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ABSTRACT

This study presents a guidance method for flight vehicles gliding in the vertical plane to achieve

desired position and velocity at the final time. The proposed guidance algorithm combines two de-

coupled elements to plan future flight trajectories satisfying the given constraints at each guidance

update cycle: i) parametric path generator, and ii) approximate speed predictor. The parametric

path generator is capable of producing an altitude profile as a parametric function of downrange

by solving a convex optimisation problem considering only the shape properties of a flight path.

An approximate method for predicting the future speed history endows the proposed guidance

algorithm with the capability to address energy management objectives in trajectory planning.

Provided that an altitude profile is specified by the parametric path generator and the lift-to-drag

ratio model is known, the approximation neglecting gravitational acceleration turns the speed dy-

namics along the given path into a scalar linear first order ordinary differential equation, the form

which admits a closed-form solution that can be represented by definite integrals. In this way, the

proposed method opens a possibility to update the trajectory in flight to achieve the desired final

speed by reducing the computational load due to speed prediction task, although the predicted

speed contains approximation errors of certain degrees.

Keywords: Speed Prediction; Energy Management; Guidance; Glide Vehicles

1 Introduction

The necessity to dissipate a specific amount of the mechanical energy during flight poses a signifi-

cant challenge to the trajectory planning and guidance of endoatmopheric gliding vehicles. The difficulty

arises mainly from the absence of an active control effector over the speed of vehicle such as an engine

that provides thrust or a speed brake that yields additional drag. With the general understanding about

li2106
Text Box
Proceedings of EuroGNC 2022: 6th CEAS Conference on Guidance, Navigation and Control, 3-5 May 2022, Berlin, Germanyhttps://eurognc2022.dglr.de/

li2106
Text Box
Published by CEAS. This is the Author Accepted Manuscript issued with: Creative Commons Attribution License (CC:BY).  Please refer to any applicable publisher terms of use.



the vehicle aerodynamics that both drag and lift increase in magnitude with increasing angle-of-attack

unless flow separation does not take place, the only available way to cope with the problem of energy

management is to perform lateral manoeuvres intended for producing certain amount of drag. For this

reason, a trajectory should be designed by explicitly considering the speed variation while meeting all

the other constraints including the desired position and flight path angle at the final time. However,

another major difficulty lies in the prediction of speed in that the differential equation for vehicle speed

directly depends on the drag model and its solution can be obtained by relying on numerical integration

which may demand a substantial amount of computational load. As a consequence, trajectory planning

to achieve a desired mechanical energy in addition to the usual position and arrival direction conditions

at the end of flight has remained a difficult task to be performed online.

Trajectory planning and/or guidance to achieve a desired final speed in arrival-angle-constrained

missions have attracted relatively less attention in comparison to the problem of maximising the final

speed. The notion of minimising the control effort defined by the amount of lateral acceleration to keep

the induced drag small applies well only to the final speed maximisation problem. The approaches de-

veloped for energy management guidance with arrival direction constraint include the method based on

stitched path primitives and drag reference tracking [1–3], the impact-angle-control guidance law includ-

ing a term providing explicit feedback over the predicted final speed error [4], the method of finding a

tuning coefficient in an impact-angle-control guidance law that results in a trajectory meeting the desired

final speed [5], and the simulation-based framework for pre-planning of waypoints [6]. The Terminal

Area Energy Management (TAEM) guidance method described in [1] for the approach and landing phase

of the space shuttle takes several heuristic choices in its design by using circular or spiral-like horizontal

path for dumping excessive energy. It might not be applicable in an identical manner to other types

of gliding vehicles that is confined to fly in the vertical plane. The approach involving a mathematical

expression for the lateral acceleration command rather than an algorithmic description is quite intuitive

and reliable. However, the guidance law presented in [4, 5] relies on brute-force numerical propagation

of the entire set of differential equations describing motion under a baseline guidance law. The speed

prediction method presented in [7] obtains the estimate in closed form, however, it is inappropriate for

vehicles performing manoeuvres in the vertical plane since it assumes constant flight path angle for the

steady glide condition and a specific drag-lift relationship. The waypoint planning framework of [6]

enables systematic design of mission considering the dynamic feasibility of planning solution, but the

large computational burden due to repeated simulation limits its application in an online setting.

The main objective of this study is to develop a computationally efficient guidance algorithm for

generating manoeuvres in the vertical plane to achieve desired position and velocity at the final time.

The previous studies suggest that an energy management trajectory planning algorithm inevitably re-

quires a speed predictor in some form and speed prediction is the most time-consuming step in the

planning pipeline. Iterative targetting of the desired final speed with the predicted trajectory is also

necessary at each planning update cycle to find the solution among many trajectories satisfying all the

constraints imposed on the geometric properties of the flight path at the initial and final points. Moti-

vated by these observations, the present study pursues a direction that can reduce the amount of com-

putation needed in speed prediction. To this end, the proposed guidance algorithm combines i) a path

generator that can produce one-parameter family of curves interpolating given boundary conditions in

the form of downrange-referenced altitude profiles and ii) an approximate speed predictor that yields

a semi-analytical solution for the single differential equation describing speed variation with respect to

downrange. The approximation that neglects gravity in the process of relating the lift coefficient with

the curvature of given path is the key that reduces the number of equations involved, thus leading to the

improvement in computational efficiency at the cost of losing accuracy.

The rest of the paper is organised as follows: Section 2 describes the equation of motion and the

guidance problem considered in this study. Section 3 presents the guidance algorithm with detailed de-

scription of the path generator and the approximate speed predictor. In Sec. 4, simulation examples

2



demonstrate the performance of the proposed algorithm, and Sec. 5 concludes the paper with summaris-

ing remarks.

2 Problem Formulation

2.1 Equation of Motion

This study considers an unpowered gliding vehicle that flies inside the atmosphere and assumes that

the vehicle can be modelled as a point mass moving on the vertical plane that perfectly achieves the

commanded lift acceleration. The equations of motion with time 𝑡 as the independent variable can be

expressed as

¤𝑥 =𝑉 cos𝛾 (1)

¤ℎ =𝑉 sin𝛾 (2)

¤𝛾 =
𝐿

𝑚𝑉
−
𝑔

𝑉
cos𝛾 (3)

¤𝑉 = −
𝐷

𝑚
−𝑔 sin𝛾 (4)

where ¤(·) = 𝑑
𝑑𝑡
(), and 𝑥, ℎ, 𝛾, and 𝑉 denote the downrange, the altitude, the flight path angle, and the

speed, respectively. Also, 𝑚 and 𝑔 represent the dry mass and the gravitational acceleration, respectively,

and 𝐿 and 𝐷 are the lift and the drag defined as

𝐿 =
1

2
𝜌𝑉2𝑆𝐶𝐿 (5)

𝐷 =
1

2
𝜌𝑉2𝑆𝐶𝐷 (6)

with 𝜌, 𝑆, 𝐶𝐿 , and 𝐶𝐷 referring to the atmospheric density, the reference area, the lift coefficient, and

the drag coefficient, respectively. Note that 𝑚, 𝑔, and 𝑆 are constants, and 𝜌 is generally a function of ℎ.

The aerodynamic coefficients 𝐶𝐿 and 𝐶𝐷 are functions of the angle-of-attack 𝛼 and the Mach number,

in general.

Assuming that 𝑥 increases monotonically with respect to 𝑡, i.e., 𝛾 ∈
(
− 𝜋

2
, 𝜋

2

)
, the independent variable

of the differential equations can be changed from 𝑡 to 𝑥 by dividing Eqs. (2)-(4) with Eq. (1) as follows:

ℎ′ = tan𝛾 (7)

𝛾′ =
𝐿

𝑚𝑉2 cos𝛾
−
𝑔

𝑉2
(8)

𝑉 ′
= −

𝐷

𝑚𝑉 cos𝛾
−
𝑔

𝑉
tan𝛾 (9)

where (·)′ = 𝑑
𝑑𝑥

.

2.2 Trajectory Planning Problem

The desired final position as well as the desired final flight path angle are usually considered to

have certain fixed values that meet the mission requirements. Provided that the final altitude is specified,

demanding a particular level of mechanical energy for the final time is equivalent to achieving a desired

final speed. Also, Eq. (7) indicates that the downrange-derivative of the altitude can be related to the

flight path angle. The trajectory planning problem considered in this study is to find a spatial curve ℎ (𝑥)
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that satisfies the boundary conditions given by

ℎ (𝑥𝑡) = ℎ𝑡 ℎ
(
𝑥 𝑓
)
= ℎ 𝑓𝑑 (10)

ℎ′ (𝑥𝑡) = tan𝛾𝑡 ℎ′
(
𝑥 𝑓
)
= tan𝛾 𝑓𝑑 (11)

𝑉
(
𝑥 𝑓
)
=𝑉 𝑓𝑑 (12)

where the subscript notation (·)𝑡 and (·) 𝑓𝑑 represent the current and the desired final value of a quantity,

respectively. Note that the requirement ℎ′′
(
𝑥 𝑓
)
= −

𝑔

(𝑉 𝑓𝑑
cos𝛾 𝑓𝑑 )

2 can be included explicitly to the set of

boundary conditions if nullification of terminal lift acceleration is necessary to avoid large manoeuvres at

the end of flight so that the vehicle has enough aerodynamic control authority to deal with uncertainties.

3 Guidance Algorithm

3.1 Relation Between Path Geometry and Vehicle Motion

Suppose that the flight path is given as an altitude profiled ℎ (𝑥). It is obvious from Eq. (7) that the

corresponding flight path angle profile can be obtained as

𝛾 (𝑥) = tan−1 (ℎ′ (𝑥)) (13)

Differentiating Eq. (13) with respect to 𝑥 yields

𝛾′ (𝑥) =
ℎ′′ (𝑥)

1+ {ℎ′ (𝑥)}2
= ℎ′′ (𝑥) cos2 𝛾 (𝑥) (14)

By equating the relation for path geometry in Eq. (14) with the expression for vehicle motion in Eq. (8),

the corresponding lift acceleration profile can be represented as

𝐴𝐿 (𝑥) =
𝐿

𝑚
=
{
ℎ′′ (𝑥) cos2 𝛾 (𝑥) {𝑉 (𝑥)}2 +𝑔

}
cos𝛾 (𝑥) (15)

with 𝛾 (𝑥) given in Eq. (13). Evaluating Eq. (15) at the current point 𝑥𝑡 by using the value of ℎ′′ (𝑥𝑡)

obtained from the planned trajectory and the measurements (or estimates) for ℎ, 𝛾, and 𝑉 gives the lift

acceleration command at each instance which can be supplied as the reference to a normal acceleration

autopilot.

3.2 Parametric Path Generation

The trajectory that satisfies the path geometry boundary conditions given by Eqs. (10) and (11)

is not unique. Additional free parameters available for trajectory shaping can be exploited to generate

multiple feasible trajectories having different final speeds. In this respect, one possible approach based

on the concept known as iterative targetting is to find one trajectory satisfying the final speed boundary

condition given by Eq. (12) through iterative correction of the trajectory shaping parameter. Having only

a single degree-of-freedom for tuning is preferable for better computational efficiency and reliability of

the iterative solution process. Therefore, a path generator needs to be capable of producing a wide

enough range of candidate trajectories by tuning of a single trajectory shaping parameter.

For this purpose, this study employs a simple convex optimisation approach based on Quadratic

Programming (QP) to generate the path as a parametric curve satisfying the position and the tangent

boundary conditions at the end points. Let us first consider the normalisation of variables for enhanced

stability and efficiency of numerical solution process. The normalised downrange and altitude are defined
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by

𝑥 ≜
𝑥

𝑥𝑟𝑒 𝑓
(16)

ℎ̄ ≜
ℎ

ℎ𝑟𝑒 𝑓
(17)

where 𝑥𝑟𝑒 𝑓 and ℎ𝑟𝑒 𝑓 are the characteristic downrange and altitude chosen to make both 𝑥 and ℎ̄ lie in a

similar range. Let (·)◦ ≜ 𝑑
𝑑𝑥

denote the differentiation with respect to 𝑥. Using the relation ℎ̄◦ =
𝑥𝑟𝑒 𝑓
ℎ𝑟𝑒 𝑓

ℎ′,

the boundary conditions in Eqs. (10) and (11) can be rewritten in terms of the normalised variables as

ℎ̄ (𝑥𝑡) = ℎ̄𝑡 ℎ̄
(
𝑥 𝑓
)
= ℎ̄ 𝑓𝑑 (18)

ℎ̄◦ (𝑥𝑡) =
𝑥𝑟𝑒 𝑓

ℎ𝑟𝑒 𝑓
tan𝛾𝑡 ℎ̄◦

(
𝑥 𝑓
)
=
𝑥𝑟𝑒 𝑓

ℎ𝑟𝑒 𝑓
tan𝛾 𝑓𝑑 (19)

where 𝑥𝑡 =
𝑥𝑡
𝑥𝑟𝑒 𝑓

, 𝑥 𝑓 =
𝑥 𝑓
𝑥𝑟𝑒 𝑓

, ℎ̄𝑡 =
ℎ𝑡
ℎ𝑟𝑒 𝑓

, and ℎ̄ 𝑓𝑑 =
ℎ 𝑓𝑑

ℎ𝑟𝑒 𝑓
.

Consider a linearly-parametrised form for the path that represents ℎ̄ as a function of 𝑥 as

ℎ̄ (𝑥) = 𝝓𝑇 (𝑥) c (20)

where 𝝓 (𝑥) : R ↦→ R𝑝×1 is the basis function vector, and c ∈ R𝑝×1 is the coefficient vector. The number

of undetermined coefficients should be no less than the number of boundary conditions for existence of

a solution, therefore, the dimension should be chosen to satisfy 𝑝 ≥ 4 in the present study. The type

of basis functions determines the overall behavioural characteristics of the curve, hence, its choice is

indeed a design parameter for trajectory shaping. However, more flexibility can be provided instead by

overparametrising the curve yet using a standard basis function such as polynomials. That is, taking

𝑝 > 4 will allow more degrees-of-freedom for systematic curve design. In this underdetermined case,

the coefficient vector can be fully determined by solving a QP problem formulated for path design under

constraints with the coefficients as the decision variable. One special problem that is useful for the

purpose of energy management in the vertical plane is to minimise a performance index given by

𝐽 (𝑅) =

∫ 𝑥 𝑓

𝑥𝑡

[{
ℎ̄ (𝑠) − ℎ̄𝑑𝑒𝑠

}2
+10𝑅

{
ℎ̄◦◦ (𝑠)

}2
]
𝑑𝑠 (21)

which measures the weighted sum of the path curvature and the gap between the path and a constant

desired altitude ℎ̄𝑑𝑒𝑠 =
ℎ𝑑𝑒𝑠
ℎ𝑟𝑒 𝑓

with the constant weight 𝑅 that can either be negative or positive, subject to

the boundary conditions, Eqs. (18) and (19). By introducing the parametric structure shown in Eq. (20),

the optimisation problem can be represented as the following QP problem with the coefficient vector c

as the optimisation variable

minimise 𝐽 (𝑅) = c𝑇Pc+q𝑇c

subject to Ac = b
(22)

In Eq. (22), the problem data matrices are given by

P =

∫ 𝑥 𝑓

𝑥𝑡

{
𝝓 (𝑠) 𝝓𝑇 (𝑠) +10𝑅𝝓◦◦ (𝑠) 𝝓◦◦𝑇 (𝑠)

}
𝑑𝑠, q = −2ℎ̄𝑑𝑒𝑠

∫ 𝑥 𝑓

𝑥𝑡

𝝓 (𝑠) 𝑑𝑠

A =



𝝓𝑇 (𝑥𝑡)

𝝓𝑇
(
𝑥 𝑓
)

𝝓◦𝑇 (𝑥𝑡)

𝝓◦𝑇
(
𝑥 𝑓
)



, b =



ℎ̄𝑡

ℎ̄ 𝑓𝑑
𝑥𝑟𝑒 𝑓
ℎ𝑟𝑒 𝑓

tan𝛾𝑡
𝑥𝑟𝑒 𝑓
ℎ𝑟𝑒 𝑓

tan𝛾 𝑓𝑑



(23)
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For the particular choice of the basis function vector given by 𝝓 (𝑠) =
[
𝑠𝑝−1 𝑠𝑝−2 · · · 𝑠 1

]𝑇
, the

integrals in Eq. (23) can be obtained analytically as follows:

S =

∫ 𝑥 𝑓

𝑥𝑡

{
𝝓 (𝑠) 𝝓𝑇 (𝑠)

}
𝑑𝑠 =



𝑥
2𝑝−1

𝑓
−𝑥

2𝑝−1
𝑡

2𝑝−1

𝑥
2𝑝−2

𝑓
−𝑥

2𝑝−2
𝑡

2𝑝−2
· · ·

𝑥
𝑝+1

𝑓
−𝑥

𝑝+1
𝑡

𝑝+1

𝑥
𝑝

𝑓
−𝑥

𝑝
𝑡

𝑝

𝑥
2𝑝−2

𝑓
−𝑥

2𝑝−2
𝑡

2𝑝−2

𝑥
2𝑝−3

𝑓
−𝑥

2𝑝−3
𝑡

2𝑝−3
· · ·

𝑥
𝑝

𝑓
−𝑥

𝑝
𝑡

𝑝

𝑥
𝑝−1

𝑓
−𝑥

𝑝−1
𝑡

𝑝−1
...

...
. . .

...
...

𝑥
𝑝+1

𝑓
−𝑥

𝑝+1
𝑡

𝑝+1

𝑥
𝑝

𝑓
−𝑥

𝑝
𝑡

𝑝
· · ·

𝑥3
𝑓
−𝑥3

𝑡

3

𝑥2
𝑓
−𝑥2

𝑡

2

𝑥
𝑝

𝑓
−𝑥

𝑝
𝑡

𝑝

𝑥
𝑝−1

𝑓
−𝑥

𝑝−1
𝑡

𝑝−1
· · ·

𝑥2
𝑓
−𝑥2

𝑡

2
𝑥 𝑓 − 𝑥𝑡



or [S]𝑖 𝑗 =
𝑥

2𝑝−(𝑖+ 𝑗−1)

𝑓
− 𝑥

2𝑝−(𝑖+ 𝑗−1)
𝑡

2𝑝− (𝑖 + 𝑗 −1)

H =

[
0(𝑝−2)×2 diag

( [
(𝑝−1) (𝑝−2) (𝑝−2) (𝑝−3) · · ·2

] )

02×2 02×(𝑝−2)

]

P = S+10𝑅HSH𝑇

q = −2ℎ̄𝑑𝑒𝑠S [:, 𝑝]

(24)

3.3 Approximate Speed Prediction

The parametric path generator described in the previous section provides an altitude profile as ℎ (𝑥) =

ℎ𝑟𝑒 𝑓 𝝓
𝑇
(
𝑥

𝑥𝑟𝑒 𝑓

)
c∗ with the optimal coefficient c∗ for each combination of shaping parameters, e.g., 𝑅 and

ℎ𝑑𝑒𝑠. The first and second derivatives of the altitude profile can be obtained in terms of the derivatives

of the basis functions as ℎ′ (𝑥) =
ℎ𝑟𝑒 𝑓
𝑥𝑟𝑒 𝑓

𝝓◦𝑇
(
𝑥

𝑥𝑟𝑒 𝑓

)
c∗ and ℎ′′ (𝑥) =

ℎ𝑟𝑒 𝑓

𝑥𝑟𝑒 𝑓 2 𝝓
◦◦𝑇

(
𝑥

𝑥𝑟𝑒 𝑓

)
c∗. The flight path angle

profile and its first derivative can be computed according to Eqs. (13) and (14), respectively. Then, by

substituting Eq. (5) into Eq. (8), the lift coefficient profile that corresponds to the given trajectory can be

expressed as
𝜌 (ℎ (𝑥)) 𝑆

2𝑚 cos𝛾 (𝑥)
𝐶𝐿 (𝑥) = 𝛾

′ (𝑥) +
𝑔

{𝑉 (𝑥)}2
(25)

However, the speed profile 𝑉 (𝑥) in Eq. (25) is not available as a pre-specified information since it

could only be obtained by solving the associated differential equation. At this point, let us introduce an

approximation that the term
𝑔

{𝑉 (𝑥)}2 in Eq. (25) is non-dominant and a rough initial guess for the speed

given by �̂�𝑔𝑢𝑒𝑠𝑠 (𝑥) is only available. Note that one can simply take �̂�𝑔𝑢𝑒𝑠𝑠 (𝑥) =∞ to completely neglect

the effect of gravity term in Eq. (25), or a simple function of downrange satisfying �̂�𝑔𝑢𝑒𝑠𝑠 (𝑥0) = 𝑉0 and

�̂�𝑔𝑢𝑒𝑠𝑠
(
𝑥 𝑓
)
=𝑉 𝑓𝑑 can also be used as the initial guess. One such example of the initial guess for the speed

profile is given by

�̂�𝑔𝑢𝑒𝑠𝑠 (𝑥) =𝑉 𝑓𝑑 −
(
𝑉 𝑓𝑑 −𝑉0

)
(
𝑥 𝑓 − 𝑥

𝑥 𝑓 − 𝑥0

)𝑛
(26)

where 𝑛 > 0. Also, refinement can be performed by taking the predicted speed solution again as the

initial guess for subsequent iteration. This approximation then leads us to

𝜌 (ℎ (𝑥)) 𝑆

2𝑚 cos𝛾 (𝑥)
𝐶𝐿 (𝑥) ≈ 𝛾

′ (𝑥) +
𝑔

{
�̂�𝑔𝑢𝑒𝑠𝑠 (𝑥)

}2
(27)
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Now, by substituting Eq. (6 into Eq. (9), assuming that the drag coefficient has functional depen-

dence on the lift coefficient, and applying the approximation described by Eq. (27), we have

𝑉 ′ (𝑥) = −
𝜌 (ℎ (𝑥)) 𝑆

2𝑚 cos𝛾 (𝑥)
𝐶𝐿 (𝑥)

𝐶𝐷 (𝐶𝐿 (𝑥))

𝐶𝐿 (𝑥)
𝑉 (𝑥) −

𝑔

𝑉 (𝑥)
tan𝛾 (𝑥)

= −

{

𝛾′ (𝑥) +
𝑔

{
�̂�𝑔𝑢𝑒𝑠𝑠 (𝑥)

}2

}

𝐶𝐷/𝐿 (𝑥)𝑉 (𝑥) −
𝑔

𝑉 (𝑥)
tan𝛾 (𝑥)

(28)

where 𝐶𝐷/𝐿 ≜
𝐶𝐷

𝐶𝐿
denotes the drag-to-lift ratio which can be regarded as a function of 𝑥. Equation (28)

can be transformed into a first-order linear ordinary differential equation of the specific kinetic energy

K ≜ 1
2
𝑉2 as

K′ (𝑥) = −2

{

𝛾′ (𝑥) +
𝑔

{
�̂�𝑔𝑢𝑒𝑠𝑠 (𝑥)

}2

}

𝐶𝐷/𝐿 (𝑥)K (𝑥) −𝑔 tan𝛾 (𝑥)

≜ 𝑎 (𝑥)K (𝑥) + 𝑏 (𝑥)

(29)

where 𝑎 (𝑥) and 𝑏 (𝑥) are the coefficient functions defined accordingly. The solution for the linear dy-

namics described in Eq. (29) can be obtained analytically. Solving Eq. (29) for the closed interval
[
𝑥, 𝑥 𝑓

]

gives a closed-form expression for the final specific kinetic energy predicted at each instance 𝑥 as

K̂
(
𝑥 𝑓
)
= Φ

(
𝑥 𝑓 ;𝑥

)
K (𝑥) +

∫ 𝑥 𝑓

𝑥

Φ
(
𝑥 𝑓 ; 𝑠

)
𝑏 (𝑠) 𝑑𝑠 (30)

where

Φ (𝑥; 𝑠) = exp

(∫ 𝑥

𝑠

𝑎 (𝜉) 𝑑𝜉

)
(31)

Finally, the predicted final speed is derived from Eq. (30) as

�̂�
(
𝑥 𝑓
)
=

√︄

Φ
(
𝑥 𝑓 ;𝑥

)
{𝑉 (𝑥)}2 +2

∫ 𝑥 𝑓

𝑥

Φ
(
𝑥 𝑓 ; 𝑠

)
𝑏 (𝑠) 𝑑𝑠 (32)

Therefore, the proposed approximation scheme predicts the final speed by calculating scalar definite in-

tegrals instead of solving differential equations by using an explicit numerical integration method, e.g.,

forward Euler method. The coefficient functions 𝑎 (𝑥), 𝑏 (𝑥), and the state transition function Φ
(
𝑥 𝑓 ; 𝑠

)

are needed to evaluate the definite integrals. In the ideal case where the flight path remains fixed during

flight, the associated functions and integrals do not need to be calculated again. Therefore, online evalua-

tion of Eq. (32) can be performed without severe computational burden by simply reading out necessary

quantities from the tables storing offline computation result. Otherwise, the coefficient functions and

the state transition function entering into the definite integrals can be re-calculated for consistency with

the online-updated output of the path generator. Computation of the definite integrals can be performed

more efficiently than numerically propagating the dynamics, thus, the proposed method promotes online

prediction as long as the approximation introduced in Eq. (27) is valid enough.

3.4 Desired Speed Targetting

A rough understanding about the flight physics is that flying at a relatively lower altitude leads to a

smaller final speed since the drag increases with the atmosphere becoming dense at low altitude regime,

and a more curved and longer path results in greater loss of energy as the induced drag increases when

the vehicle performs more lateral manoeuvres. In this sense, the trajectory planning can be accomplished
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by finding the shaping parameter 𝑅∗ for fixed (𝑝, ℎ𝑑𝑒𝑠) such that

𝑅∗
= argmin

𝑅

���̂� 𝑓 (𝑅) −𝑉 𝑓𝑑
�� (33)

where �̂� 𝑓 (𝑅) represents the estimated final speed �̂�
(
𝑥 𝑓
)

that can be written conceptually as

�̂� 𝑓 (𝑅) = speed_predictor (path_generator (𝑅; 𝑝, ℎ𝑑𝑒𝑠)) (34)

with path_generator yielding an altitude profile and speed_predictor calculating the final speed by

propagating the vehicle dynamics along the given path. The targetting process of Eq. (33) can be

performed in each trajectory update cycle by leveraging a numerical procedure for root finding or line

search, which requires iterations in its nature. This shows why a light speed prediction algorithm is

advantageous for online execution. The result corresponding to 𝑅∗ can be taken as the trajectory planning

solution for a given instance. The planned trajectory can be used as a reference for trajectory tracking,

or it can be used to compute the lift acceleration command at each instance as explained in Eq. (15).

4 Numerical Simulation

This section presents numerical simulation examples to demonstrate the proposed guidance algo-

rithm. Table 1 summarises the simulation parameters including the initial conditions, the desired final

conditions, and the vehicle dynamics model data. The models used for the atmospheric density and the

drag coefficient are represented as

𝜌 (ℎ) = 𝜌0 exp

(
−
ℎ

𝐻

)
(35)

𝐶𝐷 = 𝐶𝐷0
+𝐾𝐶𝐿

2 (36)

where 𝜌0 is the atmospheric density at the sea level, 𝐻 is a constant scale factor, 𝐶𝐷0
is the zero-lift

drag coefficient, and 𝐾 is the induced drag coefficient. The model parameters are borrowed from [4].

At this stage, the present study does not consider uncertainties such as modelling inaccuracies or wind

disturbances in the model parameters used for speed prediction. Convex.jl and MOSEK are used to

model and to solve QP, respectively, in the process of path generation. The Brent’s method is used to

find 𝑅∗ via line search in the process of desired speed targetting. Note that minimisation over a bounded

interval is more robust than root finding to perform desired speed targetting. The simulation software is

developed in Julia and is accessible via [8].

The following simulation shows i) the actual trajectory simulated with the true dynamics model

using the lift acceleration command computed from the initial trajectory planning result according to

Eq. (15) (sky blue line, PlanSim), ii) the actual trajectory simulated with the true dynamics model using

the lift acceleration command that is updated periodically by repeating the trajectory planning process

during flight (orange line, RePlanSim), and iii) the snapshot of the trajectory planning result obtained

with the approximate prediction method once at the initial instance (green line, Plan).

Figure 1 shows the downrange histories for the trajectory variables including altitude, flight path

angle, speed, and lift acceleration. Also, Fig. 2 shows the time histories for the same trajectory variables

along with downrange, and planned trajectory parameters. Table 2 lists the achieved final values of𝑉 and

𝛾 for various update periods of online trajectory replanning Δ𝑡update for RePlanSim. The figures and the

table show that the proposed planning algorithm achieves the desired final position as well as the desired

final velocity in terms of both the magnitude and the direction. Periodic update of the planned trajectory

realises feedback by considering the current state as the initial condition for prediction performed at each

update cycle, thus effectively closing the loop.
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Table 1 Simulation Parameters

Quantity Unit Value Quantity Unit Value

𝑥0 m 0 ℎ0 m 3,000

𝛾0 deg 5 𝑉0 m/s 1,000

𝑥 𝑓 m 40,000 ℎ 𝑓𝑑 m 0

𝛾 𝑓𝑑 deg −30 𝑉 𝑓𝑑 m/s 400

𝑝 − 10 𝑛 − 1.5

𝑚 kg 544 𝑆 m2 0.258

𝐶𝐷0
− 0.126 𝐾 − 0.370

𝑔 m/s2 ß.805 𝜌0 kg/m3 1.225

𝐻 m 8,435

Table 2 Simulation Results: Final Velocity

Case Plan PlanSim RePlanSim

Δ𝑡update [s] - - 1 2 5 10 20

𝑉
(
𝑡 𝑓
)

[m/s] 400.00 3ß8.ß7 3ßß.57 3ßß.56 3ßß.51 3ßß.37 3ßß.20

𝛾
(
𝑡 𝑓
)

[deg] −30.000 −2ß.ßß4 −2ß.ßß3 −2ß.ßß4 −2ß.ßß4 −30.000 −2ß.ßß2

Fig. 1 𝑥-Referenced Simulation Results
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Fig. 2 𝑡-Referenced Simulation Results
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5 Conclusion

A guidance algorithm was developed for an unpowered endoatmospheric vehicle to achieve a desired

speed at the final time in addition to satisfying the position and flight path angle boundary conditions.

Unlike the guidance problems that can be fully resolved by considering only the kinematics of motion,

the energy dissipation requirement adds considerable complexity to the design of a low-latency feedback

guidance algorithm based on the predictive control principle. This is mainly due to the lack of a simple

analytical solution for the dynamics of the vehicle speed which is model-dependent and underactuated.

To address this difficulty, this study developed a guidance algorithm that performs iterative targetting of

the desired final speed by using an approximate speed prediction method that brings improvements in

computational efficiency over the brute-force numerical propagation through the semi-analytical solution

for the speed. Along with the path generator producing altitude profiles based on convex optimisation,

the overall composition of the proposed algorithm was sought to reduce the amount of online computa-

tion so that it suits well with the purpose of online trajectory update. The effectiveness of the proposed

algorithm for energy management trajectory planning was demonstrated via numerical simulation. As

the directions for further research, one may pursue developing an advanced algorithm that considers the

effects of environmental perturbation such as wind, and combining the proposed guidance algorithm

with a model learning technique for estimating the uncertain aerodynamic data will enable more robust

trajectory planning.
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