

EGU22-8252 https://doi.org/10.5194/egusphere-egu22-8252 EGU General Assembly 2022 © Author(s) 2022. This work is distributed under the Creative Commons Attribution 4.0 License.

Evidence of ecological critical slowing-down in temperate soils

fiona fraser ^{1,2}, Ronald Corstanje ¹, Lindsay Todman ^{3,4}, Diana Bello-Curás ⁵, Gary Bending ⁶, Lynda Deeks¹, Jim Harris¹, Sally Hilton ^{6,7}, Mark Pawlett ¹, Joanna Zawadzka¹, Andrew Whitmore ³, and Karl Ritz⁸

¹Cranfield University, College Road, Cranfield, MK43 0AL, UK

²SRUC, Crop and Soil Systems, United Kingdom of Great Britain – England, Scotland, Wales (fiona.fraser@sruc.ac.uk)

³Sustainable Agricultural Sciences, Rothamsted Research, Harpenden, AL5 2JQ, UK

⁴School of Agriculture, Policy, and Development, University of Reading, Reading, RG6 6AR, UK

⁵IIAG-CSIC, Avda. De Vigo s/n, 15705, Santiago de Compostela, Spain

⁶School of Life Sciences, The University of Warwick, Coventry, CV4 7AL, UK

⁷Micropathology Ltd, University of Warwick Science Park, Coventry, UK

⁸School of Biosciences, The University of Nottingham, Sutton Bonington, Leicestershire, LE12 5RD, UK

The resilience of ecological systems is crucially important, particularly in the context of climate change. We present experimental evidence of critical slowing-down arising from perturbation of a key function in a complex ecosystem, exemplified by soil. Different behavioural classes in soil respiratory patterns were detected in response to repeated drying:rewetting cycles. We characterised these as adaptive, resilient, fragile or non-resilient. The latter involved increasing erratic behaviour (i.e. increasing variance), and the propagation of such behaviour (i.e. autocorrelation), interpreted as a critical slowing-down of the observed function. Soil microbial phenotype and land-use were predominantly related to variance and autocorrelation respectively. No relationship was found between biodiversity and resilience, but the ability of a community to be compositionally flexible rather than biodiversity *per se* appeared to be key to retaining system function. These data were used to map the extent to which soils are close to crossing into alternative stable states at a national scale.