normal μ=126.4, σ=12.6 

Cost of offshore substation (million £) Normal μ= 29.5, σ=2.95 

OPEX parameters   

Average repair cost (£) Normal μ= 1, σ=0.1 

Mean time to failure (h) Normal μ= 1, σ=0.1 

Revenue parameters   

Strike price (£/MWh) 3 Scenarios 

Wholesale electricity prices (£/MWh) ARIMA 

FINEX parameters   

Share of Equity (%) Normal μ= 30.00%, σ=3.00% 

Inflation rate (%) Normal μ= 2.50%, σ=0.25% 

Corporate tax (%) Normal μ= 17.00%, σ=1.70% 

Depreciation (%) Normal μ=18.00%, σ=1.80% 

Return on equity (%) Normal μ= 15.80%, σ=1.58% 

Interest rate on debt (%) Normal μ= 7.00%, σ=0.70% 

General parameters 
  

Workboat significant height limit (m) Normal μ= 1.8, σ=0.18 

Workboat work dayrate (£/day) Normal μ= 3,250, σ=325 

Jack up vessel dayrate (£/day) Normal μ= 112,600, σ=11,260 

JUV mobilisation /demobilisation cost (£) Normal μ= 405,000, σ=40,500 

Fixed annual cost per technician (£/year) Normal μ=95,000, σ=9,500 

5 Results 

5.1 Stochastic profitability assessment  

The joint probability distributions of the NPV, CAPEX, annual OPEX and LCOE are 

plotted in Fig. 13-16. Due to the significant impact of the strike price on the NPV of the 
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investment, probability plots under three different scenarios of strike prices, namely 

100, 120, 140 £/MWh, are presented. The resulting NPVs follow an approximately 

normal distribution. As expected, increasing the guaranteed tariff (strike price) on the 

wind farm energy output shifts the NPV probability distribution to the right, towards 

higher values of NPV, thus, increasing the value of the asset. As such, under a strike 

price of 120£/MWh, the chance of a negative NPV amounts to 47%, while for a strike 

price of 140 £/MWh, there is just 1% chance for the investment to yield a negative 

NPV. Finally, it is concluded that a strike price of 100 £/MWh would render the 

investment no longer profitable for the investor, since the chance of a positive NPV 

would fall below 1% under the specifications of the baseline scenario. 

 

Figure 13 Probabilistic results of NPV under three different strike prices (100, 120 and 

140 £/MWh).   

Further, the probability plot of LCOE is illustrated in Fig. 14 and it demonstrates there 

is a high probability at a 90% confidence interval for the investment cost of energy to 

lie within 93.6-115.5 £/MWh. The deterministic analysis of the LCOE has indicated a 

value of 108.9 £/MWh; nevertheless, according to the probabilistic analysis, it is 

deemed that there is an approximately 20% probability that the NPV can achieve 

higher values. Accordingly, the probability plot of investment cost approximates a 

normal distribution shape as depicted in Fig. 15. The CAPEX output lies in the range 

of £1.60-1.77 billion at a 90% confidence interval. The outcome of the deterministic 
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model (£1.67 billion) was concluded to lie in approximately the median value of the 

distribution derived from the stochastic analysis. The probabilistic results of annual 

OPEX (Fig. 16) indicated a range of £55.0-58.4 million per year for a CI of 90%.  

 

Figure 14 Probabilistic results of LCOE (£/MWh) 

 

 

Figure 15 Probabilistic results of Capital costs 
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Figure 16 Probabilistic results of O&M costs 

 

5.2 Sensitivity analysis 

A sensitivity analysis of the variability of the stochastic variables was accordingly 

applied, based on an assessment of an increase or decrease of 20% of the standard 

deviations of the key statistic parameters on the key performance indicator of the 

profitability of the investment. Considering the mean NPV resulting from the 

probabilistic analysis under strike price=140£/MWh (reaching a value of £ 266.1 

million) as the baseline case, the outcomes of the sensitivity analysis are presented in 

the Tornado plot of Fig.  17. It should be noted that since strike prices were modelled 

by means of scenarios and electricity prices by means of time series the sensitivity of 

NPV on their variability has not been included in this analysis. 

Variables whose variance appeared to have notable impact on the NPV were in 

descending order of impact: the cost of turbine component, the mean time to failure, 

the cost of foundation, the working hours and the weather adjustment factor. The 

general conclusion that can be drawn from this graph is that the increase in the 

standard deviation of key variables, results in increasing investment risk, hence 

reducing the profitability of the investment. Nevertheless, increasing the variance of 

some parameters such as the return on equity and the contingency costs appears to 
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result in slightly higher NPVs, which can be explained by the randomness of each 

Monte Carlo simulation. As shown above, considerable differences compared to the 

standard deterministic sensitivity analysis were observed, where the return rates of 

equity and debt, the MTTF, the share of equity, the cost of turbine, the inflation rate, 

and the working hours per shift were among the most significant variables. 

 

Figure 17 Tornado Chart - Sensitivity Analysis of standard deviations on NPV (£) 

 

6 Conclusions 

Uncertainty of key parameters needs to be considered when predicting the economic 

feasibility of offshore wind energy investments. This approach has the potential to 

increase the value of the outputs of the analysis, by assigning confidence levels to the 

predictions towards better informed decisions. The present paper proposes a 

probabilistic/stochastic approach which is based on the expansion of a high-fidelity 

deterministic lifecycle techno-economic model to account for numerous time 

independent and dependent uncertain inputs by applying advanced numerical 
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methods, such as Artificial Neural Networks (ANNs) and the Autoregressive Integrated 

Moving Average (ARIMA) model.  

To this end, following a global sensitivity analysis of the deterministic model, the most 

influential parameters were indicated and further modelled as either time-dependent 

or independent stochastic variables. ANNs were used to map the response of the O&M 

cost model under varying values of key input parameters, while forecasting of 

stochastic future wholesale market electricity prices was performed through an ARIMA 

model aiming to capture standard temporal structures of the time series dataset. 

Accordingly, Monte Carlo simulation was used to produce multiple sets of the 

stochastic variables and produce probability distributions of the output variables, 

namely the NPV, capital cost, annual operating cost and LCOE.   

The probabilistic analysis highlighted the strike price impact over the total value of the 

asset, indicating that a strike price of 140 £/MWh can give 99% probability for a 

profitable investment, while when this value decreases by 14%, the respective 

probability falls to 53%.  Further, a significant deviation between the deterministic NPV 

of the project (estimated £284.36 million) and the probabilistic mean value (£ 266.1 

million) was observed under the specifications of the baseline case. 

To the authors’ best knowledge, the present study is the first one to combine above 

mentioned advanced numerical techniques in order to provide a better-informed 

valuation of an offshore wind farm asset. Stochastic analysis has proven to be more 

insightful than a deterministic approach since instead of returning a deterministic value 

with limited context, it can respond with an evaluation of performance for an associated 

confidence interval 
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Abstract 

The aim of this paper is to investigate uncertainties present during operation of 

offshore wind energy assets with a view to inform risk control policies for hedging of 

the incurring losses. The parametric framework developed is subsequently applied 

across a number of different locations in the south east coast of the UK, so as to 

demonstrate the effect of weather conditions and resulting downtime on a number of 

operational key performance indicators (KPIs), such as downtime due to planned and 

unplanned interventions, wind farm availability, O&M costs and power production 

losses. Higher availability levels were observed in areas closer to shore of the 

specified region, while the distribution of O&M cost per MWh demonstrated a general 

trade-off of higher power generation in locations further from shore due to better wind 

speed profiles and higher O&M costs, as a result of the decreasing vessels 

accessibility. It was highlighted that the amount of power production losses throughout 

the service life of the asset is not necessarily proportional to the entailed risk of 

surpassing a set threshold. Above analysis aspires to contribute to the development 

of better-informed risk control policies, through parametrically estimating the 

probability of exceedance of a specified revenue loss threshold. 

Keywords: Offshore wind energy, O&M cost modelling, loss of revenue, weather risk, 

risk control. 
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1 Introduction  

Most relevant decisions throughout planning, construction and operation of offshore 

wind energy assets made by market agents involve a significant level of risk due to 

technical conditions and project externalities. Generally, loss of revenue risk (as a 

result of project delays, turbine components damage/losses during transport, 

construction and operation) can substantially affect the value of the asset. During the 

construction phase, weather risks can result in delay of the commissioning date due 

to lack of accessibility of installation vessels (which bear specific working limits for 

various marine operations), while throughout the operation phase, in the occurrence 

of a failure, weather can increase the total downtime of the wind farm by impeding the 

access of the support vessels dispatched to perform maintenance activities, leading 

to revenue losses. Both cases can lead to significant impact in cash flows and the 

project’s ability to meet debt service requirements. 

In order to estimate the loss of revenue risk, the downtime of the asset needs to be 

estimated as accurately as possible through modelling the planned and unplanned 

maintenance activities during the O&M phase of the asset. The development of high-

fidelity models would assist in the calculation of the total availability, power production 

losses and O&M costs throughout the service life of the asset, which typically account 

for approximately 30% of the levelised cost of electricity in offshore wind (Carroll et al., 

2016a; Ioannou et al., 2018).  

Most offshore wind O&M models currently available are used to inform project 

developers/owners on the expected costs and performance of their assets. They 

typically use turbine and BOP reliability data coupled with meteorological prediction 

models in order to predict the operational state of the wind farm throughout its service 

life and the maintenance activities required. Common outputs of such models 

comprise the downtimes per subsystem/failure type and per maintenance stage, the 

wind farm/turbine availability, the total number of failures occurred, the number of 

spare parts and the revenue loss, among others. A review in offshore wind O&M 

models is provided in (Hofmann, 2011; Martin et al., 2016).  
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The aim of this paper is to investigate uncertainties present in the operational phase 

of offshore wind investments with a view to inform risk control policies for hedging of 

the incurring losses. The framework developed is subsequently applied parametrically 

in a reference region, so as to demonstrate the effect of weather conditions and 

resulting downtime on a number of operational key performance indicators (KPIs), 

such as downtime due to planned and unplanned interventions, wind farm availability, 

O&M costs and power production losses. The proposed framework for calculation of 

O&M KPIs, incorporates latest databases of failure rates and cost components 

throughout the O&M phase of the wind farm, while it also allows rapid simulations for 

a number of locations within a region allowing development and visualisation of 

parametric expressions. Above analysis aspires to contribute to the development of 

better-informed revenue loss risk control policies, through parametrically estimating 

the probability of exceedance of a specified revenue loss threshold.  

The rest of the paper is set out as follows: Section 2 presents an overview of risk 

control options available for renewable energy assets, along with an introduction to 

key reliability concepts widely used in the O&M cost analysis of offshore wind turbines. 

Section 3 presents the framework developed for the calculation of operational KPIs. 

Subsequently, results from the application of the framework to a baseline wind farm 

installed at a specific location are presented in Section 4, followed by the parametric 

estimation and illustration of O&M related KPIs across a number of locations in the 

south east coast of the UK. Furthermore, this section expands the applicability of the 

proposed method to estimate the expected production losses due to the downtime of 

the wind farm and estimate the probability of exceedance of a pre-determined 

threshold which would activate a potential risk control policy. Finally, Section 5 

summarises the findings of this work. 

 

2 Power production uncertainties and risk control options 

2.1 Risk control options for renewable energy assets 

Investing in renewable energy assets, e.g. an offshore wind farm, is typically subject 

to downside risks, which is the combination of the probability of occurrence of a 

negative event and its associated financial effect (International Standardisation 
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Organisation, 2009). The likelihood and impact of negative events are reflected in the 

financing costs (quantified by the weighted average cost of capital (WACC)) of the 

technology; higher investment risk tends to increase both the bank’s interest rates and 

the equity owners’ return expectations. Furthermore, considering the fact that 

renewable energy technologies are typically capital-intensive investments, their 

lifecycle costs are very sensitive to an increase in financing expenditures (Schmidt, 

2014). It can therefore be concluded that financial risk mitigation can play an important 

role in reducing the levelised cost of electricity (LCoE) of the technology.  

General risk control options include: i) risk retention, ii) risk avoidance, iii) risk 

mitigation and iv) risk transfer. Companies retain a risk, when they have determined 

that transferring the risk is costlier than covering all or part of the losses out of their 

reserve budget (also called self-insurance) or when they decide to consciously take a 

risk to potentially achieve a higher gain. Avoiding the risk implies deciding not to get 

involved in a high-risk investment or operating within a (geographic or operational) 

region where the underlying hazard is not present. Mitigating the risk involves limiting 

the impact of a risk by taking appropriate measures. Finally, risk transfer involves the 

contractual shifting of a risk from one party to another, usually from the project owner 

to one or more insurance providers. 

As far as the risk insurance market is concerned, there is currently a number of 

commercial risk control products that are expanding as the technology becomes more 

established (UNEP, 2004). Construction is a phase of the service life of an offshore 

wind asset which involves considerable risks, mainly due to the likely occurrence of 

incidents during the transportation and/or installation of wind turbines and BOP 

(balance of plant) components. Such risks can be mitigated through effective project 

management and contracting; however, project owners tend to seek to extend their 

risk coverage to protect their investment against delay in start-up (DSU), or the 

Advanced Loss of Profit (ALOP) incurred through the inability of the construction 

contractor to commission the project on time. Developers can claim back lost revenues 

resulting from delays in construction (Swiss Re & Bloomberg New Energy Finance, 

2013). Another common risk transfer product available is the Construction All Risks 

(CAR), covering physical loss and damage during the construction phase of a project 

(UNEP, 2004).  
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Following the construction of the wind farm, project owners often rely on manufacturer 

yield/availability warranties by signing an O&M contract that guarantees a certain 

uptime or availability level; if the minimum yield levels are not met, the O&M contractor 

will be liable for availability liquidated damages (LDs) (Clifford Chance, 2017). The 

O&M contract comprises the most common risk control method ensuring the provision 

of spare parts and maintenance labour. The loss of revenue due to component failure 

or natural catastrophy is critical for offshore wind owners (U.S. Department of Energy, 

2013). In example, faults in the transformer of the offshore substation, which from a 

reliability perspective is the ‘weak link’ of the wind farm, may result in the shut down 

of the whole wind farm inducing large financial losses. It is, therefore common apart 

from the manufacturer’s warranties (which usually last for 5 years, after which the 

contract can either be renewed or the owner proceeds with alternative O&M risk 

coverage ways) to undertake Business Interruption (BI) coverage to insure against 

losses that are not already covered by O&M contracts. Loss of revenue can also be 

induced by severe weather, preventing vessels to access offshore wind turbines to 

perform scheduled or unscheduled maintenance. In such cases, the owner of the 

asset can purchase an insurance product to hedge the financial impact of adverse 

weather on the project. These risk control products dealing with the inability of the 

Operations and Maintenance Contractor to gain access to the OWF Facility through 

short or sustained periods of unusually high waves can be financially mitigated through 

the use of parametric (finite risk) products. These products are called parametric 

because they are triggered by a weather-related parameter such as the significant 

wave height or the wind speed (Swiss Re & Bloomberg New Energy Finance, 2013). 

Such products are gaining popularity as investors become more risk averse. 

2.2 The concept of availability  

The service life of the wind farm asset typically consists of uptime and downtime 

periods, with uptime representing the intervals during which the turbine is able to 

produce energy and downtime the time that the turbine stops working, as a result of a 

subsystem failure until the turbine is restored. Time-based availability can be defined 

as the ratio of the total uptime of the wind farm to the total time in consideration (sum 

of uptime and downtime), while production-based availability is estimated as the ratio 

of the energy actually produced to the amount of energy that would ideally be 
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produced based on actual wind speeds and site conditions (DNV GL, 2017; Scheu et 

al., 2017).  

𝐴𝑡𝑖𝑚𝑒 =
𝑈𝑝𝑡𝑖𝑚𝑒

𝑈𝑝𝑡𝑖𝑚𝑒 + 𝐷𝑜𝑤𝑛𝑡𝑖𝑚𝑒
 

 𝐴𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 =
𝐴𝑐𝑡𝑢𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑

𝐸𝑛𝑒𝑟𝑔𝑦 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙
 

(1) 

Figure 1 demonstrates the mean time to failure (MTTF) which equals the uptime period 

when the turbine is able to produce power and the mean time to repair (MTTR) which 

reflects the total downtime of the wind farm and includes a number of activities related 

to planned and unplanned maintenance. Activities listed during the downtime can be 

divided into passive and active downtime. Passive downtime relates to the activities 

required until the execution of the actual maintenance activity (active downtime). 

Improving availability can be achieved through decreasing passive downtime through 

better planning. 

 

Figure 1 Operational states of the turbine 

3 Development of an efficient model for calculation of operational 

KPIs  

3.1 Overview of the model 

An overview of the integrated O&M analysis framework is illustrated in Figure 2. The 

main modules are: (1) the failure modelling module, (2) the weather modelling module, 

and (3) the cost modelling module.  
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The failure modelling module is further divided into the mean time to failure estimation 

(namely the uptime of the asset) and the mean time to repair estimation throughout 

the planned and unplanned maintenance operations (namely the downtime of the 

asset). The mean time to repair calculation is based on the annual failure rates, while 

the planned and unplanned maintenance operations require data related to the 

resources required for the repairs. Resulting downtime depends on the availability of 

the required vessels, technicians, weather window, spare parts, mission organisation 

time, duration of navigation and repair, as well as the required number of technicians’ 

shifts.  

The weather modelling module enables the prediction of the future sea states, namely 

future significant wave heights and wind speeds. Weather conditions play an important 

role in the total downtime of the wind farm, as when the related parameters surpass 

the set wave height and wind speed limits of the vessels, travelling to wind turbines 

and accessing them becomes impossible. Therefore, unfavourable weather conditions 

will delay repairs, thus increasing downtime and decreasing the wind farm’s 

availability.  

The cost modelling module takes into account the actual duration of all stages required 

to perform the repair and maintenance operations and uses vessel and crew day-

rates, along with material costs to predict the total O&M cost. Other outputs of the 

model are the time-based and production-based availability, and the power production 

losses.
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Figure 2 Flowchart of O&M cost model
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It should be noted that the development of decisions for the different steps of the 

model have taken into consideration not only the accuracy of the calculation but 

also the computational efficiency required so as to allow a serial execution of 

simulations which is relevant to the comparative analysis which is the aim of this 

study. A high-level validation based on the results of published cases has been 

performed, while further calibration of the model for more accurate results can 

take place through a specific case study. 

3.2 Failure modelling module 

3.2.1 Estimation of Mean time to repair (MTTR) 

In this study, the repair categorisation of Reliawind project (Garrad Hassan, 2007) 

was adopted which classifies repair classes of subsystems into minor repairs, 

major repairs and major replacements. A total of 19 subsystems of the wind 

turbine were considered, while data used for the application of the model on 

failure rates, average repair times, average material costs and number of required 

personnel were retrieved from (Carroll et al., 2016b). Assuming that the reliability 

of the turbine follows an exponential distribution, the probability of failure (PoF) 

can be expressed as: 

𝑃𝑜𝐹 = 1 − 𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 1 − 𝑒−𝑡𝑢𝑟𝑏∙𝑡 (2) 

𝑡 = 𝑀𝑇𝑇𝐹 = −
1

𝑡𝑢𝑟𝑏
𝑙𝑛 (1 − 𝑃𝑜𝐹) 

(3) 

Where, 𝑡𝑢𝑟𝑏=∑ 𝜆𝑖
𝑆𝑢𝑏𝑠𝑦𝑠𝑡
𝑖=1 , is the sum of the failure rates of each turbine’s 

subsystems in series. Monte Carlo simulation is, then, performed to generate 

numerous random PoFs and subsequently returns an average MTTF value for 

each wind turbine. Once, MTTFs are calculated, Equation (2) can be used to 

estimate the probability of occurrence of each subsystem’s failure, as: 

𝑃𝑜𝐹𝑠𝑢𝑏𝑠𝑦𝑠𝑡 = 1 − 𝑒
−𝑠𝑢𝑏𝑠𝑦𝑠𝑡∙𝑀𝑇𝑇𝐹𝑠𝑢𝑏𝑠𝑦𝑠𝑡  (4) 

where, 𝑠𝑢𝑏𝑠𝑦𝑠𝑡 = ∑ 𝜆𝑖
𝑅𝑒𝑝𝑎𝑖𝑟 𝑐𝑙𝑎𝑠𝑠
𝑘=1  is the sum of the failure rates of the different 

repair classes of the subsystems. Once the probabilities of each subsystem’s 
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failure is known, the model performs random weighted sampling to determine 

which subsystem will fail once the MTTF has elapsed along with the repair class, 

which is also randomly selected following the same logical process. Along with 

the MTTF calculation, the model calculates the absolute time set of the 

simulation, which is interpreted as the actual time from the beginning to the end 

of life of the wind farm. The duration of the individual activities is added to the 

absolute time set, enabling the calculation of the uptime and downtime of the 

turbine and registering the time when a certain failure happens. 

3.2.2 Planned and unplanned maintenance 

Unplanned (corrective) maintenance is carried out following the occurrence of a 

failure on the turbine or the BOP, which may affect several turbines. The 

procedure after the occurrence of a new failure is illustrated in Figure 2. Once a 

failure has occurred on the first turbine, the required resources - namely, the 

number and type of main and special vessels, number of crew and materials, 

depending on the subsystem and the repair class - are registered. If a major 

repair, or a major replacement is needed, the turbine instantaneously shuts down. 

The process begins with the availability check of the required main and support 

vessels. It is assumed that a predetermined number of vessels will be 

continuously operating in the wind farm, hence they will be available to access 

the wind turbine that failed if the weather conditions allow so and the same 

applies for a predetermined number of personnel and the spare parts needed for 

the repair. If, however, all available vessels are occupied, the failure remains 

unresolved and the check is repeated once the required number of vessels are 

released from the previous mission. All required resources can also be inserted 

by the user as per each subsystem and repair class. Once the required vessels, 

crew and spare parts are available, the weather conditions are checked. The 

weather window is sufficient as long as the significant wave height and the wind 

speed conditions at the wind farm site are below the operational threshold limits 

of the vessels commissioned throughout the whole intended time offshore. 

Subsequently, the organisation of the mission, including the mobilisation of the 

vessel(s) (if required), take place. Once the crew accesses the subsystem that 
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failed, the repair is carried out; it is assumed that one work shift lasts for up to 12 

hours, which includes the total repair time, transitioning from harbour to the site 

and vice versa, as well as a mid-shift break. In case that more than one shifts are 

required, the crew returns to harbour and the mission restarts 12 hours later. 

When the damage is restored, the wind turbine starts producing power again, and 

the MTTF of the subsystem is reset to its original value. Finally, the transit back 

to the harbour and the demobilisation time are added to the total downtime of the 

wind farm. The durations of all unplanned maintenance activities are registered 

and added to the absolute total time set. Once the absolute total time set equals 

the service life of the wind farm, the simulation stops.  

Planned maintenance (else calendar-based maintenance) operations are carried 

out periodically and deal not only with one subsystem of the wind turbine, but with 

groups of subsystems or the entire wind turbine. Planned maintenance can be 

scheduled ahead of time, during periods of favourable weather conditions when 

delays to missions due to exceedance of vessels’ safety limits (weather window 

downtime) are not likely to occur, so that the availability of the wind turbine and 

amount of generated electricity is affected the least possible. The same applies 

for vessels, crew and spare parts unavailability downtimes. In this analysis, 

calendar-based maintenance is assumed to take place every one year with a 

deviation of ±1 month, to simulate the real life operations. Downtime due to 

planned maintenance is assumed to originate exclusively from the navigation and 

repair time, together with the potential downtime due to crew rest. In this analysis, 

it is assumed that planned maintenance can only restore minor repairs, i.e. once 

each mission terminates the mean time to failure of minor repairs is reset. It is 

expected that unplanned maintenance will incur higher downtimes in relation to 

planned maintenance considering the longer expected downtimes and types of 

maintenance activities.  

3.3 Weather modelling 

As described in the previous sections, predicting weather conditions for the 

operational lifetime of an offshore wind farm is crucial to predict its availability. If 
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wave height and wind speed conditions exceed vessels’ safety thresholds, transit 

from harbour to the wind farm is not possible leading to delays in performing 

repairs, thus increasing downtime and decreasing the wind farm’s availability 

(Scheu et al., 2018). 

Commonly used methods for generating sea state time series comprise Gaussian 

and Langanian approaches for short term wave modelling, Autoregressive 

Moving Average (ARMA) methods and Markov-based models which work well for 

long term forecasting and can capture persistence of sea state parameters 

(Anastasiou and Tsekos, 1996; Scheu et al., 2012).   

In this study, the discrete time Markov chains was chosen as the weather 

forecasting method. To this end, historic weather datasets from 1992 to 2017 with 

a 3-hour time step were retrieved from BTM ARGOSS database (BTM ARGOSS, 

2017). Discrete time Markov chains method is based on having a finite number 

of states in a system and estimating the probability, pij of state i to evolve into 

state j. Markov probability matrices are generated for each month, to account for 

seasonality, as shown below: 

𝑃(𝑠𝑒𝑎 𝑠𝑡𝑎𝑡𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟)𝑚𝑜𝑛𝑡ℎ = (

𝑝11   𝑝12   …   𝑝1𝑛
𝑝21   𝑝22   …   𝑝2𝑛
  ⋮         ⋮     ⋱      ⋮ 
𝑝𝑛1   𝑝𝑛2   …   𝑝𝑛𝑛

)

𝑚𝑜𝑛𝑡ℎ

 (5) 

Where, 𝑝𝑖,𝑗 equals the number of transitions of sea state parameter i to j, divided 

by the total number of times, state i appears. As such, initially, the weather data 

is discretised with a resolution of 0.2 for wave height and 1 m/s for wind speed 

data, resulting in a finite number of possible values, namely 23 and 25 values, 

respectively. A time step of 3 hours is also considered for the forecast, during 

which wind speed and wave height are assumed to remain constant. Based on 

the probabilities of each transition matrix, the wave height for the starting month 

is randomly selected, successively all sea state conditions are predicted as a 

function of the previous state and the transition probability. 
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3.4 Cost modelling 

The cost modelling module gathers the data recorded during each iteration, which 

are required to estimate the O&M cost. For unplanned maintenance of wind 

turbines, the time that a failure occurs is registered with reference starting point 

the beginning of operation of the wind farm. Further, the subsystem that failed 

and the type of failure will define the required main and support vessels (to match 

the correct day rates) and the number of crew members required for the repair. 

Downtimes of crew unavailability, spare parts unavailability, weather window, 

navigation time and demobilisation time are taken into account and assigned to 

the respective day rates of vessels, crew, cost of materials, mobilisation and 

demobilisation costs, to estimate the total O&M cost.  

 

4 Results and discussion 

4.1 Baseline wind farm 

4.1.1 Characteristics of wind farm 

Typical wind farm characteristics were used for the application of the integrated 

cost estimation framework across a number of different locations in a region by 

the south east coast of the UK. This case study is considered representative of a 

modern wind farm located in European waters and its characteristics are 

summarised in Table 1.  

Table 1 Reference wind farm characteristics 

Parameter Value 

Number of turbines 140 

Turbine rated power 3.6MW 

Service life 25 years 

Cut in speed 4 m/s 

Cut out speed 25 m/s 

Weather data were obtained from the BTM ARGOS database for a set of 204 

different locations with latitude and longitude coordinates ranging between 
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[0.000o, 2.667o] and [50.000o, 53.667o], respectively, covering the south east 

coast of the UK as illustrated in Figure 3. This region was selected due to its high 

concentration of currently operating and under construction Round 1, 2 and 3 

wind farms (The Crown Estate, 2017).  

 

Figure 3 Focus region located in the south east coast of the UK 

Existing ports near the locations of the focus region were identified from 4C 

offshore (4C Offshore, 2018) and their coordinates are summarised in Table . It 

was assumed that these ports provide their adjacent wind farms with 

maintenance support services; hence, the distances of all harbours from all 

potential wind farm locations were calculated and the ports with the minimum 

distances were assumed to serve the maintenance operations of the respective 

site.  

Table 2 Coordinates of nearby ports 

Port Longitude Latitude 

Wells 52.954 0.853 

Great Yarmouth 52.583 1.735 

Lowestoft 52.473 1.755 

Harwich Navyard 51.948 1.288 

Sheerness 51.443 0.748 
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Ramsgate 51.327 1.412 

Newhaven 50.7903 0.0546 

Shoreham 50.8311 0.2381 

 

4.1.2 Assumptions on the operating cost components 

Cost components taken into consideration in the present study comprise the cost 

of main and support vessels, crew and materials. Herein, material is anything that 

is used or replaced in the turbine; from consumable materials to whole 

replacement parts such as full generators. The required cost parameters of the 

maintenance vessels are summarised in Table 3. The material costs are adopted 

from Carroll et al.’s publication (Carroll et al., 2016b) while the vessel and crew 

day rates as well as the cost of materials used in the present study were adopted 

from a recent publication of the authors (Ioannou et al., 2018). To estimate the 

revenue loss due to the downtime of the wind farm, a strike price of 100 £/MWh 

was assumed.  

Table 3 Characteristic values of vessels used during the O&M phase of the wind 

farm (Source: (Ioannou et al., 2018)) 

Vessel type Technicia

n space 

(#) 

Vessel 

speed 

(knots) 

Weather limits Mob. / 

Demob. 

Cost (k£) 

Mob. / 

Demob. 

Time (h) 

Day rate 

(k£/day) Sign. 

wave 

height 

(m) 

Wind 

speed 

(m/s) 

Crew transfer 

vessel 

12 26 1.8 16 - - 3.25 

Jack-up vessel - 10 2 10 405 720/48 112.6 

Heavy lift vessel - 9 - - 500 - 135 

Helicopter 6 - 99 20 4.7 8/4 4.7 

Diving support 

vessel (DSV) 

- 16 2 25 185 360 60 

Cable laying 

vessel 

- 14 1 10  44 720 90 
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4.2 Risk-based revenue loss modelling 

4.2.1 Operation and Maintenance results for a specific location 

The model was initially applied for the prediction of the operational KPIs of the 

reference wind farm installed in a single location with coordinates [0o, 50.334o]. 

The power output of each of the 140 turbines as well as the breakdown of 

downtimes are illustrated in Figures 4 and 5, respectively.  

 

Figure 4 Power output per each turbine 

Total power produced was calculated at 38,823 GWh and the total downtime 

3.6658∙106 hours with a power-based availability of 90.3% and a time-based 

availability of 89.1%. The downtime due to weather unsuitability had the highest 

share of the total downtime (21%) followed by the repair time (18.3%) and the 

spare availability downtime (12.6%). 
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Figure 5 Breakdown of downtimes 

The temporal O&M costs throughout the service life of the wind farm are shown 

in Figure  6 for unplanned maintenance of both wind turbines and the BOP, as 

well as for planned maintenance. Total wind farm O&M cost during the entire 

service life was estimated at £686.5 million. Above results on the availability and 

O&M total costs show good agreement with a benchmarking study estimating 

O&M costs of an offshore wind farm located also in the south coast of the UK 

(Martin et al., 2016).  

 

Figure 6 O&M costs throughout the service life of the wind farm 
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4.2.2 Parametric estimation of operational KPIs 

Subsequently, the model was applied for 204 locations in the south east coast of 

the UK (illustrated in Figure 3), using the respective historic weather data for each 

set of coordinates retrieved from the BTM ARGOSS database. A sufficient 

number of iterations of the model was conducted to allow for the generation of 

robust results through the stochastic process. Accordingly, a number of location-

specific colour-coded plots, illustrating resulting operational KPIs across the 

whole region, were generated.  

The production-based wind farm availability results are plotted in Figure 7 (a) for 

each of the 204 sets of coordinates under investigation. Higher availability levels 

can be observed in areas closer to the coast of the specified region (noting that 

half a degree is equivalent to approximately 56 km). This can be attributed to the 

smaller distances between the port and the wind farm site, as well as the lower 

magnitudes of significant wave height and wind speed limits, improving the 

accessibility of the maintenance vessels for the performance of unplanned 

maintenance, hence reducing the total downtime of the asset. In general, results 

demonstrate a smooth transition from high availability values in locations 

positioned closer to the coast to gradually decreasing further from shore. 

Nevertheless, a number of outliers can be observed, for example in the location 

point [2.000o 53.334o], where an availability peak is noted; this can be explained 

as the result of measurement uncertainty of the historic met ocean data. Figure 

7 (b) illustrates the breakdown of downtimes for the location with the lowest and 

highest availability. Weather downtime appears to have the greatest contribution 

to the total downtime for the lowest availability location, while repair time is the 

main contributor for the highest availability location. 
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(a) (b) 

Figure 7 Production-based availability (%) around the focus area of the study and 

(b) contribution of downtime categories to the highest and lowest availability 

locations 

Figure 8 illustrates the total O&M cost per produced MWh, revealing a more 

uniform distribution of unit cost in relation to the availability values across the 

different locations. This is due to a trade-off of higher power generation due to 

better wind speed profiles and higher O&M costs due to decreasing accessibility 

of vessels for maintenance operations. For example, a hypothetical wind farm 

installed at point [1.000o, 51.500o] appears to reach an availability level of 92.6% 

in return of high unit costs amounting to 24.5 £/MWh as a result of the poor wind 

speed profile resulting in low power production. Nevertheless, exceptions of this 

observation can be found, for example, in the areas positioned in the southern 

part of the specified region, where high availability together with relatively low unit 

costs can be observed. This observation can potentially lead to the conclusion 

that these regions can offer a good balance of availability versus costs. However, 

it has to be noted that other factors such as geotechnical conditions, 

environmental impact assessment studies and other parameters need to be 

taken into account before determining the suitability of a location for the 

installation of a wind farm (Mytilinou et al., 2018; Mytilinou and Kolios, 2019). 
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Figure 8 O&M cost per MWh around the focus area of the study 

Finally, the expected total power production loss due to the wind farm downtime 

is plotted in Figure 9. Production loss reflects the total revenue loss due to 

downtime, as it is calculated by subtracting the power produced during uptime 

from the potential power produced both during uptime and downtime (wind speed 

profile of the location is also taken into consideration); it is therefore a parameter 

with a direct impact on the financial performance of the investment. The revenue 

loss plot was found to follow a similar to the availability plot pattern, with locations 

closer to shore indicating lower revenue potential losses due to the reduced 

downtime of the wind farm.  
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Figure 9 Production loss (in MWh) scatter plot of wind farm around the focus 

area of the study 

4.2.3 Weather risk control policy options  

Traditional insurance products available for renewable energy projects typically 

protect against natural disasters, such as storms, earthquakes and hurricanes 

(Grossi et al., 2005) as well as physical losses and damages to the plant/asset 

during the construction and operating phases (UNEP, 2004). Furthermore, 

academic literature on the effects of weather risks on offshore wind energy 

projects also focuses on analysing the effect of extreme weather events 

(Barabadi et al., 2016; Becerra et al., 2018; Lamraoui et al., 2014). However, risk 

management against the effect of seasonal fluctuations in climatic conditions, 

such as variation in wind speeds, temperature and wave height is becoming more 

relevant as investors are inclined to reduce their risk exposure. Weather risk 

hedging products are usually financial contracts which can be executed in the 

form of insurance or weather derivatives structured as swaps, futures and options 

that are based on a weather related index (Li, 2018); in the case of offshore wind, 

significant wave height and wind speed could be relevant weather related indices. 

The seller of the weather derivative bears the risk of potential financial losses as 

a result of the weather conditions in exchange of an upfront premium. If the pre-
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determined limit of the index is surpassed, over a specified period, the project 

owner is compensated the downtime financial losses. 

The index-based policy structure has the advantage of simplicity, although there 

may exist some ambiguity in terms of the actual financial impact caused by the 

exceedance of the specified threshold. In the case of offshore wind, for example, 

exceedance of the threshold of the significant wave height limit over a specified 

period of time may not necessarily lead to financial losses. On the contrary, power 

production loss due to downtime could be a risk index easier-to-translate into 

resulting revenue losses over a period of time, while relevant data can be 

retrieved by SCADA (Supervisory Control and Data Acquisition) systems installed 

in the wind farm.  

Figure 10 illustrates the resulting power production losses due to the downtime 

on a monthly basis for the reference wind farm installed in the location [0.000o, 

50.334o]. A threshold of 45,000 MWh over the period of a month was assumed, 

above which the buyer of the risk transfer product is compensated for the revenue 

loss corresponding to this threshold. The estimation of the premium should be 

based on the probability of exceedance of the specific limit. With a 5.9% monthly 

probability of exceedance, the risk of the investor is estimated (in terms of 

production losses) 45,000∙5.9% = 2655MWh. Assuming a strike price of 100 

£/MWh, the maximum premium that the buyer would be willing to pay is therefore 

£265,500 per month. 
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Figure 10 Monthly power production losses as a function of time for the location 

with coordinates (0.000o, 50.334o) 

The exceedance probability (EP) curve is used by insurers to estimate the 

probable maximum loss (PML) for a portfolio of investments in a given period of 

time. The PML is a bespoke risk metric and is associated with a probability of 

exceedance reflecting the insurer’s acceptable level of risk. As such, the insurer 

can use the EP curve to determine the magnitude of loss at the desired probability 

of exceedance level. In Figure 11, the monthly EP curve of the reference wind 

farm is demonstrated. The EP curve can also assist the distribution of losses 

between stakeholders. As such, the project owner would retain the first part of 

the loss (i.e. the deductibles), for example losses up to 45,000MWh, while the 

insurer covers monthly production losses occurring in excess of this amount. 
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Figure 11 Exceedance probability curve 

Setting the above threshold of monthly power production losses (i.e. 45,000 

MWh) across all sets of coordinates of the designated region, the distribution of 

the exceedance probabilities is illustrated in Figure 12. For areas closer to the 

coast, the probability of exceedance does not surpass the level of 6%, while in 

areas further from shore probability reaches 18%. Comparing the scatter plot of 

probability of the production loss exceedance threshold with the production 

losses one (in Figure 9), it becomes evident that the amount of power production 

losses throughout the service life of the asset is not necessarily proportional to 

the entailed risk of surpassing a threshold set on a monthly or even annual basis. 

This map can provide a basis for screening which locations are likely to incur 

higher insurance premiums for weather related parametric risk control products.  

Insurance policies are typically valid for a specified period of time defined in the 

insurance policy contract, varying from a few weeks to a number of years. It can, 

thus, be deduced that the magnitude of risk transferred to a third party greatly 

depends on the duration set by the contract. Specifically for offshore wind energy 

assets, the persistence of the weather conditions can be detrimental on the 

financial losses derived and by extension on the compensation required, since, 

depending on the terms of the contract, the policy may concern revenue losses 

incurred within the duration of a month (as it was assumed for the calculation of 
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the probability of exceedance of the monthly production losses in the 

aforementioned application). 

 

Figure 12 Probability of exceedance of monthly power production loss threshold 

(45,000 MWh/month) 

5 Conclusions 

There is a number of industries whose operations can be impacted by the varying 

weather conditions and offshore wind industry is certainly one of them. Although 

the traditional weather-related risk transfer products available are mainly 

employed to protect against catastrophic events, there is currently an increasing 

interest in hedging against seasonal weather fluctuation risks in order to minimise 

their impact on the financial performance of the investment. Protection against 

weather risk was originally included as a clause embedded in contracts for 

unforeseen weather conditions, but is now becoming a bespoke financial 

instrument to hedge the risk of the resulting financial losses, currently offered by 

big Insurance Companies and Brokers (Willis Towers Watson, 2018).  

In this paper uncertainties present in the operational stage of offshore wind 

investments are investigated systematically with a view to inform risk control 

policies for hedging of the incurring losses. For the estimation of operational KPIs 
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the latest databases of location-specific environmental conditions, failure rates, 

and required repair resources are integrated together with discrete time Markov 

chains for forecasting future sea states. The model is firstly applied to a reference 

wind farm installed in a specific location to test the applicability of the model and 

verify its results. Then, the model is applied to a set of locations in the south east 

coast of the UK to derive scatter plots of aforementioned KPIs, such as cost per 

MWh and power production losses, indicating the effect of weather and 

maintenance downtime throughout the O&M phase of the asset’s lifecycle. 

Further to the calculation of power production losses, the probability of 

exceedance of a specified power production loss threshold was estimated across 

all locations of the south east coast, deriving insights regarding the distribution of 

the risk level of financial losses due to weather and maintenance downtime 

across the designated region.  

It was observed that there is a trend for higher production-based availability levels 

in areas closer to the coast of the specified region, while the scatter plot of O&M 

cost per MWh demonstrated a more uniform pattern across the different locations 

indicating that there is a trade-off of higher power generation in locations further 

from shore due to better wind speed profiles and higher O&M costs, as a result 

of the decreasing accessibility of vessels for performing maintenance operations. 

Production losses distribution was found to follow a pattern similar to the 

availability one, with locations closer to shore displaying lower potential 

production losses due to the reduced downtime of the wind farm. Production 

losses can reflect the total revenue loss due to downtime. To this end, this 

variable was chosen as the most relevant parameter to demonstrate the financial 

risk induced by weather and maintenance downtime. It was highlighted that the 

amount of power production losses throughout the service life of the asset is not 

necessarily proportional to the entailed risk of surpassing a set threshold; rather, 

risk can be significantly affected by the applicability period of the policy. 
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Abstract 

In this paper, a multi-stage stochastic optimization (MSO) method is proposed for 

determining the medium to long term power generation mix under uncertain 

energy demand, fuel prices (coal, natural gas and oil) and, capital cost of 

renewable energy technologies. The uncertainty of future demand and capital 

cost reduction is modelled by means of a scenario-tree configuration, whereas 

the uncertainty of fuel prices is approached through Monte Carlo simulation. 

Global environmental concerns have rendered essential not only the satisfaction 

of the energy demand at the least cost but also the mitigation of the environmental 

impact of the power generation system. As such, renewable energy penetration, 

CO2,eq mitigation targets, and fuel diversity are imposed through a set of 

constraints to align the power generation mix in accordance to the sustainability 

targets. The model is, then, applied to the Indonesian power generation system 

context and results are derived for three cases: Least cost option, Policy 

Compliance option and Green Energy Policy option. The resulting optimum 

power generation mixes, discounted total cost, carbon emissions and renewable 

share are discussed for the planning horizon between 2016 and 2030.  
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1 Introduction 

World total electricity generation is expected to grow by 69% from 2012 to 2040 

and make up almost a quarter of total energy consumption by 2040 [1]. On the 

other hand, resource depletion and environmental concerns have forced decision 

makers to aim not merely to satisfy the increasing demand at the least cost, but 

also to move towards more sustainable economic development. To this end, 

many countries have enacted environmental policies to regulate the greenhouse 

gas (GHG) emissions from power production units using fossil fuels. In 2017, 

renewable energy sources covered 40% of the increase in primary demand, while 

net additions of coal-fired plants are expected to reduce by 55% in the following 

20-year horizon, in relation to additions taking place from 2000 up to 2017 [2].  

Although renewable energy technologies can achieve a reduction in total GHG 

emissions from power production, their ability to satisfy demand largely depends 

on the renewable resource potential of the region. Intermittent renewables can 

provide a certain amount of electricity but are not effective as standalone 

technologies to provide baseload power. Power generation planning seeks to 

design the optimal power generation mix by optimizing a performance indicator 

(such as minimizing the energy system cost), while at the same time satisfying a 

set of conditions related, for example, to the security of supply, the limitation of 

resources, the energy diversity, the environmental impact as well as the 

renewable technology capacity factors and the evolution of their costs. It is, 

hence, a challenging undertaking requiring the examination of numerous, often 

interrelated, aspects.  

Mathematical programming is an appropriate method for determining optimal 

electric power generation systems that will minimize the overall cost (or other 

objective functions) while satisfying a set of underlying conditions. A number of 

authors have undertaken studies related to the determination of the optimal 

energy mix at a national [3–8], regional [9–13] or even at building [14] level. Most 

studies use the minimization of the power generation system cost as the objective 
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function, which most frequently includes the investment cost of new generating 

technology, the fuel price, the fixed and variable operating costs. Other costs 

considered in literature are: salvage and dismantling costs [13,15], emissions 

costs [16–19], cost of electricity not supplied [20–22], imports of fuel and 

electricity [12,17–19], cost of carbon capture and storage units [22], cost of 

transmission [12,23] and cost of storage [23, 25]. 

Conventional energy planning is performed based on a deterministic projection 

of demand, capital cost of different generation technologies, fuel price, etc., 

assuming that all variables are certain and remain unchanged throughout the 

planning horizon [12]. However, some of the future forecasts, such as demand 

growth, fuel price and renewable energy cost, are susceptible to change in the 

future, making the planning solution invalid when those variables deviate from the 

forecasted values [3].  

Many works have been established to develop optimization models that 

incorporate uncertain inputs in the energy generation planning [7]. Multistage 

stochastic optimisation (MSO) method has been widely used to model the 

uncertainty of selected variables with specific probabilities by means of a multi-

period scenario tree. The fundamental concept of MSO is recourse, allowing 

corrective actions to be implemented in each stage based on the corresponding 

uncertainty realized so far [10]. In the first stage, a decision has to be made “here 

and now” before perceiving uncertainty, then in the next stage the decision is 

made after realizing the uncertainty values [21,25]. For example, the energy mix 

for period 𝑡 + 1 can be decided only after realizing the energy demand at period 

𝑡. 

Li et al. formulated a multistage interval-stochastic energy model using integer 

linear programming for supporting electric power system planning under 

uncertainty of power demand [26]. Through a multistage stochastic nonlinear 

programming model, Thangavelu et al. suggested the inclusion of uncertainty in 

demand, fuel price and technology cost by assigning scenarios to each variable 

[3]. Krukanont and Tezuka considered the uncertainty of energy demands, plant 
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operating availability and carbon tax rate in developing a two-stage stochastic 

linear programming optimization model to analyse the near-term Japanese 

energy system planning using real data [25]. Bakirtzis et al. summarized various 

planning models which incorporated uncertainties, and performed a scenario-

based mixed-integer linear programming model to illustrate the effect of demand, 

fuel prices and CO2 prices’ uncertainties on planning decisions using real data 

from the Greek power system [27].  

The probabilistic scenario tree and Monte Carlo simulation (MC) approach are 

two foremost approaches that have been used to represent uncertainty 

parameters in MSO problems. The former approximates continuous distribution 

into discrete scenarios and performs optimization at each realization of uncertain 

parameter weighted with the corresponding discrete probability [28]. The latter 

portrays input uncertainty by generating random scenarios based on continuous 

distribution, which can be determined from historical data or expert judgement 

[29]. Scenario trees have been widely used for structuring stochastic 

programming models in power generation system planning [3,10,14,26], due to 

their ability to discretize the vast number of possible outcomes of the uncertain 

variables [14]. The scenario-tree based stochastic programming framework is 

efficient when the optimization problem is convex and the number of decision 

stages is small [30]. Nevertheless, a number of scenario reduction techniques 

(such as backward reduction or forward selection) are available to deal with the 

rapidly growing number of scenarios in a multistage stochastic programming 

framework [31].  

Some previous studies implemented MC simulation to model uncertainty of key 

parameters in the power generation mix [32]. As such, Tekiner et al. formulated 

a mixed integer linear program to minimize the total weighted three objective 

functions (total cost, CO2 emissions and NOx emissions) and used the MC 

simulation technique to produce 1,500 demand scenarios [33]. Betancourt-Torcat 

and Almansoori used the MC method to simulate uncertainty associated with 

natural gas price and developed a multi-period linear model to determine optimal 
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power generation in the United Arab Emirates [28]. Min and Chung also applied 

the MC approach to integrate the uncertainty of power demand and fuel prices, 

and generated a linear model to solve South Korea’s long-term power generation 

mix problem [32]. Finally, Piao et al. used the MC technique to predict power 

demand and used it as input in a nonlinear stochastic optimization model for 

identifying strategies to improve air quality in Shanghai [34].  

The present work proposes a multi-stage stochastic optimization model that 

determines the medium-to-long term optimal electricity generation mix, taking into 

consideration the uncertainty in electricity demand, capital cost reduction for 

renewables technologies and fuel prices along the planning horizon. In this work, 

the uncertainties are modelled through a hybrid method combining the scenario-

based and the MC simulation approach. As such, the volatility of fuel prices 

(natural gas, oil and coal) was modelled through MC simulation process, while 

the associated uncertainty in electricity demand growth and capital cost reduction 

for renewable technologies was addressed by applying a finite number of 

possible weighted scenarios. Novelty of this work lies in developing a hybrid 

uncertainty modelling approach within the stochastic optimization framework, as 

well as in the use of updated input data used to perform the optimization of the 

Indonesian power generation mix. Furthermore, we compare results derived after 

formulating different probability density distributions (normal, uniform, Pert and 

Weibull) to model stochastic fuel prices through the MC simulation and we 

present results for a number of POs outlined in Section 5 to derive useful insights 

on the response of the system under different sets of constraints. 

Based on data collected from online databases, official reports as well as 

communication with people from the Ministry of Energy and Mineral Resources 

of Indonesia, Indonesia’s power system portfolio is used as the input of the 

proposed model to derive optimal power generation mixes and additional 

capacity to be built in each period across a timeframe from 2016 to 2030 to satisfy 

electricity demand whilst fulfilling environmental concerns, renewable penetration 

and energy diversity targets in this case study.  
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Results of the case study could assist policy makers derive useful insights 

regarding optimal planning pathways towards sustainable power generation 

systems, taking into account uncertain inputs changing over the planning horizon. 

The remainder of this paper is structured as follows: Section 2 defines the system 

of this study navigating through the proposed methodology, the uncertainty 

modelling and the specifications of the MSO method, Section 3 presents the 

mathematical formulation of the problem outlining its objective function and 

constraints. Next, in Section 4, the Indonesian energy context is presented, while 

Section 5 describes the results derived from the application of the MSO method 

to the baseline case and subsequently to a number of defined planning options. 

Then, in Section 6 results are further discussed and finally, Section 7 draws the 

main conclusions of this work. 

 

2 Problem definition 

2.1 Problem Statement  

This study addresses the medium to long term power generation expansion 

planning (PGEP) problem of a country or region by determining the optimal 

combination of power production plants under uncertain electricity demand 

increase, capital cost reduction for renewable technologies and fuel prices for 

conventional technologies across the planning horizon. The method can be 

extended to incorporate other uncertainties; nevertheless, the ones chosen have 

been widely cited in literature as among the most impactful [3,10,35–38]. It should 

be also noted that adding more uncertain variables increases the number of 

scenarios and thus requires higher computational effort. Figure 1 illustrates a 

schematic representation of the proposed methodology. It includes the required 

input (deterministic and stochastic), objective function, set of constraints and the 

outputs.  
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Figure 1 Schematic representation of the model 

The planning horizon of the problem is divided into a set of time intervals (𝑡). 

Each time interval represents a multiyear period. In this study, ten power 

generation technologies are considered as alternatives for the new power plants 

to be built including pulverized coal-fired (PCF), natural gas combined cycle 

(NGCC), diesel power, hydro power, geothermal, biomass, wind onshore, wind 

offshore, solar photovoltaic (PV) and concentrated solar (CSP) power plants. 

The required installed capacity (𝑅𝐼𝐶) is calculated by considering the peak 

demand (𝑃𝐷) and the reserve margin (𝑅𝑀) (in MW), while the net power 

production (𝑃) represents the electricity generated by power generation facilities 

in one year (in GWh) after making an allowance for plant own power consumption 

(𝑂) and transmission and distribution losses (𝐿). Net power generation needs to 

meet the projected power consumption demand (𝐶𝐷). The model takes into 

account the capacity from current power generation facilities (𝐸𝐼𝐶) and assumes 

that the power plants will be decommissioned once their service lifetime has been 

reached. Techno-economic input data of power plants used in the model include 

capital cost (𝐶𝐴𝑃𝐸𝑋), fixed operation and maintenance (O&M) cost (𝐹𝑂𝑀), non-

fuel variable O&M cost (𝑉𝑂𝑀), fuel cost (𝐹𝐶) (which is subjected to uncertainty), 
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carbon emission rate (𝐶𝑟𝑎𝑡𝑒), capacity factor (𝐶𝐹) and technical lifetime of the 

power plant (𝐿𝑚) and were collected both through desktop research and through 

communication with people from the Ministry of Energy and Natural resources. 

The total installed capacity for each renewable technology (𝐼𝐶𝜏𝑟𝑒) is also 

restrained by the renewable potential (𝑅𝐸𝑝𝑜𝑡) of the country. Additionally, new 

power plants to be built for each technology cannot exceed their annual 

construction limit (𝐶𝐿). The annual construction limit for each technology in a 

region or country varies depending on the availability of labor, area available for 

construction, and social and technological readiness for a particular technology. 

For the purposes of this study, a number of assumptions needed to be 

considered: 

i. Learning curve effects are only applied to the onshore wind and solar PV 

power plants, whose capital cost is assumed to experience a declining rate 

through the course of the planning horizon, due to technological development.  

Capital costs of other technologies were assumed to retain their initial values 

and future costs were discounted to the present. 

ii. The current work integrated the volatility of fuel price into the model for three 

types of fuels, including coal, natural gas and diesel, while biomass price was 

assumed to retain a mean value which (similarly to all technologies) is 

discounted throughout the planning horizon.  

iii. The PV degradation rate is assumed to remain stable (at 0.8%/year  [39]) 

throughout the lifetime of the solar PV power plant. Allowing for future survey 

and potential mapping, the renewable potential is expected to increase to a 

certain level each year (1% increase per year is assumed). This can be linked 

with the technological advancement which can allow further harvesting of the 

resource. Renewable technologies are assumed to have zero emissions.  

iv. Although the capacity factor may vary throughout the year, the values have 

been assumed to remain constant. 
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v. In order to calculate the produced electricity (in MWh) from conventional 

energy power plants (coal, natural gas and petroleum-fired power plants), the 

following expression was used: 

𝐹𝑅 =
𝐻𝑅

𝐻𝑉
 Eq. 1 

where, the amount of fuel consumed to generate 1 MWh (𝐹𝑅) is calculated as 

the power plant heat rate (𝐻𝑅) divided by the heating value of the fuel (𝐻𝑉) 

(Eq. 1). Table 1 includes the fuel consumption rates used as inputs in the 

model. 

Table 2: Fuel consumption rate used in the model (Source: [40]) 

 Fuel type Fuel consumption rate (𝑭𝑹) 

Coal 0.53 ton/MWh 

Natural gas 8.9 MMBTU/MWh 

Petroleum 1.81 barrel/MWh 

 

vi. The total cost of power generation throughout the planning horizon is 

discounted to present value with a certain assumption of interest rate (𝑟). 

vii. The degradation rate of solar PV is included into the model to reflect the effect 

of degradation of the solar PV power plants on the generation output. 

viii. Minimum share of a certain technology can be imposed by setting a minimum 

contribution of each technology to the energy mix (𝑀𝑖𝑛𝑐𝑎𝑝). For example, to 

manage the risk of intermittency from renewable energy sources policy makers 

can set the share of coal and gas power at a certain minimum level. 

ix. The sustainability criteria are fulfilled by means of: the carbon tax (𝐶𝑡𝑎𝑥) , which 

represents the external cost of environmental impact mitigation; the carbon 

emission limit (𝐶𝑡𝑎𝑟𝑔𝑒𝑡) which bounds the amount of CO2,eq emission produced 

by the power generation sector in one year and the renewable energy 
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penetration target (𝑅𝐸𝑡𝑎𝑟𝑔𝑒𝑡) represents the minimum share of power 

generated from renewable energy sources. 

x. Fuel diversity is imposed within an acceptable range by means of enforcing a 

maximum proportion cap (𝑀𝑎𝑥𝑐𝑎𝑝) for each technology. The maximum 

proportion cap can also be used as a tool to restrain an undesired technology 

option. 

The following targets are aimed to be achieved: 

i. Ensuring the future electricity demand will be met at the least cost, both in 

terms of required installed capacity and net power generation. 

ii. Fulfilling the required renewable penetration target to promote a renewable 

contribution to the power generation mix. 

iii. Restraining CO2,eq emissions within the target set by government regulations. 

iv. Renewable energy new installed capacity is restrained by the annual 

construction limit and the resource potential of the region. 

v. Complying with fuel diversity targets to manage risk associated with 

dependency on certain fuel sources or technologies. 

Decision variables represent the new power plant installed capacities derived 

under varying technological, environmental and economic criteria. The 

optimization model determines the following key decisions at each time period:  

i. Future optimal power generation mix. 

ii. Renewable contribution to the power generation mix. 

iii. Power generation cost structure breakdown (capital cost, fixed cost, variable 

cost, fuel cost and carbon cost) at present value.  

iv. Power plant facilities that have reached their end of life (decommissioning 

plan). 

v. Capacity expansion planning (new capacity to be built) for each type of power 

generation technology. 

vi. Required capital cost for capacity expansion project (new power plant to be 

built). 
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vii. Fuel consumption required by power generation facilities in one year. 

viii. Annual electricity production from each type of power generation technology. 

ix. GHG emission from the power generation activities. 

2.2 Uncertainty modelling  

In the proposed model, future projection of uncertain variables is represented as 

a multi-stage scenario tree that grows with both scenario-based nodes and MC 

random generated nodes. 

i) Demand: The uncertainty of peak demand and power consumption growth 

are represented by three scenario-based nodes (low, medium and high) with 

their assigned probability. 

ii) Capital cost reduction for renewable technologies: Technology innovation is 

anticipated to gradually reduce the cost of energy of renewables. In this 

study, wind onshore and solar PV are considered to experience a decreasing 

rate in their capital cost. The uncertainty of the capital cost reduction rate for 

wind onshore and solar PV are represented by three scenario-based nodes 

(low, medium and high) with their assigned probability.  

iii) Fuel Price: The volatility of fuel prices (coal, natural gas and diesel) is 

represented by 𝑛 MC random generated nodes assumed to follow a normal 

probability distribution function for each fuel type. Normal distribution has 

been widely used in many stochastic problems [28,41]; nevertheless, other 

probability distribution functions were also tested in order to evaluate the 

effect of statistical uncertainty.  

The study system covers a time horizon of 4 periods and 3 stages of 4, 5 and 5 

years duration, respectively. Figure 2 demonstrates the multistage scenario tree 

that is developed by the three uncertainty variables (electricity demand, capital 

cost reduction and fuel price). Both the uncertainty of electricity demand and 

capital cost reduction are represented by three nodes: “Low”, “Medium” and 

“High” with assigned probability values 0.3, 0.5 and 0.2, respectively, as shown 

in Figure 2. Furthermore, each MC simulation sample is considered as a separate 
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node with 1/𝑛 probability. A scenario (𝑠) is a route from the root node to a leaf 

node and the probability of scenario s (𝑝𝑠) equals the product of probability of 

occurrence realized from root node to leaf node. Hence, the probability of 

scenario 𝑠 is the joint probabilities of all uncertain variables. The sum of 

corresponding joint probabilities of all scenarios is equal to 1. After reaching the 

leaf node at each stage, key decisions (installed capacity for each technology) 

from a set of 𝑛 scenarios are averaged to provide the input value for the next 

node. Hence, in each stage, 𝑛 ∙ 32 ∙ 𝑡 optimizations are performed, where 𝑛 is the 

set of random fuel price MC sample, assumed to follow a normal probability 

distribution and 𝑡 is the number of stage. Since fuel prices volatility is hard to 

model accurately by following a three-scenario-tree pattern, MC simulation was 

used to generate a random set of fuel prices based on their mean and standard 

deviation values of each technology’s fuel price. It should be highlighted that 

increasing the size 𝑛 of the MC generated samples can provide more robust 

results; however, it significantly increases the processing time. To identify the 

minimum sample size, a convergence study was implemented which indicated 

that results started to converge for 𝑛 = 150. 

 

Figure 2: Uncertain inputs represented by scenario tree with assigned 
probabilities under the baseline scenario 
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As mentioned above, the model assumes a normal probability distribution 

function for the uncertainty modelling of fuel prices as shown in Figure 3. 

Nevertheless, results derived from using other probability distribution functions, 

namely uniform, PERT and Weibull (Figure 4) were also exported for the sake of 

comparison. The same set of MC fuel price samples is used for all branches of 

the scenario tree.   

 

Figure 3 Normal probability distributions histogram of fuel prices of conventional 
technologies considered for the baseline scenario 

 

Figure 4 Normal, uniform, Weibull and PERT distribution plots 
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3 Mathematical formulation 

3.1 Objective Function  

The mathematical formulation of the optimization model is presented in this 

Section. In Appendix A, the nomenclature of the parameters and variables used 

throughout the paper is included. The objective function of the model (Eq. 2 – 18) 

is the minimization of the discounted total cost of the power generation mix, given 

as:  

𝑀𝑖𝑛 𝑓 = ∑ (𝐸𝐶 + 𝑁𝐶)𝑡,𝑠
10
𝜏=1   

 ∀ 𝑡 = 1: 3  and 𝑠 ∈ [𝑠𝐷 , 𝑠𝐶 , 𝑠𝐹] 
Eq. 2 

In equation (2), 𝐸𝐶 and 𝑁𝐶 are the annual power generation cost of existing and 

new power plant capacity, 𝑠 refers to a specific combination of  𝑠𝐷 , 𝑠𝐶 and 𝑠𝐹 

values (energy demand scenario,𝑠𝐷, capital cost reduction scenario of new 

onshore wind and solar power plants,𝑠𝐶, and fuel price scenario, 𝑠𝐹) during the 

time period, 𝑡. Hence, the minimization of the objective function takes place for 

every combination of scenarios at each time period. The total cost consists of 

power generation costs from existing and new power plants, each comprising the 

annualized capital cost, the fixed and variable operating (O&M) costs, as well as 

the fuel and carbon costs.  

Overnight capital cost is annualized over the lifetime of the plant, while other costs 

are calculated on a yearly basis. Fixed O&M cost represents the operation and 

maintenance costs that are not dependent on the activity of the power generation 

plant. In contrast, non-fuel variable O&M cost, fuel cost and carbon emissions 

vary according to the energy production of the plant. Solar PV and wind onshore 

technologies are subject to capital cost reduction over the planning horizon due 

to assumed technological advancements. It is assumed that, if the system 

requires capacity expansion at the beginning of a particular period, 𝑡, this 

expansion project has to be completed by the end of the previous period, 𝑡𝑝. 
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The electricity system costs of existing power plants consist of the annualized 

capital cost, (𝐸𝐴𝐶𝑃), the fixed O&M cost, (𝐸𝐹𝑂𝑀), the non-fuel variable O&M 

cost, (𝐸𝑉𝑂𝑀), the fuel cost, (𝐸𝐹𝐶) and the carbon emissions cost of existing 

power plants, (𝐸𝐶𝐶). 

𝐸𝐶𝑡,𝑠  = (𝐸𝐴𝐶𝑃 + 𝐸𝐹𝑂𝑀 + 𝐸𝑉𝑂𝑀 + 𝐸𝐹𝐶 + 𝐸𝐶𝐶)𝑡,𝑠  

∀ 𝑡 = 1: 3  and 𝑠 ∈ [𝑠𝐷 , 𝑠𝐶 , 𝑠𝐹] 
 Eq. 3 

where, the annualized capital cost of the existing power generation technology 

capacity is calculated based on the discount rate (𝑟) and the technology life time 

(𝐿𝜏) by means of the following formula: 

𝐸𝐴𝐶𝑃𝑡,𝑠 = (∑( 𝐸𝐼𝐶𝑡,𝜏 ∙ 𝐸𝐶𝐴𝑃𝐸𝑋𝜏,𝑡𝑝  ) ∙
𝑟

1 − (1 + 𝑟)−𝐿𝜏

10

𝜏=1

)

𝑡,𝑠

 

∀ 𝑡 = 1: 3  and 𝑠 ∈ [𝑠𝐷 , 𝑠𝐶 , 𝑠𝐹] 

Eq. 4 

where, EIC𝑡,𝜏 stands for the technology’s 𝜏 total installed capacity (MW) during 

the time period 𝑡 and ECAPEX𝜏,𝑡𝑝 is the capital cost in period 𝑡𝑝. Accordingly, the 

fixed O&M cost is calculated as: 

𝐸𝐹𝑂𝑀𝑡,𝑠 = (∑(𝐸𝐼𝐶𝜏 ∙ 𝐹𝑂𝑀𝜏)

10

τ=1

)

𝑡,𝑠

 

∀ 𝑡 = 1: 3  and 𝑠 ∈ [𝑠𝐷 , 𝑠𝐶 , 𝑠𝐹] 

Eq. 5 

where, EFOM 𝑡,𝑠 is the fixed O&M cost per kW of installed capacity of existing 

power plants calculated for each scenario and time period. The non-fuel variable 

O&M cost of existing power plants (𝐸𝑉𝑂𝑀) is estimated by the following equation: 

𝐸𝑉𝑂𝑀𝑡,𝑠 = (∑(𝐸𝐼𝐶𝜏 ∙ 𝐶𝐹𝜏 ∙ 𝑉𝑂𝑀𝜏 ∙ 8760)

10

𝜏=1

)

𝑡,𝑠

 Eq. 6 
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∀ 𝑡 = 1: 3  and 𝑠 ∈ [𝑠𝐷 , 𝑠𝐶 , 𝑠𝐹] 

where, CF𝜏  is the capacity factor of the power generation technologies, and VOM𝜏 

is the non-fuel variable O&M cost calculated per MWh of power generated. The 

fuel cost of existing fuel-powered energy plants (𝐸𝐹𝐶) is calculated as: 

𝐸𝐹𝐶𝑡,𝑠 = (∑ ∑(𝐸𝐼𝐶𝜏 ∙ 𝐶𝐹𝜏 ∙  8760 ∙ 𝐹𝑃𝜏,𝑠𝑓 ∙ 𝑝𝑠𝑓)

3

𝑠𝑓=1

3

𝜏=1 

)

𝑡,𝑠

 

∀ 𝑡 = 1: 3  and 𝑠 ∈ [𝑠𝐷 , 𝑠𝐶 , 𝑠𝐹] 

Eq. 7 

where, 𝐹𝑃𝑡,𝑠𝑓 denotes the fuel price. Finally, the annual carbon cost of existing 

power plants,  𝐸𝐶𝐶𝑡,𝑠 is estimated as follows: 

𝐸𝐶𝐶𝑡,𝑠 = (∑(𝐶𝑒𝑚𝑖𝑡𝜏 ∙ 𝐶𝑡𝑎𝑥𝜏)

3

𝜏=1

)

𝑡,𝑠

 

∀ 𝑡 = 1: 3  and 𝑠 ∈ [𝑠𝐷 , 𝑠𝐶 , 𝑠𝐹] 

Eq. 8 

where, the mass of CO2,eq emitted per year is calculated as a function of the 

CO2,eq emission rate of power plant technology (𝐶𝑟𝑎𝑡𝑒𝜏) by the following formula: 

𝐶𝑒𝑚𝑖𝑡𝜏 = 𝐸𝐼𝐶𝜏 ∙ 𝐶𝐹 𝜏 ∙ 8760 ∙ 𝐶𝑟𝑎𝑡𝑒𝜏 Eq. 9 

Above equations are also applied for the new power generation plants. The 

electricity system cost of new power plants was estimated for every scenario and 

time period as: 

𝑁𝐶𝑡,𝑠  = (𝑁𝐴𝐶𝑃 + 𝑁𝐹𝑂𝑀 + 𝑁𝑉𝑂𝑀 +𝑁𝐹𝐶 + 𝑁𝐶𝐶)𝑡,𝑠 Eq. 10 

𝑁𝐴𝐶𝑃 𝑡,𝑠 = (∑(
𝑟

1 − (1 + 𝑟)−𝐿𝜏
  ∙ 𝑁𝐼𝐶𝜏   ∙ 𝑁𝐶𝐴𝑃𝐸𝑋𝜏)

10

𝜏=1

)

𝑡,𝑠

 Eq. 11 



 

242 

 

𝑁𝐹𝑂𝑀𝑡,𝑠 = (∑(𝑁𝐼𝐶𝜏 ∙ 𝐹𝑂𝑀𝜏)

10

𝜏=1

)

𝑡,𝑠

 Eq. 12 

𝑁𝑉𝑂𝑀𝑡,𝑠 = (∑(𝑁𝐼𝐶𝜏 ∙ 𝐶𝐹𝜏 ∙ 𝑉𝑂𝑀𝜏 ∙ 8760)

10

𝜏=1

)

𝑡,𝑠

 Eq. 13 

𝑁𝐹𝐶𝑡,𝑠 = (∑ ∑(𝑁𝐼𝐶𝜏 ∙ 𝐶𝐹𝜏 ∙  8760 ∙ 𝐹𝑃𝜏,𝑠𝑓 ∙ 𝑝𝑠𝑓)

3

𝑠𝑓=1

3

𝜏=1 

)

𝑡,𝑠

 Eq. 14 

𝑁𝐶𝐶𝑡,𝑠 = (∑(𝐶𝑒𝑚𝑖𝑡𝜏 ∙ 𝐶𝑡𝑎𝑥𝜏)

3

𝜏=1

)

𝑡,𝑠

 Eq. 15 

𝐶𝑒𝑚𝑖𝑡𝜏 = 𝑁𝐼𝐶𝜏 ∙ 𝐶𝐹 𝜏 ∙ 8760 ∙ 𝐶𝑟𝑎𝑡𝑒𝜏 

∀ 𝑡 = 1: 3  and 𝑠 ∈ [𝑠𝐷 , 𝑠𝐶 , 𝑠𝐹] 
Eq. 16 

The proposed optimization model was developed using the constrained solver 

fmincon of MATLAB R2017a optimization toolbox, which is based on sequential 

quadratic programming [42].  

3.2 Constraints  

Besides minimizing the cost, the model considers the following constraints to 

satisfy energy security, renewable penetration, fuel diversity and carbon emission 

reduction targets.  

3.2.1 Electricity Peak Demand 

This constraint ensures the total installed capacity could satisfy the peak demand 

(𝑃𝐷) for all scenarios and time periods. Reserve margin is taken into account as 

a buffer to protect against system breakdowns or sudden upsurges in electricity 

demand. It is defined as the difference between the (required) installed capacity 

(𝑅𝐼𝐶) and the peak demand divided by the peak demand [43,44]. Electricity 
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demand is driven by population growth, economic development and various other 

factors. However, extensive electricity demand estimation is not the focus of the 

current work. The following constraints ensure that the installed capacity of 

existing power plants plus the installed capacity of new power plants are sufficient 

to meet the expected peak demand plus the reserve margin. 

(∑(𝛪𝐶𝜏)

10

𝜏=1

)

𝑡,𝑠

= (𝐸𝐼𝐶 + 𝑁𝐼𝐶)𝑡,𝑠 Eq. 17 

(∑(𝑅𝐼𝐶𝜏)

10

𝜏=1

)

𝑡,𝑠

= 𝑃𝐷𝑡,𝑠 ∙ (1 + 𝑅𝑀) Eq. 18 

(𝐼𝐶)𝑡,𝑠  ≥  (𝑅𝐼𝐶)𝑡,𝑠 

∀ 𝑡 = 1: 3  and 𝑠 ∈ [𝑠𝐷 , 𝑠𝐶 , 𝑠𝐹] 
Eq. 19 

3.2.2 Electricity Consumption Demand 

This constraint guarantees the electricity generated by power generation facilities 

(𝑃𝜏) exceeds the projected power consumption (𝐶𝐷) after taking into 

consideration the plant’s own use of electricity (𝑂), as well as the transmission 

and distribution losses (𝐿). 

(∑𝑃𝜏 ∙ (1 − ( 𝑂 + 𝐿))

10

𝜏=1

)

𝑡,𝑠

≥ (∑ (𝑝𝑠𝐷 ∙ 𝐶𝐷)

3

𝑠𝐷=1

)

𝑡,𝑠

 

∀ 𝑡 = 1: 3  and 𝑠 ∈ [𝑠𝐷 , 𝑠𝐶 , 𝑠𝐹] 

Eq. 20 

3.2.3 Renewable Contribution Target 

This constraint gives explicit control to set a minimum renewable energy share in 

power generation mix to boost renewable energy penetration. This constraint that 

can be varied across the different time periods, with targets set at more ambitious 

levels in the course of time. As explained in the Nomenclature in Appendix A, 𝜏 
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denotes the type of technology, with 𝜏 = 1: 3 representing the conventional 

technologies and 𝜏 = 4: 10 the renewable energy technologies. 

 (
∑ (𝐸𝐼𝐶𝜏 ∙ 𝐶𝐹𝜏)
10
𝜏=4 + ∑ (𝑁𝐼𝐶𝜏 ∙ 𝐶𝐹𝜏)

10
𝜏=4

∑ (𝐸𝐼𝐶𝜏 ∙ 𝐶𝐹𝜏)
10
𝜏=1 + ∑ (𝑁𝐼𝐶𝜏 ∙ 𝐶𝐹𝜏)

10
𝜏=1

)
𝑠,𝑡

≥ 𝑅𝐸𝑡𝑎𝑟𝑔𝑒𝑡𝑡
 

∀ 𝑡 = 1: 3  and 𝑠 ∈ [𝑠𝐷 , 𝑠𝐶 , 𝑠𝐹] 

Eq. 21 

3.2.4 Minimum Proportion Constraint 

This constraint defines the minimum contribution of each technology in the power 

generation mix for each period of time (𝑀𝑖𝑛𝑐𝑎𝑝𝑡,𝜏). It is useful to ensure the more 

preferred technology is at a certain minimum level. For example, to manage the 

risk of intermittency from renewable energy sources, policy makers can set the 

share of coal and gas power at a certain minimum level. This constraint is 

included through the following expression: 

(
𝐸𝐼𝐶𝜏 ∙ 𝐶𝐹𝜏 +𝑁𝐼𝐶𝜏 ∙ 𝐶𝐹𝜏

∑ (𝐸𝐼𝐶𝜏 ∙ 𝐶𝐹𝜏)
10
𝜏=1 +∑ (𝑁𝐼𝐶𝜏 ∙ 𝐶𝐹𝜏)

10
𝜏=1

)
𝑡,𝑠

≥ 𝑀𝑖𝑛𝑐𝑎𝑝𝑡,𝜏 

∀ 𝑡 = 1: 3, 𝜏 = 1: 10  and 𝑠 ∈ [𝑠𝐷 , 𝑠𝐶 , 𝑠𝐹] 

Eq. 22 

 

3.2.5 Maximum Proportion Constraint 

By imposing a maximum proportion constraint, for example on the more cost 

efficient power generation technologies, the model imposes the introduction of 

other technologies in the power generation mix in order to cover the energy 

demand, rendering the power generation mix more diverse. Fuel diversity can be 

enforced by policy makers to maintain the dependency of each technology or fuel 

source within an allowable range by means of setting the maximum proportion 

cap (𝑀𝑎𝑥𝑐𝑎𝑝𝑡,𝜏) for each technology, 𝜏, at a particular time period, 𝑡. Grid stability 

should also be taken into account. The fact that most renewable energy 
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technologies cannot be dispatched when required, as they strongly depend on 

weather conditions, prevents them from being a reliable base-load solution over 

a long term period. As such, through this constraint the total electricity production 

from renewable technologies can be set not to exceed a maximum proportion of 

the total electricity demand. The maximum proportion cap can also be used as a 

tool to restrain an undesired technology option. A different maximum proportion 

cap can be applied to each technology and time period. 

(
𝐸𝐼𝐶𝜏 ∙ 𝐶𝐹𝜏 + 𝑁𝐼𝐶𝜏 ∙ 𝐶𝐹𝜏

∑ (𝐸𝐼𝐶𝜏 ∙ 𝐶𝐹𝜏)
10
𝜏=1 + ∑ (𝑁𝐼𝐶𝜏 ∙ 𝐶𝐹𝜏)

10
𝜏=1

)
𝑡,𝑠

 ≤ 𝑀𝑎𝑥𝑐𝑎𝑝𝑡,𝜏 

∀ 𝑡 = 1: 3 , 𝜏 = 1: 10  and 𝑠 ∈ [𝑠𝐷 , 𝑠𝐶 , 𝑠𝐹] 

Eq. 23 

3.2.6 CO2,eq Emission Limit 

This constraint limits the allowable amount of CO2,eq emissions produced from 

fossil-fuel generation facilities. The introduction of the CO2,eq limit controls the 

introduction of fossil-fuel plants and forces the inclusion of renewable 

technologies to the power generation mix so as to satisfy the rest of the demand. 

Different limits can apply at each planning period. 

(∑(𝐼𝐶𝜏  ∙  𝐶𝐹𝜏  ∙ 8760 ∙  𝐶𝑟𝑎𝑡𝑒𝜏)

10

𝜏=1

)

𝑡,𝑠

≤ 𝐶𝑡𝑎𝑟𝑔𝑒𝑡𝑡
 

∀ 𝑡 = 1: 3 and 𝑠 ∈ [𝑠𝐷 , 𝑠𝐶 , 𝑠𝐹] 

Eq. 24 

3.2.7 Renewable Potential Limit 

The renewable potential expresses the theoretical upper limit of the amount of 

energy that can be produced from renewable sources over a particular 

geographic region as estimated by surveys undertaken by experts [16]. This 

constraint is imposed on renewable technologies to make sure the energy derived 

from renewable sources is within the potential capacity of that region or country. 

𝐸𝐼𝐶𝑡,𝜏 + 𝑁𝐼𝐶𝑡,𝜏  ≤  𝑅𝐸𝑝𝑜𝑡𝑡,𝜏  Eq. 25 
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∀ 𝑡 = 1: 3, 𝜏 ∈ [4: 10]  

In this study, the maximum potential (𝑅𝐸𝑝𝑜𝑡) for hydro, geothermal, biomass, 

onshore wind, offshore wind, solar PV and solar CSP are summarised in Table 

4. 

3.2.8 Annual Construction Limit 

This constraint determines the annual construction upper limit for renewable 

energy plants, which is subject to the availability of labour, manufacturing 

capacity, area available for construction, social readiness for a particular 

technology and other factors. The construction limit remains unchanged across 

the different time periods.  

𝑁𝐼𝐶𝜏,𝑡,𝑠  ≤  𝐶𝐿𝜏 

∀ 𝑡 = 1: 3, 𝜏 ∈ [4: 10] and 𝑠 ∈ [𝑠𝐷 , 𝑠𝐶 , 𝑠𝐹] 
Eq. 26 

3.2.9 Non-negative constraint 

By this constraint, it is assured that only non-negative new rated capacities can 

be accepted for every scenario, time period and technology in the solution. 

𝑁𝐼𝐶𝜏,𝑡,𝑠  ≥  0  

∀ 𝑡,  𝑠 ∈ [𝑠𝐷 , 𝑠𝐶 , 𝑠𝐹] and  𝜏 = 1: 10 

Eq. 27 

 

4 Application to the Indonesian power generation system 

In this study, Indonesia’s power system’s portfolio is used as input for the 

proposed model. Indonesia's prominence is highlighted by its population of 255 

million people (fourth largest in the world) in 2016 [45] and its considerable 

potential of fossil-fuel and renewable resources.  Globally, Indonesia is the 

largest coal exporter and fourth largest coal producer. The country has an 
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estimated 28 billion tons of coal reserves (accounting for 3.1% of total global 

reserves [46]). It is the world’s tenth largest producer of natural gas and the 

seventh largest exporter of liquefied natural gas (LNG) [47].  

Indonesia is the largest economy in Southeast Asia and has achieved steady, 

high growth rates over the last 15 years. Its energy consumption is predicted to 

grow rapidly as a result of population growth, rapid urbanisation and rising living 

standards  [47]. Therefore, satisfying demand growth and ensuring the 

sustainability of energy supplies is one of key pillars of Indonesia’s economy. In 

2016, Indonesia had approximately 59.6 GW installed power plant capacity, 

generating 290 TWh of electricity [45]. Electricity peak load was estimated to 

reach 32,204 MW in 2017 [48]. Energy mix is currently comprised by coal 

(54.69%), gas (25.89%), oil (6.97%) and renewables (12.45%) [49]. The 

Indonesian government seeks to reduce the dependency on fossil fuel by 

increasing the renewable energy contribution to the power sector by at least 25% 

by 2030 [50]. Additionally, according to the 2014 National Energy Policy (the 

“2014 NEP”) of Indonesia, renewable energy should reach at least the 23% of 

the power generation mix by 2025, while in 2050 the target is to increase 

renewables share to at least 31% [51]. As a contingency to the high share of 

renewable energy in the country’s mix, PLN (the company responsible for the 

majority of Indonesia’s energy production) will be required to use another 5.1 GW 

of gas-fired power plants to meet the resilience requirements of the power 

generation system [52]. The forecasted power demand growth and base fuel 

price assumption data were obtained from the National Electricity General Plan 

(RUKN) draft in 2015. RUKN also specifically sets the minimum reserve margin 

target (set to 35%), as well as the assumption on own use and transmission 

losses of the power system in Indonesia (9.48% according to [48]). The carbon 

emission reduction target was set to 26% from the Business As Usual (BAU) 

value in 2030, as specified in Presidential Decree No. 61 of 2011 on the National 

Action Plan for Reducing Emissions of Greenhouse Gases in efforts to enforce 

environmental impact mitigation [53]. The summary of Indonesia’s 2015 initial 

fleet capacity by generation technology can be found in Table 2.  
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Table 23. Indonesia’s power generation portfolio in 2015 (Source: [54]) 

Generation technology Capacity (in MW) 

Coal-fired 25,697 

Natural gas-fired 17,964 

Diesel power 6,394 

Hydropower 5,342 

Geothermal 1,435 

Biomass 86 

Wind Onshore 1 

Solar PV 11 

Total 56,932 

Furthermore, the detailed techno-economic data used as input in the present 

case study and their references are shown in Table 3. Each technology is 

characterised by a capacity factor. The capacity factor is defined as the ratio of 

the actual electricity output during a certain amount of time to the maximum 

potential electrical output during this period. 

The proposed model and the case study did not consider nuclear energy as the 

choice of power generation technologies because the utilization of nuclear energy 

in Indonesia will be considered only following the optimal utilization of new energy 

sources (such as hydrogen, coal bed methane, liquefied coal and coal 

gasification) and renewable energy. Assuming the potential of coal, gas and 

renewable energy is large enough, the use of nuclear energy was considered to 

be the last option. However, if despite the optimal utilization of new energy and 

renewable energy sources, the renewable energy share in total energy 

consumption still could not achieve a minimum 23% target by 2025, then nuclear 

energy will be considered as an option to fulfil the target [50]. As carbon tax has 

not been implemented in Indonesia yet, external cost is excluded in the cost of 

electricity generation for this study, while the imports and exports of electricity are 

not taken into account in this case study as the amount of power exchange with 

neighbouring countries is not significant. The annual construction limits of the 

renewable energy generation technologies were estimated on the basis of 
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historic annual installed capacities of each technology as well as the renewable 

potential (summarized in Table 3). Under the business-as-usual (BAU) scenario, 

carbon emissions from the power sector are projected to reach 750 million tons 

in 2020, 1000 million tons in 2025 and 1250 million tons in 2030 [55]. 

Table 3. Techno-economic data of power plants 

Technology 

Capac

ity 

factora 

Life 

timea 

Capita

l costa 

Fixed 

O&M 

costa 

Variabl

e O&M 

costb 

Fuel cost 

(mean 

value)f 

CO2,eq 

emission 

ratea 

Annual 

constructio

n limit 

Renewabl

e 

potentialc 

% 
year

s 
$/kW 

$/kW/yea

r 
$/MWh - 

tCO2,eq/MW

h 
MW/year MW 

Coal (PCF) 0.70 30 1,500 31.0 3.5 51 $/ton 1.09 - - 

Gas (NGCC) 0.70 30 950 17.1 5 

8.02 

$/MMBT

U 

0.6 - - 

Diesel 0.70 30 700 11 6 
45 

$/barrel 
0.8 - - 

Hydro 0.40 40 2,411 14.7 3.5 - 0 1600 75,670 

Geothermal 0.75 30 2,687d 116 6 - 0 1000 28,910 

Biomass 0.80 20 1,600 108 4 - 0 1300 32,654 

Wind 

Onshore 
0.28 30 1,800e 10.25 1 - 0 1000 

60,600 
Wind 

Offshore 
0.35 25 6,331 60 3 - 0 50 

Solar PV 0.16 25 3,300e 21 2 - 0 8500 

207,800 
Solar CSP 0.20 20 4,168 69 4 - 0 30 

a Techno-economic data derived from the average value of various sources: [1,3,16,28,37,38,56–
61]; bSource: [61]; cSource: [45,62]; dSource: [63]; eInitial capital cost value at the beginning of 
planning horizon; 
fSource: [40]   

 

5 Results 

The case study performed capacity expansion planning with 2016 as the base 

year and three planning stages at years 2020, 2025 and 2035. The stochastic 

optimization model minimizes the total expected cost of the power generation mix 

for all three planning stages by considering all possible input scenarios. The 

proposed model was initially applied to determine the optimal power generation 

mix under a baseline case. Accordingly, the model was applied under three 
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representative cases calling for: the “Least cost option”, the “Policy Compliance 

option” and the “Green Energy Policy option”. 

5.1 Baseline case 

Under the baseline case, existing targets for renewable energy contribution were 

considered as input to the model (minimum increase of 16% by 2020, 23% by 

2025, and 31% in 2050), the maximum CO2,eq emissions limit was set according 

to the BAU scenario for each planning period (presented in Section 4.1), while 

the allowable contribution of each technology was set to 45% for all technologies. 

This limit was picked on the basis that coal should not exceed the 2015 quotas. 

The optimised stochastic power generation mix for all leaf nodes run for planning 

period 2025 is shown in Figure 5 and it includes coal 20.0–45.0%,natural gas 

9.0–32.0%, oil 3.5–17.5%, hydro 9.0-12.5%, geothermal 8.8–12.3%, biomass 

2.3-11.9% and onshore wind 2.7–4.1%, offshore wind 0%-0.14% and solar PV 

0%-8.0%. It has to be noted that results shown in this figure do not depict the 

likelihood of occurrence of each scenario. To identify the weighted mean 

proportion of power generation produced from each technology, 𝜏, during time 

period, 𝑡, each observation is multiplied by the probability of occurrence of its 

originating scenario 𝑠𝑘 (where 𝑘 is a specific combination of 𝑠𝐷 , 𝑠𝐶 and 𝑠𝐹 

scenarios) and the products are, then, summed up. For instance, the weighted 

mean proportion of power generation derived from technology 𝜏1 is calculated as: 

�̅�𝜏1 =∑(𝑝𝑠1𝑥𝜏1,𝑠1 + 𝑝𝑠2𝑥𝜏1,𝑠2 +⋯+ 𝑝𝑠𝑘𝑥𝜏1,𝑠𝑘)

𝐾

𝑘=1

 Eq. 28 

In Figure 6, the optimised stochastic power generation mix across the whole 

simulation period is illustrated. Total weighted mean power installed capacity was 

calculated 72.2 GW in the 2020 baseline case, increasing to 166 GW in 2030 due 

to the growing energy demand. Outliers have been removed from the box plot 

representation, while the weighted mean proportions of the different technologies 

in the power generation mix are denoted by a red asterisk. The central red mark 
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in the whisker charts represents the median, while the bottom and top edges of 

the blue boxes indicate the 25th and 75th percentiles, respectively. The black 

whiskers cover the non-outliers that represent the most extreme data points. 

Constraints imposing the renewable technologies contribution, as well as lower 

carbon emission levels appear to enforce the decrease of fossil-fuels-based 

technologies over time. In fact, coal, NG and oil installed capacities are reduced 

by 11%, 45% and 34% from 2020 to 2030 time periods, while hydro, geothermal, 

biomass and onshore wind are increased by 58%, 117% and 112%, respectively 

(as shown in Figure 7). Furthermore, new weighted installed capacity was 

estimated 24.3 GW in 2020, 51.8 GW in 2025 and 80.5 GW in 2030, weighted 

RES share was 35% in year 2030, CO2,eq emissions were 570 million tons and 

weighted total discounted cost was calculated $ 471 billion. The model failed to 

find an optimum solution for around 5% of the total uncertainty scenarios, 

meaning that not all constraints could be satisfied under these scenarios. Results 

illustrated here were, thus, cleansed and their probabilities were readjusted to 

sum up to one.     

 

Figure 5 Power generation mix across different scenarios (for year 2025) 
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Figure 6 Optimised stochastic power generation mix throughout the simulation 

period under the Baseline Case 

 

Figure 7 Weighted average installed capacity under the baseline case 

Above results were derived under the assumption that the MC sample of fuel 

prices follow a normal distribution. In Figure 8, stochastic power generation mixes 

for the 2030 planning period, under the assumption of uniform, PERT and Weibull 
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probability distributions, are shown. The equivalent PERT, Weibull and uniform 

distributions were based on fitting the baseline normal distribution. Generally, 

results appear not to deviate substantially in relation to normal distribution, and 

slight deviations can be observed mostly for Weibull distribution predicting 4% 

less coal, 8% less NG and 13% more oil share in relation to the baseline case. 

 

Figure 8 Optimal power generation mix under the 3 different probability 

distributions for 2030 

5.2 Modelling of Planning Options (POs) 

The proposed model was, then, applied to determine the optimal power 

generation mix for three Planning Options (POs): Least cost, Policy compliance 

and Green Energy Policy option. Different sets of constraints were imposed for 

each option and are summarised in Table 4.  

The least cost PO focuses only on minimizing the cost of the power generation 

system, while no carbon emissions limit, renewable contribution and fuel diversity 

targets are in place. The policy compliance option imposes the renewable energy 

penetration targets, CO2,eq emission limits and required coal and natural gas 

quotas prescribed by the Indonesian’s National Energy Policy (NEP). The Low 

Carbon Energy option enforces stricter renewable energy penetration targets and 
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CO2,eq emission limits. It should be noted that the power generation mix is based 

on the total power generation of the installed technologies.  

Table 4. Set of constraints for each PO 

Constraint Baseline case 
Least cost 

option 

Policy Compliance 

option a 

Green Energy 

Policy option 

Peak demand √ √ √ √ 

Consumption demand √ √ √ √ 

Renewable potential 

limit 
√ √ √ √ 

Annual construction 

limit 
√ √ √ √ 

Minimum proportion x x 

Coal: 30% in 2025 

29% in 2030  

NG: 22% in 2025  

x 

Maximum proportion 
45% for each 

technology 
x 

Oil: 25% in 2025     

24% in 2030 

Rest of technologies: 

45%  

45% for each 

technology 

Renewable penetration 

target 

16% in 2020 

23% in 2025 

25% in 2030 

x 

16% in 2020 

23% in 2025 

25% in 2030 

24% in 2020 

35% in 2025 

38% in 2030 

CO2,eq emission limit 

750 m ton in 2020 

1000 m ton in 2025 

1250 m ton in 2030 

of CO2,eq/year  

x 

26% CO2,eq reduction 

in relation to 2020, 

2025 and 2030 BAU 

30% reduction in 

relation to 2020, 

2025 and 2030 

Baseline case 

Carbon pricing x x x 
$ 30 /metric ton of 

CO2,eq 

a Source: [45,50] 

5.2.1 Least Cost option 

The power generation mix of the Least Cost option is dominated by coal power, 

since there is no imposed carbon emission restriction or renewable penetration 

target. Even though the renewable penetration in this option is not as high and 

varied as in other options, it can still fulfil the 25% renewable penetration target 

for 2030, due to the high contribution of the relatively low cost hydropower, as 

well as the contribution of geothermal, biomass and onshore wind power plants. 
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According to the results, overall power generation in 2030 will rely heavily on the 

three most cost efficient technologies: coal (57.1%), geothermal (13.2%) and 

hydropower (13.1%). The rest of the power generation originates from gas 

(5.9%), onshore wind (4.6%), biomass (3.2%) and diesel power (2.9%). Cost 

efficiency accounts both for the total cost of the technology integrating the capital, 

fixed operational, variable operational and fuel cost, as well as for the total lifetime 

duration and the capacity factor of each technology. As can be seen from Figure 

9, to satisfy the increasing demand at the least cost, coal installed capacity will 

keep growing rapidly throughout the planning horizon. On the other hand, natural 

gas and diesel consumption experience a decreasing trend as their contribution 

is slowly superseded by coal and hydropower. 

 

Figure 9. Power generation mix for Least cost option 

5.2.2 Policy Compliance option 

This option encompasses the stochastic power generation mix optimization, 

based on the Indonesian government’s policy targets for the power generation 

sector, as detailed in Table 4. The set of constraints considered for this option 

include a minimum gas utilization in the power sector of 22% (in 2025) to promote 

domestic use of natural gas. Coal share is also imposed a minimum limit of 30% 
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by 2025, while oil share is set to reach a maximum percentage of 25% by 2025. 

Figure 10 shows that the power generation system will be dominated by coal, 

hydro and natural gas-fired power plants. While coal and hydro are proposed by 

the model due to their low cost characteristics, expansion of natural gas capacity 

is mainly driven by the minimum proportion limit imposed by the policy. However, 

coal power growth is limited up to a certain level that satisfies the CO2,eq reduction 

and RES penetration targets. Further, according to the model output, hydro, 

geothermal and onshore wind will fill the gap in 2030 to satisfy the increasing 

power demand. As the capital cost for onshore wind is expected to decrease over 

the planning horizon, the weighted average onshore wind energy production 

starts to grow from 3% in 2020 to 5.5% in 2030, according to the model.  

 

Figure 10. Power generation mix for policy compliance option 

5.2.3 Green Energy Policy option 

The Green Energy Policy option aims to investigate the effect of enforcing 

progressively stricter targets for the RE penetration (reaching 38% minimum RE 

share in 2030) and mitigation of environmental impact on the power generation 

mix, throughout the planning period. To this end, a hypothetical carbon pricing 

was also introduced as a policy for reducing emissions and drive investments into 
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cleaner power generation technologies. Since, no carbon pricing policy is 

currently in effect in Indonesia, this study assumes an average price of $30/metric 

ton of CO2,eq, which is comparable to other studies in literature [38,64,65]. No 

constraints on the diversity of the power generation mix were added. As shown 

in Figure 11, the power generation mix is again most likely to be dominated by 

coal as the cheapest option, while the gas-fired power generation technology 

appears to be the second most preferred solution under this set of constraints. 

Both technologies, however, demonstrate a decreasing trend from 2020 to 2030, 

due to the green energy targets and carbon reduction policies imposed. In fact, 

the weighted average power generation from coal-fired power plants was 

calculated approximately 43% of the power generation mix in 2020, which was 

reduced to 37.5% in 2030, while NG was reduced from 21% to 15%, respectively, 

according to the model. A similar pattern is followed by oil-fired power plants, 

which is reduced from 7.5% in 2020 to 4.5% in 2030. Hydro and geothermal 

power plants are again the preferred solutions for covering the largest part of the 

RES penetration target, while an increasing biomass capacity addition can be 

observed, along with a slight increase in the share of onshore wind and solar PV 

installed capacity. 

 

Figure 11. Energy mix for Green Energy Policy option 
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6 Discussion 

Figure 12 integrates the values of renewable energy share, discounted total cost, 

CO2,eq emissions and total new installed capacity of renewable energy 

technologies under the different POs considered. As such, it can be observed 

that the Least cost option offers the lowest total discounted cost at the expense 

of higher CO2,eq emissions, as compared to the baseline case and the other 

options examined. In fact, during the planning period 2030, total weighted 

discounted cost is projected to amount to $ 446 billion, i.e. 5% lower, while CO2,eq 

emissions are 28% higher (i.e. 732 million ton) than the baseline case. This PO 

is also characterized by the lowest weighted new installed capacity and total 

contribution of renewables in the power generation mix when compared to the 

rest of the POs examined, reaching a weighted average of around 27% share 

during the planning period 2025, fulfilling the currently existing target of 23% RES 

share in the power generation mix. Although this option comes with the lowest 

cost, the power generation mix appears to be less diverse; for example, in year 

2030 the individual shares of technologies, with the exception of coal, remain at 

relatively low levels (weighted values of the rest technologies are below 15%). 

This can potentially jeopardise the security of the power generation system, since 

alternative technologies that can provide peak power, such as NG-fired power 

plants have relatively small shares in the power generation mix. Peaking 

generation plants, such as the fast start and flexible gas-fired power plants are 

required to satisfy changes in peak demand and network congestions, which may 

be caused by the increasing integration of intermittent renewable energy in the 

network, challenging the power generation system security. Indeed, it is 

estimated that every 8 MW of wind generation installed, requires approximately 

1 MW of new peaking power plant [66]. However, the present model does not 

take into account the ability of NG fired power plants at demand tracking. It should 

also be noted that intermittency only applies to specific renewable energy 

technologies, i.e. the solar PV and the onshore/offshore wind power plants, while 

geothermal and biomass technologies, which appear to be present in the 
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Indonesian power generation mix, can be predictable in terms of their output (i.e. 

dispatchable sources). 

 As far as the Policy Compliance PO is concerned, it is indicated that the total 

discounted cost will be higher than the Baseline and the Least cost option, i.e. $ 

487.5 billion for year 2030, due to the minimum 24% share of gas-fired plants 

constraint enforced by the Government. Nevertheless, this PO offers better 

environmental impact mitigation, as it limits the CO2,eq emissions to 592 million 

ton of CO2,eq per year, achieving the 26% CO2,eq reduction target for 2030. The 

RES contribution achieved by this option reaches a weighted mean value of 31%, 

which is higher than the Least cost option but lower than the Green Energy Policy 

option. The decreasing trend in power generation from diesel power is a result of 

the high cost of diesel fuel, as well as the policy target to limit the diesel power 

up to a maximum 1% in 2030 with the aim to minimize the utilization of expensive 

imported oil.  

The optimal total weighted discounted cost under the Green energy policy option 

was estimated $592.7 billion, ranking this option as the most expensive among 

all other options, potentially due to the higher amount of new installed capacity of 

renewables, needed to satisfy the more ambitious environmental impact 

mitigation targets. Increasing costs were greatly attributed to the introduction of 

the carbon pricing policy. Additionally, under this option, the weighted RES share 

equals to 39% and the expected CO2,eq emissions amount to 514 million tons per 

year during the 2030 time period. The higher RES penetration targets, the carbon 

pricing policy and the more ambitious CO2,eq emissions reduction targets resulted 

in an improved environmental performance of the power generation system, 

which, however, incurred higher cost to the power generation system.  
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Figure 12. Renewable energy contribution proportion, total discounted cost, CO2,eq 

emissions and Renewable energy sources (RES) New Installed Capacity (NIC) of 

technologies for the: (a) Least cost option, (b) Policy compliance option and (c) 

Green energy policy option 

 

7 Conclusions 

In this paper, a multi-stage stochastic optimisation model was developed to 

optimize future power generation mix of a region or country by minimizing the 

total discounted cost, whilst also considering a number of constraints related to 

the peak and consumption demand, renewable energy potential limit, renewable 

energy penetration targets, annual construction limit, fuel diversity, CO2,eq 

emission targets and carbon pricing policy. The model took into account the 

uncertainty of three variables, including the demand of electricity, the future 
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reduction of capital cost of renewable technologies (due to learning 

curve effects), and the volatility of coal, natural gas and diesel prices. Uncertainty 

in energy demand and declining capital cost of solar PV and onshore wind was 

simulated by means of a scenario-tree approach, while the volatility of fuel prices 

was simulated through Monte Carlo simulation assuming a normal probability 

distribution. 

Indonesia’s power system has been used as a case study to test the applicability 

of the proposed model by means of a baseline case. The model was, then, 

applied to determine the optimal power generation mix for three planning options: 

Least Cost, Policy Compliance and Green Energy Policy option. 

Across all cases simulated, coal appeared to play a dominant role in the 

development of power generation system in Indonesia within the next 13 years, 

as a result of its relatively low construction and operation cost. The results 

indicated that to achieve the sustainability target set by the policy, Indonesia 

needs a major expansion in renewable-based power generation capacity to meet 

the future demand as the conventional fossil-based power generation is capped 

up to a certain level to meet the CO2,eq reduction target. This will be a significant 

challenge as the required installed capacity of renewable generation is much 

higher than the current installed capacity for each renewable technology. On the 

one hand, enhancing the renewable energy and environmental impact mitigation 

targets can increase the RES share in the energy mix to the expense of a higher 

total power generation system cost. On the other hand, a cheaper power 

generation mix could potentially be achieved (which will potentially also satisfy 

the RES penetration target); however, imposing no diversity constraints might 

jeopardise the security of the power generation system. A more secure power 

generation system can be achieved by diversifying the generation capacities and 

accommodating fast start and flexible gas-fired power plants. However, the share 

of power generated from coal and natural gas combined has to be kept below 

approximately 60% in 2030 to achieve more ambitious environmental impact 

mitigation targets as the ones assumed under the Green energy policy option. 

This maximum limit can be increased by shifting from coal to natural gas 
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generation at the expense of higher power generation system cost. Gas-fired 

generation can, thus, be used as a contingency technology, in order to approach 

the CO2,eq emission targets, while at the same time offer higher protection against 

the intermittency of renewable-based power generation and hence support the 

integration of wind and solar technologies.  

The developed model could be a useful tool for decision makers to assist in 

quantitative analysis and to provide a better understanding in power generation 

system planning. The results generated by the model could be improved by 

supplying more accurate data, such as comprehensive remaining technical life 

data of the existing power generation facilities and annual construction limit for 

each renewable energy technology that has been assessed further. The 

methodology developed in this study could also be used in other problems where 

the optimal solution is highly dependent on the stochasticity of key related 

variables. 

 

Appendix 

Table 4 – List of symbols 

𝐶𝑟𝑎𝑡𝑒𝜏 CO2,eq emission rate of power plant technology (ton CO2,eq/MWh) 

p𝑠𝐷  Probability of energy demand scenario 

p𝑠𝑐 Probability of capital cost reduction scenario 

p𝑠𝑓 Probability of fuel cost volatility scenario 

𝐶𝐹𝜏 Capacity factor of power plant technology (%) 

𝐶𝐿𝑇 Annual construction limit for each technology (in MW/year) 

𝐶𝑒𝑚𝑖𝑡 CO2,eq emitted per year (ton of CO2,eq/year) 

𝐶𝑡𝑎𝑟𝑔𝑒𝑡 CO2,eq emission limit (ton of CO2,eq/year) 

𝐶𝑡𝑎𝑥 Carbon tax ($/ton of CO2,eq) 
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𝐿𝑡 Technical life (in years) 

𝑅𝐸𝑝𝑜𝑡𝑡,𝑇
 Renewable potential limit (in MW) 

𝑅𝐸𝑡𝑎𝑟𝑔𝑒𝑡𝑡
 Renewable penetration target in energy mix (%) 

𝑠𝐶 Capital cost reduction scenario of new onshore wind and solar power plants 

𝑠𝐷 Energy demand scenario 

𝑠𝐹 Coal, gas and oil fuel price scenario 

𝐶𝐷 Power consumption demand (in MWh) 

𝐸𝐴𝐶𝑃 Annualized capital cost of existing power plants ($/year) 

𝐸𝐶 Power generation cost of existing power plants ($/year) 

𝐸𝐶𝐴𝑃𝐸𝑋 Capital factor of existing power plants ($/kW) 

𝐸𝐶𝐶 Carbon cost of existing power plants ($/year) 

𝐸𝐹𝐶 Fuel cost of existing power plants ($/year) 

𝐸𝐹𝑂𝑀 Fixed O&M cost of existing power plants ($/year) 

𝐸𝐼𝐶 Installed capacity of existing power plants (MW) 

𝐸𝑉𝑂𝑀 Νon-fuel variable O&M cost of existing power plants ($/year) 

𝐹𝑂𝑀 Fixed O&M cost ($/kW) 

𝐹𝑃 Fuel price ($/MWh) 

𝐹𝑅 Fuel consumption rate (ton/MWh; MSCF/MWh; barrel/MWh) 

𝐻𝑅 Power plant heat rate (Btu/kWh) 

𝐻𝑉 Average heating value of fuel (Btu/ton; Btu/ft3; Btu/barrel) 

𝐼𝐶 Total installed capacity (MW) 

𝐿 Transmission and distribution losses (%) 
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𝑀𝑎𝑥𝑐𝑎𝑝 Maximum proportion in energy mix / diversity (%) 

𝑀𝑖𝑛𝑐𝑎𝑝 Minimum proportion in energy mix (%) 

𝑁𝐴𝐶𝑃 Annualized capital cost of new power plants ($/year) 

𝑁𝐶 Power generation cost of new power plants ($/year) 

𝑁𝐶𝐴𝑃𝐸𝑋 Capital factor of new power plants ($/kW) 

𝑁𝐶𝐶 Carbon cost of new power plants ($/year) 

𝑁𝐹𝐶 Fuel cost of new power plants ($/year) 

𝑁𝐹𝑂𝑀 Fixed O&M cost of new power plants ($/year) 

𝑁𝐼𝐶 Installed capacity of new power plants (MW) 

𝑁𝑉𝑂𝑀 Νon-fuel variable O&M cost of new power plants ($/year) 

𝑂 Own use (%) 

𝑃 Net power production (in GWh) 

𝑃𝐷 Peak demand (in MW) 

𝑅𝐼𝐶 Required installed capacity (in MW) 

𝑅𝑀 Supply reserve margin (%) 

𝑉𝑂𝑀 Non-fuel variable O&M cost ($/MWh) 

𝑓 Total power generation cost discounted to present value 

𝑟 Interest rate (%) 

𝑠 Scenario (path in scenario tree) 

𝑡 Time intervals or period 

𝜏 

Power generation technology including coal (denoted as “1”), natural gas 

(“2”), oil (“3”), hydro (“4”), geothermal (“5”), biomass (“6”), onshore wind (“7”), 

offshore wind (“8”), solar PV (“9”) and solar CSP (“10”) 
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Abstract 

Operational management is a key contributor in life cycle costs, especially for large scale assets which are in most times complex in structural 
hierarchy and with a large nominal service life. Decisions on the operational management may concern the number of inspections or maintenance 
strategies which may allow full utilization of structural capacity or sacrifice residual life in order to avoid an unscheduled intervention. Design 
of such assets is often governed by design standards which offer the designer the flexibility to take certain decisions that may affect the CAPEX 
to OPEX ratio such as that of building a more robust structure which may eliminate the need for costly inspection operations. This paper is 
investigating this approach, taking the example of offshore wind turbine support structures as the reference case, and examines the relevant 
provisions of the DNV-Os-J101 Standard with respect to the design implications that such a decision may have to the overall life-cycle cost of 
the structure. Assessment of the structural properties under different design conditions is evaluated through a combination of detailed cost model 
and an iterative optimization algorithm. The approach which is followed and documented, can be applicable to other complex structural systems 
for decision making through evaluation of service life costs. 
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 27th CIRP Design Conference. 

 Keywords: offshore wind energy, monopile, design optimisation, material safety factors, inspection and maintenance, cost model, genetic algorithm 

 
1. Introduction 

Complexity of structural systems, introduce a variety of 
factors that a designer should take into account during the 
design stage of the project which could in any way affect 
subsequent stages of the service life of an asset. Energy assets 
are in most cases characterized by increased complexity and 
hence decisions over their design and operation becomes even 
more demanding. Offshore wind energy structures is a 
representative example of this phenomenon, varying 
significantly from similar applications, such as those of the 
offshore oil and gas industry, in the sense that they are deployed 
in arrays of several units (this number can reach or exceed 100) 
hence the requirements in mass production, should be designed 
to accept higher risks due to their unmanned operation in 
normal conditions and the fact that they refer to a marginal 
business were profits are limited and highly uncertain. In 
particular, as of July 2016, 3,344 units were installed and grid 
connected across Europe, at an average distance to shore of 42 
km and 25 meters of deployment depth, accounting of 11.5 GW 

of total capacity [1] with ambitious targets for the foreseeable 
future (18 GW to be deployed by 2020) [2]. 

In this paper we consider the example of the frequency of 
inspection and maintenance of offshore wind support 
structures, usually determined by Industrial Standards such as 
the DNV-RP-J101 [3], recommending fixed intervals between 
consecutive inspections and outlining the design structural 
requirements of the wind farm turbines. Since certification is 
essential for an offshore wind farm to be eligible for insurance, 
it is of paramount importance for the wind turbines to acquire 
the certification needed through compliance to the 
underpinning standards. Although standards are in general very 
prescriptive, they often allow designer the flexibility to change 
the length of the inspection intervals by modifying the design 
of the substructure. As such, the designer can overdesign the 
support structure through higher material factors in order to 
expand the inspection intervals yielding significant inspection 
and potential maintenance cost gains. As a consequence, 
increasing the material factor of the structure is expected to 

© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of the scientifi c committee of the 27th CIRP Design Conference
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have an effect on the material volume of steel and therefore on 
the construction cost of the support structure.  

This paper investigates the effect of material safety factors 
on fatigue design of offshore wind turbine monopiles and 
quantifies the cost implications associated with each case. 
Results of this work highlight the fact that design elements of 
offshore wind farms should be based on strategic decisions 
affecting the levels of CAPEX and OPEX over the lifecycle of 
an offshore wind farm.  

 
Nomenclature 

CAPEX  Capital expenditures 
CVI      Close visual inspection 
GVI     General visual inspection  
OPEX   Operating expenditures 
ROV       Remotely Operated Vehicle 

2. Inspection of offshore wind turbines 

According to DNV-OS-J101 (Chapter 13) [3] periodical 
inspections should be performed during the design life of the 
offshore wind farm in the following components:  

- wind turbines,  
- structural system above water,  
- structural system below water,  
- submerged power cables. 

The present paper focuses on the inspection of the structural 
system below water. Costs of subsea structural surveys 
represent around 1% of the total maintenance costs according 
to a report compiled by Garrad & Hassan [4]. Nevertheless, the 
high level of expenditure devoted for such investments render 
their limitation a rather important business. 

Typical offshore subsea survey components for the 
inspection of the structure for the periodical inspections consist 
of the general visual inspection (GVI) and the close visual 
inspection (CVI) usually carried out through a Remotely 
Operated Vehicle (ROV).  

One of the main issues of calendar-based maintenance of the 
subsea structural components is the determination of the 
interval between consecutive inspections. According to [3] 
inspection for fatigue cracks should take place at least every 
five years. However, the frequency of inspections may be 
waived according to the design philosophy that has been used 
for the structural components in question. As such, when the 
fatigue design of the component has been performed by using 
safety factors corresponding to a condition of no access for 
inspection operations, the inspections on the specific part could 
be eliminated. When, however, material factors are smaller, 
more regular inspections need to be performed. The Guidance 
note of the DNV-Os-J101 Standard with regards to inspections 
for fatigue cracks (section 13.3.7.2) recommends that the 
interval between consecutive inspections can be expressed in 
relation to the material safety factor  as: 

   (1) 

Therefore, 

- when =1.25, inspections for fatigue cracks can 
be fully eliminated, 

- when =1.15, inspections for fatigue cracks are 
needed every 13 years, 

- when =1.0, inspections for fatigue cracks are 
needed every 7 years. 

It becomes, thus, evident that overdesigning a monopile 
substructure could potentially reduce calendar-based 
maintenance costs. However, increasing the material factor 
would result in a higher volume of the steel quantity used for 
the construction of the substructure with a subsequent increase 
in the manufacturing and transportation costs. 

 

3. Development of lifecycle cost model 

In order to estimate the effect of the different design 
configurations on the cost of energy, a lifecycle cost model was 
developed. 
Existing literature on the lifecycle costs of an offshore wind 
farm indicates that the cost drivers fall into the 5 main phases 
of the offshore wind farm’s life (as in [5-7]), characterized by 
different operating conditions and cost structures: 

1. Development and consenting (D&C) 
2. Production and acquisition (P&A) 
3. Installation and commissioning (I&C) 
4. Operation and maintenance (O&M) 
5. Decommissioning and disposal (D&D) 

Above cost categories are further broken down into their 
constituent elements, and accordingly a database is built with 
the related cost elements.  
 
The cost of energy can be calculated by the following equation: 
 

 

 

            (2) 

 
Where  is the capital costs in the year t, : 
operations and maintenance costs,  decommissioning costs, 

: net electricity production in the year t,  weighted 
average cost of capital. 

It is noted that the calculation of total lifetime expenses is based 
on discounting annual financial flows, taking into 
consideration the time value of money. 

The cost model aims at capturing the impact of applying a 
different design philosophy by using varying safety factors to 
the structure on the CAPEX and OPEX. Therefore, the cost 
components that are explicitly impacted by the design of the 
monopile are: (a) the cost of monopile steel mass, fabrication, 
transportation and installation, and (b) the subsurface 
inspection costs for fatigue cracks. To this end, these are the 
elements, which are further investigated within the context of 
this paper.  

The following assumptions were applied for setting up the 
model with regards to the above parameters: 
(a) The cost of the monopile (  during the production and 
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acquisition stage derives from the sum of fabrication 
 and material cost ( : 

   (3) 
The cost of monopile material is calculated by the following 
equation: 

   (4) 
Where SQ is the steel quantity for the monopiles, SP is the steel 
price per ton. Cost of fabrication is empirically assumed to be 
priced twice the cost of the volume of steel required. 

 
   (5) 

 
is added to the cost of installation of the monopile 

carried out during the installation phase . It was assumed 
that a high-capacity jack-up vessel needs to be hired for the 
transportation and installation of the monopiles. The vessel’s 
capacity was assumed to be 5 monopiles with a mobilization 
time of 3 days. Table 1 displays representative installation 
vessel day rates in relation to their crane capacity [8].  
(b) Sub-surface inspection costs ( ) are assumed to be 
carried out by a diving support vessel chartered on the spot 
market. Cost components of inspections of the structural 
system below water are summarized in Table 2. The rest of the 
model’s parameters were kept stable across the cases 
investigated.   

Table 1 Approximate day-rates, in thousands £(Source: [8]) 

Vessel daily rates (thousands £) Jack-up vessel crane capacity 
(tones) 

192.6 1,200 
147.3 1,000 
102.0 800 

 

Table 2 Typical inspection costs for structural system below water (Source: 
[9]) 

Survey type Mob, £ Demod, 
£ 

Vessel day 
rate, £/day 

Reports, 
etc. 

Structural: 
GVI/CVI 

120,000 60,000 25,000 10,000-
15,000 

 
4. A framework for design optimisation of offshore wind 
support structures 

A structural optimisation model based on coupled FEA 
(finite element analysis) and GA (genetic algorithm) is used to 
determine the thickness distributions of monopiles. 

4.1 Parametric FEA model of offshore wind turbine 
monopiles 

 
A parametric FEA model of offshore wind turbine 

monopiles was established using ANSYS, which is a widely 
used finite element (FE) software. The parametric FEA model 
enables the design parameters of wind turbine monopiles to be 
easily modified to create various monopile models. The 3D 
geometry model and FEA mesh are depicted in Figs. 1 and 2, 
respectively. 

 

 
The flowchart of the parametric model of wind turbine 

monopiles is presented in Fig. 3. 
 
 
 
 
 
 
 
 

4.2 Genetic algorithm 
 

GA is a widely used search heuristic that mimics the 
process of natural selection. Due to its capable of handling 
large number of design variables and avoiding being trapped in 
local optima, GA has been employed in complex problems and 
has proven to be robust for practical engineering application 
[10], wind turbine composite blades [11] and OWT related 
studies [12,13]. In GA, a population of individuals (also 
referred to candidate solutions) to an optimisation problem is 
iteratively evolved toward better solutions. Each individual 
contains a set of attributes (such as its chromosomes and 
genotype) which can be mutated and altered. The evolution 
generally begins with a population of random individuals, and 
it progresses iteratively. The population in each iteration is 
called a generation, in which the fitness of each individual is 
evaluated. The value of the objective function in the 
optimisation problem being solved is generally taken as the 
fitness. The individuals having higher fitness are stochastically 
selected from the current population, and the genome of each 
individual is then modified (such as mutated and recombined) 
to form a new generation, which is then utilised in the next 
iteration. The GA generally terminates when either the 
number of generations reaches the maximum value or the 
current population achieves a satisfactory fitness level.  

GA searches for optimal solutions through an iterative 
way, which is summarised below: 

 

Figure 1 3D geometry models 

 

Figure 2  FEA mesh 

Figure 3 Flowchart of the parametric FEA model 
for offshore wind turbine monopiles 
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1. Define optimisation objectives, design variables and 
constraints: The optimisation objectives, design variables 
and constraints are defined at the first step of GA. 

2. Initialise population: Initial population (i.e. initial 
candidate solutions) is randomly generated in this step.  

3. Generate a new population: In this step, a new population 
is created through mutation and crossover. 

4. Design point update: In this step, the design points in the 
new population are updated. 

5. Convergence validation: The optimisation converges when 
convergence criteria have been reached. If the convergence 
criteria have not yet been reached, the optimisation is not 
converged and the evolutionary process of GA proceeds to 
the next step. 

6. Stopping criteria validation: If the iteration number 
exceeds the maximum number of iterations, the 
evolutionary process is then terminated without having 
reached convergence. Otherwise, the algorithm returns to 
Step 3 to generate a new population.  
 
The above Steps 3 to 6 are repeated until the optimisation 

has converged or the stopping criterion has been reached.  
 

 
Figure 4 Flowchart of the optimisation model 

 
5. Case study 

5.1. Presentation of the case study 

In this section the aforementioned methodology is applied to a 
500MW offshore wind farm, consisting of 83 turbines. There 
are numerous studies that have investigated an OWF of 
500MW (for example in [4], [6, 14, 15]), allowing for the 
comparison of results.  The wind farm design parameters of the 
cost model consider a distance to O&M port of 40km, average 
mean wind speed at 100m above mean sea level 9m/s, fixed 
monopile foundation type, water depth 20m, 25 years of asset 
life, nameplate capacity of 6MW and construction duration 5 
years. Table 3 presents the distribution of cash flows during the 

five lifecycle stages of the wind farm at a 30 year period, 
including 5 years of construction. This includes 5 years of 
building up the wind farm and 25 years of operation. The 
parameters that remain stable in the cost structure of the wind 
farm were adopted by literature sources such as [14] and [15] 
mostly for the CAPEX and decommissioning components 
(D&C, P&A, I&C, D&D), while [4] and [9] provided input for 
calculating the maintenance costs (O&M). The aggregated 
costs of constant parameters are illustrated in Most of them are 
presented in Table 4. 

 
Table 3 Distribution of cash flow for the five economic evaluation stages 
(Source: [14, 16]) 

 
Investment year 

 0 1 2 3 4 5 6–
9 

10–
29 

30 

Operational year  
−4 −3 −2 −1 0 1 2–

5 
6–
24 

25 

Stag
e 

Weighted investment distribution over 
the years 

    

D&C 34
% 

2% 2% 21.5
% 

40
% 

0.5% 0
% 

0% 0% 

P&A  0% 0.1
% 

16.3
% 

37.3
% 

43.4
% 

3% 0
% 

0% 0% 

I&C 0% 1.65
% 

1.66
% 

32.5
% 

61.4
% 

2.8% 0
% 

0% 0% 

O&M 0% 0% 0% 0% 0% 0% 0
% 

100
% 

0% 

D&D 0% 0% 0% 0% 0% 0% 0
% 

0% 100
% 

Table 4 Constant cost elements (Source: [14]) 

Lifecycle 
stage 

Cost element Costs (£million) 

D&C Project management 41.7  
Legal authorization 16.5  
Surveys 18.9  
Engineering 1.1  
Contingencies 124.6  

P&A Wind turbines 420.3  
Power transmission system 156.5  
Monitoring system 2.5   

I&C Port 14.7  
Installation of the components 265.8-  
Commissioning 0.2  
Insurance 20.8  

O&M Onshore logistics, Workboats, 
Aviation, Crane barge services, etc. 

Costs considered 
according to [4],[9]. 

D&D Port preparation 20.9  
Removal operation 188.2  
Waste management -13.9 
Site clearance 3.6  
Post-decommissioning monitoring 3.6  

5.2. Geometry of the monopile 

The monopile used in this study has an outer diameter of 6m 
and an overall length of 55m, consisting of eleven 5m-length 
segments with varied thicknesses. 35m of the monopile are 
embedded into the soil, and the remaining 20m covers the 
distance from seabed level up to the sea surface. Table 5 
presents the initial dimensions of the monopile. 

Table 5 Dimensions of monopile (bottom-up) 

Segments Outer diameter (m) Length (m) 

Seg1-11 6 5 
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5.3. Loading conditions 

The design of the monopile considers both ultimate and fatigue 
load cases. For the ultimate load case, the extreme sea condition 
(i.e. 50-year extreme wind condition combined with extreme 
significant wave height) is taken as the critical ultimate load 
case. For the fatigue load case, both wind and wave fatigue 
loads for the normal operation of offshore wind turbine 
monopiles are considered. Table 6 lists the ultimate loads under 
extreme sea condition, and Table 7 presents the fatigue loads. 
The aerodynamic loads in Table 6 are taken from [17] for 
WindPACT 5MW wind turbine (making the assumption that a 
6 MW will in practice undergo similar loading conditions), 
which is a reference wind turbine designed by NREL (National 
Renewable Energy Laboratory). 
The wind turbine weight (including the tower head weight 
(480,076 kg), additional weight at transition connection (5,000 
kg) and tower weight (539,000 kg)) with a value of 1,024,076 
kg (10,035,945N = 1,024,076kg*9.8m/s2) is taken into account 
by adding a point load on the monopile top. For the ultimate 
load case, a load safety factor of 1.35 is applied to aerodynamic, 
wave and current loads. For the fatigue analysis, D curve in 
seawater with cathodic protection is chosen as the fatigue 
design curve.  
 

Table 6 Ultimate loads under extreme sea condition 

Item Aerodynamic loads 
[17] 

Wave loads Current loads 

xF  (kN) 1,057 677 348 

yM  (kN-m) 
135,000 - - 

Table 7 Fatigue loads (Note: subscript f denotes fatigue loads) 

Item Aerodynamic loads 
[17] 

Wave loads 

fxF ,  (kN) 
197 210 

fyM ,  (kN-m) 
29,874 - 

6. Results 

Three values of material safety factors are considered (i.e. 1, 
1.15 and 1.25). The obtained thickness distribution of the 
monopile is presented in Table 8. 

Table 8 Thickness distribution of the monopile 

Segment ID Thickness [m] 
 Case A Case B Case C 

1~7 0.074 0.083 0.089 
8 0.060 0.067 0.077 
9 0.054 0.055 0.067 

10 0.052 0.053 0.056 
11 0.045 0.051 0.052 

 
The mass of the monopile, the mass increase in relation to the 
reference case, along with the resulting CAPEX to OPEX ratio 
and LCOE values under the different cases are presented in 
Table 9. 
 

Table 9 Results of the analysis  

Inspection 
scheme 

Base case A: 
Every 7 years 

Case B: Every 13 
years 

Case C: No 
inspections 

Mass of the 
monopile (kg) 

535,230 592,500 642,420 

Mass of 
monopile and 

tower (kg) 
89,161 93,915 98,058 

Mass increase 
(%) 

0 6.5 12.2 

CAPEX to 
(annual) 

OPEX ratio    
LCOE 

(£/MWh) 
120.44 120.95 121.42 

 
According to the derived results, despite the decrease in OPEX 
due to the wider fixed inspection intervals, employing higher 
material factors in the monopile structure is expected to 
increase the total cost of energy. Nevertheless, it is worthwhile 
noting that the cost model analysis is quite sensitive to a 
number of parameters, as outlined by literature [15], [6], and 
results are highly depended on the variability of these 
parameters, e.g. the discount rate, the O&M costs, the support 
structure cost, etc. The steel prices, which in the present 
analysis play an important role in the determination of the cost 
of energy under the different cases, for example are quite 
volatile and fluctuate considerably among countries as well as 
across different grades of steel, quality and transport options 
[6]. In the present analysis a base price of £690 per ton of bulk 
steel was assumed. Fig.5 shows that in order to breakeven the 
cost of energy between monopile designs with material factors 
1 and 1.15 (when all other variables remain constant) the steel 
price needs to amount £100/ton; while the breakeven steel price 
for worth switching from 1 to 1.25 material factor is £80/ton. 

 

Figure 5 Breakeven points of steel prices resulting in equal costs of energy 
under different material factors 

7. Discussion  

This study investigates the potential of design Standards 
provisions towards shifting the balance between OPEX and 
CAPEX. As it is expected, designing more conservative 
substructures is likely to increase the cost of energy; however, 
one has to take into account a number of market-related factors 
(which could be potentially incorporated in a more extensive 
cost model), before a final conclusion can be made. The supply 
chain of the offshore wind industry is currently being 
developed, hence pricing for lifting and transportation 
operations are likely to be reduced. Further, optimization and 
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automation of manufacturing processes for monopiles are 
expected to reduce overall CAPEX, making the more 
conservative designs more attractive.  

A different perspective suggests that more conservative 
designs could ultimately enable the consideration of the life 
extension of the asset, practice that has been extensively 
observed in oil and gas infrastructure with examples of assets 
which have doubled their nominal service life. Nevertheless, 
the financial impact of extending the fatigue life has to be 
evaluated by taking into consideration the additional revenues 
that would accrue from the additional energy production as 
well as the extra operating costs that are added. Moving 
towards deeper waters and considering XL monopiles, the 
exercise needs to be updated as both volume of material as well 
as extend of inspection will bear further complexities. On a 
similar logic and as the maturity of the industry increases, a 
new generation of smarter assets is expected to be developed, 
adopting ‘smarter’ concepts such as structural health 
monitoring for system prognostics. With consistent 
information about the performance of the assets, which can 
allow timely investigation of deviation of normal operation, the 
requirement for more conservative designs is alleviated and 
hence designs can be informed accordingly, once again 
affecting the CAPEX to OPEX ratio. The authors are currently 
investigating the cost/benefit balance of such design decisions 
in parallel studies.   

 
8. Conclusions 

The present study investigates the impact that different 
monopile designs can have, based on relevant provisions of 
design standards, on the life cycle costs of an offshore wind 
farm by developing a structural optimisation model based on 
FEA (finite element analysis) and GA (genetic algorithm) to 
determine the optimized thickness distributions under different 
material safety factors, coupled with a cost model which 
enables to detect the effect of above design elements on the 
capital and inspection and maintenance costs and, as a result, 
on the levelised cost of energy of the technology.  
Application of the method on a hypothetical 6 MW offshore 
wind turbine, draws the following useful conclusions: 
- Despite the decrease in OPEX, employing higher material 

factors in-line with the provisions of design standards, is 
expected to increase the total cost of energy.  

- Variability of key design parameters, e.g. the discount rate, 
the O&M costs, the support structure cost, etc. may highly 
affect the confidence of the assessment.  

- The optimization algorithm and cost model that have been 
developed are found to be sufficiently robust and can be 
employed for the evaluation of similar design variations, 
i.e. optimizing thickness to diameter ratio, piling length, 
longitudinal stiffeners consideration, consideration of 
integrity monitoring etc., towards reducing the LCOE.  

It becomes apparent from the present study that the design 
options can have cost implications which need to be evaluated 
throughout the service life of the asset, in order to adequately 
support decisions. 
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Abstract 

Common deterministic cost of energy models applied in offshore wind energy installations usually disregard the effect of 
uncertainty of key input variables – associated with OPEX, CAPEX, energy generation and other financial variables – on the 
calculation of levelized cost of electricity (LCOE). The present study aims at expanding a deterministic cost of energy model to 
systematically account for stochastic inputs. To this end, Monte Carlo simulations are performed to derive the joint probability 
distributions of LCOE, allowing for the estimation of probabilities of exceeding set thresholds of LCOE, determining certain 
confidence intervals. The results of this study stress the importance of appropriate statistical modelling of stochastic variables in 
order to reduce modelling uncertainties and contribute to a better informed decision making in renewable energy investments. 
© 2016 The Authors. Published by Elsevier Ltd. 
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Research. 

Keywords: Offshore wind farm; probabilistic cost model; Monte Carlo simulation, levelised cost of electricity, stochastic inputs

1. Introduction 

Sources of uncertainty affecting investment decisions for offshore wind energy projects, can be found in the 
amount of capital, operating, decommissioning and financing costs, as well as in technical aspects, such as the wind 
farm availability, aerodynamic, electrical array and other losses. Considering the continuous progress in the sector, 
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these input variables are continuously updated, while they also vary significantly across different regions and water 
depths. These input variables can be, thus, better defined within a range and a probabilistic analysis can be 
employed, in order to derive probabilities of obtaining a certain amount of cost of energy.  

A common measure to evaluate the life-cycle costs of generation of an energy project, as well as to compare 
different generation technologies is the levelized cost of electricity (LCOE), accounting for the installed capital cost, 
the annual operating expenses, as well as the annual energy production [1,2]. This metric allows to calculate the per 
unit of electricity generated cost, expressed in £/MWh. The contribution of the present study lies in the amplification 
of a deterministic cost of energy model of a representative offshore wind farm (OWF) [3] with the incorporation of 
uncertainty in key input parameters to derive representative ranges of LCOE values. 

2. Costs of offshore wind farms 

2.1. Capital and operating costs of an offshore wind farm 

Capital expenditure comprises costs for building and commissioning of the plant, such as costs associated with 
the project development and consenting up to financial investment decision (FID), material and labor costs for the 
turbine, support structure, tower, foundations, array cables, installation, transmission build and insurance during the 
construction phase. Capital costs in the offshore wind energy industry have been increasing over the last decade 
owing to a number of reasons: installations in deeper waters and farther from shore bearing increased construction 
and installation costs, rise in turbine prices due to design improvements ensuring higher reliability levels (as a result 
of the higher awareness of technical risks), constraints in port and vessel availability, changes in global and national 
macroeconomic drivers, such as labor, increasing prices of commodities and energy and fluctuations in exchange 
rates impacting the capital cost structure. CAPEX values range across a number of sources as illustrated in Fig. 1a.  

Operation and maintenance (O&M) costs account for ongoing costs needed to operate and maintain the plant. 
OPEX usually consists of fixed costs that do not depend on the plant uptime and variable costs that depend on the 
time the plant operates. Operations mostly represent activities associated to high level management of the plant, 
such as remote and environmental monitoring, administration, marketing, insurance, payment of the rent and other 
back office activities. Maintenance is the task that bears most of the effort, cost and risk, consisting of preventative 
(costs of proactive repairs based on condition monitoring systems) and corrective maintenance tasks (involving costs 
for reactive repair or replacement of equipment). A number of recent publications (Fig. 1b) have attempted to 
estimate ranges of operating costs for offshore wind installations either based on historical data of installed projects, 
or through publically available data and direct surveys of project developers [4, 5]. 
 

 

Fig. 1. (a) Range and average values of capital costs (£m/MW)  in existing literature compiled and converted to 2015 £ currency; (b) Range and 
average values of operating costs (£/MWh) in existing literature  compiled and converted to 2015 £ currency (Sources:[4–8]) 
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3. Development of a cost model for offshore wind farms through life costing 

3.1. Breakdown of cost model of the offshore wind farm 

The breakdown and structure of the cost model have been adopted from the “Simple Levelised Cost of Energy 
Model” developed in the context of DECC Offshore Wind Programme [9]. The use of a broadly available simple 
cost model can increase the consistency and transparency of the calculations, considering that the purpose of the 
paper was not to provide a detailed cost model of an offshore wind energy investment; but, rather, to indicate how 
assessment and results would change if the deterministic analysis is expanded to take into account systematically the 
stochasticity of some uncertain financial and technical variables. The CAPEX and OPEX components of the OWF 
are depicted in Fig. 2.  

 

Fig. 2. OPEX and CAPEX break down (Source:[9]) 

3.2. Stochastic expansion – A Monte Carlo simulation approach 

The deterministic cost model developed was expanded with the view to include stochastic parameters and to 
derive probabilities of exceeding set thresholds of the output variables at the same time assigning confidence 
intervals to the reported results. Towards this direction, the parameters of the cost model were divided into 
stochastic variables, design parameters and output variables.  

Stochastic are the variables whose values are subject to variations and cannot be approximated with a 
deterministic value. Stochastic variables are assigned probability density functions (PDF) defining the frequency of 
occurrence of a value within a range. Evidently, not all parameters of the model are useful for a probabilistic 
analysis. Design parameters are the ones that need to be determined by the designer of the offshore wind installation 
and hence whose values cannot be approximated by a PDF. For the investigated case study, the wind farm design 
parameters are listed in Section 4. 

In the present cost analysis, the variables that were considered as stochastic were: the CAPEX components, the 
operational expenses, the gross load factor, the wind farm availability, the aerodynamic array losses, the electrical 
array losses, other losses, the decommissioning cost as well as the discount rate. While the design parameters of the 
problem were the asset life, the type of the monopile, the capacity of the wind farm and the construction duration 
(years). Finally, LCOE was set as the output variable.  

 

Fig. 3. Description of the simulation process 

The proposed methodology (Fig. 3) has been modelled in Microsoft Excel, using Monte Carlo simulations to 
generate stochastic inputs, which are then undertaken in the @RISK extension. 
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4. Stochastic evaluation of LCOE through accumulated industry databases 

4.1. Case study description, definition of stochastic variables, design parameters and output variables 

The case study employed was based on the design (problem) parameters of a simple LCOE model developed by 
BVGA (as mentioned earlier) allowing for comparison against a base case scenario OWF with deterministic values. 
As such, the case study concerns an OWF of 500MW installed capacity, representing a typical UK Round 2 site 
installation (ranging from 65MW- 900MW). The wind farm design parameters of the cost model consider a distance 
to O&M port of 40km, average mean wind speed at 100m above mean sea level 9m/s, fixed monopile foundation 
type, 20 years of asset life, nameplate capacity of 6MW and construction duration to be 5 years. 

As far as the unknown input variables are concerned, in the absence of detailed statistical data, accumulated data 
from different sources of literature were sought and their impact on LCOE was investigated with a view to highlight 
the importance of appropriate statistical modelling of stochastic variables in order to reduce modelling uncertainties. 
To stochastically model the uncertain variables, the CAPEX and OPEX ranges identified in literature (Fig. 1a and 
1b) were used to estimate the coefficients of variation, in order to observe the impact of variation on the accuracy of 
results. In the case that real data are available through operators’ experience, the same process could be adopted, 
following distribution fitting of the real data or estimates with determined confidence levels. 

4.2. Determination of probability density functions of stochastic variables 

Initially, the ranges of values from literature were considered to follow a normal probability distribution. Based 
on this assumption, and for given minimum, maximum and mean data values for operating and capital costs 
(retrieved from literature), the standard deviations and hence the coefficient of variation values were estimated as 
shown in Table 1. It should be noted that non-normal distributions can accommodate relevant set of data. 

Table 1. Standard deviation ( ) and coefficient of variation values (COV) derived from literature sources illustrated in Fig. 
1a and 1b 

 Capital costs  (million £/MW) Operating costs (£/MWh) 

 _CAPEX COV _OPEX COV 

KPMG, 2010 0.12 0.04 3.76 0.18 

Levitt et al. 2011 0.87 0.32 7.30 0.30 

IRENA, 2012 0.09 0.03 5.20 0.20 

IRENA, 2014 0.10 0.03 2.07 0.12 

NREL, 2014 1.07 0.20 11.20 0.30 

 
The coefficient of variation values of capital and operating costs (summarized in Table 2) were used to estimate 

the standard deviations for each of the OPEX and CAPEX elements of the DECC cost model, respectively. The 
mean values,  of the stochastic variables (adopted from the DECC cost model) are shown in the left side of Table 2. 
The rest of the unknown input variables (associated with energy generation and financial variables) were also 
approximated through normal distributions and standard deviations of 10% over their mean values. 

4.3. Results 

The base case deterministic LCOE value using the mean values of the unknown variables as listed in Table 2 was 
found to be 116.3£/MWh. Accordingly, the stochastic cost modelling was performed for the five (5) sets of standard 
deviations calculated in Section 4.2 through Monte Carlo simulation (MCS). Fig. 4 illustrates the generated joint 
probability distributions of LCOE values derived for all five (5) sets of data, while in Table 3 the resulting summary 
statistics are presented. LCOE1 calculation corresponds to data retrieved from KPMG (2010); LCOE2 to data from 
IRENA (2011) and so on (as shown in Table 3). 
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Table 2. Mean values and standard deviations of the stochastic variables (mean values are adopted from DECC cost model) 

CAPEX: (£000s/MW)  
Project Consenting and Development to FID 160 
Project management from FID to WCD 37 
Construction phase insurance 41 
Turbine (exc. Tower) 1117 
Support structure (incl. tower)  467 
Array cables  81 
Installation 271 
Transmission build  429 
Construction contingency  244 
                   OPEX: (£000s/MW/yr) 
Operation, maintenance and service 67 
Operating phase insurance  15 
Transmission charges  10 

 

Energy generation 

Gross load factor (%) Normal ( =52.1%, =5.21%) 
Wind farm availability (%) Normal (  =95.4%, 4.8%) 
Aerodynamic array losses (%) Normal (  =9.0%, 0.09%) 
Electrical array losses (%) Normal (  =1.0%, 0.1%) 
Other losses (%) Normal (  =4.6%, 0.46%) 
Decommissioning cost (£) Normal ( = 247000, =24700) 
Financial variables 
Discount rate (%) Normal ( =8.9%, =0.89%) 

 

Table 3. Summary statistics derived from the five (5) different data sets 

(£/MWh) LCOE 1 LCOE 2 LCOE 3 LCOE 4 LCOE 5
Input 
source 

KPMG, 
2010 

Levitt et al.
2011 

IRENA,
2012 

IRENA,
2014 

NREL, 
2014 

Min value 72.74 49.28 71.26 67.12 70.89 
Max value 216.25 228.33 203.72 210.24 214.79 

 117.91 117.92 117.93 117.92 117.92 
 15.65 21.22 15.83 16.14 16.07 

 
Unsurprisingly, the LCOE probability distribution associated with the highest COV is characterized by the 

highest standard deviation; hence, the highest variation in the results. Among the cases that were considered above, 
the one with the highest standard deviation is LCOE2 with =21.22 £/MWh (Table 3), represented in Fig. 4 by the 
dark grey coloured histogram. Conversely, the probability distribution with the steepest probability of occurrence 
peak and the lowest standard deviation ( =15.65 £/MWh) corresponds to LCOE1 (light grey colour), which 
demonstrates a considerable concentration of results around the mean LCOE value. Fig. 4 illustrates the frequency 
histograms of the output variable (LCOE) with figures for the highest and lowest scatter datasets. In fact, for the 
lower scatter dataset (LCOE1), the 5% and 95% percentiles are presented with LCOE values of 94.7 and 145.7 
£/MWh, respectively. For the latter values of LCOE, the corresponding percentiles for the highest scatter dataset 
(LCOE2) are 12.5% and 90.2%. Probability distributions of LCOE with intermediate scatter datasets are also 
included in Fig. 4 (i.e. LCOE 3, 4 and 5). 

 
 

Fig. 4. Probability distributions of LCOE values for different sets of stochastic input variables (percentiles for two extreme scatter datasets) 
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4.4. Sensitivity analysis 

The stochastic cost modelling was followed by a sensitivity analysis in order to investigate the impact of the 
unknown input parameters on the LCOE mean value. The baseline mean value was calculated around 117.9 £/MWh 
following the stochastic expansion of the cost model.  

 

 

Fig. 5. Tornado diagram for (a) LCOE1 (lowest scatter dataset); (b) LCOE2 (highest scatter dataset) 

Tornado diagrams for the lowest and highest scatter datasets are presented in Fig. 5a and 5b, respectively. As 
shown, the sensitivity of LCOE to the problem variables changes when different variabilities of stochastic 
parameters are considered. For instance, when wider ranges (higher scatter dataset) in turbine cost, O&M and 
support structure costs are considered, they appear to have a higher impact on LCOE than in the case of the lowest 
scatter dataset. Additionally, a few parameters such as installation, contingency and project consenting and 
development costs that are found to have considerable impact in the highest scatter dataset case, they are not as 
impactful on the LCOE for the lowest scatter dataset. 

5. Conclusions 

The LCOE models of renewable energy technologies are usually deterministic, generating results under specific 
conditions and assumptions. Nevertheless, some of the input parameters are uncertain or may change over time; 
hence, they should be better defined in a range. Examples are the different components of capital and operating costs, 
the discount rates as well as technical parameters such as the capacity factor. A probabilistic analysis intends to 
account for these uncertainties and to quantify their influence on the cost of energy. This study has extended a 
deterministic cost model to account for uncertainties associated with investing in an OWF.  

Results illustrate that appropriate statistical modelling can significantly influence accuracy in prediction of LCOE. 
The proposed methodology suggests the application of probabilistic methods such as Monte Carlo simulation for the 
systematic modelling of uncertainties towards a better informed decision making framework in renewable energy 
investments. The framework developed for the extension of the deterministic method to account for stochastic inputs, 
can be further applied to other cost models and similar engineering problems. 
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Abstract. According to the Contracts for Difference (CfD) scheme introduced to support the 

deployment of offshore wind installations, an electricity generation party is paid the difference 

between a constant “strike price” (determined be means of a competitive auction) and the average 

UK market electricity price for every MWh of power output produced. The scheme lasts for 15 

years, after which the electricity output is sold on the average market price. To this end, 

estimating the long term profitability of the investment greatly depends on the forecasted market 

prices. This paper presents the simulation results of future electricity prices based on three 

different simulation methods, namely: the Geometric Brownian motion (GBM), the 

Autoregressive Integrated Moving average (ARIMA) and a model combining Mean-Reversion 

and Jump-Diffusion (MRJD) processes. A number of simulation paths are generated for a time 

horizon of 10 years and they are introduced to a fully integrated techno-economic model 

developed by the authors. As a result, joint probability distributions of the NPV derived from the 

three different methods are presented. This study is relevant to investors and policy makers to 

check the viability of an investment and to predict its stochastic temporal return profile. 

1.  Introduction 

 

Offshore wind energy has been rapidly expanding in Europe during the last decade. According to 

WindEurope annual offshore wind statistics, there are currently 92 wind farms in operation across 

European countries (4,149 grid-connected wind turbines) [1] with UK accounting for 43% and Germany 

for 28% of all grid-connected turbines. 

In the United Kingdom, there is currently a transition from the Renewables Obligation (RO) scheme 

to the Contracts for Difference (CfD) scheme, introduced by the recent Electricity Market Reform 

(EMR). The CfD scheme is a private law contract between a producer and the Low Carbon Contracts 

Company (LCCC), a government-owned company. An electricity generation party with CfD is paid the 

difference between a constant “strike price” and the average UK market electricity price (“reference 
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price”). The Generator sells electricity under a Power purchase agreement to a licensed supplier or trader 

at an agreed reference market price. If the reference price is higher than the strike price, the generation 

party has to pay back the difference to the LCCC. The bottom line is that company always gets the strike 

price for the electricity generated. The scheme lasts for 15 years (while the expected lifetime of an OW 

energy asset is 25 years), after which the electricity output is sold on the average UK electricity market 

price, hence imposing uncertainty to the revenues yielded by the investment after the 15th year of 

operation [2]. As such, the forecasting of electricity prices becomes pertinent towards estimating future 

returns of the offshore wind energy project as well as, the overall profitability of the investment.  

This work aims to stochastically assess the impact of volatile market electricity prices on the 

profitability assessment of offshore wind farms. We develop and formalize a process for more detailed 

modelling of the future economic cash flow of an offshore wind farm by employing a tested lifecycle 

techno-economic model which accommodates the uncertainty modelling of electricity prices through 

employing different forecasting methods in order to test how these can affect the Net Present Value 

(NPV) distribution analysis of the wind farm. A stochastic cost modelling of the economic profitability 

is finally derived. 

2.  Lifecycle techno-economic model 

 

The methodological framework of the techno-economic model is illustrated in Figure 1. The main 

components of the life cycle cost of a fixed OW farm are the following: (i) the CAPEX module, which 

includes development and consenting (D&C), production and acquisition (P&A), installation and 

commissioning (I&C), and decommissioning and disposal (D&D) costs, (ii) the general site 

characteristics module with details on the weather conditions, site water depth, distance from port, 

vessels, cost of personnel etc., (iii) the FinEx module with parameters related to the financing 

expenditures, namely the Weighted Average Cost of Capital (WACC), inflation rate,  equity and debt 

ratio, etc., (iv) the OPEX module, which considers reliability data from literature, cost of personnel, 

materials, vessels and related maintenance processes, which will provide availability and O&M cost 

estimates  pertinent for the cost analysis and (v) the Revenue model, which considers the net power 

generation, the strike prices (according to the CfD scheme), and the market electricity price. A detailed 

description of the model can be found in [3].  

 

 
Figure 1 Illustration of integrated techno-economic lifecycle model 

3.  Modelling & Simulation of future wholesale electricity prices 

This section looks at the forecasting methods that were employed to model electricity market prices, 

towards incorporating the uncertainty and variability in the cash flow model of the analysis. The 

modelling of market electricity prices has been carried out by numerous authors in literature [4–6], 

highlighting the advantages and disadvantages of each technique and applying them in various contexts. 

Time series techniques are usually based on extrapolating a set of historic observations to predict their 



 

 

 

 

 

 

behavior in the future. In [5], electricity price forecast techniques are categorized into: multi-agent, 

fundamental methods, reduced-form models, statistical approaches and computational intelligence 

techniques. Statistical methods, including autoregressive models forecast the future value of a time 

series by applying a mathematical correlation of the previous values with the current values. The 

ARIMA time series model and the Geometric Brownian motion are among the most cited forecasting 

techniques [4,7,8]. However, statistical methods cannot capture sufficiently the presence of spikes in the 

dataset, especially for price-only models, but also for models using fundamental variables. Mean-

reverting jump-diffusion (MRJD) processes are more appropriate to reproduce patterns of spikes and 

reversion to a long term mean level [9].  

In this study we have tested above forecasting techniques to identify the effect of uncertainty modelling 

in electric market prices on the profitability of an offshore wind investment. Daily historical data of 

electricity market prices (found in [10]) were used to stochastically model the future revenues of the 

investment. 

3.1.  Geometric Brownian motion 

Financial time series are most commonly based on stochastic differential equations (SDEs) which are 

the most general descriptions of continuously evolving random variables. Geometric Brownian motion 

is the simplest and most common financial time series model, according to which the logarithm of the 

randomly varying quantity follows a Brownian motion with drift. 

Brownian motion (also called Wiener process) with drift parameter 𝜇 and volatility 𝜎  is a kind of 

Markov stochastic process 𝑾 = {𝑋𝑡: 𝑡 𝜖 [0, ∞)} of the form: 

𝑋𝑡 = 𝜇𝑡 +  𝜎𝑊𝑡 (1) 

The generalised form of the Geometric Brownian motion (GBM) process is specified through a 

stochastic differential equation (SDE) of the form [11]: 
𝑑𝑆𝑡

𝑆(𝑡)
= 𝜇𝑑𝑡 + 𝜎𝑑W(t) (2) 

where, S(t) denotes the price of the electricity at time t,  μ represents the drift parameter, σ the volatility 

of the electricity prices and W is the standard Brownian motion. 

The Wiener process satisfies the following properties: a) The process starts from 0 𝑋0 = 0 (with 

probability 1), b) 𝑾 has Gaussian increments, i.e. for  ℎ ≥ 0, 𝑋𝑡+ℎ − 𝑋𝑡 is normaly distributed with 𝜇 =
0 and variance 𝜎 (same distribution as 𝑋ℎ), c) 𝑾 has independent increments; that is, for 

𝑡1, 𝑡2, . . , 𝑡𝑛 𝜖[0, ∞) with 𝑡1 < 𝑡2 <, . . , < 𝑡𝑛, the random variables 𝑋𝑡1
, 𝑋𝑡2

− 𝑋𝑡1
, … , 𝑋𝑡𝑛

− 𝑋𝑡𝑛 −1 are 

independent, d) 𝑋𝑡 has a normal distribution with mean 𝑡𝑛  , e) 𝑾 has continuous paths, namely with 

probability 1, 𝑋𝑡 is continuous on [0, ∞). 

Using Itô’s lemma and integrating over time, the relationship between an initial value 𝑆𝑡 and a later 

value 𝑆𝑡+𝑇: 

𝑆𝑡+𝑇 = 𝑆𝑡 ∙ exp [(𝜇 −
𝜎2

2
) 𝑇 + 𝜎𝑊𝑡] 

(3) 

Above equation is the GBM model.  This process has the advantage that it always remains positive and 

it can represent the characteristics of many variables.  

3.2.  Mean-reverting jump-diffusion (MRJD) process 



 

 

 

 

 

 

The jump-diffusion model can be expressed by the following general stochastic differential equation for 

the increment of the electricity price (after removing seasonality and trend from the dataset): 

𝑑𝑋𝑡 = 𝜇(𝑋𝑡 , 𝑡) +  𝜎(𝑋𝑡 , 𝑡)𝑑𝑊𝑡 + 𝑑𝑞(𝑋𝑡 , 𝑡) (4) 

Where, 𝑑𝑊𝑡 represent the increments of a standard Wiener process (i.e. Brownian motion) and 𝑑𝑞(𝑋𝑡 , 𝑡) 

are the increments of a jump process. 

When there is a high electricity demand, more expensive power generation technologies need to be 

brought online to cover the electricity load. During these periods, electricity prices exhibit jumps. In 

general, spot electricity prices are characterised by high volatility, seasonal cycles and occasional spikes. 

In mean-reverting jump-diffusion processes, the drift term 𝜇(𝑋𝑡 , 𝑡) can force reversion to long term 

mean levels. The Ornstein-Uhlenbeck process, which is the most applied mean-reversion process 

(initially introduced in finance to model interest rate dynamics [12]), is expressed as: 

𝑑𝑋𝑡 = (𝛼 − 𝛽𝑋𝑡)𝑑𝑡 +  𝜎𝑑𝑊𝑡 (5) 

Where, 𝛽 the mean-reversion speed and 
𝛼

𝛽
  is the long term mean reversion level. 

3.3.  Autoregressive Integrated Moving Average (ARIMA) 

ARIMA or Box-Jenkins model [13] is a statistical method standing for autoregressive (AR) integrated 

(I) moving average (MA) and it is a generalisation of the Autoregressive Moving Average model 

(ARMA), where “I” (standing for Integrated) is a differencing step that is used to remove trend or 

seasonality from the time series. ARIMA models use standard notation of ARIMA (p,d,q) and (P,D,Q) 

for their seasonal counterparts. In power systems applications, ARIMA models have been used for load 

forecasting [14,15], with good results, as well as to model and forecast day-ahead electricity prices 

[16,17] and weekly prices [18]. ARIMA method was deemed appropriate for this study considering the 

ability of the method to take into account the seasonal trend of the dataset of electricity prices. 

 The Autoregressive part (p) specifies which previous values from the data series are used to 

predict the current values or else the number of autoregressive orders. 

 The Difference part (d) specifies the order of differencing of the time series before the 

application of the model. To apply the ARIMA model, the dataset is required to be stationary; 

if not, a transformation of the series to the stationary form needs to take place. Differencing is 

one of the simplest ways to achieve this. Box and Jenkins (1976) introduced a model that 

contains not only the autoregressive and moving average parts, but also the differencing part 

[19]. 

 The moving average part (q) specifies the order of moving average orders in the model, namely 

how the mean values deviation of the previous time series are used to predict the current values. 

As such, the mathematical formulation of the ARIMA(p,d,q) model can be described using a lag operator 

notation (defined as 𝐿𝑖𝑋𝑡 = 𝑋𝑡−𝑖) as follows:  

𝜑(𝐿)(1 − 𝐿)𝑑𝑋𝑡 = 𝑐 + 𝜃(𝐿)𝜀𝑡 (6) 

where, 𝑋𝑡 is the price at time 𝑡, 𝑐 a constant term, 𝑑 the differencing order, 𝜀𝑡 is the random error at time 

𝑡; further, 𝜑(𝐿) are the parameters of the AR model formulated as: 

𝜑(𝐿) = 1 − 𝜑1𝐿 − ⋯ − 𝜑𝑝𝐿𝑝 (7) 

where, 𝑝 refers to the autoregressive terms, while 𝜃(𝐿) are the parameters of the MA(q) model expressed 

as: 



 

 

 

 

 

 

𝜃(𝐿) = 1 + 𝜃1𝐿+. . . +𝜃𝑞𝐿𝑞 (8) 

where 𝑞 refers to the moving average terms [13]. 

4.  Simulation of future electricity prices 

4.1.  Electricity price prediction under the different methods 

Monthly and daily data of the wholesale electricity prices were collected from different sources [10,20] 

to compile a dataset starting from March 2003 to December 2017. The dataset (178 observations) was 

divided into two parts, the first consisting of 118 observations, which was used to build the model and 

the second of 60 observations for testing the model. 

After determining the input parameters for the best-fitting ARIMA model (through Expert Modeler of 

SPSS) as well as the respective inputs for the Geometric Brownian motion, and the Mean-Reversion 

and Jump-Diffusion (MRJD) processes using historic monthly electricity prices, we, accordingly, 

simulated 1,000 sample paths, 10 years into the future.  Figure 2 illustrates the simulation results of 

future electricity prices with the MRJD model from 2017 to 2027. 

 
Figure 2 Simulation of future electricity prices with the MRJD model 

4.2.  Validation of methods 

In Figures 3(a)-(c), the 50% upper and lower confidence limits of the resulting model for the first part 

of the dataset, as well as the observed data for 2015-2017 (2nd part of the dataset) are illustrated for the 

3 different forecasting methods. The mean absolute percentage errors and the percentage errors between 

the observed data and the forecasted values for the four testing years are summarized in Table 1. ARIMA 

was deemed to have the lowest Mean Absolute Percentage Error in comparison to the other 3 methods   

namely 14.8%, indicating a relatively better fitness of the ARIMA model to the dataset, followed by the 

MRJD and the GBM models. MAPE is a measure of prediction accuracy of the forecasting method and 

is calculated as follows: 

𝑀𝐴𝑃𝐸 =
100%

𝑛
∑ |

𝐹𝑡 − 𝐴𝑡

𝐴𝑡
|

𝑛

𝑡=1

 
(9) 

 

Table 1 Validation of methods 

 Error (%) Mean Absolute Percentage Error 

(MAPE)  2013 2014 2015 2016 

GBM 12.6% 44.8% 63.9% 70.7% 48% 

ARIMA -3.3%    14.4%    21.2%  20.4% 14.8% 

MRJD 10.0%  30.8% 37.1%    35.7% 28.4% 

 



 

 

 

 

 

 

 
(a) 

 
(b) 

 
(c) 

Figure 3 Test cases for electricity prices forecasting: (a) MRJD, (b) GBM, (c) ARIMA 

The variability of the simulated electricity prices can be illustrated in Figures 4(a)-(c). It can be observed 

that MRJD method demonstrates a lower variability probably due to the drift term which forces 

reversion to long term mean levels (Figure 4(b)). The ARIMA model has the greatest variability as 

shown in Figure 4(c), probably due to the complex correlations between the previous values with the 

current values, leading to diverse paths per each simulation. Finally, as far as GBM is concerned, a 

positively skewed distribution (Figure 4(c)) with a long tail towards higher electricity prices was 

compiled from the 1,000 simulated paths.  

 

 
(a) 

 
(b) 

 
(c) 

Figure 4 Probability distributions of electricity prices test cases: (a) MRJD, (b) GBM, (c) ARIMA 

 

 



 

 

 

 

 

 

5.  Results  

5.1.  Case study 

Having modelled electricity market prices on a monthly basis, the stochastic modeling, based on 

distribution of economic outcomes of the investment, is performed. The case study that is used for the 

application of the method consists of a 504MW capacity wind farm located in the North Sea region, 

36km away from shore. Weather data (3-hourly data over a 3-year period) were retrieved from BTM 

ARGOSS [21] for modelling the operational phase of the asset. The specifications of the wind farm 

investment are included in Table 2. 

 
Table 2 Base case wind farm investment specifications 

Wind farm characteristics Values 

Wind farm 

Total wind farm capacity,  𝑃𝑊𝑇 504 MW 

Projected operational life of the wind farm, 𝑛 25 years 

Construction years, 𝑇𝑐𝑜𝑛𝑠𝑡𝑟 5 years 

Number of turbines, 𝑛𝑊𝑇 140 

General Site  

characteristics 

Distance to port, 𝐷 36 km 

Water depth, 𝑊D 26 m 

Wind turbine 

Rotor diameter, 𝑑 107 m 

Hub height, ℎ 77.5 m 

Pile diameter, 𝐷𝑝𝑖𝑙𝑒 6 m 

Rated power 3.60 MW 

Cut-in speed 4 m/s 

Cut-out speed 25 m/s 

Economic parameters 

WACC 8.81% 

Corporate tax 17% 

Depreciation rate 18% 

Debt share 70% 

Equity share 30% 

Return on equity 15.8% 

Interest rate on debt 7% 

Inflation rate 2.5% 

Strike price 140 £/MWh 

 

Wholesale electricity prices were retrieved from the BEIS 2016 Updated Energy & Emissions 

Projections [22] for the base case investigated.  The total CAPEX was estimated £1.67 billion, annual 

OPEX £56.6 million, NPV=£174.1 million at a real discount rate of 6.15%, while the LCOE=108.9 

£/MWh. The results indicate that P&A costs have the highest contribution to the LCOE value, 

accounting for 46%, while O&M costs correspond to 30% of the total cost. A breakdown of the costs 

per Phase of the wind farm under the baseline case is illustrated in Figure 5. 

  
Figure 5 Deterministic lifecycle costs breakdown 

 

0 100 200 300 400 500 600 700 800 900

D&C costs

P&A costs

I&C costs

O&M costs

D&D costs

Costs (in million £)



 

 

 

 

 

 

5.2.  Net Present Value Stochastic Analysis 

 

The joint probability distributions of the NPV derived from the three different methods are plotted in 

Fig. 6(a)-(c). The assumptions considered for the calculation of the probability distribution curves are 

the same as the ones compiled in Table 2. The Value at Risk (VaR) is a traditional risk measure 

approximating the probability that the value of an asset or portfolio will drop below a particular value 

over a specified confidence level and in the context of a planning horizon. VaR is always specified with 

a given confidence level α. As such, as shown in Figure 6(a), the NPV of the investment has a VaR 5% 

of £155million denoting that there is 95% probability that NPV will exceed £155million.  

It can, thus, be inferred from the illustrated probability distributions that GBM method has the lowest 

VaR 5% = £8million, while the MRJD method yields a probability of zero for a negative NPV, as well 

as the highest mean NPV in comparison to the other three methods. The mean NPV derived from the 

ARIMA method indicated the closest proximity to the deterministic base case NPV. 

As far as the shape of the probability distributions is concerned, following a similar pattern on the 

electricity prices scatter of data, the resulting NPVs demonstrate a positively skewed normal distribution 

with a medium variability, when a GBM is employed, implying non-linear relationships between 

stochastic electricity prices and NPV output. MRJD-derived curve has a low variability, again as a result 

of the existing drift term, while the opposite applies to ARIMA model which returns a NPV distribution 

with a high variability. 

 

(a) 
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(c) 

Figure 6 NPV probability distributions: (a) MRJD, (b) GBM, (c) ARIMA 

6.   Conclusions 

In the UK context, following the 15-year period of the CfD scheme, offshore wind generators are obliged 

to sell their produced electricity on the electricity spot prices; hence, becoming subject to the risk of 

volatile and uncertain financial cash inflows. To this end, detailed and accurate assessment of expected 

returns during the post-CfD scheme becomes pertinent towards understanding the real cost and 

opportunity of investing in new or existing operational wind farms. Such an assessment could facilitate 

fair valuation of assets, supporting relevant investment/divestment decisions. To identify the best 

forecasting method for modelling the energy market prices, one has to determine the scope of the 

analysis. The present paper focuses on stochastically calculating the long-term electricity market prices 

and estimate the stochastic profitability of the offshore wind energy investment beyond the expiration 

of the CfD strike price support mechanism.  

Statistical methods, such as the Autoregressive Moving Average, have a strong underlying mathematical 

and statistical theory, accommodating temporal correlations between past observations and current 

prices; as such, they can attach some physical interpretation to their components. Nevertheless, they are 

often criticized for their limited ability to capture nonlinear behaviour of electricity prices and they have 

been reported to perform better for short-term predictions (i.e. forecasts from a few minutes up to a few 

days ahead) [5]. They can, however, capture the seasonality that electricity prices exhibit on a daily, 

weekly and seasonal level basis. MRJD are considered to give a simplified picture of the price dynamics 

and are not expected to provide accurate results on an hourly basis, but rather recover main 

characteristics of the electricity prices at a daily time scale; thus, they may be considered as appropriate 

for longer term forecasting, requiring as input only the prior data of a time series to generalize the 

forecast. Among the methods tested, ARIMA demonstrated the lowest Mean Absolute Percentage Error 

in the validation cases, denoting a better long-term forecasting capability, which is relevant to service 

life financial appraisal of offshore wind energy investments. 

Other available methods, such as Computational Intelligence techniques can also be considered as more 

relevant for long term forecasting since they can produce more accurate results, handling complexity 

and non-linearity. Nevertheless, their application usually requires a larger dataset (in comparison to the 

price-only models) of fundamental drivers, including the system forecasted demand, weather related 

data, fuel costs, etc.  

References 

[1]  Wind Europe 2018 Offshore wind in Europe. Key trends and statistics 2017. 

[2]  DECC 2014 Contract for Difference : allocation process high level summary 

[3]  Ioannou A, Angus A and Brennan F 2018 A lifecycle techno-economic model of offshore wind 

energy for different entry and exit instances Appl. Energy 221C 406–24 



 

 

 

 

 

 

[4]  Borovkova S and Schmeck M D 2017 Electricity price modeling with stochastic time change 

Energy Econ. 63 51–65 

[5]  Weron R 2014 Electricity price forecasting: A review of the state-of-the-art with a look into the 

future Int. J. Forecast. 30 1030–81 

[6]  Keles D, Scelle J, Paraschiv F and Fichtner W 2016 Extended forecast methods for day-ahead 

electricity spot prices applying artificial neural networks Appl. Energy 162 218–30 

[7]  Conejo A J, Plazas M A, Espinola R and Molina A B 2005 Day-Ahead Electricity Price 

Forecasting Using the Wavelet Transform and ARIMA Models IEEE Trans. Power Syst. 20 

1035–42 

[8]  Vaienti C, Ioannou A and Brennan F 2017 Cash flow at risk of offshore wind plants 2017 6th 

International Conference on Clean Electrical Power (ICCEP) (IEEE) pp 84–93 

[9]  Seifert J and Uhrig-Homburg M 2007 Modelling jumps in electricity prices: theory and 

empirical evidence Rev. Deriv. Res. 10 59–85 

[10]  Institution of Civil Engineers (ICE) 2018 The changing price of wholesale UK electricity over 

more than a decade 

[11]  Glasserman P 2004 Monte Carlo Methods in Financial Engineering (New York: Springer-

Verlag) 

[12]  Vasicek O 1977 An equilibrium characterization of the term structure J. financ. econ. 5 177–88 

[13]  Box G E P, Jenkins G M and Reinsel G C 1994 Time Series Analysis: Forecasting and Control 

ed E Cliffs (NJ: Prentice Hall) 

[14]  Gross G and Galiana F D 1987 Short-term load forecasting Proc. IEEE 75 1558–73 

[15]  Hagan M T and Behr S M 1987 The Time Series Approach to Short Term Load Forecasting 

IEEE Trans. Power Syst. 2 785–91 

[16]  Jakasa T, Androcec I and Sprcic P 2011 Electricity price forecasting - ARIMA model approach 

2011 8th International Conference on the European Energy Market (EEM) (IEEE) pp 222–5 

[17]  Contreras J, Espinola R, Nogales F J and Conejo A J 2003 ARIMA models to predict next-day 

electricity prices IEEE Trans. Power Syst. 18 1014–20 

[18]  Fosso O B, Gjelsvik A, Haugstad A, Mo B and Wangensteen I 1999 Generation scheduling in a 

deregulated system. The Norwegian case IEEE Trans. Power Syst. 14 75–81 

[19]  Box G E P and Jenkins G M 1976 Time Series Analysis: Forecasting and Control (San 

Francisco : Holden-Day, c1976) 

[20]  Ofgem Web Page 2018 Wholesale Market Indicators Electr. prices Day-ahead baseliad 

Contract. Mon. Aver. 

[21]  BTM ARGOSS 2017 WaveClimate.com 

[22]  Department for Business E & I S (BEIS) 2017 Updated Energy & Emissions Projections 

 

 




