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Abstract 

Acoustic emission (AE) was originally developed for non-destructive testing of static 

structures, however, over the years its application has been extended to health 

monitoring of rotating machines and bearings. It offers the advantage of earlier defect 

detection in comparison to vibration analysis. Current methodologies of applying AE 

for bearing diagnosis are reviewed. The investigation reported in this paper was 

centered on the application of standard acoustic emissions (AE) characteristic 

parameters on a radially loaded bearing. An experimental test-rig was designed to 

allow seeded defects on the inner and outer race. It is concluded that irrespective of 

the radial load, rotational speed and high levels of background noise, simple AE 

parameters such as r.m.s and AE counts provided an indications of bearing defect. In 

addition to validating already established AE techniques, this investigation focuses on 

establishing an appropriate threshold level for AE counts. 

 

Keywords: Acoustic emissions, bearing defect diagnosis, condition monitoring 

 

Introduction  

Acoustic emissions (AE) are defined as transient elastic waves generated from a rapid 

release of strain energy caused by a deformation or damage within or on the surface 

of a material (Mathews). In this particular research, AE’s are defined as the transient 

elastic waves generated by the interaction of two surfaces that are in relative 



Tribology Transactions, 46 (3), pp. 447-451, 2003 

movement to each other. The interaction of surface asperities and impingement of the 

bearing rollers over the seeded defect on the outer and inner races will result in the 

generation of Acoustic Emission.  

 

Acoustic emission and bearing defect diagnosis 

Yoshioka et al have shown that AE parameters identified bearing defects before they 

appeared in the vibration acceleration range whilst Catlin reported AE activity from 

bearing defects were attributed to four main factors, including random noise 

generated. It was noted that signals detected in the AE frequency range represented 

bearing defects rather than other defects such as imbalance, misalignment, looseness 

and shaft bending.  

 

Tandon et al investigated AE counts and peak amplitudes for an outer race defect 

using a resonant type transducer. It was concluded that AE counts increased with 

increasing load and rotational speed. However, it was observed that AE counts could 

only be used for defect detection when the defect was less than 250µm in diameter, 

though AE peak amplitude provided an indication of defects irrespective of the defect 

size. Choudhury et al employed AE for bearing defect identification on various sized 

bearings and rotational speeds ranging from 500 to 1500rpm. It was observed that AE 

counts were low for undamaged bearings, based on a threshold level of 1Volt. In 

addition, it was observed that AE counts increased with increasing load and speed for 

damaged and undamaged bearings. Tan used a variation of the standard AE count 

parameter in diagnosis of different sized ball bearings. In addition to the difficulty of 

selecting the most appropriate threshold level for standard AE counts, Tan sited a 

couple of other drawbacks with the conventional AE count technique, such as the 
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dependence on the count value on the signal frequency. Secondly, it was commented 

that the count rate was indirectly dependent upon the amplitude of the AE pulses.  

 

A clear relationship between the r.m.s level, rotational speed and radial load has been 

reported. The use of AE counts is dependent on the particular investigation, and, the 

method of determining the threshold level is at the discretion of the investigator. For 

this reason, the investigation presented in this paper firstly validates the use of r.m.s 

for diagnosis, and secondly, ascertains the suitability of AE counts for bearing 

diagnosis. In addition, selection of the appropriate threshold level is investigated. 

 

Experimental equipment 

A test rig was designed to simulate early stage of bearing defects, see figure 1. 

The rig consisted of a motor/gear box unit providing a rotational speed range of 

between 10 to 4000 rpm. Two aligning support bearings, a rubber coupling and a 

larger support bearing were employed. The test bearing investigated was a split 

Cooper spherical roller, type 01C/40GR (bore diameter – 40mm, 10 roller 

elements). This type of bearing was chosen owing to its ability to be disassembled 

without removing slave bearings, thereby allowing the test bearing to be regularly 

inspected throughout the test programme. A radial load was applied to the top of 

the bearing via a hydraulic cylinder ram supported by an ‘H’ frame. All attempts 

were undertaken to ensure the amount of grease within the bearing remained the 

same. It must be noted that for all tests and simulations, the receiving transducer 

was cemented with superglue onto the bearing housing, see insert of figure 1.  To 

ensure even distribution of the couplant across the face of the sensor, a small 

amount of glue was place in the centre of the intended position of the sensor. The 
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sensor was then carefully pressed onto the surface, spreading the couplant 

uniformly. 

 

Figure 1 Bearing test-rig; Insert shows close-up of test bearing  

 

Data acquisition system 

A piezoelectric type sensor (Physical Acoustic Corporation type WD) with an 

operating frequency range of 100 kHz – 1000 kHz was employed. A schematic 

diagram of the acquisition system is illustrated in figure 2. 

 

 

Figure 2 Schematic diagram of acquisition system 
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Pre-amplification ranged from 40 to 60dB and a total of 33,000 data points were 

recorded per acquisition (data file) at a sampling rate of 4 MHz. One hundred (100) 

data files were recorded for each simulated case, providing over 0.8 seconds of data 

per fault simulation. This was equivalent to 8-revolutions of data at 600rpm; 20-

revolutions at 1500 rpm and 40-revolutions at 3000rpm. A trigger level above the 

electronic noise level was set at 0.5Volts for data acquisition. The procedure for 

collecting data simply involved arming the acquisition system at random intervals 

over a 15-minute period per simulation. It was thought this would determine the 

robustness of specific AE characteristic parameters for diagnosis of operational 

bearings. 

 

Data analysis 

The most commonly measured AE parameters are amplitude, r.m.s, energy, counts 

and events (Mathews). Counts involve counting the number of times the amplitude 

exceeds a preset voltage (threshold level) in a given time and gives a simple number 

characteristic of the signal. The r.m.s value gives the intensity of the AE signature. 

The AE parameters measured for diagnosis in this particular investigation were r.m.s 

and AE counts. In determining the threshold level for AE counts, five values as a 

percentage of the lowest amplitude background noise observed (600rpm) were 

employed. The percentage values selected were 10%, 30%, 50%, 70% and 90%. The 

reason for selecting these specific values was it offered a wide range of values, 

particularly useful as the investigators hoped to ascertain and determine the influence 

of threshold value on AE count results. Usually determining the threshold levels have 

been at the discretion of the investigator and in most cases, the values are probably 
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selected depending on intuition and/or experience on the particular test-rig or 

machine. 

 

Experimental procedure 

Prior to seeding defects the test-rig was operated to provide an indication of 

background noise levels. Two types of defects were seeded on the inner and outer 

races. The seeded fault was a uniform surface line defect that was accomplished 

with a engraving machine. The nominal width, depth and length of the line defect 

on the outer and inner race was measured at 1mm, 75μm and 5mm for a ‘small 

defect’, while the ‘large defect’ had a length of approximately 15mm, see figure 

3. The test-rig was operated at three different rotational speeds; 600 rpm, 1500 

rpm and 3000 rpm. At each rotational speed three load cases were considered; 

0kN, 2.4kN and 4.8kN. For background noise measurements the rig was operated 

at up to 4000 rpm with no radial load. To simulate realistic diagnostic conditions, 

the timing of data acquisition for every one of the one hundred data files during 

test conditions was selected randomly within a 15-minute test period. It was felt 

that this approach was representative of the method to be employed during 

diagnosis of operational units. Moreover, it provided a good test on the suitability 

and robustness of AE for bearing diagnosis. Prior to extracting AE characteristics 

parameters, all one hundred data files (each of 0.08seconds duration) were linked, 

creating a chain equivalent to 0.8seconds. As such, AE count values calculated 

for each test condition were in effect an accumulation of counts over one hundred 

data files and the r.m.s values were equivalent to the average over one hundred 

data files. 
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Figure 3 Seeded line defect on outer race 

 

Results for background noise 

It must be noted that at the higher speed (3000 rpm), pre-amplification was 

reduced to 40dB. All the results presented are comparative at 60dB, which 

implies that a multiplication factor of 10 was applied to all data captured at 40dB. 

Prior to analysis all AE signatures were passed through a 5th order median filter 

(Olli Yli-Harja) to eliminate any spurious electrical spikes.  

 

The following format, with examples, was employed for labeling all AE data 

presented:  

L0; L2; L4; L – load; 0 load value – 0KN; 2 - 2.4KN; 4 – 4.8KN 

N6L0  N - Noise; 6 - speed at 600 rpm; L – load; 0 load value – 0KN 

Si6, Si15, Si30;  S – Small defect; i - inner race; 6;15;30 speed - 600 rpm, 1500 rpm 

or 3000 rpm. Lo6 – Large defect on the outer race at 600rpm. Li15L2 – Large inner 

race defect at 1500rpm and 2.4KN. 

 

 

Line defect 
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An AE time trace for background noise is shown in figure 4.  
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Figure 4   Typical AE time trace background noise; Speed 600rpm, load 

0KN. 

 

The AE r.m.s values for background noise at the three different speeds were 0.06V, 

0.37V and 0.66V, at 600, 1500, and 4000rpm respectively. In addition the lowest 

maximum amplitude value for all simulation case was 1.7Volts at 600rpm. As such 

corresponding threshold values for AE count analysis were 0.17, 0.5, 0.85V, 1.2 and 

1.5Volts. Results for AE counts for the specified threshold levels of background noise 

are presented in figure 5. Clearly AE counts increased with increasing speed 

irrespective of the threshold level. 



Tribology Transactions, 46 (3), pp. 447-451, 2003 

0

25000

50000

75000

N6L0 N15L0 N40L0

Speed and load conditions

N
um

be
r 

of
 A

E
 c

ou
nt

s
Threshold - 0.17V
Threshold - 0.5V
Threshold - 0.85V
Threshold - 1.2V
Threshold - 1.5V

 

Figure 5 AE counts of background noise 

 

Results for defect simulation 

An AE time trace for an outer race defect is shown in figure 6. Typically, r.m.s values 

increased with increasing load, speed and defect size, see figure 7. In addition, r.m.s 

values increased from inner race defects to outer race defects. The difference in r.m.s 

levels for outer and inner race defects was attributed to attenuation. These results are 

in agreement with published results of several researchers (Yoshioka et al, Tan, 

Choudhury et al, and Tandon et al) and forms the basis from which to investigate the 

influence of threshold levels for AE counts.  
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Figure 6   Typical AE time trace for an outer race; Speed 600rpm, load 0KN 
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Figure 7 r.m.s values for inner and outer race defects as a function of 

load, speed and defect size 

 

Results of AE counts for all defects at varying speeds and loads can be viewed in 

figures 8 and 9. Figure 8 shows a general increase in AE counts for increasing 
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load at 1500rpm irrespective of threshold level and defect size. The same trend 

could be viewed in figure 9 where an increase in AE count with speed and load 

was observed. These observations also applied at speeds of 600 and 3000rpm. 
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Figure 8      Number of AE counts for outer race defects at 1500 rpm 
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Figure 9      Number of AE counts for a ‘large’ outer race defect at varying 

speeds and load conditions 
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Discussion 

Background results clearly indicated a rise in r.m.s values with increasing rotational 

speed. Results from seeded defects indicated than an increase in speed resulted in an 

increase of r.m.s values. In addition, at fixed rotational speeds there was evidence to 

suggest that increasing the load also resulted in an increase of r.m.s. This was 

particularly the case for both ‘small’ and ‘large’ outer race defects. For the inner race 

defect simulation, the same trend was observed for the small defect. However, this 

was not the case for the inner race line defect though there was an increase in r.m.s 

values from 0KN to either 2.4KN or 4.8KN but a decrease in from a load of 2.4KN to 

4.8KN, see figure 8.   
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Figure 10      Number of AE counts for a varying speed and load conditions 

 

It was observed that irrespective of the threshold level, there was an increase in AE 

counts with outer race defect size. The reverse was observed for inner race defects. 

However, irrespective of the defect type, there was a clear relationship between an 
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increase in counts with speed and load for all threshold levels. It must be noted that 

whilst the AE counts associated with background noise increased with operational 

speed, they were still less than all defect conditions, as evident in figure 10. However, 

counts could not distinguish the types of defects. 

 

Conclusion 

The use of AE parameters such as r.m.s and counts has been validated as a robust 

technique for detecting bearing damage. In addition, it has been shown that the 

relationship between bearing mechanical integrity and AE counts is independent of 

the chosen threshold level. Whilst numerous exotic diagnostic techniques such as 

wavelets, higher order statistics, neural networks, etc, could be employed to aid 

diagnosis, all attempts must be made to keep the method of diagnosis simple and 

robust as this is the only way to encourage the adoption of this invaluable technique. 

 

References 

Catlin Jr., J.B., (1983), The Use of Ultrasonic Diagnostic Technique to Detect 

Rolling Element Bearing Defects. Proceedings of Machinery and Vibration 

Monitoring and Analysis Meeting, Vibration Institute, USA, April 1983, pp 

123-130. 

Choudhury, A. and Tandon, N (2000), Application of acoustic emission 

technique for the detection of defects in rolling element bearings, Tribology 

International, 33, pp39-45. 

Mathews, J. R. (1983), Acoustic emission, Gordon and Breach Science Publishers 

Inc., NewYork. ISSN 0730-7152. 



Tribology Transactions, 46 (3), pp. 447-451, 2003 

Olli Yli-Harja, Medial Filters: Extensions, Anaylsis and Design. Lappeenrannan 

Research Papers, Thesis (Doctor of Technology) - Lappeenranta University of 

Technology, Paper 13, 1989. 

Tan, C C (1990), Application of Acoustic Emission to detection of bearing 

failures. In the proc. The Inst of Engineers, Australian Tribology conference, 

Brisbane, Australia, pp 110-114. 

Tandon, N. and Nakra, B.C (1990), Defect Detection of Rolling Element Bearings 

by Acoustic Emission Method, Journal of Acoustic Emission, 1990; 9(1) 25-28. 

Yoshioka T, Fujiwara T, (1982), New acoustic emission source locating 

system for the study of rolling contact fatigue, Wear, 81,1, pp183-186. 

Yoshioka T, Fujiwara T (1984), Application of acoustic emission technique to 

detection of rolling bearing failure, American Society of Mechanical 

Engineers, Production Engineering Division (Publication) PED, 14, pp55-76. 

 


