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Abstract

Over the last decades, a new generation of microscale models have been developed to simulate soil

microbial activity. An earlier article (Pot et al., 2021) presented a detailed review of the description of

soil architecture and microbial dynamics in these models . In the present article, we summarize the

main results obtained by these models according to six model outputs: growth and spatial organization

of  microbial  colonies,  soil  hydraulic  conductivity,  coexistence  and  trophic  interactions  of

microorganisms, temporal dynamics of the amount of solid and dissolved organic matter in soil and,

microbial production of CO2. For each of these outputs, we draw particular attention to the respective

roles of soil architecture and microbial dynamics,  and we report  how microscale models allow for

disentangling and quantifying them. We finally discuss limitations and future directions of microscale

models in combination with the on-going development of high-performance imaging tools revealing

the spatial heterogeneity of the actors of soil microbial activity. 

Highlights

● We review the insights on soil functions derived from microscale models of soil microbial processes

● Microscale  models  disentangle the  complex interactions  between soil  architecture and microbial

dynamics

● Spatial accessibility of resources to microbes, growth and ecological interactions are key factors in

soil functions
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● Translation of knowledge of interactions at the microscopic scale into larger scales is still  in its

infancy

Keywords: bacteria models, fungi models, spatial accessibility, ecological interactions, soil organic

matter

1. Introduction

In the last two decades, a new generation of microscale models of soil microbial activity has been

developed (e.g., Baveye et al., 2018 ; König et al., 2020 ; Pot et al., 2021). These models describe soil

architecture at a small scale (from a few µm3 to a few cm3), as well as the heterogeneous distribution in

it of trophic resources and microorganisms, and they account for soil-borne processes at the scale of

soil microhabitats (Pot et al., 2021). In so doing, microscale models make it possible for users, through

modelling  scenarios, to  explore  the  role  of  physico-chemical  gradients  and spatial  accessibility  of

trophic resources to decomposers on soil microbial activity.

In  Pot  et  al.  (2021),  we  reviewed  in  detail  how  microbial  dynamics  and  soil  architecture  are

described in  microscale  models.  Microscale  models  are  defined by a computing grid of node size

ranging between 1 µm3 to 1 mm3 where the physico-chemical environment, microorganisms, trophic

resources and microbial products are spatialized.  Box 1 visually depicts and explains how such models

are used while Box 2 details an example of the use of the microscale model of Portell et al. (2018). In a

nutshell, microscale models generally consider an explicit representation of microbial growth instead of

a black-box approach that is widely adopted in the broader soil-related literature (e.g., Wieder et al.,

2015).  Measurable  soil  organic pools  representing  plant  residues  based  on  their  degree  of

polymerization  (non-labile  polymers,  labile  monomers),  biomass,  and  biomass  by-products

(metabolites, enzymes, glue agents, exo-polymeric substances)  are described (e.g., Gras et al., 2011)

rather than lumped organic matter (OM) pools based on their different degree of chemical recalcitrance

to degradation. Most of the microscale models consider a depolymerization step before the dissolved

OM can be taken up (e.g., Allison, 2005; Pagel et al., 2020; Zech et al., 2022), and this step can be

controlled by the production of enzymes by microbes (e.g., Wang & Allison, 2019). Other models also

include complex ecological  interactions like commensalism,  competition,  mutualism (e.g.,  Folse &

Allison, 2012; Wang & Or, 2014), fungal deadlock, intermingling, or replacement (e.g., Falconer et al.,

2008),  or  bacterial  dispersion  through  “fungal  highway”  (e.g.,  Banitz  et  al.,  2011,  2016).  Three-
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dimensional  images  of  soil  architecture  (mostly  obtained  from cutting-edge  non-invasive  imaging

tools), informing on the geometry of the pore space and the spatial localisation of air-water interfaces,

can be direct inputs  for microscale models (e.g.,  Falconer et al.,  2012). To decrease the amount of

information needed in this detailed description of soil architecture, diverse strategies of simplification

are used.  Morphological models (e.g., Monga et al., 2014)  and irregular pore-network models (e.g.,

Perez-Reche et  al.,  2012) reconstruct simplified  pore spaces  by extracting  the median axes  of  the

imaged pores and filling the pores with well-defined geometrical forms (e.g., balls, cylinders, angular

pores). Simpler (regular) pore-network models (e.g., Ebrahimi et al., 2014; Laudone et al., 2011, 2013)

make use of statistical properties of pore connectivity and size defined according to values found in

natural soil systems in order to reconstruct a simplified pore space. In these simplifications of the pore

geometry, the exact spatial heterogeneity of the clustering of pores is lost. Finally, in contrast to these

explicit  approaches, another class of micromodels describes soil  architecture in an implicit  way by

attributing  lumped  values  of  bulk  porosity,  water  content  and/or  diffusion  coefficient  to  the

computational nodes of spatial grids (e.g., Folse & Allison, 2012). Whatever the level of detail of the

soil architecture description contained in microscale models, different scenarios of spatial distribution

of solid OM fragments, dissolved OM, physico-chemical gradients and microbes (bacteria and fungi,

mostly) are proposed (e.g., Falconer et al., 2015; Ebrahimi & Or, 2015). Some of them are based on

experimental data (e.g., Babey et al., 2017, Centler et al., 2011) whereas others use statistical models of

the spatial distribution of bacteria (e.g. Pagel et al., 2020; Mbé et al., 2021).

Microscale  models  can  thus  lead  to modelling  scenarios  where  spatial  interactions  encompass

optimal or low accessibility of OM to microbes, and thus can tackle how soil microbial activity is

related to soil heterogeneity. However, these models face a number of limitations in describing the

complexity of  soil  architecture and microbial life.  Most of  them describe a static  soil  architecture

although innovative studies have attempted to investigate the feedback loops between architecture and

microbes (Crawford et al., 2012 ; Ray et al., 2017) or roots (Aravena et al., 2014 ; Kolb et al., 2017)

and physico-chemical processes (Rupp et al., 2019). Regarding ecological interactions, a number of

simplifications have been undertaken, such as, among others, a simplification of soil biodiversity and

an omission of the role of living roots (Pot et al., 2021). Although the research on the role of trophic

regulation in soils has made important progress (Erktan et al., 2020), predation has not been explicitly

included in microscale models, except for the model of Pagel et al. (2020).
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Box 1: Space is at the heart of microscale models of soil functions. Soil architecture is accounted for mainly 

following two types of spatial description: explicit and implicit (Figure 1). The explicit description relies on a 

representative image of soil architecture (for example a CT image) from which the solid phase and the pore 

space is extracted. Other phases such as water and organic matter can also be imaged to some extend. Pore space 

is either directly implemented at the nodes of the model grid – using a regular mesh or finite element (FE) or 

finite volume (FV) meshing – or simplified by using geometrical approaches (for example Maximal Inscribed 

Balls) or pore network models (PNM). The spatial distribution of air/water interfaces, microorganisms, and OM 

(solid or dissolved) are added to the explicit description of the pore space. In some circumstances, these 

distributions can be measured using imaging tools (µCT, neutron CT, synchrotron µCT, 2D microscopy, …) but, 

more often,  they are computed. For example, the Young-Laplace law can be used to water fill or empty pores 

and statistical models can be used to distribute microorganisms in the pore space, or meaningful scenarios can 

be used. Alternatively to the explicit approach, an implicit description of soil architecture can also be adopted. In 

this implicit approach, the bulk values of porosity, water content and effective molecular diffusion coefficient – 

measured on the considered soil samples or calculated from semi-empirical laws – are distributed at the grid 

nodes made of a regular mesh. Spatial heterogeneity of these variables can be generated by statistical models or 

scenarios. 

In microscale models, microbial activity is accounted for explicitly (Figure 1). Solid OM pools are 

depolymerized in labile components (DOC) to be taken up by microorganisms. Ecological interactions, 

including competition for resources, mutualism or commensalism can be this way easily implemented by 

establishing relationships between different OM pools. 

Coupling between the soil architecture and microbial dynamics (purple arrows in Figure 1) is achieved through 

the transport of the soluble and gaseous components (DOC, enzymes, emitted gases) and the microorganisms in 

pore space (via processes of diffusion, advection, colonization of fungal hyphae and bacterial chemotaxis or 

random movement).

Finally, the outputs of microscopic models can generally be divided at two levels (Figure 1): (i) spatialized 

output variables at different output times of the models, and (ii) temporal evolutions of these output variables 

averaged over the entire simulated domain.
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Figure1: Main set-up characteristics of microscale models of soil functions. 

In that general context and  to complement the review of Pot et al. (2021), we summarize in the

present  review  the  main  insights  gained  by  this  new  generation  of  microscale  models  on  the

understanding of soil functions. These new insights relate to the emergence of a spatial organization of

microbial (bacteria and fungi) colonies (Section 2.1), its consequence on the hydraulic conductivity in

idealized porous media (Section 2.2), coexistence and trophic interactions (Section 2.3), and finally, the

decomposition of solid and dissolved OM and the emission of CO2 (Section 2.4). We then describe how

microscale models can disentangle the role of soil architecture and microbial dynamics (Section 3) and

we finally discuss issues related to the assessment of these models and upscaling and advocate for

future directions (Section 4).

124

125

126

127

128

129

130

131

132

133

134

135



Figure 2: Overview of the main steps of modelling scenarios with a microscale model.

Box 2: Example of microscale modelling study tackling bacterial diversity. The IbLBioS microscale model of 

Portell et al. (2018) couples a lattice-Boltzmann approach – to describe the diffusion of dissolved organic carbon 

hydrolyzing from particulate organic matter (POM) – with an individual-based model – to describe bacterial 

dynamics (Figure 2A). It assumes an explicit description of soil architecture using X-ray µCT images describing 

the solid phase and pore space. The water distribution is computed using a two-phase lattice-Boltzmann model 

for three levels of water saturation (Sw=100 %, 50% and 25%). 690 initial bacteria having parameter 

combinations representative of competitive, poorly competitive and versatile Arthrobacter Sp. Strains are 

randomly distributed in the water phase (Figure 2B). The role of spatial accessibility of OM to bacteria is 

accounted for with three scenarios initializing a fixed amount of carbon distributed in one chunk of POM, four 

chunks of POM and already available as DOC (Figure 2C). The main outputs studied by the authors were the 

time evolutions of the averaged POM and DOC amount, CO2 production, biomass of the bacterial strains and 

the growth observed in the bacterial microcolonies (Figure 2D). In addition, they computed the geodesic 

distance between these microcolonies and the POM chunks.
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2. Main insights derived from microscale models

2.1 Spatial organization of soil microbial colonies

2.1.1 Case of bacteria

In modelling scenarios based on an implicit approach to describe soil architecture, Folse & Allison,

(2012) developed an individual-based model  that  considers competition,  coalition,  and cooperation

between  different  genotypes  of  a  bacterial  species.  The  microbes  feed  on  carbon-,  nitrogen-  and

phosphorous-containing  substrates  that  are  distributed  on a  2D grid.  These  substrates   need to  be

hydrolyzed by substrate-specific enzymes in order to be available. Bacteria that produce extracellular

enzymes  and  opportunists  or  cheaters  that do not  produce  such  enzymes  are  initially  randomly

distributed on the 2D grid. Unlike the enzymes and the bacteria, the C, N, and P substrates do not

diffuse on the grid. The heterogeneity of soil architecture is not investigated and an effective diffusion

coefficient is assigned to the enzymes. Given these assumptions, Folse and Allison, (2012) found that

the spatial  organization of bacteria  varies with enzyme diffusion and production rates.  Following the

same approach, König et al. (2017, 2018, 2019) located disturbance events at random microsites on the

computational grid. These events, consisting of a decrease in biomass, modify the spatial structure of

the  bacterial  communities  and  lead  to  habitat  fragmentation.  The  spatial  characteristics  of  the

disturbances (size and degree of fragmentation) influence the resilience of the system by affecting the

ability  of  bacteria  located  in  undisturbed  areas  to  recolonize  disturbed  areas.  In  these  modeling

scenarios,  an  effective  diffusion  coefficient  is  attributed  to  bacteria.  The  dynamic  of  the  spatial

structure of bacterial colonies is controlled by threshold effects and high growth rate is identified as an

asset for recovery in the case of medium intensity disturbances 

Using an explicit but simplified 3D description of soil architecture, Resat et al.  (2012) involved

enzyme producers  and  cheaters that  feed  on two cellulose  patches  placed in  distinct  zones  of  the

computational grid.  They  came to the same overall  conclusions as Folse and Allison (2012).  The

bacterial growth dynamics relies on a balance between the degradation kinetics of the substrate (in this

case cellulose), the dynamics of enzyme production, and the mixing in pores by diffusion. The model

predicts that bacteria preferentially grow near cellulose spots. Surprisingly,  Resat et al. (2012) found

similar  growth  dynamics,  except  for  a  shift  in  time,  from  those  obtained  in  single  cylindrical

micropores. Growth remains also insensitive to modification of the porosity of the porous medium,

although it is varied over a significant range (20% to 50%). One explanation is that the artificial and
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highly connected pore network of the simulated domains may have prevented critical cases of diffusion

limitation. 

The role of chemotaxis on the emergence of different spatial patterns is explored by Gharasoo et al.

(2014) who compared 2D simplified soil architectures considering pore networks made of cylindrical

bonds  of  either  constant  radius  or  variable  radius.  When  the  supply  of  substrate  is  constant  and

homogeneous,  bacterial  distribution  remains  uniform  in  the  presence  of  chemotaxis  toward  the

substrate (Gharasoo et al., 2014). When bacteria are further attracted by the presence of fellow bacteria,

spatial organization emerges. Increasing the strength of chemotaxis towards bacteria triggers non-trivial

populations in  a homogeneous porous medium. In the heterogeneous porous media, a distribution of

pluri-millimeter size patches emerges when attraction to nutrient is low and bacteria tend to migrate

from larger pores toward smaller pores. The authors conclude that the distribution of bacteria in soil is

strongly related to the chemotactic behavior of the bacteria. 

The  additional  role  of  water  hydration  status  of  pores  in  the  emergence  of  distinct spatial

organizations of bacteria is evidenced in different levels of description of soil architecture. Using pore

networks made of angular bonds to describe 2D and 3D analogs of soil aggregates, Ebrahimi and Or

(2014) showed that when the water content is high enough to ensure a high connectivity, chemotaxis

toward substrate makes it possible to favor the shortest paths to the source of nutrients, and avoid

tortuous paths associated with random displacements. In the case of many isolated clusters, chemotaxis

has the opposite effect, as it can guide bacteria to dead-end pores, and travel times can become longer

than required for random movements (Ebrahimi & Or, 2014). In the case of an explicit description of

an idealized 2D soil architecture representing porous rough surfaces (Long & Or, 2007), microscale

models predict a larger annular expansion of a bacterial colony under wet conditions (matric potential

of -0.01 kPa) compared to drier conditions (matric potential of -1 to -2 kPa). These spatial patterns are

the result of an interplay between nutrient diffusion limitation and motility of the bacteria. The inner

center becomes rapidly depleted in nutrients because of the local consumption by bacteria therein but

also because of the interception of the nutrients by bacteria located at the periphery of the colony. The

different patterns observed between the saturation conditions are  accounted for by  a decrease of the

connectivity of the water phase due to the fragmentation of the liquid phase and to the slowing down of

the diffusion of nutrients (Wang & Or, 2010). Using a 2D implicit description of the porous rough

surfaces, Kim and Or (2016) found that the spatial structure of two bacterial colonies is modified by the

water hydration status and ecological interactions. In the case of competitive trophic interactions, the
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two species segregate along circular “travelling bands”. Species 1 follows species 2 and consumes the

nutrients left by species 2. Under dry conditions, the double bands disappear and form a unique band

made of several small sectors of the same species. In this case, diffusion of the nutrients is reduced and

the species need to compete to remain at the front line. In the case of mutualistic interactions, under wet

conditions, species 1 grows better than species 2, which consumes the by-product of species 1, whereas

the reverse is observed for dry conditions. 

The role of the spatial distribution of carbon substrate also appears  to be key to  account for the

spatial organization of aerobic and anaerobic species in 3D analogs of soil aggregates. In modelling

scenarios carried out by Ebrahimi and Or (2015), the same number of aerobic and anaerobic bacterial

cells  are  inoculated  in  the  center  of  the  aggregate.  A constant  O2 concentration  is  supplied at  the

periphery of the aggregate, while the carbon source is located either at the center of the aggregate or at

the periphery. A spatial organization with physical separation of the two species occurs between the

anoxic center of the aggregate and the oxygenated periphery (Ebrahimi & Or, 2015). Borer and Or

(2018) further confirmed, in simulated domains mimicking experimental micrometric pore networks

etched in  glass,  that  the absence of  counter-gradients  of oxygen and carbon resulted in  a uniform

distribution of aerobes and anaerobes. However, the distribution is conditioned by the presence of a

carbon source internal to the aggregate. In the absence of this source, the anaerobic species does not

survive (Ebrahimi & Or, 2015). The size of the aggregate is also a key factor in the distribution and

maintenance of the two species (Ebrahimi & Or,  2016).  Using a  simplified 2D description of soil

analogs, Borer et al. (2019) introduced a metabolic flexibility where the anaerobes can grow in both

aerobic and anaerobic environments by adapting their metabolism. This adaptation permits the spatial

segregation  of  the  facultative  anaerobes  into  an  aerobic  population  growing  close  to  the  oxygen

peripheral source and an anaerobic population close to the internal carbon source.

In conclusion, the reported modelling studies show that the spatial distribution of bacterial colonies

can differ strongly, depending on the interplay between factors related to spatial accessibility of OM

and O2 to bacteria, and factors related to microbial dynamics. The former factors are the heterogeneity

of soil architecture, water  content, substrate spatial distribution and chemotactic behavior of bacteria.

The  latter  factors  are  the  growth  rate  of  bacteria,  their  enzyme  production  rate,  and  ecological

interactions which are directly related to the efficiency of bacteria to consume OM.
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2.2.2 Case of fungi

 The role of soil architecture in the invasion of fungi-like microbes is highlighted by a series of

modelling scenarios (Perez-Reche et al., 2012)  where the pore space is described using  an irregular

pore-network model made of nodes and links (pores)  distributed in a way that preserves the spatial

distribution and width of the pore arrangement. Invasion of microbe analogs is carried out through a

generic probabilistic model that could resemble fungal invasion (Bailey et al., 2000) and growth is not

considered. The probability for a microbe to invade a new pore is constrained by the length but also by

the width of the links. Perez-Reche et al. (2012) demonstrated that the inclusion, in their pore-network

model,  of the extra complexity of the width of the links has a significant impact on the ability of

microbe to invade the soil sample. The invasion distance is underestimated when the lengths and width

of the links but also the number of nodes are  not  sufficiently considered in the invasion probability.

Bailey et al. (2000) and Otten et al. (2001) showed how fungal colony morphology can be linked to

such probabilities and tested the approach in experimental 2D systems with localized C sources (Otten

et al., 2004a) on a lattice as well as for spread of a pathogen through a population of plants (Cook et al.,

2007).

Assuming an idealized soil architecture made of different proportions of solid and porous nodes and

addressing the complexity of fungal processes, i.e., by including substrate uptake, hyphal tip growth,

branching, Boswell (2008) showed that the simulated biomass length and the total number of hyphal

tips decrease as the density of soil increases. The hyphal growth unit, which is the total mycelial length

divided by the number of branches in the mycelium, is the greatest in dense soils. These results agree

with the visual observations made by Harris et al. (2003) in soil thin sections (Otten et al., 2006). One

explanation would be that the fungus has less opportunity to branch when the pore space is reduced as

observed by Otten et al. (1999) and Soufan et al. (2018). In another set of modelling scenarios where

detailed soil architecture is considered through the use of CT images of sandy soil samples repacked at

different densities, Pajor et al. (2010) also found that the colonization rate of the fungus is highest for

the repacked sandy soils with the lowest density. Indeed, fungal biomass spreads faster and further in

better-connected soil (Otten et al., 2006). The model of Pajor et al. (2010), which is derived from that

of Falconer et al. (2007), describes the invasion of fungal hyphae according to a diffusion process and

this explains the fact that a well-connected pore space is ultimately colonized. The total porosity of the

domain is then the key factor explaining the spatial expansion of the fungus.  However, if the pore

connectivity decreases, the fraction of pores colonized with distance declines more rapidly than in a
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well-connected pore space. In this case, it is the connectivity of the pore space that becomes the key

factor explaining the spatial expansion of the fungus. The results of Pajor et al. (2010) agree with the

experimental results of Harris et al. (2003) who showed that the hyphae initially colonize the largest-

sized  pores,  followed by colonization  of  smaller  pores.  Nevertheless,  the  model  overestimates  the

spread of hyphae in the small pores compared to the experimental results of Otten et al. (2004b).  A

more heterogeneous distribution of carbon or the result of blockage of small pores by the presence of

water in the experiments may explain these differences. Indeed, in the scenarios of Pajor et al. (2010),

all pores are assumed to be filled with air. Kravchenko et al. (2011) modelled fungal colonization in

detailed soil architecture obtained from CT images of undisturbed soil samples. They also showed that

the  fragmented  pore  space  disadvantages  fungal  invasion  whereas  large  connected  pores  promote

invasion. 

The spread of fungal hyphae is also directly dependent on the initial distribution of the  substrate

since the complex arrangement of pores imposes constraints on the accessibility of resources to the

fungus. This relationship is further influenced by the complexity of fungal processes, as demonstrated

in modelling scenarios describing either idealized (Boswell et al., 2007) or  detailed soil architecture

obtained by CT images of soil samples (Cazelles et al., 2013). When carbon is co-located with the

inoculum, the fungus consumes the local resource resulting in an increase in its biomass there and a

smaller spatial expansion in the soil than for a homogeneous distribution of the resource (Cazelles et

al.,  2013).  Biomass  recycling,  which  reallocates biomass  through  the  mycelium and  favors faster

growth  and  an  exploratory  behavior  of  the  fungus,  is  an  effective  strategy  to  compensate  for

heterogeneous  distributions  of  the  substrate in  a  complex  porous  medium  (Boswell  et  al.,  2003;

Boswell et al., 2007; Cazelles et al., 2013; Falconer et al., 2007). 

A significant  decrease in  the growth of the fungus is  observed in relation to  water  unsaturated

conditions (Falconer et al., 2012).  The spatial expansion is prevented by the presence of pores filled

with water, which strongly alters the connectivity of the air phase. Simulations of fungal growth in two

soil samples of contrasted pore space geometry interestingly shows that it is not the sample with the

largest water content that inhibits the most the fungal colonization.  More important than the water

content is the location of the water filled pores that disconnect the gas phase. Water films that contain

nutrients can also guide fungi to colonize pore space and find new resources (Boswell et al., 2007). The

macroscopic water content of soil samples is therefore not a sufficient measure to predict the growth

and spatial expansion of the fungus. Knowledge of the heterogeneity of the soil  microhabitats and in
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this  case of the distribution of water and air  in the pores and the connectivity of the air  phase, is

therefore  essential  (Falconer  et  al.,  2012).  This  role  of  unsaturated  pores  has  been  observed  in

microfluidic devices by Soufan et al. (2018).

The  role  of  soil  architecture  combined  with  ecological  interactions  is  evinced  in  the  spatial

distribution  of  two  fungal  colonies  (Falconer  et  al.,  2008).  The  model  simulates  complex  fungal

deadlock (inhibited invasion of one species into the territory of the other species), intermingling (fusion

of fungal colonies) and replacement (autophagy) processes. In agreement with the experimental results

of Stahl and Christensen (1992), the deadlock and intermingling processes occur for environments with

high  and  low trophic  resources  respectively  in  absence  of  soil  architecture.  When  simplified  soil

architecture is described, the two colonies inoculated at the opposite edges of the simulated domain

only manage to cross the domain for a defined porosity interval (0.31-0.55) because connected paths

between opposite edges are numerous enough for individuals to cross while avoiding each other. It is

important to notice that these simulations were in a 2D space where fungal colonies spreading from

opposite directions are always going to meet. This in contrast for soil where, for soils with low pore

connectivity, colonies can grow past each other in different sections of the 3D pore volume.

Like for bacteria, spatial colonization by fungi is explained by a balance between the accessibility of

trophic resources (which depends on the connectivity,  size and water  saturation of pores),  and the

physiological characteristics of fungi, such as their biomass recycling and ecological interactions . 

2.2. Modification of hydraulic conductivity in idealized porous media

Biofilms, i.e., a continuous layer of accumulated biomass and its metabolic by-products along the

pore-solid interfaces, can be found in artificial porous media during industrial processes of filtration.

Most of the reported modelling studies simulating this process carry out scenarios in idealized porous

media usually consisting of packings of cylinders or glass beads. A reduction of global permeability of

these idealized porous media is observed during growth of these biofilms together with the creation of

preferential  water flow paths (e.g.,  Graf von der Schulenburg et  al.,  2009 ;  Kapellos et al.,  2007 ;

Tartakovsky et al., 2009). The shear forces prevent the development of biomass in the pores oriented in

the transverse flow direction even if the local concentrations of the trophic resources in these pores

would allow bacterial development (Knutson et al., 2005). Feedback loops emphasize this pattern since

bacteria that are more concentrated close to preferential flow paths consume more food than in the case

of  more homogeneous  flow fields  and  thus  leave  less  food  for  the  bacteria  cells  located  farther,
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reducing transverse expansion (Tang et al., 2013). Bioclogging of pores differently affects water flow

reduction and is controlled by the water saturation of pores (Rosenzweig et al., 2013).

Inclusion of more complex processes in microscale models  changes the picture one gets of  the

spatial  proliferation of  bacteria.  When  detachment  processes  of  bacterial  cells  from  biofilms  are

considered  in  microscale  models,  the  spatial  expansion of  bacteria  downstream of  the  water  flow

increases (Kapellos et  al.,  2007).  In this  case,  detached cells  are  transported by advection and are

redeposited farther downstream, forming new colonies. When motility of bacteria occurs via diffusion

against local solute concentration gradients, localized accumulations of bacterial cells are reported in

regions of more stagnant flow (Peszynska et al., 2016). When permeability in biofilms is introduced,

the shear forces at the biofilm-water interface are reduced and cell re-attachment to the biofilm surface

is enhanced (Kapellos et al., 2007). 

Whereas the above examples are all dealing with artificial porous media and have applications that

do not directly involve soils (for more details, see the recent review by Sadeghnejad et al. (2021)), they

address important interactions that occur as well within soil environments but have yet to be captured

by microscale models designed to describe and predict soil functions. Local accumulation of biomass

and its metabolic by-products in soils, although not in the form of continuous biofilms (Baveye, 2020;

Flemming et al., 2021), can contribute to preferential flow paths. Feedback loops emerge that alter pore

geometry, which in-turn alters physical processes that impact biomass growth. The extent to which this

phenomenon, referred to by Crawford et al. (2012) as self-organization of soil systems, is implemented

in soil microscale models remains limited at this stage (Crawford et al., 2012; Ray et al., 2017), but it

seems fair to consider that much can be learned from the studies referred to above.

2.3. Coexistence and trophic interactions of microorganisms

Soils are known to be characterized by an enormous biodiversity (e.g., Baveye et al., 2016). Because

of computational limitations and especially of a fundamental lack of relevant input data, microscale

models cannot reflect that biodiversity. However, they are able to capture key factors controlling the

survival and/or coexistence of a limited number of meaningful functional groups of microbial species.

When soil architecture is not explicitly described and a single value of effective diffusion coefficient is

used  throughout  the  simulated  domain,  survival  and  coexistence  of  simulated  species  is  mainly

attributed  to  a  balance  between  the  rates  of  production  of  enzymes  by  communities  experiencing

different  ecological  interactions  (competition,  coalition,  and cooperation)  and  the  rates  of  enzyme
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diffusion (Folse & Allison, 2012). When considering local spatial heterogeneity in porosity and water

content  in  their  simulated  domain,  Long  and  Or  (2005)  identified  the  key role  of  local

microenvironments  conditions on  survival  and  coexistence  of  two  bacterial  species  (one  more

competitive than the other) for the same trophic resource.  The coexistence of the species is  made

possible for low water contents, whereas the less competitive species becomes extinct under conditions

when diffusion is not limiting. The fragmentation of aquatic habitats shelters less competitive species

and sustains nutrient gradients. When the least competitive bacterial colonies are located near active

diffusion paths, they can survive and thus compensate for their disadvantage in terms of competition

with respect to the most competitive species (Long & Or, 2005). Under wet conditions, the motility of

bacteria accelerates extinction due to a higher local expansion of the most competitive species that

intercepts  the available nutrients (Wang & Or, 2013). However,  drier conditions reduce the role of

motility, which decreases sharply even for the most competitive species (Long & Or, 2009). Variably

water-saturated conditions can counterbalance negative effects on the survival of the least competitive

species  and thus  promote biodiversity  (Wang & Or,  2013).  In  modelling scenarios  of wetting and

drying cycles, Wang and Or (2013) found similar growth dynamics for both species. These results are

consistent with experimental results on bacterial diversity that is not affected by wetting and drying

cycles in soils regularly subjected to these cycles (Fierer et al., 2003).

Using a detailed description of soil architecture obtained from CT images of undisturbed soil, Portell

et  al.  (2018)  found that  the spatial  distribution  of  OM residues has  an  important  role  in  shaping

bacterial  diversity  in  the  case  of  three  bacterial  strains,  a  competitive,  a  generalist,  and  a  poorly

competitive one, for the same trophic resource. Whereas at the scale of the whole simulated domain,

the evolution of the total biomass is not affected by the location of OM, the evolution of the biomass of

each  strain  is  strongly  modified.  When  the  residues are  gathered  in  a  unique  location,  the  less

competitive strain can grow as  much as the generalist strain. In these rare cases, the probability of

being near the unique carbon source is lower but, when this happens, the large amount of dissolved

organic carbon produced by the aggregated residues can provide an advantage and promotes the growth

of the less competitive strain. These results confirm those of Long and Or (2005) on the critical role of

spatial location of colonies near active diffusion pathways. In addition, Portell et al. (2018) also found

that the least competitive strain cannot grow if it is co-located with a competitive strain even when they

are located near the resource. The proximity of bacteria to  residues is thus not sufficient to maintain

biodiversity, the less competitive strain must also not be co-located with a competitive strain.
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Microscale models, in  exploring the labyrinth of pores, have  provided valuable insight into key

factors maintaining soil bacterial biodiversity. While ecological interactions are crucial, the occurrence

of transient water saturated conditions in soils, by fragmenting the complex aquatic habitats of bacteria,

and the heterogeneous spatial  distribution of trophic resources,  offer sufficiently diverse ecological

niches where less competitive species can survive. 

2.4. SOM decomposition and CO2 emission 

2.4.1 Role of soil architecture, spatial distribution of OM and microbes

Respiration rates are highly influenced by the connectivity of pores. Using a detailed description of

soil  architecture  obtained  from  CT  images  of  soil  columns,  Yan  et  al.  (2016)  simulated  lower

respiration rates in denser soils. In their microscale model, the role of oxygen is considered in bacterial

growth  together  with  diffusion  of  O2 in  liquid  and  gaseous  phases.  In  denser  soil  with  poorer

connectivity, OM is less accessible to bacteria, O2 is limited by gaseous diffusion and this explains the

lower  respiration  rates  (Yan  et  al.,  2016).  This  is  in  agreement  with  the  experimental  results  of

Franzluebbers  (1999)  who  showed  that  carbon  and  nitrogen  mineralization  is  generally  lower  in

compressed soils compared to natural soils. However, pore connectivity does not alone explain the

SOM decomposition and respiration rates that were found. There are complex relationships depending

on the spatial distribution of OM and bacteria within soil architecture. For example, in the case of the

modelling scenarios of Mbé et al.  (2021),  mineralization of OM decreases when soil  bulk density

increases  in  the  case  of  aggregated  bacteria  distribution  whereas  it  is  similar  when  bacteria  are

homogeneously distributed.

A convenient feature of  microscale models is their ability to control the  distribution of OM and

microbes in the simulated soil architecture. Different modelling scenarios have been proposed to test

how spatial accessibility of OM to bacteria influence SOM decomposition and CO2 production at the

scale of the entire simulated domain. Modelling scenarios can be established based on experimental

results relating the distribution of OM and  bacteria to the size of pores. For  example, Strong et al.

(2004) found that the most active and largest bacterial population is found in the pores of class 15-60

µm and Lugato et al. (2009) found that the organic carbon of the soil is positively correlated with pores

of size 0.1-5 µm and negatively correlated with pores of size 30-75 µm. Following these experimental

findings, Ngom et al. (2011) carried out modelling scenarios where OM is placed in pores smaller than

20 µm and bacteria are distributed in larger pores because they are the most aerated. Up to a two-fold
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amount of OM is mineralized in grass land soil aggregates that exhibit much less small, isolated pores

than in cultivated plowed soil aggregates, because OM is then more accessible to bacteria. 

Other scenarios do not relate  the spatial distribution of OM  and bacteria to the size of pores but

compare dispersed (random) versus aggregated spatial  distributions of OM  residues and/or bacterial

cells.  A reduction in CO2 production in the long term is observed in the case of an increase in the

aggregation of bacterial spots (Masse et al. 2007). In these scenarios, decomposition takes place only

when there is a physical contact between the bacterial spots and the OM patches that are placed in a

minimalist 3D space where pore geometry and diffusion processes are ignored. The number of bacterial

spots no longer having access to OM increases sharply and this is enough to reduce the overall carbon

mineralization. Similar results are obtained with a more accurate description of soil architecture. Mbé

et al. (2021) used a morphological approach to describe the pore space of repacked sandy loam soil

samples obtained from CT images. Their microscale model considers diffusion of dissolved carbon in

the liquid phase. For a homogeneous distribution of dissolved OM, Mbé et al.  (2021) found lower

mineralization when bacteria are aggregated compared to scenarios where bacteria are homogeneously

distributed. In the latter case, there is a greater accessibility of bacteria to the trophic resource.  In a

simplified 1D geometry representing an experimental micromodel, Centler et al., (2011) also found that

degradation efficiency is the highest for homogeneous bacteria distribution and decreases as pattern

formation  of  bacteria  sets  up.  Aggregation  of  bacteria  stems from  the  introduction  of  flagellated

movement  and  chemotaxis  toward  nutrient  and  toward  chemo-attractant  produced  by the  bacteria.

Increasing the chemotaxis strength toward substrate or fellow bacteria reduces further the total biomass

and degradation activity in the case of aggregated distributions of bacteria (Gharasoo et al., 2014). All

these modelling results agree with the experimental data of Dechesne et al. (2010) who showed lower

substrate mineralization rates for aggregated bacterial distributions. 

For random distributions of bacterial spots, an increase in the aggregation of OM patches increases

mineralization (Mbé et al., 2021) but also the variability among repetitions (Masse et al., 2007; Nunan

et al., 2020). Although access to the trophic resource becomes increasingly limited, the amount of OM

to which some  bacteria have access remains sufficient to produce greater mineralization in the long

term. When both spatial distribution of bacteria and OM are aggregated, mineralization is not ranked

against the degree of clustering of OM or bacteria (Mbé et al., 2021). Results are highly influenced by

the  occurrence  of  co-localization  of  bacterial  hot-spot  with  large  plant  residues  containing  a  high

amount of OM which can even surpass mineralization of a random distribution of OM (Mbé et al.,
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2021).  All these modelling results agree with the experimental measurements of Bending and Turner

(1999) who showed a greater  emission of  CO2 in  the  presence  of  large  chunks of  plant  residues.

However, they are in apparent contradiction with experimental results that have shown that large plant

residues, having a high C/N ratio, cause less mineralization than smaller residues. In these experiments,

the soil N bioavailability is probably increased by a more even distribution of residues in the soil and a

higher contact surface for smaller residues (e.g., Angers & Recous, 1997; Tarafdar et al., 2001). In the

scenarios of Portell et al. (2018), where N is unlimited, the OM residues are positioned in such a way

that the contact surface is always identical whatever their aggregation. The production of dissolved

organic carbon (DOC) by hydrolysis of these residues is a constant rate per unit surface that leads to

similar global CO2 emissions and DOC consumption. In the scenarios of Masse et al. (2007) the contact

surface  decreases  when the  degree  of  aggregation  increases.  However,  aggregation  also causes  an

increase in the amount of carbon available for bacterial spots and results in a higher available amount

of OM explaining the highest CO2 emissions. However, using the same model of Masse et al. (2007),

mineralization  decreases  when  the  size  of  the  plant  residue  increases  in  the  case  of  N  limitation

(Garnier et al., 2008). 

The  emission  of  CO2 through  fungal  activity  is  also  directly  related  to  nutrient  access,  itself

controlled by pore connectivity. Higher CO2 emissions are simulated for scenarios where carbon is co-

located with the inoculum (Cazelles et al., 2013). On the contrary, in the homogeneous distribution of

carbon throughout the pore space, the fungus must expand to have total access. This results in a lower

assimilation of biomass and a lower respiration. A non-linear relationship between respiration of fungi

and amount of solid OM residues has been found (Falconer et al., 2015). In these scenarios, the impact

of the distribution of OM but also their size and amount of carbon is considered. For small amounts of

carbon  in  the  OM  residues,  the  fungus  biomass  decreases  and  the  amount  of  accumulated  CO2

stabilizes. Above critical thresholds of the amount and size of OM residues (3% of carbon and 60%

coverage of the solid-pore interface by OM, respectively), the cumulative CO2 follows an exponential

growth over time. In addition, Falconer et al. (2015) observed a difference between replicated samples

up to a factor of 100 between the amounts of cumulative CO2 for different sizes of OM. Respiration is

the largest but also the most variable for the largest sizes of OM residues in line with the results of

Masse et al. (2007) and Nunan et al. (2020). A better assimilation of biomass in the presence of small

OM residues can be promoted by modifying the physiological parameters of fungal growth (Falconer et

al.,  2015).  When  increasing  the  carbon diffusion  rates  in  the  hyphae  and  lowering  the  associated
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metabolic costs, the fungus develops an exploratory behavior and more easily finds the dispersed OM

residues. These authors  pointed out that bulk measurements of OM residues in soil samples are not

sufficient to predict CO2 production and that it is vital to describe spatial heterogeneity of soils at the

microhabitat scale. They also advocated that macroscopic models should abandon the linear description

of the response of soil microorganisms to nutrients on the basis of the bulk concentration of nutrients

(Falconer et al., 2015). 

2.4.2 Role of water saturation

It has been long evinced that bacterial respiration depends on soil water saturation (e.g., Skopp et al.,

1990). Water content, as well as the geometry and connectivity of pores control nutrient diffusion, soil

aeration  and  accessibility  of  nutrients  to  bacteria.  In  agreement  with  experimental  results,  OM

decomposition  decreases in modelling  scenarios  involving decreasing  water  saturation  levels  (e.g.,

Borer et al., 2019; Monga et al., 2008; Vogel et al., 2015; Yan et al., 2016). This effect is enhanced in

the case of  a  heterogeneous distribution  of  OM  residues.  When OM is  placed in  large  pores,  the

decomposition decreases when soil becomes drier because the large pores are first emptied of water and

become isolated  and are  not  accessible  to  bacteria (Monga  et  al.,  2008).  This  is  in  line  with  the

experimental results of Dechesne et al. (2010)  where the  decrease of substrate mineralization under

heterogeneous distribution of bacteria accentuated with the decrease of matric potentials (from -1 kPa

to -50 kPa). 

Calibrating their microscale model on the growth of six bacterial strains in sand  under saturated

conditions, Monga et al. (2014) obtained longer lag times for respiration rates under drier conditions,

compared to experimental data. This suggests that their micromodel underestimates the diffusion of

fructose. One hypothesis put forward by the authors is an overestimation of the fragmentation of the

liquid  phase  as  wetting  films  are  not  considered  in  their  morphological  approach  of  pore  space

description.  The fact that  pores smaller than the resolution of the tomographic images (in this case 5

μm) are ignored  could also explain lower OM decomposition rates. When considering water films

preserving  connectivity  for  water  saturation  of  50  % in  soil  microaggregates,  Zech  et  al.  (2022)

observed no difference in the total OM consumption and CO2 production compared to the saturated

case. However, differences arise locally with the onset of hot-spots of microbial activity depending on

the geodesic distance of bacteria to OM source. 
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Other  modelling scenarios  have shown contrasting impact of water  saturation on decomposition

rates of soluble OM (Vogel et al., 2015; Mbé et al., 2021). This is related to the spatial accessibility of

trophic  resource  to  the  decomposers,  and to  the  amount  of  OM. Increase  or  decrease  of  fructose

degradation  are found when water saturation decreases (Vogel et  al.,  2015). Degradation decreases

when bacterial colonies are located far from the initial fructose pulse and experience limiting diffusion

conditions. However, when accessibility is optimal, degradation increases for low water saturation. In

this latter case, the increase of fructose concentration in the remaining liquid phase stimulates bacterial

growth. This stimulation can be so high that one bacterial spot can be as efficient in consuming DOC

than ten of them (Vogel et al., 2015). In the case of homogeneous distribution of bacteria and  DOC

(Mbé et al., 2021), mineralization always increases, although to a small extent, when water saturation

decreases. This effect is less pronounced in soil with higher bulk density, suggesting that the increase of

DOC concentration in the remaining liquid phase explains this  trend (Mbé et al.  2021).  When the

distribution of bacteria is aggregated in a small region, the amount of produced CO2 is not anymore

ranked according to water saturation, suggesting that stimulation of biomass growth by higher  DOC

concentrations can surpass diffusion constraints.

A heterogeneous microscale distribution of water-saturated regions in soils affects the intensity and

location of reactive hotspots. Considering only aerobic respiration, Yan et al., (2018) showed how a

balance between OM accessibility and O2 diffusion can drive microbial respiration. Hotspots of OM

decomposition  are  simulated  under  high  water  saturation  conditions,  which  promotes  OM

bioavailability, whereas hotspots nearly disappear when water saturation further increases because this

limits the gaseous diffusion of O2. 

Most of the reported modelling studies have dealt with different water saturations but have ignored

water  advection  and  its  complex  role  in  influencing  microbial  response.  In  modelling  scenarios

describing an idealized straight pore and water saturated conditions, Schmidt et al. (2018) showed that

in the presence of water flow, the aggregation of bacterial colonies can lead to a significant reduction in

degradation  rates.  When  bacteria  are  gathered  in  spots,  they  do  not  have  the  same access  to  the

substrate as when they are distributed homogeneously along the pore. Consequently, due to advection,

part of the substrate is evacuated from the pore without having been consumed. In a more complex

description of soil architecture, Gharasoo et al. (2012) observed that an increase in the heterogeneity of

the  pore-size  distribution  leads  to  a  decrease  of  substrate  bioavailability  because it  increases
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preferential  flow paths.  However, in their  scenarios, heterogeneous distributions of biomass have a

minor effect on substrate availability in the case of homogeneous pore-size distributions. 

2.4.3 Role of ecological interactions

The role  of  ecological  interactions  combined with  environmental  conditions  at  the  microhabitat

scale is complex. Using an implicit description of soil architecture, Kaiser et al. (2014) showed how the

spatio-temporal dynamics of interacting functional groups can alleviate microbial N limitation in the

decomposition of litter of low C:N ratios. Ecological interactions can also maintain the rates of OM

decomposition in the case of low spatial accessibility to nutrients  . For instance, Portell et al. (2018)

found unchanged overall carbon turnover for random or aggregated spatial distributions of OM, and

Pagel et al. (2020) found that only a strong spatial clustering of decomposer communities can reduce

the  rate  of  decomposition  of  carbon  compounds.  In  both  studies  three  functional  groups  defined

according  to  their  capacity  to  consume  the  resources  are  considered.  Redundancy  of  the  three

functional  groups is  suggested  to  compensate  to some extent  the  diffusion limitations  of  nutrients

(Pagel et al., 2020). However, when the diffusion limitations are too severe, compensation cannot be

achieved. 

The  modelling  scenarios  of  Nunan  el  al.  (2020)  explore  different  acquisition  strategies  of  the

resources  ranging  from generalists  (bacterial  taxa  can  consume the  same resources)  to  specialists

(bacterial taxa can consume only one resource), In the absence of functional redundancy (specialists),

the proportion of resources consumed is increased when bacterial diversity increases, i.e., more taxa

with fewer individuals consume more than few taxa with a higher number of individuals (Nunan et al.,

2020). The aggregation of the resources increases only the variability of the consumption. When up to

ten different resources are submitted to different acquisition strategies (generalists and/or specialists),

the aggregation of OM gives a competitive advantage on generalists over specialists and the resource is

more consumed (Nunan et al., 2020). There is a higher probability of co-location of generalist bacterial

cells on one of the resources they can consume than for specialists. In these modelling scenarios, soil

architecture is not described explicitly, and circular patches of OM are randomly distributed within a

2D space, following the approach of Masse et al. (2007). A different picture emerges in scenarios where

specialists are given an advantage on getting their food. In this microscale model, bacteria are singular

spots and acquire resource within a disc whose radius can be modified (Nunan et al., 2020). When
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increasing the size of the area where specialists can take up the resource, a disadvantage for generalists

compared to specialists is found and leads to an overall low resource consumption. 

A different result can be obtained, namely a decrease of OM decomposition, when bacterial diversity

is  high  (Evans  et  al.,  2016;  Folse  & Allison,  2012;  Kaiser  et  al.,  2015).  In  this case,  ecological

interactions  are  based  on  complementary  resources  acquisition  in  communities  of  producers  and

cheaters. When diffusion limitations are high, nutrient enzymatic depolymerization is increased in the

presence of competitive interactions between different types of  bacteria, from enzyme-producers to

cheaters (Folse & Allison, 2012). Low diffusion limits the development of cheaters that rely on enzyme

diffusion to survive. By contrast, in high diffusion situations, biodiversity is increased and the cheaters

and  coalitions  of  intermediate  types  in  competition  with  the  generalist  producers  reduce  enzyme

production and thus nutrient depolymerization (Folse & Allison, 2012). In the modelling scenarios of

Kaiser et al. (2015), the decay rates of litter can be reduced by up to 90% in the presence of cheaters,

depending on their maximum growth rate. This effect is further enhanced when ecological interactions

are combined with variable water content as simulated in dry-rewetting cycles by Evans et al. (2016).

During drought, a critical limitation by diffusion can locally create hotspots of dissolved OM due to the

continuous  enzymatic  depolymerization.  During  re-wetting,  diffusion  of  soluble  compounds  is

increased and this additional amount of available OM triggers high increase of CO2 production (e.g.,

Barnard et  al.,  2020). This effect,  known as the Birch effect,  is dampened in presence of cheaters

(Evans et al., 2016). Whereas cheaters are sensitive to drought, they out-compete enzyme-producers

under rewetting. The fast response of cheaters when diffusion limitations are relieved upon rewetting,

confers them an advantage over the producers and leads to an overall decrease of OM decomposition. 

2.5 Summary of main insights

The many modelling scenarios investigated and the sometimes contradictory results obtained show

the complexity arising from processes interacting at the microbial habitats. However, if we summarize

these results in the light of the role of OM spatial accessibility to microorganisms, tendencies can be

found (Table 1). In general, when spatial accessibility is optimal, it promotes SOM decomposition, CO2

production and fungal expansion whereas soil biodiversity is reduced. Opposite results are found in the

case  of  a  low OM spatial  accessibility.  We could  not  extract  clear  trends  for  the  bacterial  spatial

organization. However, we identified several parameters or processes that control the strength of these
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microbial activities. These factors can relieve constraints imposed by low OM spatial accessibility and

reframe microbial activity to some extent (Table 1). 

Table 1: Main effects of optimal and low OM spatial accessibility on microscale model outputs and main

sensible  parameters  and  processes  controlling  or  modifying  (indicated  in  this  case  by  blue  symbols  in

parentheses) these effects.  

3. Disentangling the role of soil architecture and microbial dynamics

In  microscale  models,  one  can  decouple  the  respective  roles  of  soil  architecture  and microbial

dynamics on soil functions by considering interactions at the microscopic scale and feedback loops, as

illustrated in Figure 3, which emphasizes the main links between the inputs and outputs of the models.

We can classify model inputs into six groups of different nature: 1) soil architecture, which describes

the spatial  arrangement of soil  particles,  the geometry of pores and pore-solid interfaces; 2) water

content, which describes the amount of water and the distribution of air-water interfaces within the

pores;  3) the initial  spatial  distribution of solid  OM; 4) the initial  spatial  distribution of dissolved

chemical species (including OM, O2, enzymes); 5) the initial spatial distribution of microbes, either in

suspension in the water phase and/or attached to the pore-solid interfaces (for bacteria), and in the air-

filled pore space (in the case of fungi); and 6) the initial species. The first five inputs are directly

related to the spatial accessibility of trophic resources to microbes. The six outputs are those reported in

the previous sections. Table S1 lists each reported microscale model according to this classification.

System properties or processes that directly influence spatial accessibility of the trophic resources to

microbes  are displayed by red arrows. The green arrows correspond to ecological  interactions  and

processes that control the efficiency of microbes to depolymerize and uptake OM, emit gases and grow.
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The black arrows correspond to other system properties or processes not linked to spatial accessibility

or microbial dynamics. Feedback loops are displayed by thick arrows in Figure 3. 

Figure 3: Schematic overview of the main inputs and outputs of microscale models highlighting the spatial

and ecological interactions at the microhabitat scale. Red arrows correspond to interactions between inputs and

outputs that control spatial accessibility of the trophic resource to microbes. These links are associated to system

properties  and  processes.  Green  arrows  correspond  to  the  links  that  control  the  efficiency  of  microbes  to

depolymerize and uptake OM and to emit gases. These links are associated to processes. Thick red and green

arrows  correspond to feedback loops  linked to  spatial  accessibility  and ecological  interactions  respectively.

Black arrows correspond to other links that don’t control spatial accessibility or efficiency of microbial activity. 

From Figure 3, it can be seen that, in microscale models, soil architecture provides an initial stage of

spatial accessibility and promotes interactions between the actors of OM decomposition (red arrows

between inputs). This accessibility is a key factor explaining most of the model outputs, from a direct

influence on hydraulic properties (pore size, black arrow) to indirect influences on the decomposition

of OM, emission of gases and soil biodiversity maintenance through its role in shaping the spatial

accessibility (red arrows between inputs and outputs). The temporal dynamics of most of the outputs

(the  spatial  distribution  of  microbial  colonies,  dissolved  OM,  soil  hydraulic  properties,  soil
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biodiversity) makes spatial accessibility a highly dynamic variable and contributes thus to feedback

loops. We identified three feedback loops: (i) soil architecture provides an habitat for microorganisms

growth  and  distribution  and  in  turn  microorganisms  modify  soil  architecture  (through  fungal

enmeshment, aggregation) (thick red arrow); (ii) water flow paths can alter the spatial distribution of

microorganisms  which  in  turn  can  alter  the  pore  geometry  (until  pore  clogging)  that  modifies

permeability  and  water  flow  paths  (two  thick  red  arrows);  (iii)  biodiversity  creates  ecological

interactions  that  have  an  impact  on the  microorganism growth and distribution  which  in  turn  can

modify the biodiversity by sustaining or extinguishing species (thick green arrow). Finally, microbial

dynamics and ecological interactions can relieve constraints imposed by low spatial accessibility (green

arrows).

Microscale models are thus a useful tool to help disentangle these complex interactions between soil

architecture and microbial dynamics and rank their contributions. In a few studies they have been used

to quantify and rank these complex interactions.  In  a  sensitivity  analysis  performed on a  factorial

design  where  geometry  of  the  pore  space,  water  saturation,  spatial  distribution  of  bacteria  and

physiological trait (bacterial dormancy) are the factors, Vogel et al. (2015) found, for their modelling

scenarios, that bacterial spatial distribution alone explains about 30% of the total variance of fructose

decrease.  About  half  of  the  variance  of  fructose  decrease  is  explained  by  two-factor  interactions

between water saturation and bacterial spatial distribution, between geometry of pore space and water

saturation, and between geometry of pore space and bacterial spatial distribution. Interestingly, under

optimal accessibility,  physiological parameters can generate greater variability in fructose decrease,

CO2 production and biomass growth (Vogel et al., 2018). When accessibility is low, the consumption of

fructose remains very limited regardless of the efficiency of microbial uptake. This is in line with Pagel

et al.  (2020) who reported that maximum growth rate can have a higher influence than the spatial

heterogeneity of the microbes on the resource consumption. In another sensitivity analysis of a fungal

growth  microscale  model,  Cazelles  et  al.  (2013)  also  showed  that  parameters  related  to  biomass

recycling processes, and in particular the biomass yield efficiency, strongly impact total biomass and

respiration. These parameter sensitivities are further dependent on the microenvironment contexts. For

example, variability in spatial colonization of pores by a fungus is affected by the parameter describing

immobilisation  of  mobile  biomass  in  the  mycelium  in  scenarios  where  the  carbon  resource  is

homogeneously distributed in the pore space. By contrast, it is the parameter describing the reverse
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process, mobilization of the insulated biomass, that is sensitive in scenarios where carbon resource is

initially co-located with the fungal inoculum (Cazelles et al., 2013). 

Vogel et al. (2018) pointed out that measuring the time evolution of bulk DOC concentration is the

best  proxy  to  identify  the  role  of  soil  architecture  and  micro-environments  on  microbial  activity.

Although easier  to measure,  the time evolution of CO2 is  less informative because CO2 is  a  more

integrative variable and its dynamics is also strongly influenced by the physiology of bacteria (Vogel et

al., 2018). 

4. Discussion

4.1 Assessment of microscale models

Most of the reported microscale models play with “what-if” scenarios to understand the interactions

between the actors  that  control the soil  microbial activity.  Then,  the trends observed are generally

compared to experimental findings. The majority of studies that have tried to reproduce experimental

conditions consider idealized geometries such as micromodels (e.g., Borer et al., 2018, 2019; Centler et

al., 2011), packs of spherical grains (e.g., Gharasoo et al., 2012; Peszynska et al., 2016) and in a few

cases repacked soils (e.g., Babey et al., 2017, Monga et al., 2014). Assessment of microscale models on

experimental microfluidic devices, as advocated by Smercina et al. (2021), appears promising since

biodiversity  and the movement of  microbes  can be easily  controlled and monitored (e.g.,  Long &

Hilpert, 2008). For example, Borer et al. (2019) were able to reconcile contradictory results between

their  microscale  model  and  experiments  carried  out  on  microfluidic  devices  by  introducing  more

complex metabolic pathways in their biological module. 

Due  to  the  simplification  of  the  biodiversity  contained  in  microscale  models  and  the  still

unreachable description of the whole span of pore size of soil architecture, assessing microscale models

against  experiments  in  intact  soil  samples  seems unrealistic.  Comparison of  microscale  models  to

controlled experiments in soils that have attempted to simplify biodiversity also faces a number of

difficulties.  Sterilization  of  soils  and  inoculation  of  specific  micro-organisms  have  unwanted

consequences, such as an unrealistic increase of necromass. Inoculation of the targeted species also

poses the question on where to localize the microorganisms in the pores (e.g.,  Juarez et  al.,  2013;

Pinheiro et al. 2015). Maintaining sterile conditions throughout incubation experiments also makes the

experimental protocols considerably more cumbersome. Several attempts have considered instead the

injection of labeled dissolved OM into different pore sizes to activate microorganisms located in these
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pores (e.g., Ruamps et al., 2011; Kravchenko et al., 2020). However, as pointed out by Baveye et al.

(2018)  there  is  still  a  lack  of  experimental  data  to  better  characterize  soil  heterogeneity  at  the

microscale  habitat  and  this  also  contributes  to  hindering  attempts  to  accurately  assess  microscale

models.

4.2 How to upscale the information given by microscale models

Another  difficult  challenge  is  how  to  translate  the  knowledge  gained  on  interactions  at  the

microscopic scale into larger scales (König et al., 2020).  Upscaling differential equations of reactive

transport including non-linear reaction rates, such as Monod-type reaction rates, is complex because it

leads to a concentration-dependent transition between reaction-limited and diffusion-limited regimes

which is not observed for first-order reaction rates (Heße et al., 2009). This results in an upscaling

behavior depending on the substrate concentration.  In a simple pore geometry,  Heße et  al.,  (2009)

succeeded  in  finding  two  concentration-independent  effective  parameters  in  situations  of  biomass

continuoulsy  covering  pore  walls.  These  effective  parameters  were  successfully  applied  to

heterogeneous bacterial colonies distribution within a straight pore (Schmidt et al., 2018). However, it

is expected that additional scaling factors that are functionals of pore geometry should be considered to

improve the upscaled rate estimates in complex soil architecture (Jung & Meile, 2019). Chakrawal et

al.  (2020) advocated for the use of the scale transition theory,  which upscales population dynamic

functions (such as Monod dynamics) instead of the partial differential equations of fluxes, as performed

in predator-prey ecology models (e.g., Bergström et al., 2006). In this theory, the spatial heterogeneity

of substrate and microorganisms at the microscale is considered by keeping the second-order spatial

moments when spatially averaging the functions. However analytical expression of these second-order

moments have yet to be developed for non-linear reaction rates. Using another approach, Ebrahimi and

Or (2016, 2017, 2018) proposed an upscaling procedure to compute the flux of biogeochemical gases at

the  soil  profile  scale  by  using a  microscale  model  that  calculates  the  gases  produced  in  single

aggregates of different sizes. Then, the fluxes are summed up to represent those resulting from an

assembly of soil aggregates. However, this approach assumes that the aggregates are surrounded by air-

filled pores which is not necessarily the case (Baveye et al., 2022; Vogel et al., 2021; Kravchenko et al.,

2019).

Alternatively, microscale models can be used to search for a suitable formulation of the effective

reaction rate in macroscopic soil carbon models or to improve multiplicative functions used to weight
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the effective reaction rate. For instance, Wang & Allison (2019) found that enzymatic degradation rates

based on the equilibrium chemistry approximation (ECA, Tang & Riley, 2013), which is a more general

formulation of “reverse” and “forward” Michaelis-Menten kinetics, could be used to fit outputs from

the DEMENT microscale  model  (Allison,  2012),  which uses “forward” Michaelis-Menten kinetics.

Ruiz et al. (2020) could fit a simple macroscopic nitrogen model to predictions of a microscale model

carried out in complex soil architecture provided that two parameters linked to surface to volume ratios

of fertilizer pellets and soil surfaces respectively are considered in the formulation of the dissolved

organic nitrogen rates. These results are in line with those of Garnier et al.  (2008) and Iqbal et al.

(2014) who could fit the macroscopic OM decomposition model CANTIS (Garnier et al., 2003) with

measured  data  of  incubation  of  plant  residues,  provided that  a  parameter  linearly  linked  with  the

specific surface of residues is included in the effective decomposition rate. Thus, rate modifiers that

take  into account  the  role  of  spatial  accessibility  of  OM to the  soil  decomposers  could be  found.

Indeed, by ignoring spatial information, macroscopic models of OM turnover assume optimal spatial

accessibility and may overestimate CO2 production. 

Rather  than  mathematically  upscaling  to  larger  spatial  scales,  a  few  modelling  studies  have

attempted to finding spatial descriptors of soil architecture that could encompass these microscopic

interactions and statistically correlate with the model outputs. Most of these descriptors are based on

the spatial accessibility of microbes to the trophic resources.  Wang & Or (2012) proposed a bacterial

coexistence index equal to the ratio of a characteristic distance traversed by a bacterial cell generation

to the effective radius of water clusters. This index aims to quantify the role of soil architecture and

hydration status of pores on the coexistence of two competitive species. Portell et al. (2018) calculated

the geodesic distance from bacterial colonies to OM residues and compared them to growth of these

colonies. They showed that none of the colonies are able to develop for a geodesic distance greater than

around 5 mm, which is consistent with experimental data (Gaillard et al., 1999; Védère et al., 2020).

The most active microbial habitats are those with the shortest geodesic distance, however some habitats

do not develop although they are at a short geodesic distance from the residues. This suggests that other

variables such as the local soluble  carbon concentration reaching the microhabitats may play a role.

This was considered in the accessibility coefficient of Mbé et al. (2021),  which is calculated as the

average of the shortest geodesic distance between bacterial colonies and OM residues, multiplied by

the amount of OM in each residue. Satisfactory statistical correlations (linear regression coefficient R2

of  0.7)  between  simulated  CO2 and  this  microscale descriptor  is  found  for  different  modelling
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scenarios. Although these results are encouraging, these latter two descriptors do not consider other

processes such as the protection of OM by mineral-associations (e.g., Basile-Doelsch et al., 2020),  the

translocation of carbon by fungi that can dynamically alter the accessibility of OM in intact soils (e.g.,

Boswell et al., 2003, 2007; Védère et al., 2020; Vidal et al., 2021), the spatial invasion of fungi and to a

lesser extent the motility of bacteria by chemotaxis or using fungal highways (e.g., Banitz et al., 2011).

Banitz et al. (2016) found that the combination of two metrics describing the spatial configuration of

fungal highways for bacteria was best suited to explain the biodegradation of glucose. The advantage of

spatial  descriptors based on accessibility  of OM is that  they can be calculated in soil  CT images,

provided that accurate segmentation of air, water and organic matter phases are achieved (e.g., Rawlins

et  al.,  2016;  Ortega-Ramirez  et  al.,  2021;  Rohe et  al.,  2021).  Development  of  complementary 2D

imaging tools such as microscopy and nanoSIMS which provide spatial distribution of chemicals and

microorganisms (e.g., Eickhorst & Tippkötter, 2008; Vidal et al., 2021) and whose integration with CT

images  has  begun  (Hapca  et al.  2011;  Schlüter  et  al.,  2019)  will  certainly  help  to  give  accurate

information on the relative distributions of OM and microorganisms. 

4.3 Overall limitations and future directions of microscale modelling

Describing  spatialized  microbial  activity  in  3D  and  at  the  microhabitat  scale  asks  for  intense

computational resources. Obviously, microscale models are not designed to describe soil biodiversity in

detailing the many species and complex food webs, which should be better left for ecological models.

Nonetheless, the latter may identify main functional groups to be included in microscale models.

We advocate for introducing a dynamical  soil  architecture in  microscale models.  Environmental

factors such as drying-rewetting cycles and feedbacks of microbial activity on modifying transport

pathways and  microbial habitats change the spatial OM accessibility. Microscale models would be

good candidates to test the hypotheses explaining the still poorly understood Birch effect (Schimel,

2018) that can result in large amounts of emitted CO2 (e.g., Barnard et al., 2020). Incentive works are

those of  Ebrahimi & Or (2018), Evans et al. (2016), Šťovíček et al., (2017), Wang & Or (2013) and

Zech et al. (2022) who evolved water content at the grid nodes to simulate drying-rewetting cycles. In

addition,  based  on experimental  data  obtained with  X-ray  CT imaging  tools  such as  the  ones  by

Bottinelli et al. (2016) one could draw statistical rules to modify the size and connectivity of pores.

Another research gap is the role of meso and macro fauna that, to our knowledge, has been ignored

in microscale modelling. Worms (e.g., earthworms, enchytraeids) play an important role in soil carbon
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and nitrogen mineralization. Their casts are hotspots for microbial activity, and they modify the pore

space morphology through their burrowing activity thereby impacting gas exchanges and transfer in the

active microsites.  As a  result,  enhanced CO2 and N2O emissions were reported in  the presence of

worms (e.g., Lubbers et al., 2010; Porre et al., 2016). Including experimental imaging data of burrow

systems  such  as  enchytraeids  in  microscale  models  would  be  a  good  start,  as  their  size  fits  the

microscale models better than earthworm. 

We also advocate for including rhizosphere in  microscale  models.  Indeed,  most  of  the reported

studies  have  dealt  with  detritusphere.  However,  rhizosphere  constitutes  hotspots  of  soil  microbial

activity and rhizodeposition has a role in priming effect and soil  aggregation (e.g.,  Baumert et al.,

2018). Current advances in modelling and experimental methods offer now opportunities to quantify

the  rhizosphere  at  microscopic  scales  and advance  new insights  how these  microscopic  processes

impact  across  scales,  and current  challenges  in  the  rhizosphere  (Schnepf  et  al.,  2022).  Microscale

models  could  help  in  quantifying  the  respective  role  of  detritusphere  and  rhizosphere  in  SOM

decomposition and greenhouse gases production. To do so, microscale models could benefit from 3D

models of root  water  and nutrients uptake that  include soil-root interactions and high-performance

imaging tools that reveal root architecture (e.g., Keyes et al., 2013) .

5. Conclusions

Microscale models provide valuable “what-if” scenarios to test hypotheses about the role of soil

architecture  and  microbial  dynamics  to  explain  non-linear  responses  of  soil  microorganisms.  The

reported modelling scenarios highlight how microbial activity relies on a balance between the physical

and biological processes taking place in the complex soil architecture and reveal threshold effects. They

confirm that soil architecture does matter. For example, it contributes to the emergence of a spatial

organization  of  the  microbial  communities  which  in  turn  can  modify  significantly  soil  OM

decomposition and soil gaseous emissions. They highlight the role of spatial accessibility of trophic

resources to microbes, which when combined with ecological interactions, can shape different pictures

regarding  the  amount  of  OM  decomposed  in  soil.  Indeed,  microbial  dynamics  and  ecological

interactions can counterbalance limitations imposed by low spatial accessibility of OM to decomposers.

When spatial accessibility is optimal, they become the major drivers of soil OM decomposition. Local

accumulation of biomass can also alter  hydraulic properties of soil and influence water flow field.

Microscale models also demonstrate that using bulk measures such as bulk water content or bulk soil
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density is clearly insufficient to predict soil microbial activity. An accurate description of both the soil

microhabitats and microbial dynamics in models is thus crucial to understand soil functions.

Even though the  assessment  of  microscale  models  is  still  limited,  due to  a  scarcity  of  relevant

experimental data on soils, these models are useful tools to search for spatial descriptors of the soil

micro-environments  explaining  soil  microbial  activity.  Another  key  function  of  these  microscale

models at this early stage is to guide experimentation by generating new and testable hypotheses based

upon our current knowledge, which is encapsulated in the models. Modelling also helps to integrate

new  knowledge  we  gain  from  improved  technology,  which  unravels  novel  information  at

microscopic/nano scales. 
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