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Abstract: One of the most promising solutions that stands out to mitigate climate change is floating
offshore wind turbines (FOWTs). Although they are very efficient in producing clean energy, the
harsh environmental conditions they are subjected to, mainly strong winds and waves, produce
structural fatigue and may cause them to lose efficiency. Thus, it is imperative to develop models to
facilitate their deployment while maximizing energy production and ensuring the structure’s safety.
This work applies machine learning (ML) techniques to obtain predictive models of the most relevant
metocean variables involved. Specifically, wind speed, significant wave height, and the misalignment
between wind and waves have been analyzed, pre-processed and modeled based on actual data.
Linear regression (LR), support vector machines regression (SVR), Gaussian process regression (GPR)
and neural network (NN)-based solutions have been applied and compared. The results show that
Nonlinear autoregressive with an exogenous input neural network (NARX) is the best algorithm for
both wind speed and misalignment forecasting in the time domain (72% accuracy) and GPR for wave
height (90.85% accuracy). In conclusion, these models are vital to deploying and installing FOWTs
and making them profitable.

Keywords: wind energy; floating offshore wind turbines; machine learning; wind; waves;
misalignment; forecasting

1. Introduction

Today, one of the most significant global challenges that society is facing is climate
change. As the United Nations Framework Convention on Climate Change [1] stated,
governments worldwide must bet on the development, application and diffusion of new
technologies that promote the exploitation and use of renewable energies, reducing emis-
sions of greenhouse gases and mitigating global warming. Wind energy is one of the
cleanest and most efficient renewable energy sources [2].

In contrast to onshore wind energy and already mature technology [3], offshore
wind energy appeared in the last three decades as a promising solution for some of the
main disadvantages of on-land wind turbines, such as the visual and acoustic impact, the
negative influence on wildlife, and limited locations. In addition, offshore wind energy
takes advantage of more stable and robust winds generated in the open sea due to the
absence of geographical accidents [4].

There are two main types of offshore wind turbines: bottom fixed and floating. The
better-known bottom-fixed one has a high installation cost, as the whole structure is
anchored to the seabed, thus requiring shallow waters, and maintenance is also difficult [5].
In addition, the visual impact is not completely removed, and these offshore wind devices
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are invasive to the abundant wildlife near the coasts. To mitigate some of these issues, the
idea of installing offshore wind farms in deeper and farther waters resulted in the design
of Floating Offshore Wind Turbines (FOWTs).

The installation of FOWTs is much simpler, and they do not have any visual or acoustic
impact. However, they pose new challenges: the buoyancy of the turbine and the structure
and power control, among others [6]. In addition, the floating structure suffers fatigue
due to the wind, ocean waves and currents, which may also cause a decrease in energy
production. Therefore, wind and wave forecasting models are essential to deployment,
predict energy production, maximize power generation, and minimize the fatigue to which
these marine turbines are exposed [7–9]. Moreover, these external disturbances present
a significant challenge in FOWTs caused by the misalignment between wind and wave
direction, which affects the efficiency of turbine control [10]. Indeed, floating platform
motion due to waves may change the tower inclination and therefore vary the pitch angle of
the turbine, thus reducing energy [11]. This is another reason for the necessity of obtaining
models of these environmental loads [12].

In this paper, some machine learning techniques are applied to model the data (most
relevant metocean—meteorological and oceanographic—variables) collected from an off-
shore buoy located at Santa Maria (CA, USA). The main goal of this work is to develop
a methodology to obtain models of wind, waves, and the misalignment between wind and
waves at a given offshore location. These models will allow us to find optimal locations for
floating wind farm installations and predict energy production more accurately. This will
allow us to obtain better control actions based on this information and, hence, to improve
wind turbine efficiency. In particular, linear regression (LR), support vector machines for
regression (SVR), Gaussian process regression (GPR), and neural network (NN)-based
solutions have been applied and compared. Previously, data have been analyzed, cleaned
and normalized. Trained models have been analyzed with a learning curve plot to diag-
nose if they were suffering from high bias or high variance. Models with high bias were
optimized by adding additional features or decreasing the regularization parameters. To
optimize models with high variance, we selected more training examples or a smaller set
of features, as well as increased the regularization parameter. The results show that up to
90.85% accuracy has been achieved in some of the models.

The novelty of this research lies in, on the one hand, the methodology applied that
develops all the phases in a machine learning process from scratch (see Figure 1), differing
from the most common statistical and physical approaches applied for weather forecasting
that are usually found in the literature. However, this general methodology can be applied
to any dataset. Another interesting conclusion that can be drawn from the results is that data
collection and data pre-processing have proved crucial to obtaining more accurate models.
Moreover, data cleaning and analysis help select the most effective machine learning tool
to improve the performance of the models and ensure the reliability of such models to
make realistic predictions. Finally, to the best of our knowledge, our proposed models for
wind–wave misalignment forecasting are robust compared to the existing related literature
(see Figure 1 that summarizes the work phases followed in the research).

The structure of the rest of the paper is as follows. Section 2 presents a summary of
relevant related works. In Sections 3 and 4, the materials and methods, respectively, are
described. Exploratory data analysis, data cleaning and feature selection are also presented.
The optimized models obtained using different ML techniques are discussed and compared
in Section 5. Finally, Section 6 concludes the paper with conclusions and future lines
of work.

Table 1 shows the acronyms used along this paper for better understanding.
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Table 1. Acronyms used.

ANN Artificial Neural Networks, also denoted as NN (Neural Network)

ARMA Autoregressive-moving average model

EDA Exploratory data analysis

FFBP Feed Forward Back-Propagation

FOWT Floating Offshore Wind Turbine

GP Gaussian Process

GPR Gaussian Process Regression

LDOF Local Distance-based Outlier Factor

Metocean Meteorology and Oceanography

ML Machine Learning

NAR Nonlinear Autoregressive neural network

NARX Nonlinear Autoregressive with External (Exogenous) Input neural network

NDBC National Data Buoy Center

NWP Numerical Weather Predictions

RBF Radial Basis Function

SVM Support Vector Machine

SVR Support Vector Regression

2. Related Works

Since the first offshore wind park was installed in Vindeby (Denmark) in 1991, offshore
wind farm deployment has grown exponentially, expanding from the North and Baltic
Seas to new markets outside Europe [13]. However, although everybody would agree on
the importance of analyzing wind and waves to find the best locations for these offshore
devices, papers on how wind and waves and particularly how misalignment between those
variables, influence energy production are very scarce.

The direct influence of wind speed on the energy power curve of wind turbines
and the stochastic and intermittent nature of wind have made its prediction a recurring
research topic [14]. According to the type of techniques used, metocean (meteorological and
oceanographic) variables forecasting models can be classified into (1) naive, (2) physical,
(3) statistical and (4) intelligent models [15,16].

The naive technique (also called the persistence method) is the reference method in
industrial applications. It assumes that the wind speed at time t + ∆t is the same at time t.
Despite its simplicity, it is effective for very short-term and short-term predictions, and it is



J. Mar. Sci. Eng. 2022, 10, 938 4 of 18

used in cases when its performance is good enough for that particular application and more
complex physical and statistics methods do not achieve a significant improvement [17].

Physical models are based on mathematics and physical considerations like terrain,
obstacles, pressure or temperature to estimate wind speed. NWP (numerical weather
predictions) and mesoscale models stand out [18]. Generally, the main drawbacks of these
models are computational complexity and susceptibility to unstable weather. Despite this,
they are suitable for long-term predictions.

Statistical models, such as ARMA or ARIMA, do not need a physical model but
statistical distributions and parametric algorithms. They are obtained by curve fitting.
These models are adjusted by comparing the actual data and the very last and following
predicted values. They are effective for short-term forecasting [19].

Numerous models have been developed using artificial intelligence (AI) and machine
learning (ML) techniques [20,21]. Recent examples of wind speed models can be found
in the literature, primarily for short-term forecasting. To mention some examples, in [22],
a hybrid nonlinear estimation approach combining a Gaussian process (GP) and an un-
scented Kalman filter (UKF) is proposed to predict dynamic changes in wind speed. In [23],
the authors propose an ANN model to predict daily wind speed with meteorological
measurements ATMP, WDIR, GHI, relative humidity and PRES as input features selected
among the 13 attributes available in the dataset. They applied random forest, random tree,
and SVM techniques and compared every model trained with a cross-validation scheme.
They used an optimum network with one hidden layer and 30 neurons. Comparing the
five different algorithms used, they found that the random forest gave better performance
than the other methods.

In [24], traditional MLP neural networks, long short-term memory (LSTM) networks,
and stacked auto-encoders are compared in a novel wind-sensitive attention mechanism.
A deep neural network results in the best wind forecasting in terms of accuracy. In this
paper, the authors used weather forecast information to develop a wind-sensitive attention
mechanism for forecasting winds with an LSTM neural network. It has been compared with
satisfactory results with the MLP, SVM and EGB (extreme gradient boosting) algorithms.
Shahid et al. [25] explored some machine learning techniques for short-term wind speed
prediction, specifically random forest (RF), SVR, RBFNN and LSTM, on various wind farm
datasets located in Pakistan. For long-term predictions, there are some works, such as the
one by Paula et al. [26], where RF, NN and GB were applied to perform regression on wind
data for long periods in three wind farms.

Wave height forecasting has always had many applications in coastal and marine
engineering design and, more recently, in renewable energies related to ocean resources,
such as wave converters and floating wind turbines. Different ML have been applied
to obtain models of the significant wave height (WVHT). In [27], the authors present
a novel approach to simultaneously tackle short- and long-term energy flux prediction of
waves. They considered multi-task evolutionary artificial neural networks (MTEANN)
with three different basis functions (sigmoidal unit, radial basis function and product unit)
and compared the performance against extreme learning machines and support vector
regressors on data of three buoys located in the Gulf of Alaska. In [28], the wave height
is modeled with SVR and compared with ANN, MLP and RBF models. Errors obtained
for the testing set are: RMSE = 0.21 for SVM with RBF kernel, RMSE = 0.26 for SVM with
polynomial kernel, 0.23 for MLP artificial neural network and 0.25 for RBF ANN. In this
study, SVM is shown to generalize better than ANN; thus, this technique is considered by
the authors to be a more reliable method for offshore energy application. In [29], LSTM
wave prediction results were obtained and compared with the MLP, ELM, SVM and RF
algorithms. The LSTM network uses past wind speed values, wave height and wind
direction. In [30], a near-real-time, half-hourly significant wave height forecast model is
designed using a suite of selected model input variables. The multiple linear regression
(MLR) model is optimized by a covariance-weighted least squares (CWLS) estimation
algorithm to generate a hybridized MLR-CWLS model. The proposed MLR-CWLS model
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is benchmarked against competing modeling approaches (multivariate adaptive regression
splines-MARS, M5 model tree and MLR) using statistical score metrics. Some of them
deal with offshore wind turbines but not with floating ones. Other examples related
to bottom-fixed offshore turbines are shown in [31], where the authors prove that the
exponentiated Weibull distribution provides a better model fit to significant wave height
data than the translated Weibull distribution, which is more widely used. Based on 7-year
observation data of a buoy station, Zhang et al. [32] present an uncertain accessibility
estimation method based on a multi-step probabilistic wave height forecasting model
and Monte Carlo simulation to improve offshore wind farm operation and maintenance.
However, as shown, there are only a few examples of wave models oriented to floating
wind turbines, and they are mainly focused on how the waves affect the response of the
turbine instead of on wave height forecasting.

The same happens with papers related to the relationship between wind and waves in
floating wind turbines. Although the influence of misalignment on the structural fatigue
of FOWT has been studied [21], studies on modeling are scarce. Some notable exceptions
are the paper by Hildebrandt et al. [33], which analyzes the occurrence and amount of
wind and wave misalignment, as well as the direction dependency of the wind–wave
correlation for normal conditions and extreme storms in the German Bight of the North
Sea, a location intensively used for offshore wind energy production. Another interesting
study is found in [34], where wave height–wind distributions for floating wind turbines are
analyzed and modeled. Furthermore, in [35], the conditional joint probability distribution
of the significant wave height and peak spectral wave period at the cut-out wind speed is
obtained. Then, the stochastic dynamic response and reliability of the FOWT are analyzed
considering these loads.

So, as far as we know, it does not seem to be forecasting models of misalignment
that can be used for FOWT energy analysis, but some preliminary works, such as the one
presented in [36], of which this is an extension.

3. Materials: Data and Pre-Processing

The actual data used in this paper correspond to standard meteorological and descrip-
tive wave measures obtained from the National Oceanic and Atmospheric Administration
(NOAA, www.ndbc.noaa.gov) in the USA. Data measurements were taken by sensors
equipped with floating offshore buoys distributed through the U.S. and international
waters maintained by the National Data Buoy Center (NDBC).

The Santa Maria (CA) station database was selected. This offshore buoy is located
in the Pacific Ocean in the northwest of California (34◦57′22′′ N 121◦1′7′′ W). Historical
files with metocean variables from 2010 to 2020 and real-time files of the last 45 days are
available and have been downloaded (indeed from January to April 2020). One of the main
reasons for choosing this station was the stability of the weather and sea state, without
the strong disturbances that make it suitable for offshore wind turbines. We used the data
obtained at 4–5 m height by measuring devices installed on floating buoys. In similar
research, it is considered that these data can be extrapolated up to a height of 90 m, that is,
about the height of the rotor of the offshore wind turbines. In addition, NDBC buoys are
installed about 20–40 km off the coast.

Standard meteorological data files have hourly atmospheric, wind- and wave-related
variables averaged values, measured every 8 min. Historical data files are classified by year,
while real data files contain the last 45-day measures. The same meteorological features
are available in both types of files. The most significant differences between them are the
representation of the missing value; in historical files, they are represented by 999 and by
‘MM’ in real-time data files. In addition, reports of measures in real-time files are given
each 10 min instead of each hour.

The main features of the data are as follows (Table 2):

www.ndbc.noaa.gov
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Table 2. Meteorological features measured.

Feature Name Physical Measure (Units)

YY, MM, DD, HH, mm Year, month, day, hour, minutes
WDIR Wind direction (m)
WSPD Wind speed (m/s)
GST Gust speed (m/s)
WVHT Significant wave height (m)
DPD and APD Dominant and average wave period (s)
MWD Wave direction (◦) in DPD
PRES Sea level pressure (hPa)
ATMP Air temperature (◦C)
WTMP Sea surface temperature (◦C)
DEWP Dewpoint temperature (◦C)
TIDE Water level above or below Mean Lower Low Water MLLW (feet)
VIS Station visibility (nautical miles)

Figure 2 shows a sample of the data downloaded from NDBC website of year 2018
with the corresponding units.
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Figure 3. Sample of real-time values from the Santa Maria buoy.

In this Figure 3, some values are within a black square, as an example of values that
do not contain any information in contrast to example rows surrounded in green that do
not contain missing values. We will deal with this in the following sections.

3.1. Exploratory Data Analysis and Data Cleaning

Exploratory data analysis (EDA) and data cleaning were applied at the same time to
the data. As a result of the first visual analysis, it was possible to see (Figure 2) that missing
values are represented by a series of 9′s in historical files. Moreover, this data inspection
also helped us determine which variables were useless and thus could be removed. For
instance, the date variable “minute” was always 50. This is because the measurements are
taken every 10 min and reported every hour, so the mm variable can be discarded. Likewise,
variables DEWP, TIDE and VIS are always null. These variables are unnecessary for wind
and wave forecasting, so we have also ruled them out. In Figure 2, rows in which mm
is different from 50 contain NaN values in some important columns, such as WVHT and
DPD. This data cleaning was done automatically, with code developed for this purpose.
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Figure 4 shows an example of the cleaning process results from data from 2019. As
a result, rows of data containing missing values were omitted. In addition, it is possible to
observe in this figure that the wind direction (blue line) was null in the summer months, so
these rows were also removed.
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Figure 4. Automatic data cleaning of metocean variables (year 2019).

To select the year with more valuable data, the cleaning process was carried out for
every available year. The results are presented in Table 3.

Table 3. Results of the cleaning process for each year.

Year Initial Rows Final Rows % Deleted

2019 16,214 5803 64.20%

2018 8716 8716 0.00%

2017 8685 8684 0.01%

2016 8669 8669 0.00%

2015 8738 5358 38.68%

2014 8750 2444 72.06%

Data from 2016 to 2018 were complete, so we worked with them to have enough
samples for the model optimization phase. However, if we had needed more data, we
could have taken data from 2010.

Outlier detection was carried out to obtain more accurate models. The majority
voting method was applied using a graphical boxplot and the LDOF (local distance-based
outlier factor) algorithm. The data classified by both methods as outliers were considered
anomalous and discarded. We applied this process to a total of 71,031 records, from 2010
to 2020, historical data and to real-time data. The boxplot identified 5333 outliers and
the LDOF 4820; from them, 1749 were considered anomalous for both methods and were
thus removed.

After data cleaning, we plotted each feature time series, comparing row and clean
data to ensure their distributions were the same, and we did not make any mistakes during
the cleaning process, so relevant information was not missing. The deletion of the outliers
had the effect of expanding the graph as the upper limit was reduced.
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Subsequently, univariate analysis was carried out for each variable. The central (mean,
median, mode), spread (range, standard deviation, variance and quartiles), and shape
(central moment, maximum and minimum) values were calculated. The distribution that
best fit the data was found. Figure 5 (left) shows how the wind speed variable in the Santa
Maria station is concentrated around its mean and is relatively stable, and Figure 5 (right)
is the same for significant wave height. The Weibull distribution fit the data accurately, as
shown in these figures. The statistical values of these measures are shown in Table 4.

J. Mar. Sci. Eng. 2022, 10, x FOR PEER REVIEW 8 of 19 
 

 

Outlier detection was carried out to obtain more accurate models. The majority vot-

ing method was applied using a graphical boxplot and the LDOF (local distance-based 

outlier factor) algorithm. The data classified by both methods as outliers were considered 

anomalous and discarded. We applied this process to a total of 71,031 records, from 2010 

to 2020, historical data and to real-time data. The boxplot identified 5333 outliers and the 

LDOF 4820; from them, 1749 were considered anomalous for both methods and were thus 

removed. 

After data cleaning, we plotted each feature time series, comparing row and clean 

data to ensure their distributions were the same, and we did not make any mistakes dur-

ing the cleaning process, so relevant information was not missing. The deletion of the out-

liers had the effect of expanding the graph as the upper limit was reduced. 

Subsequently, univariate analysis was carried out for each variable. The central 

(mean, median, mode), spread (range, standard deviation, variance and quartiles), and 

shape (central moment, maximum and minimum) values were calculated. The distribu-

tion that best fit the data was found. Figure 5 (left) shows how the wind speed variable in 

the Santa Maria station is concentrated around its mean and is relatively stable, and Figure 

5 (right) is the same for significant wave height. The Weibull distribution fit the data ac-

curately, as shown in these figures. The statistical values of these measures are shown in 

Table 4. 

Table 4. Statistical measures of wind and wave variables. 

  Wind Speed Wave 

Central measures 

mean 6.0450 1.9779 

median 6 1.87 

mode 6.4 1.67 

Spread measures 

range 15.4 4.82 

std 3.1328 0.7523 

variance 9.8145 0.5660 

quartiles [0, 3.4, 6, 8.5, 15.4] [0.67, 1.42, 1.87, 2.39, 5.49] 

Shape measures 

central mom 5.1228 0.4237 

max 15.4 5.40 

min 0 0.67 

 

Figure 5. Histogram of wind speed (left) and wave height (right). 

Statistical analysis was carried out for all the different metocean variables, but some 

of them, such as wind and wave directions, were circular and analyzed with different 

tools. For instance, we used the wind rose to visualize the relationship between wind 

speed and wind direction. 

Figure 5. Histogram of wind speed (left) and wave height (right).

Table 4. Statistical measures of wind and wave variables.

Wind Speed Wave

Central measures

mean 6.0450 1.9779

median 6 1.87

mode 6.4 1.67

Spread measures

range 15.4 4.82

std 3.1328 0.7523

variance 9.8145 0.5660

quartiles [0, 3.4, 6, 8.5, 15.4] [0.67, 1.42, 1.87, 2.39, 5.49]

Shape measures

central mom 5.1228 0.4237

max 15.4 5.40

min 0 0.67

Statistical analysis was carried out for all the different metocean variables, but some of
them, such as wind and wave directions, were circular and analyzed with different tools.
For instance, we used the wind rose to visualize the relationship between wind speed and
wind direction.

3.2. Feature Selection

Feature selection, also known as variable subset extraction, consists of selecting a sub-
set of relevant predictors from all existing features for modeling. To carry out feature
selection, we first applied the F-test, which calculates univariate feature ranking (based on
the covariance measure). Then, all predictors were ordered by importance in the dataset
and had an associated weight.

Correlation analyses, Pearson and Spearman correlation coefficients for pair-wise
features, were also performed, obtaining similar values with both approaches. Annual
linear correlation matrixes for 2016, 2017 and 2018 were calculated to demonstrate that
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the annual correlation remains between variables regardless of the particular year. We
highlighted some pairs of highly correlated variables, such as WVHT-WDIR or WSPD-GST,
that were, therefore, discarded to avoid including redundant information.

For each of the forecasting models that would be obtained, the following potential
predictors were selected:

• Wind speed forecasting: WSPD (target), WDIR, ATMP, PRES;
• Significant wave height prediction: WVHT (target), WSPD, WDIR, MWD, WTMP, PRES;
• Misalignment forecasting: MIS (target), WVHT, WSPD, PRES, WTMP.

During the modeling, we tried different combinations of features from each subset.
For misalignment forecasting, we combined wind direction (WDIR) and wave di-

rection (MWD) to obtain a new feature representing the wave and wind misalignment,
called MIS. To obtain the misalignment, we first subtracted the angle of the wind and wave
direction. We then calculated the rest by dividing the resultant angle by 180◦.

Finally, we incorporated a temporal window of the previous values for time se-
ries forecasting.

4. Methods: Machine Learning (ML) Techniques

Through machine learning algorithms, we can gain insight into the collected data [37].
Matlab software was selected for data pre-processing and ML techniques implementation
in this research. The ML algorithms applied for predictive modeling are summarized below.

4.1. Linear Regression (LR)

The hypothesis function established a linear relationship between input variables and
output, as follows:

hϑ(x) = θ0 + θ1x1 + θ2x2 + . . . + θnxn (1)

where θ0, θ1, . . . , θn are model parameters and x1, . . . , xn are the components of an input
example. θ0 represents the bias or offset.

The cost function used to measure the accuracy of the hypothesis function was 1
2

multiplied by the “squared error function” or “mean squared error” (MSE), which is the
mean of the differences between the predicted value and the actual output value for every
example in the dataset.

J(θ0,θ1, . . . , θn) =
1

2m

m

∑
i=1

(ŷi − yi)
2 =

1
2m

m

∑
i=1

(hϑ(xi)− yi)
2 (2)

The algorithm updates the θ parameters vector for every input training example
(x(i), yi) by minimizing the cost function.

4.2. Gaussian Process Regression (GPR)

Gaussian process regression (GPR) is a non-parametric Bayesian approach to regres-
sion [38]. It infers the probability distribution over all admissible functions that fit the data
(function-space view).

Gaussian process comes specified by a mean function m(x) and the Kernel covariance
function k(x, x′) of a real process f (x)GP(m(x), k(x, x′)), so:

y GP
(

m(x), k
(

x, x′
)
+ δijσ

2
n

)
(3)

We specified the mean function and covariance kernel function, which were tuned
during the optimization phase. The following kernel functions were selected: constant,
linear square exponential, Matern kernel or a combination of some of them. For instance,
the combination of the constant kernel with the radial basis function (RBF) kernel is
widely used:

k
(
x, x′

)
= σ2

f exp
(
− 1

2l2 x− x′2
)

(4)
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where σ2
f and l are the hyper-parameters that must be tuned.

4.3. Support Vector Machines for Regression (SVR)

Support vector machine (SVM) or “large margin classifier” tries to find the line or
hyperplane that best separates observations of the training set into different output classes.
The regression problem is a classification problem with infinite output classes (continuous
output variables). Thus, SVR introduces a ε-sensitive region around the function y that
we want to predict, called the ε-tube. The SVR optimization problem consists of finding
the tube:

f (x) = θTx + b (5)

This best approximates the continuous-valued function [39]:

‖ yi − θixi ‖ ≤ ε (6)

4.4. Neural Networks (NAR, NARX and Feed-Forward NN)

An artificial neural network (NN) is a computational solution for machine learning
applications. An artificial neuron receives input examples with n features from its neuron
synapsis. Then, it returns an output hθ(x) = f (x) that is calculated considering the
“weights” assigned to each input connection and an activation function f assigned to the
neuron, also known as a transfer function, where x0 corresponds to the bias unit (see
Figure 5).

That is, the neuronal model is: hθ(x) = f (θ0 + θ1·x1 + θ2·x2 + . . . + θn·xn). We have
tried different transfer functions f such as the linear transfer function (also called Purelin):
f (hθ(x)) = hθ(x), Log-sigmoid function f (hθ(x) = 1

1+exp−hθ(x) or Hyperbolic tangent

sigmoid function (also called Tansig): f (hθ(x) = 2
1+exp−2·hθ(x) − 1.

Figure 6 shows the neural network model representation, where:

a(j)
i = f

(
θ
(j−1)
i,0 x0 + θ

(j−1)
i,1 x1 + . . . + θ

(j−1)
i,sj+1

xsj+1

)
= f (z(j)

i ) (7)
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Figure 6. Artificial neural network model.

Hence, the hypothesis function is represented by:

hθ(x) = aj+1 = f
(

zj+1
)

(8)

where, in this case, j = last hidden layer and j + 1 = output layer.
A well-known backpropagation algorithm was applied to train the neural network.
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A nonlinear autoregressive neural network (NAR), which relates the current value
of the time series to the past values of the time series, was also applied. Moreover, the
nonlinear autoregressive with exogenous neural networks (NARX) that relate the current
value of the time series with current or past external series (other features of time series
that influence the time series we want to forecast) [40] was also considered.

The NAR model that predicts y(t) series can be represented by the following expression:

y(t) = f (y(t− 1), y(t− 2), . . . , Y(t− d)) (9)

NARX model can be represented with the function:

y(t) = f (x(t− 1), . . . , x(t− d), y(t− 1), . . . , y(t− d)) (10)

5. ML-Based Models and Discussion of the Results

The five ML techniques described above were applied to real data of the metocean
variables of the buoy. After the training phase, if the model obtained gave an unacceptable
classification ratio, we still evaluated the models using the learning curves plot tool. In
this way, it was possible to determine whether the problem was due to high bias or high
variance. This information may help us optimize the model better, choosing more examples
to be included in the training dataset or fewer features, for instance.

In the regression learner tool, the hold-out validation scheme was configured with a
held-out data subset of 20% for the regression algorithm application. This means that 20%
of the 8581 rows were used for validating the models with unseen observations.

In the case of artificial neural networks, the dataset was split into training (70%),
validation (15%) and testing (15%) sets. Finally, the best models were tested with data from
2019 and 2020 (“Real-Time”) to evaluate their performance.

The performance was measured with the root mean square error (RMSE), in m/s
for wind speed, in m for wave height, and in degrees for misalignment. The RMSE was
calculated as follows:

RMSE =

√
1
m

m

∑
i=1

(
h(θ)i − yi

)2 (11)

The success rate, Sr (%), which is the percentage of correct predictions made by the
model, is:

Sr =

(
1− RMSE

max

)
% (12)

The best models obtained for each variable were selected. They are presented here regarding
the variables that predict wind speed, significant wave height, and wind–wave misalignment.

5.1. Wind Speed Models

Models were trained to forecast the next hour’s wind speed by trying different combi-
nations of features of the dataset for the year 2018. If necessary, more data from other years
were added to the training set during the optimization phase.

Linear regression was the first algorithm we applied because of its simplicity and ease
of understanding. Model variants, namely linear, interactions linear, robust linear and
stepwise linear, were also tested in next hour wind speed forecasting. All regressions gave
the same results (RSME = 1.0546, MAE = 0.7837) except for the robust variant, which gave
RMSE = 1.0558 and MAE = 0.7819, and the best success rate, 93.14%, although the rest
gave 93.15%.

We also obtained the results of linear regression models trained with 1-h to 6-h previous
wind speed data. The wind models obtained with the two and three last hours’ wind speeds
as input show the smallest cross-validation errors.

With these results in mind, we applied support vector machines for regression, initially
trained with data from 2018 and two last hour wind speed values as predictors. Different
configurations were tested, obtaining the best results with Gaussian kernel function, a box
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constraint of 9.78 and ε = 0.066. The results were RMSE = 1.0359 and MAE = 0.7664, with
a success rate of 93.27%.

To improve the SVR model, we first plotted its learning curves when training the
model with different subsets of m training examples and then calculated the training and
validation RMSE for each m. Next, a threshold to stop optimization of the algorithm was
defined, called a reference error. According to the range of errors found in the literature for
models that predict this variable with the learning curves, the reference error was set to 0.9.

The best configuration found was the SVR model with 1 to 10 h previous wind speed
data, linear kernel function, a box constraint of 6.1141 and ε = 0.1377; and with 1 to
14 previous hourly wind speed data, Gaussian kernel function, box constraint of 0.5056 and
ε = 0.0096 (success rate 93.41% and 93.52%, respectively).

Gaussian process regression model was trained with the wind speed from the pre-
vious hour as a predictor. The best configuration was the isotropic Matern 5/2 kernel
function, with a kernel scale of 0.0164 and σ = 0.0057 as hyper-parameters, which gave
an RMSE = 1.0424 and MAE = 0.7746 (success rate: 93.23%). Even though this model gave
a good performance compared with our reference error, to further improve it, we trained
the GPR models with wind speed, air temperature and pressure of the one and two last
hours as predictors, obtaining an RMSE = 1.0258 and MAE = 0.7630 (success rate of 93.34%)
for the las hour variables as predictors, which make it the best GPR model obtained.

To determine whether we could obtain better models, we applied nonlinear autore-
gression neural networks with the wind speed variable as a predictor. The initial network
was configured with 15 neurons in the hidden layer and a delay of 6, giving an RMSE
for the training set of 1.0235, 1.0581 for the validation set, and an error for the testing set
of 1.0871 (success rate = 92.94%). Plotting these results in learning curve plots gave us
the intuition that this model suffered from high variance. A NAR model with 15 neurons
and 1 as the delay gave the best RMSE for the testing set: 0.9762 (success rate of 93.66%).
Nonlinear autoregressive with external input (NARX) neural networks were trained with
air temperature, pressure and wind direction as predictors, and wind speed as the target
variable. Different combinations were tried, obtaining the best NARX with 9 neurons in the
hidden layer and a delay of 6, trained with data only from 2018, giving an RMSE for the
testing set of 0.9893 (success rate of 93.58%).

Wind Speed Model Comparison

Table 5 shows the performance of the best models obtained with each ML technique
for wind speed forecasting.

Table 5. Best model results for WSPD forecasting for each ML algorithm.

Algorithm Model RMSE
(Validation)

RMSE
(Test Data 2019)

RMSE
(Test Data 2020)

Success Rate
(Validation)

LR wind_lr2 1.0529 1.1237 1.1723 93.16%

SVR wind_svm3 0.9985 1.1462 1.1722 93.52%

GPR wind_gpr2 1.0285 1.1344 1.1670 93.32%

NAR wind_nar3 0.9762 1.1496 1.1713 93.66%

NARX wind_narx2 0.9988 1.1124 1.1340 93.51%

Although the wind_nar3 model had the best validation success rate (93.66%), it gener-
alizes worst for 2019 and 2020 data forecasting, as observed in the RMSE values for those
years. The algorithm that performed the best regarding the validation RMSE (0.9988, the
second smallest) and the smallest RMSE for 2019 (1.1124) and 2020 (1.1340) was the nonlin-
ear autoregressive with external input neural network (NARX) algorithm, with a success
rate of 93.51%. The best configuration found for this ML algorithm was:

• Dataset: data from 2018;
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• Predictors: WSPD, ATMP, PRES, WDIR;
• N◦ neurons in the hidden layer: 5;
• N◦ input delays: 3 h before forecasting moment (t).

Figure 7 shows the predicted wind speed against the actual output values for 2020.
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5.2. Significant Wave Height Prediction

Models to predict significant wave height in the frequency domain have been trained
based on wind and other weather known variables and wave direction. Initially, we
considered the data from 2018 for the dataset.

We started applying the linear regression (LR) algorithm based on the high linear
correlation between wind speed and wave height. First, the LR model was trained with
wind speed as a predictor; the 5-fold cross-validation schema partition was used for
the dataset, giving RMSE = 0.6747 and MAE = 0.5149 (success rate of 87.71%). In the
optimization phase, we included wind and wave direction as predictors in addition to
wind speed, obtaining a bit smaller RMSE = 0.6290 and MAE = 0.4749 errors and a slightly
better success rate of 88.54%.

As for the wind, we also applied the support vector machine for regression (SVR) to see
if we could obtain better results. The configuration of SVR with Gaussian kernel function,
wind speed (WSPD), wave direction (MWD), and wind direction (WDIR) as predictors,
and 20% hold-out cross-validation schema applied to the dataset, gave RMSE = 0.5889 and
MAE = 0.4312 (success rate = 89.27 %). The learning curves showed noisy values, which
means that the training dataset could be unrepresentative of this problem. Therefore, we
selected an additional predictor: sea surface temperature (WTMP) and applied the 5-fold
CV instead of the 20% hold-out CV scheme, obtaining a LR model with RMSE = 0.5203 and
MAE = 0.3709 (success rate of 90.52%).

With the Gaussian process regression (GPR) algorithm and WSPD, MWD and WDIR
as predictors, we obtained a model with RMSE = 0.5820 and MAE = 0.4373 (success rate of
89.39%). Then, we tried to improve this model, which suffered a high bias as per the learning
curves plot, adding pressure (PRES) and WTMP measures as additional predictors and
adding the data from 2017 to the dataset, obtaining a GPR model that gave RMSE = 0.5021
and MAE = 0.3755 (success rate of 90.85%).

Feed-forward backpropagation artificial neural networks (ANN) were used for the sig-
nificant wave height prediction. A network with 1 hidden layer of 15 neurons, WDIR, WSPD
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and MWD as predictors, and training function Trainlm gave an RMSE(Train.) = 0.5130,
RMSE(Valid.) = 0.5533 and RMSE(Test) = 0.5365 (success rate of 90.22%). Since this network
had high bias, we tried different configurations to obtain the best ANN with 4 hidden
layers (20, 25, 7 and 2 neurons, respectively), WSPD, WDIR, MWD, PRES and WTMP as
predictors, and training function trainlm, which eventually gave RMSE(Train.) = 0.4214,
RMSE(Valid.) = 0.4947 and RMSE(Test.) = 0.4517 (success rate of 91.77%)

Significant Wave Height Model Comparison

We compared the best models obtained with each ML technique for the significant
wave height prediction; the results are presented in Table 6.

Table 6. Best model results for WVHT prediction for each ML algorithm.

Algorithm Model RMSE
(Validation)

RMSE
(Test Data 2019)

RMSE
(Test Data 2020)

Success Rate
(Validation)

LR waves_lr2 0.6290 0.7877 0.5692 88.54%

SVR waves_svm2 0.5679 0.8174 0.6149 89.66%

GPR waves_gpr3 0.5021 0.7312 0.6940 90.85%

Feed-forward ANN waves_ann3 0.4517 0.8112 0.7421 91.72%

Although the feed-forward ANN had the highest validation success rate (91.72%),
the best algorithm to predict WVHT is the Gaussian Process regression (GPR) with the
second-lowest validation RMSE (0.5021) and the best RMSE for test data for 2019 (0.7312)
and for 2020 (0.6940). The waves_gpr3 model configuration that gave the best results was:

• Dataset: data from 2018;
• Predictors: WSPD, WDIR, MWD, PRES, WTMP.

Figure 8 shows the predicted significant wave height against the real output values
for 2020.
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5.3. Misalignmet Model

Wind and wave misalignment forecasting is a novel but necessary task; indeed, models
for misalignment (MIS) forecasting have not been found in the literature. Due to this,
the reference error selected has been defined using some knowledge, considering 90◦

an acceptable limit MIS for FOWT.
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The models were trained to forecast the next hour’s misalignment. The selected
dataset contained data from 2018, and when necessary, more data was added during the
optimization phase to improve the convergence. The RMSE of the angle was measured
in degrees.

First, we trained the linear regression (LR) model with MIS values from the last hour as
predictors, giving an RMSE = 53.9260 and MAE = 32.67.21 (success rate of 70.04%). Adding
as predictors the values of the following variables: sea surface temperature (WTMP), wind
speed (WSPD) and sea level pressure (PRES) from the last hour, the LR model improved
slightly, giving an RMSE = 52.1342 and MAE = 30.8361 (success rate of 71.04%)

The first trained support vector regression (SVR) model yielded similar performance
results. SVR was applied with the Gaussian kernel function and current MIS as the
predictor, giving RMSE = 54.8385 and MAE = 29.9080 (success rate of 69.53%). To ensure
the performance of this model, we tested it with data from 2019 and 2020, obtaining
RMSE = 63.5201 and 65.4028, respectively. To improve the success rate, we trained the
model with two more predictors: wind speed (WSPD) and sea surface temperature (WTMP),
resulting in a model that had an RMSE = 51.9623 and MAE = 31.9612 (success rate of 71.13%).

Gaussian Process Regression (GPR) was also applied with the goal of obtaining a better
success rate. GPR model with MIS, WSPD and WTMP from the last hour as predictors
gave an RMSE = 51.5981 and MAE = 31.2231 (success rate of 71.33%). An angle of 50◦

is 40◦ smaller than the initial reference error of 90◦ so the Learning curves showed that
this model fit the data well, and the validation curve was below the training curve, one of
the objectives.

Nonlinear autoregressive neural networks (NARs) were proven to forecast MIS satisfac-
torily. The first NAR model consisted of one hidden layer with 10 neurons and was trained
with the Lavenberg-Marqueardt algorithm and with last hour MIS values as input (delay
of 1), giving an RMSE(Train.) = 53.1438, RMSE(Valid.) = 54.0507 and RMSE(Test) = 53.6406
(success rate of 70.20%). The same NAR configuration was trained with the Bayesian
Regularization Backpropagation function, giving a better RMSE(Train) = 50.3944 and
RMSE(Test) = 49.7858 (success rate of 72%).

Finally, nonlinear autoregressive with exogenous input networks (NARX) were trained.
Initially, the NARX model was configured with one hidden layer of 10 neurons and trained
with last two hours values (delay = 2) using MIS and WSPD as predictors, which gave
an RMSE(Train.) = 51.6333, RMSE(Valid.) = 52.7523 and RMSE(Test) = 49.0421 (success rate
of 72.75%). To decrease the RMSE(Valid.), a NARX model with 8 neurons in the hidden
layer and the last two hours MIS and WSP values was tested, using more data (from 2010
to 2018) for the training, giving an RMSE(Train.) = 51.1227, RMSE(Valid.) = 50.5203 and
RMSE(Test) = 50.3699 (success rate of 72.02%).

Misalignment Model Comparison

Table 7 shows the performance of the best models obtained with each ML technique
for MIS forecasting.

Table 7. Best model results for MIS forecasting for each ML algorithm.

Model RMSE
(Validation)

RMSE
(Test Data from 2019)

RMSE
(Test Data from 2020)

Success Rate
(Validation)

LR mis_lr2 52.1342 62.4652 66.2944 71.04%

SVR mis_svm2 51.9623 61.7990 64.3001 71.13%

GPR mis_gpr2 51.5981 59.7840 62.7212 71.33%

NAR mis_nar2 49.7858 61.8016 62.7157 72.34%

NARX mis_narx2 50.3699 58.1550 61.5061 72.02%
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Table 7 shows that Nonlinear Autoregressive with External Input (NARX) Neural Net-
work (bolded) outperformed the other algorithms for misalignment forecasting. Although
the mis_nar2 model has smaller RMSE validation than the mis_narx2 network, the latter
outperformed the first one for new data from 2019 and 2020. The optimal configuration for
the mis_narx2 model was:

• Dataset: data from 2010 to 2018;
• Predictors: MIS and WSPD;
• N◦ neurons in the hidden layer: 8;
• N◦ input delays: 2 h before the forecasting moment (t).

Figure 9 shows the predicted misalignment against the real output values for 2020.
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6. Conclusions and Future Works

In this work, different ML techniques were tested to obtain predictions of metocean
variables. The ultimate goal is to obtain good models that find the best location for offshore
wind turbine deployment. To do so, three variables that have a significant impact on
the electrical energy produced by a floating wind turbine have been studied: the wind
speed, the significant height of the waves and the misalignment, which is calculated as the
difference in the direction of the wind and the waves.

Various ML techniques have been tested with different configurations to study whether
they can obtain good prediction models. In general, some specific configuration of each ML
method applied has been found that gives satisfactory results for forecasting ocean variables.
However, the neural NARX network seems to outperform the other tested algorithms (SVR,
LR, GPR, NAR and MLP), mainly for wind speed forecasting. The GPR model proved to
be the most accurate for significant wave height prediction in the frequency domain. In the
literature, we have not found models for wind–wave misalignment forecasting, a relevant
variable for floating wind turbine locations. Among all the models trained, the NARX
algorithm has become the most efficient in this respect.

Correct evaluation of the proposed models with techniques, such as learning curve
plots, was also essential to optimize the models and make better decisions regarding the
best configuration.

In future work, it would be interesting to apply the proposed methodology to other
metocean data from different offshore locations. This would allow us to study how much
a particular site for a wind farm location influences model performance. Furthermore, it
would be of interest to test the already-trained models with real data from different locations
and observe whether the success rates are maintained. In addition, the creation of hybrid
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models that integrate these models into more sophisticated predictive systems for wind
power or wind turbine fatigue prediction is proposed, which will help maintenance [41].
Finally, extending the prediction horizon could be another future line of research.
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