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Abstract— In this paper, a cost inference algorithm for
discrete-time systems using human-behaviour learning is pro-
posed. The approach is inspired in the complementary learning
that exhibits the neocortex, hippocampus, and striatum learning
systems to achieve complex decision making. The main objective
is to infer the hidden cost function from expert’s data associated
to the hippocampus (off-policy data) and transfer it to the
neocortex for policy generalization (on-policy data) in different
systems and environments. The neocortex is modelled by a Q-
learning and a least-squares identification algorithms for on-
policy learning and system identification. The cost inference is
obtained using a one-step gradient descent rule and an inverse
optimal control algorithm. Convergence of the cost inference
algorithm is discussed using Lyapunov recursions. Simulations
verify the effectiveness of the approach.

I. INTRODUCTION

The increasing field in machine learning and data sci-
ence has provided a wide amount of expert’s data that
defines the desired performance of a given system under
hidden constraints [1]. In particular, expert’s control policies
obtained from adaptive dynamic programming (ADP) [2]
or reinforcement learning (RL) [3]–[5] algorithms give a
solution of a hidden optimization problem [3], that is, these
policies minimize a hidden cost or reward function. In this
paper, discrete-time linear quadratic control [6] policies [7],
[8] are considered for sake of simplicity.

The success of any ADP/RL algorithm [9]–[12] is given
by an adequate design of the cost or reward function that is
in charge of defining the control task [13]. In most cases,
the cost is designed heuristically in accordance to expert’s
knowledge and it is hidden within the final control policy.
However, the control policy generalization is poor for dif-
ferent systems and environments. Therefore, it is necessary
to extract the hidden cost of expert’s policies to infer the
definition of the task to new systems and environments
maintaining the expert’s desired performance. However, the
cost inference becomes a hard problem since the aim of
ADP/RL is not to imitate performance, but use experience
to facilitate learning and improve the performance of the
controller [14], [15].

One of the main challenges for cost inference in discrete-
time systems lies in the high nonlinearity of the control
policy respect to the system dynamics and the kernel matrix
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associated to an algebraic Riccati equation [16]. One way
to simplify this problem is by assuming prior knowledge
of the system dynamics, otherwise identification techniques
are required to estimate the parameters of the system [16].
In this paper, the cost inference is elegantly achieved using
a complementary learning [17] based on a human-behavior
learning approach.

Human-Behaviour Learning [18] is relatively a new learn-
ing paradigm inspired by the humans’ brain activity for deci-
sion making [19], [20]. Three main learning systems can be
distinguished at the brain cortex [21]: the hippocampus, the
neocortex, and the striatum. These systems merge different
sources of knowledge, which are not necessarily indepen-
dent to each other, coming from experience and system-
environment interaction [16] to achieve complex reward-
driven behaviour. In this sense, human-behavior learning
provides an interesting way to relate experience and current
knowledge for decision making.

Whilst the hippocampus relies in fast learning structures
associated to memory and experience [22]–[25] such as
replay [5], [18], model-based algorithms [7], exploration-
exploitation techniques [26], [27], the neocortex contains
pattern dependent structures [28] related to online learning
models, e.g., ADP/RL algorithms [10], [29]–[31], neural
networks [32], [33], function approximators [34], [35]. In
fact, the hippocampus gives an adequate direction for the
neocortex updating.

On the other hand, the striatum is a brain’s structure that
evaluates different sources of information (provided by the
neocortex and the hippocampus) for decision making [36]. In
this context, the striatum has complementary properties [37],
[38] to connect the other learning systems to achieve com-
plex behaviour. Furthermore, the striatum can be modelled
as a communication channel between different sources of
knowledge which takes their advantages to enhance learning
and the improvement of the final control policy.

In view of the above, this paper proposes a human-
behaviour learning algorithm for cost inference of discrete-
time linear quadratic control policies. The proposed approach
extracts the cost from two different sources of knowledge
(hippocampus and neocortex) given by expert’s and online
data of the system dynamics and a least-squares Q-learning
algorithm [7]. These sources of knowledge are combined
together via the striatum learning system which is modelled
by an inverse optimal control (IOC) problem. Simulations
verify the proposed approach under a high-order power
system.
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II. HIPPOCAMPUS EXPERT CONTROL POLICY

First we need to define how a linear quadratic control
policy is modelled. The next discrete-time linear system
structure [39] is considered

xk+1 = Axk +Buk, (1)

where xk ∈ Rn is the state vector, uk ∈ Rm is the control
input, A ∈ Rn×n and B ∈ Rn×sm define the unknown
coupling matrices, k ∈ N denotes the time step index.

The control policy of the linear quadratic control problem
is expressed by u∗k = −Kxk, for some stabilizing gain K ∈
Rm×n, that minimizes the next value function in an infinite
horizon

V (xk) =

∞∑
i=k

r(xi, ui), (2)

where r(·) is the cost or reward function. Typically the cost
function for a LQR controller has a quadratic structure [40] in
the control input (the quadratic term in the state is optional),
i.e., r(xk, uk) = x>k Sxk + u>k Ruk, where S = S> ≥ 0 ∈
Rn×n and R = R> > 0 ∈ Rm×m are positive semidefinite
and definite weight matrices of the cost. The optimal control
policy of the linear quadratic problem is

u∗k = −Kxk = −(R+B>PB)−1B>PAxk, (3)

where P = P> > 0 ∈ Rn×n is the kernel matrix solution
of the following discrete algebraic Riccati equation (DARE)
[32]

A>PA+S +A>PB(R+B>PB)−1B>PA+S −P = 0.
(4)

In the sequel of the paper the control policies satisfy (3).
Assume that there exists expert’s data stored in the vectors
x̄ = [xe0, · · · , xel−1] ∈ Rn×l and ū = [ue0, · · · , uel−1] ∈
Rm×l, where xei ∈ Rn and uei ∈ Rm are the states and
control input of expert’s trajectories, with i = 0, ..., l and l
is the number of data points. The data satisfy the dynamic
equation

xek+1 = Axek +Buek. (5)

These data are collected from an expert control policy
ue

∗

k = −Kex
e
k for some stabilizing gain Ke ∈ Rm×n that

satisfies (3) under the dynamics (5). It is possible to rewrite
uek in terms of x̄ and ū and compute an estimate of Ke

denoted by K̂e ∈ Rm×n using a least-squares update rule
[13] as

ū = −K̂ex̄

K̂e = −ūx̄>(x̄x̄>)−1. (6)

The LS rule (6) provides an approximate value of the
control gain Ke due to noise at the state or control measure-
ments and the number of data points stored in the vectors
x̄ and ū. This gain is used to uncover the hidden cost of
the expert’s data. Since we are dealing with an inverse [41]
optimal control problem there exists multiple weight matrices
S and R that achieve the same hippocampus’ performance
[42]. For sake of simplicity, the weight function R is assumed
to be known in advance.

III. NEOCORTEX ONLINE CONTROL POLICY

The on-line control policy of the neocortex is computed
by a Q-learning algorithm [11] using the cost inferred by
the striatum. Moreover, we are interested in computing new
control gains K̂k ∈ Rm×n and kernel matrices P̂k ∈ Rn×n

that at each iteration k approximate to the experts gain K̂e

and kernel matrix P , respectively. In parallel, a least squares
identification algorithm is used to estimate the parameters of
the system A and B which will be used by the striatum in
the inference step.

A. Q-learning

The optimal value function of (2) is defined as

V ∗(xk) = x>k Pxk. (7)

The Hamiltonian associated to (1) and (2) is

H(xk, uk) = x>k Sxk + u>k Ruk − x>k Pxk
+(Axk +Buk)>P (Axk +Buk).

(8)

Since the matrices A and B are unknown, then an action-
value function Q(xk, uk) : Rn × Rm → R is used to
derive the model-free Q-learning algorithm. The action value
function verifies the following equality [7]

Q(xk, uk) = V ∗(xk) +H(xk, uk). (9)

The optimal Q-function satisfies the equality
Q∗(xk, u

∗
k) = V ∗(xk). Substituting (7) and (8) in (9)

gives

Q(xk, uk) =

[
xk
uk

]> [
A>PA+ S B>PA
A>PB B>PB +R

] [
xk
uk

]
= z>k

[
Qxx Qxu

Q>xu Quu

]
zk = z>k Mzk.

(10)
where zk = [x>k , u

>
k ]> ∈ Rn+m and M ∈ R(n+m)×(n+m).

The Q-function is linearly parametrized as

Q(xk, uk) = θ>(zk ⊗ zk), (11)

where θ = vech(M) ∈ R 1
2 (n+m)(n+m+1), vech(M) stands

to the half vectorization of matrix M and ⊗ denotes the
symmetric Kronecker product. The optimal control policy
u∗k = −Kxk is derived from the stationary condition
∂Q(xk,uk)

∂uk
= 0 as

u∗k = −Kxk = −Q−1uuQ
>
xuxk. (12)

The optimal Bellman equation [34] for the Q-function (9)
is

Q(xk, u
∗
k) = x>k Sxk + (u∗k)>Ru∗k +Q(xk+1, u

∗
k+1) (13)

which can be equivalently written as

0 = x>k Sxk + u>k Ruk − θ>Φk (14)

where Φk = (zk ⊗ zk − zk+1 ⊗ zk+1). Sine θ is unknown,
then the following approximation is used,

Q̂(xk, uk) = θ̂>k (zk ⊗ zk), (15)



where θ̂k ∈ R 1
2 (n+m)(n+m+1) is an estimate of θ. Then θ̂k

can be obtained through a LS rule by collecting at least 1
2 (n+

m)(n+m+ 1) points as

θ̂k = (ΦkΦ>k )−1Φk(x>k Sxk + u>k Ruk) (16)

The estimate M̂k is obtained in each iteration k and the
optimal control policy is computed by

û∗k = −K̂kxk = −Q̂−1uu Q̂
>
xuxk, (17)

where K̂k ∈ Rm×n is an estimate of the control gain K. The
matrix M̂k and gain matrix K̂k satisfy the following relation
[8]

P̂k =

[
I

−K̂k

]>
M̂k

[
I

−K̂k

]
, (18)

where P̂k ∈ Rn×n is an estimate of the kernel matrix P
which verifies V̂ ∗(xk) = x>k P̂kxk.

B. Least-Squares Identification rule

The control gain of the optimal control policy (3) or (12)
exhibits a nonlinear relation between the coupling matrices
A and B and the kernel matrix P such that it is not possible
to express the policy as a linear parameterization in terms
of those matrices. This issue can be solved by using a least-
squares rule [41], [43] to identify the matrices A and B.
Define an estimated model of (1) as

x̂k+1 = Âkxk + B̂kuk = ϕ>k ϑ̂k, (19)

where Âk ∈ Rn×n and B̂k are estimates of matrices A and
B, ϕk = ϕ(xk, uk) ∈ Rp is a regressor matrix that depends
on xk and uk, and ϑ̂k ∈ Rp is an estimate vector composed
by the estimates Âk and B̂k. Define the dynamic error as

x̃k = x̂k+1 − xk+1. (20)

The main goal is to minimize the following cost index

J1 =

n∑
k=1

x̃>k x̃k. (21)

The minimum of the cost index is a zero of the gradient,
i.e., ∂J1

∂ϑk
= 0,

∂J1

∂θ̂k
=

∂J1
∂x̃k+1

∂x̃k+1

∂ϑ̂k
= 2

n∑
k=1

x̃>k+1

∂

∂ϑ̂k

(
ϕ>k ϑ̂k − xk+1

)
= 2

n∑
k=1

(ϕ>k ϑ̂k − xk+1)>ϕ>k = 0.

If the inverse of
∑n

k=1 ϕkϕ
>
k exists, then the LS solution

identification rule is

ϑ̂k =

(
n∑

k=1

ϕkϕ
>
k

)−1 n∑
k=1

ϕkxk+1. (22)

Convergence of both the Q-learning and LS-identification
rules are achieved under the fulfilment of a persistent of
excitation (PE) condition [44].

IV. STRIATUM COST INFERENCE

The striatum relates the hippocampus and the neocortex
control policies to infer the cost function r(·) used to obtain
the expert’s data.

A. Kernel Matrix Estimation

The first step is to relate the hippocampus and neocortex
control gains to generate a new kernel matrix Pk ∈ Rn×n

that is closer to the expert’s kernel matrix P [45]. Define the
control gain error K̃k ∈ Rm×n as

K̃k = K̂e − K̂k

= −
(
ūx̄>(x̄x̄>)−1 + L−1k B̂>k P̂kÂk

)
,

(23)

where Lk = R+ B̂>k P̂kB̂k. The first goal of the striatum is
to minimize the following cost index

E = tr{K̃>k K̃k}. (24)

A modified gradient descent rule of the form

Pk = P̂k − α∇PE (25)

is used to obtain Pk, where α ∈ R+ is a learning rate and
∇P = ∂

∂P̂k
is the gradient respect to the kernel matrix P̂k.

First, notice that

∇P

{
LkL

−1
k = I

}
B̂>k B̂kL

−1
k + Lk∇PL

−1
k = 0

∇PL
−1
k = −L−1k B̂>k B̂kL

−1
k .

The final update rule is

Pk = P̂k + α
(
K̃>k L

−1
k B̂>k (Âk − B̂kK̂k)

+(Âk − B̂kK̂k)>B̂kL
−1
k K̃k

)
.

(26)

Notice that the update rule (26) uses as initial value the
kernel matrix P̂k and the estimates Âk and B̂k obtained from
the neocortex learning systems.

B. Cost Inference

The cost inference algorithm computes the weight matrix
Si of iteration i using an inverse optimal control (IOC)
algorithm based on the DARE (4), the estimates Âk and
B̂k, and the new kernel matrix Pk as

Si = Pk−Â>k PkÂk +Â>k PkB̂k(R+B̂>k PkB̂k)−1B̂>k PkÂk

(27)
Theorem 1 discusses the convergence of the weight matrix

Si using the IOC (27) and the one-step gradient rule (26).
Theorem 1: The weight matrix Si obtained in (27) con-

verges in the sense that ‖Si+1 − Si‖ ≤ εS , for some small
constant εS ∈ R+, as the number of iterations i increases. In
consequence, E converges to zero and hence, the control gain
error K̃k converges to zero which implies that K̂e converges
to Ke.

Proof: Consider the DARE (27) of the IOC problem

Si+1 =Pi
k + Â>k Pi

kB̂k(R+ B̂>k Pi
kB̂k)−1B̂>k Pi

kÂk

− Â>k Pi
kÂk (28)



Substituting (25) in (28) gives

Si+1 =(P̂ i
k − α∇PE

i)− Â>k (P̂ i
k − αG)Âk

+ Â>k (P̂ i
k − αG)B̂k(R+ B̂>k (P̂ i

k − αG)B̂k)−1

× B̂>k (P̂ i
k − αG)Âk. (29)

where G = ∇PE
i. The Q-learning algorithm satisfies the

following DARE

Si+1 =Â>k P̂
i+1
k B̂k(R+ B̂>k P̂

i+1
k B̂k)−1B̂>k P̂

i+1
k Âk

+ P̂ i+1
k − Â>k P̂ i+1

k Âk. (30)

Matching (29) and (30) gives

P̂ i+1
k + Â>k P̂

i+1
k B̂k(R+ B̂>k P̂

i+1
k B̂k)−1B̂>k P̂

i+1
k Âk

− Â>k P̂ i+1
k Âk = P̂ i

k − Â>k P̂ i
kÂk

+ Â>k P̂
i
kB̂k(R+ B̂>k (P̂ i

k − αG)B̂k)−1B̂>k P̂
i
kÂk

− α
(
Â>k GB̂k(R+ B̂>k (P̂ i

k − α∇PE
i)B̂k)−1B̂>k ∇PE

iÂk

+ Â>k GB̂k(R+ B̂>k (P̂ i
k − αG)B̂k)−>B̂>k GÂk

)
+ α2Â>k∇PE

i(R+ B̂>k (P̂ i
k − αG)B̂k)−1B̂>k GÂk. (31)

The rule (25) updates in each iteration i the kernel matrix
Pi
k such that the control gain error K̃i

k converges towards to
zero. That is, limi→∞∇PE

i = 0 implies that limi→∞ Pi
k =

P̂ i
k. Therefore, (31) is simplified to

lim
i→∞

(
Â>k P̂

i+1
k B̂k(R+ B̂>k P̂

i+1
k B̂k)−1B̂>k P̂

i+1
k Âk

+ P̂ i+1
k − Â>k P̂ i+1

k Âk +
)

=

lim
i→∞

(
Â>k P̂

i
kB̂k(R+ B̂>k P̂

i
kB̂k)−1B̂>k P̂

i
kÂk

+ P̂ i
k − Â>k P̂ i

kÂk

)
. (32)

From the above equality we can conclude that

lim
i→∞

Si+1 = lim
i→∞

Si ⇒ Si+1 = Si. (33)

and hence lim
i→∞

P̂ i+1
k = P̂ i

k. This completes the proof.
Fig. 1 depicts the block diagram of the proposed infer-

ence algorithm. The scheme is summarized as follows: two
control policies coming from expert’s data (hippocampus fast
learning) and from online data (neocortex pattern association
learning) are connected through the striatum (modelled as an
IOC) to infer the hippocampus cost function to the neocortex
to enable policy generalization for different systems and
environments.

V. SIMULATION STUDIES

The proposed approach was tested in a high order power
system [11]. The discrete-time plant is

A =


0.9616 1.0047 0.0867 −0.0450
−0.0739 0.7490 0.1154 −0.1038
−0.5354 −0.3401 0.2303 −0.7378
0.0593 0.0316 0.002 0.9993

 ,
B =

[
0.0450 0.1038 0.7378 0.0007

]>
.

Fig. 1. Cost Inference block diagram based on the proposed Human-
Behaviour Learning approach.

The weight matrices of the expert’s cost are chosen as
S = 2I4 and R = 1. The kernel matrix and control gain
under the expert’s cost are

P =


9.7697 13.2744 1.2163 8.4652
13.2744 35.3318 3.7143 11.4238
1.2163 3.7143 2.4953 0.8941
8.4652 11.4238 0.8941 43.4822

 ,
Ke =

[
0.2857 2.0596 0.4455 −0.0789

]
.

The data of the power system trajectories under the ex-
pert’s control policy are stored in the vector x̄ and ū. A small
uniformly random noise is added at the state and control
measurements to model sensor noise. The hippocampus
policy gain is computed using (6) whose value is

K̂e =
[
0.2845 2.0589 0.4452 −0.0791

]
.

The learning rate of the striatum learning system is α =
0.9. The sinusoidal PE signal is added to the control input
to ensure parameter convergence. The initial weight matrix
of the neocortex cost is setted to S0 = I4. Fig. 2 shows
the results of the proposed inference algorithm. The learned
matrices of the identification algorithm are

Âk =


0.9616 1.0046 0.0867 −0.0450
−0.0739 0.7489 0.1154 −0.1038
−0.5354 −0.3399 0.2303 −0.7378
0.0593 0.0313 0.0020 0.9993

 ,
B̂k =

[
0.0450 0.1038 0.7378 0.0007

]>
,

P̂ i =


3.9820 3.7353 2.8939 3.0092
3.7353 10.8356 7.7231 1.4985
2.8939 7.7231 1.8089 2.6277
3.0092 1.4985 2.6277 20.4560

 ,
K̂i =

[
0.2845 2.0589 0.4452 −0.0791

]
,

Si =


2.6718 4.9403 2.9683 1.3431
4.9403 15.5254 7.4807 4.2791
2.9683 7.4807 1.6318 2.9920
1.3431 4.2791 2.9920 1.9874

 .
The LS-identification algorithm of the neocortex shows

high accurate results for the coupling matrices Âk and B̂k.
On the other hand, the striatum learning algorithm converges
to the same gain of the hippocampus control policy. However,
notice that both the kernel matrix P̂ i and the weight matrix
Si were completely different to the expert’s matrices. More-
over, both matrices are negative definite instead of positive
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Fig. 2. Complementary learning results

definite due to the lack of constraints in the IOC rule. This
causes that the inference algorithm to seek at any direction
where the gradient is minimized and hence negative definite
matrices can be found.

To further exhibit the benefits of the proposed approach,
we compare the performance of the optimal value function
under the kernel matrices P and P̂k. Fig. 3 shows the
comparison results.
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20

40

Fig. 3. Optimal value function trajectories

The results show an improvement of the optimal value
function trajectories despite the kernel matrix P̂ i is negative
definite. Different initial weight matrices S0 are tested to
verify the approach. However, it is observed that for small
weight matrices ‖S0‖ ≤ 1, the striatum learning system gives
negative definite kernel matrices Pi and Si that destabilizes
the neocortex learning system. This problem is informative
because it shows that the striatum gives one of the multiple
solutions of the IOC problem which are not necessarily a
stable solution of the optimal control problem. Furthermore,
for high dimensional systems we need to calculate at least
n(n+1)

2 terms of the reward’s weight matrix and hence the
number of combinations that give the same expert’s control

gain increases infinitely. To solve this issue, constraints have
to be added to reduce the number of possible solutions and to
obtain real and representative weights matrices of the expert’s
reward function. This is topic for further work.

VI. CONCLUSIONS

This paper reports a cost inference algorithm of discrete-
time linear quadratic policies. The approach is based on
a human-behavior learning algorithm that exploits on-line
and off-line policies data obtained from the neocortex and
the hippocampus learning systems. Whilst the hippocampus
offers fast learning models, the neocortex learns well defined
pattern structures for decision making. These learning sys-
tems are related by the striatum to exploit the advantages of
each learning system to achieve generalization in the final
control policy. The key idea is to infer the hippocampus cost
function to the neocortex in order to generalize policies to
different systems and environments. A Q-learning and LS-
identification algorithms were used to model the neocortex
and an IOC algorithm to model the striatum. Simulations
studies show that it is possible to infer the desired perfor-
mance through the cost function, however constraints have
to been added in the inference algorithm to achieve more
accurate results.

Future research covers the extension of the proposed
approach for nonlinear systems and for for non-quadratic
reward functions is the next challenge of the work.
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