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Abstract: An increasing amount of wind turbines, especially in Europe, are reaching the end of their
expected lifetimes; therefore, long data sets describing their operation are available for scholars to
analyze the performance trends. On these grounds, the present work is devoted to test case studies
for the evaluation and the interpretation of wind turbine performance decline with age. Two wind
farms were studied, featuring widely employed wind turbine models: the former is composed of
6 Senvion MM92 and the latter of 11 Vestas V52 wind turbines, owned by the ENGIE Italia company.
SCADA data spanning, respectively, 10 and 7 years were analyzed for the two test cases. The effect of
aging on the performance of the test case wind turbines was studied by constructing a data-driven
model of appropriate operation curves, selected depending on the working region. For the Senvion
MM92, we found that it is questionable to talk about performance aging because there is no evident
trend in time: the performance variation year by year is in the order of a few kW and is therefore
irrelevant for practical applications. For the Vestas V52 wind turbines, a much wider variability is
observed: two wind turbines are affected by a remarkable performance drop, after which the behavior
is stable and under-performing with respect to the rest of the wind farm. Particular attention is
devoted to the interpretation of the results: the comparative discussion of the two test cases indicates
that the observed operation curves are compatible with the hypothesis that the worsening with age
of the two under-performing Vestas V52 can be ascribed to the behavior of the hydraulic blade pitch.
Furthermore, for both test cases, it is estimated that the gearbox-aging contributes negligibly to the
performance decline in time.

Keywords: wind energy; wind turbines; technical systems aging; renewable energy; SCADA; data
analysis; performance analysis

1. Introduction

The decline with age of technical system performance is an expected phenomenon [1–3].
In regards to wind turbines, there are no theoretical standards for the expected rate of
performance worsening with age. The only possibility is therefore learning from experience,
which means from data. This has gradually become a more timely problem as a growing
number of wind turbines have been reaching the end of their expected lifetime: actually, for
example, the percentage of wind turbines aged fifteen years or more is in the order of 50%
in some European countries as Germany, Denmark and Spain. The decision between the
options of extending the lifetime of old wind farms or repowering or decommissioning [4]
can be supported by an improvement in the knowledge of how the technical performance
of wind turbines declines in time.

The first studies in the literature regarding the aging of wind turbines are based on
the analysis of cumulative data of a vast number of wind turbines: the general principle is

Sensors 2022, 22, 3180. https://doi.org/10.3390/s22093180 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22093180
https://doi.org/10.3390/s22093180
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-6850-7922
https://doi.org/10.3390/s22093180
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22093180?type=check_update&version=1


Sensors 2022, 22, 3180 2 of 22

attempting a regression between the age and the capacity factor of the analyzed fleet and
inquiring if there is a declining trend.

In [5], the public data of 282 wind farms sited in the UK are analyzed and the result
is that wind turbines decrease their output by 1.6± 0.2% per year, which is a noticeable
amount. A similar approach is proposed in [6] for Swedish wind farms and the achieved
estimate of performance decline with age is lower with respect to [5]. In [7], the cumulative
data of 921 wind farms in Germany, spanning the years 2000–2014, have been analyzed.
This study is representative of a tendency in the studies about wind turbine aging: the
observation that the evolving technology mitigates the performance decline with age. A
relevant observation of the study is that, for the considered fleet, in the year 2000, the
average wind turbine capacity was 611 kW, while it was 1453 kW in the year 2015. The
reported estimate of the average yearly decline rate is 0.63%. In [8], 917 onshore wind farms
in the U.S. have been analyzed in their first ten years of operation. From the achieved results,
similarly to [7], a distinction between older plants and newer plants can be formulated.
Older plants, installed before 2008, are averagely characterized by a production decline
with age in the order of −0.5% per year. For newer plants, online after 2008, a lower decline
rate (−0.17% per year) is observed. In [9], cumulative data of the offshore UK fleet have
been analyzed and the conclusion is that the technical efficiency does not decline with age.
On the other hand, in [10], it is observed that the wind turbine fleet in Texas (the largest
in the U.S.) has been undergoing performance decline with age and the interpretation is
that the path of decline is quite flat for the first years of wind farm operation, but then
accelerates as the facilities age. It would be very interesting to inquire if this path occurs
irrespective of the evolving technology or not; reasonably, this issue will be addressed in
the upcoming few years. In [11], the worsening performance of wind turbines is observed
by another point of view, which is the mismatch between the observed annual energy
production in Sweden and the estimate formulated in the wind farm design phase.

The above-cited studies employ gross information (cumulative data) from a vast num-
ber of wind turbines, in order to highlight statistically meaningful trends. The advantage of
this kind of approach is the statistical robustness; the disadvantage is the lack of control on
the interpretation of the performance decline with age. In order to individuate actions for
counteracting wind turbine aging and improve the prognosis [12], it is therefore necessary
to develop methods based on detailed information (SCADA data) [13]. The first efforts are
therefore necessarily concentrated on a reduced number of wind turbines (even one): the
objective is a deeper interpretation of how the aging of wind turbines manifests [14].

In [15], the power curve analysis based on International Electrotechnical Commission
guidelines has been pursued in order to inquire about the performance degradation rate of
wind turbines sited inland and seaside; the estimates are shown to be sensibly different
(0.1% against 0.3% average decline of the capacity factor). In [16], criteria are proposed
for the estimation of wind turbine aging basing on operation data. There is a substantial
agreement in the literature about the fact that wind turbine aging is expected to manifest as
a power coefficient decrease, sub-component temperatures and a nacelle vibration increase.
The studies in [17–19] deal with the Vestas V52 wind turbine (which is also investigated
in this study); in particular, for one considered test case sited at the Dundalk Institute
of Technology, a remarkable performance decline with age is observed in the form of
diminished extracted power for the given generator speed. In [20], LiDAR and SCADA
data have been employed for the analysis of the performance aging of three Mitsubishi
MWT-1000A, having 1 MW of rated power, and the rate of deterioration has been estimated
to be −0.52% per year. In [21], a SCADA data analysis is devoted to the formulation of
indicators for the aging of the blade pitch system of wind turbines, which are conceptually
similar to those in [16]: this kind of study is particularly promising because, as will be
highlighted in the present study, the blade pitch is a critical component of the machines.

Contribution to the Knowledge

The goal of this research is to assess the deterioration in wind turbine performance
with age for various technologies and to provide a relevant interpretation for the observed
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occurrences. This research is a partnership between academia and industry and is based on
a discussion of two test cases with widely used wind turbine models: 6 Senvion MM92 in
WF1 and 11 Vestas V52 in WF2. These test cases were chosen because the wind turbines
in WF1 have a rated power of 2 MW and use electrical pitch control, whereas the wind
turbines in WF2 have a rated power of 850 kW and use hydraulic pitch control: thus, these
two case studies belong to different wind turbine technologies (in terms of age, size and
control) and it can be instructive to compare performance degradation trends. In order to
assess the average annual rate of performance degradation with age, dedicated approaches
for the analysis of long-term SCADA data were used.

Furthermore, by employing appropriate techniques based on operation curves analy-
sis [18] and wisely interpreting the comparative test case analysis in light of the principles
of wind turbine control, it is possible to individuate the sub-components mostly related to
the observed performance decline with age.

A remarkable methodological innovation of this study is that the operation region of
full aerodynamic load (variable rotational speed and practically fixed blade pitch) has been
investigated in depth, with respect to the state-of-the-art in the literature. This study has
also inquired to what extent the performance analysis can be pursued through a univariate
approach based on the relation between the sole rotational speed and the power.

The following are the main novel aspects of this study:

• In a broad sense, the approach to quantifying wind turbine performance decline with
age based on SCADA data analysis;

• The discussion about the meaning of wind turbine performance decline with age,
given that, as discussed in Section 4, the collected results indicate that it is questionable
to pose that efficiency declines at a certain rate per year and that the degradation
behavior occurs homogeneously for the various wind turbines;

• The interpretation of the observed phenomena in relation to the wind turbine technology
rather than to the size of the machine (as is mostly presented in the literature);

• The observation that the hydraulic pitch is a critical component, whose health state should
be cautiously monitored, because it is likely connected to the performance degradation.

The structure of the manuscript is as follows: at first, the test case and the data sets
are briefly described in Section 2; subsequently, the methods are discussed in Section 3; the
results are summarized in Section 4; conclusions and further directions are provided in
Section 5.

2. Test Cases and Data Sets

WF1 is composed of 6 Senvion MM92 wind turbine and WF2 of 11 Vestas V52 wind
turbines. These test cases have been selected because the featured wind turbine models
are employed worldwide and are therefore representative of 2 MW and <1 MW wind
turbines. WF1 and WF2 have been operating respectively since April 2010 and September
2007. Furthermore, another qualifying difference between WF1 and WF2, which motivates
the selection of these two test cases, is that in WF1 the wind turbines have electrical pitch
control, while in WF2 the pitch control is hydraulic. It should be noticed that WF1 and WF2
employ doubly fed induction generators of the same main manufacturers, which are not
reported here for confidentiality issues. The blades of WF1 and WF2 have been inspected
periodically by the wind turbine manufacturer. It should be noticed that WF1 has been
considered as a test case also in [13] (indicated as WF2 in that study): it has also been
selected for this study because it is the test case with electric pitch control for which the
authors have at disposal the longest data set.

The available data sets and the main features of the test cases are indicated in Table 1.
The data have been divided into yearly packets. Notice that for WF1, we are practically
dealing with the first ten years of operation, while the data set for WF2 corresponds to ages
seven to fourteen.
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Table 1. The available data sets and the test cases.

Wind Farm Start End Rotor Diam. (m.) Rated Power (kW) Pitch Control

WF1 1st Jan ’11 31th Dec ’20 92 2000 Electrical
WF2 1st Jan ’14 31th Dec ’20 52 850 Hydraulic

The measurements at disposal have 10 min of averaging time, as typical in SCADA
data analysis, and are:

• Wind speed v measured at the nacelle of each wind turbine [m/s];
• Active power P [kW];
• Rotor speed ω [rpm];
• Generator speed Ω [rpm];
• Blade pitch β [◦];
• Run time counter [s].

For each wind turbine, the data are filtered on normal operation by requesting the run
time counter to be 600 s out of 600.

In order to take into account as much as possible the effect of environmental conditions,
it is recommended to renormalize the nacelle wind speed v by considering the effect of air
density as indicated in Equations (1) and (2):

vc = v

(
ρ

ρre f

) 1
3

(1)

ρ = ρre f
Tre f

Tamb
(2)

where vc is the corrected wind speed, v is the estimate of undisturbed wind speed pro-
vided by the wind turbine nacelle anemometer, ρ is the air density measured on site,
ρre f = 1.225 kg/m3 is the air density in standard conditions, Tre f is the absolute temper-
ature in standard conditions (288.15 K) and Tamb is the absolute ambient temperature
measured on site. Nevertheless, it should be noticed that, also upon renormalization, the
measurements from the cup anemometers are affected by critical points [22]: in order to
circumvent them as much as possible and to strengthen the consistency of the present
analysis, the wind speed measurements are employed only for data filtering in order to
discriminate between the operation regions of the wind turbines, as discussed in Section 3.

3. Methods
3.1. Operation Curves Analysis

The method is inspired by the analysis in [13,18], which takes into account the prin-
ciples of the functioning of the wind turbine control. When the wind speed is moderate
(approximately 5 ≤ v ≤ 9 m/s), the wind turbine operates at the highest aerodynamic
efficiency by regulating the rotational speed and keeping the blade pitch substantially fixed.
When the wind speed increases (approximately 9 ≤ v ≤ 13 m/s), the wind turbine operates
in partial aerodynamic load, by regulating the blade pitch and keeping the rated rotational
speed fixed. In this regard, a nomenclature for the operation regions is introduced in
Table 2. This behavior can be appreciated from Figures 1–4 for WF1 and WF2. It should be
noticed that the features of these figures support the selection of the test cases of the present
study. Actually, the behaviors of WF1 and WF2 are similar but display slight differences:
the electric blade pitch of WF1 (Figure 3) has less variability with respect to the hydraulic
blade pitch of WF2 (Figure 4), in particular, in the full aerodynamic load regime; this in
turn is related also to the control of the rotational speed.

Furthermore, as a general motivation for the approach of this study, it should be
noticed that the use of the wind turbine cup anemometer data has noticeable critical points
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(as discussed for example in [22]) and it is therefore valuable to estimate the performance
without necessarily using the wind speed measurement.
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Figure 1. A sample scatter and binned wind speed—rotor speed curve for WF1.
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Figure 2. A sample scatter and binned wind speed—rotor speed curve for WF2.
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Figure 3. A sample scatter and binned wind speed–blade pitch curve for WF1.
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Figure 4. A sample scatter and binned wind speed–blade pitch curve for WF2.

Table 2. Wind turbine operation regions considered in this work.

Region Regime

2 5 ≤ v ≤ 9 m/s
21/2 9 ≤ v ≤ 13 m/s

It should be noticed that the reasoning above is an approximation, because for example,
the blade pitch is regulated as well in Region 2 through minor adjustments that keep the
wind turbine in the optimal working region. Nevertheless, it is a reasonable approximation
that is cited as well in the international standards. For this reason, it is more practical to
qualitatively observe the trend of wind turbine behavior by employing curves in a plane,
which are rotational speed–power in Region 2 and blade pitch–power in Region 2 1/2. The
visualization of these curves can provide a qualitative indication of a trend but, in order
to obtain a quantitative estimate of the aging, a model is needed, as is discussed in the
following Section 3.2.

The usefulness of having at hand a model such as the one described in Section 3.2 is
that it can be easily generalized to be multivariate; thus, the above considerations regarding
the blade pitch and rotor speed control in relation to the power can be explored more
in depth.

3.2. Support Vector Regression

The principles of the support vector regression are detailed here for completeness:
the experienced reader can skip this part. It is instructive to start from a linear model as
detailed in Equation (3):

f (X) = Xβ + b, (3)

where X is the matrix of regressors, β is the vector of regression coefficients and b is the
intercept vector. The objective is to find f (X) with the minimum norm value β′β subject to
the condition that the residuals between the measurement Y and the model estimate f (X)
are lower than a threshold ε for each n-th observation (Equation (12)):

|Yn − Xnβ + bn| ≤ ε (4)

The support vector regression is therefore a constrained optimization problem, which
can conveniently be rephrased in terms of Lagrange multipliers. The function to minimize
is L(α), given in Equation (5):

L(α) =
1
2

N

∑
i=1

N

∑
j=1

(αi − α∗i )
(

αj − α∗j

)
X ′i Xj + ε

N

∑
i=1

(αi + α∗i ) +
N

∑
i=1

Yi(α
∗
i − αi), (5)



Sensors 2022, 22, 3180 7 of 22

with the constraints (Equation (6)) on the coefficient α and α∗ of the regression:

N

∑
n=1

(αn − α∗n) = 0

0 ≤ αn ≤ C

0 ≤ α∗n ≤ C,

(6)

where C is the box constraint.
The solution for the β coefficients is given in Equation (7):

β =
N

∑
n=1

(αn − α∗n)Xn. (7)

If either αn or α∗n is non-vanishing, the corresponding observation (row of the X matrix)
is called a support vector (hence the name of the regression).

Once a model has been trained on a data set composed of input variables X and output
Y, it can be used for predicting new values, given a new input variables matrix X ′, as
indicated in Equation (8):

f (X) =
N

∑
n=1

(αn − α∗n)X ′
nX + b. (8)

A non-linear support vector regression is obtained by replacing the scalar products
between the observations matrix with a kernel function (Equation (9)):

G(X1, X2) = 〈ϕ(X1)ϕ(X2)〉, (9)

where ϕ is the transformation mapping of the X observations into the feature space.
A Gaussian kernel selection is given in Equation (10), where κ is the kernel scale:

G
(
Xi, Xj

)
= e−κ‖Xi−Xj‖2

. (10)

Equation (8) allows for predicting new values, given the input, and is rewritten as
seen in Equation (11):

f (X) =
N

∑
n=1

(αn − α∗n)G(Xn, X) + b. (11)

The selection of the support vector regression as the model type is supported by the
detailed comparative analysis reported in the previous works [13,23], where appropriate
statistical measures are discussed.

3.3. Aging Estimate

The regression described in Section 3.2 can be considered a replica of the behavior of
the selected wind turbines. The general rationale for employing a similar computational
tool is given by the fact that the aging of the wind turbine (or in general a performance
change) has to be quantified as the difference between the power measured in a given period
and an estimate of how much power the wind turbine would have produced if it behaved,
for the same conditions, as in a reference period. Given the fact that wind turbines operate
under non-stationary conditions, the latter quantity has to be learned from the reference
data; this is the reason why machine learning methods are particularly appropriate.

The data-driven model was employed in this study for the quantitative estimate of the
wind turbine performance decline with age through the following steps:

• Select a target data set, i.e., the year of interest;
• Select as reference data set, the year previous to the target;
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• Divide the reference data set into a fraction for training (D0) and a fraction for testing
(D1). Reasonable proportions are 2

3 and 1
3 ;

• Use D0 for training the model by feeding the input variables and the output to the SVR;
• Use the model (trained as above indicated) for predicting the output in the D1 and D2

data sets by feeding the input to the regression and employing Equation (11);
• Compute the residuals between measurements and model estimates for data sets D1

and D2 (indicated as R1 and R2);
• Compare R1 and R2 statistically.

The above steps are general and can be applied to whatever model structure and input
variable selection, provided that the output of the regression is the power of the wind
turbine of interest. For the objectives of this study, the operation regions were separated as
indicated in Table 2 and consequent operation curve selection was performed. The input
variables and the target of the regressions are therefore indicated in Table 3 for, respectively,
the rotor speed–power, the generator speed–power and the blade pitch–power curves.
Furthermore, based on the considerations in Section 3.1, the regression can be generalized
to be multivariate: the slight regulation of the blade pitch that is also activated in Region 2
can be taken into account by including the blade pitch as an additional input variable to the
model. This line of reasoning could be further generalized by including other covariates
that are considered of interest for the analysis of the aging, such as temperature or vibration.

Table 3. Structure of the SVR regressions for each operation curve.

Region Curve Input Output

2 Generator speed–Power Ω Power P
2 Rotor speed–Power ω Power P
2 Generator speed & Blade Pitch–Power Ω & β Power P
2 Rotor speed & Blade Pitch–Power ω & β Power P

2 1/2 Blade pitch–Power β Power P

The comparison between the residuals R1 and R2 and the consequent estimation of
aging is as follows [24]. Consider Equation (12) with i = 1, 2.

Ri(Xi) = Y(Xi)− f (Xi). (12)

For i = 1, 2, one computes (Equation (13))

∆i = 100
∑X∈Datai

(Y(X)− f (X))

∑X∈Datai
Y(X)

(13)

and the quantity in Equation (14)
∆ = ∆2 − ∆1 (14)

provides an estimate of the performance deviation from data set D1 to D2.
It should be noticed that the above method splits the performance analysis in the two

main operation regions below the rated power: this is performed because the effect of
performance degradation is visible only below rated power. Nevertheless, and also in light
of a clearer comparison against other types of results in the literature, it can be interesting
to formulate a metric for the performance loss in units of annual energy production (which
includes production at rated power). Indicating with E the total production for a given year,
with EReg the total production for a given year in the selected region (2 or 2 1/2) and with
∆ the corresponding aging estimate for a given year, it is possible to write Equation (15)
for ∆Reg:

∆Reg =
∆ · EReg

E
. (15)
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where, therefore, ∆Reg is the average energy yield loss in the region of interest (2 or 2 1/2)
in proportion to the overall energy yield of the wind turbine in the year. Finally, for each
wind turbine, the obtained estimates of ∆Reg can be averaged on all the yearly data sets at
disposal, in order to obtain the average yearly decline rate for each working region.

3.4. Interpretation of the Role of the Sub-components

The interpretation of the behavior of the test cases in terms of the sub-components is
the most critical and innovative aspect of the present study. The considerations drawn in
Section 4 arise from the combination of several analyses:

• The data-driven results about the aging estimate;
• The comparative test case analysis;
• The principles of wind turbine control.

Regarding the data-driven analysis, the regressions indicated in Table 3 provide, in
Region 2, two estimates of ∆ (Equation (14)) for each target data set, which can be indicated,
respectively, as ∆g and ∆r. It is worth discussing the difference between them: given two
data sets (reference and target), ∆g quantifies the average difference in how much power
is extracted for a given generator speed. It is reasonable to perform a simplified position:
that the amount of power extracted for a given generator speed depends primarily on the
working point of the machine (which depends on the blade pitch), on the efficiency of the
generator and on the power conversion for feeding into the grid. Similarly, it can be posed
that the amount of power extracted for a given rotor speed depends on the working point
of the machine, on the efficiency of the main components placed after the rotor, which are
the gearbox and the generator, and on the power conversion. It is therefore reasonable as
well to pose Equation (16):

∆r = ∆g + ∆gear, (16)

where ∆gear is the estimate of the aging effect due to gearbox, which can be evaluated by the
difference from Equation (16). Notice that a further estimate of ∆g and ∆r is obtained from
the multivariate models, which also include the blade pitch and are indicated in Table 3:
these are labeled as ∆gp and ∆rp, respectively; it is interesting to compare them against ∆g
and ∆r and inquire as to whether they are compatible.

In Region 2 1/2, instead, only one estimate of aging is obtained, which can be indicated
as ∆p because the unique varying operation variable is the blade pitch. Based on reasoning
similar to [25], it is likely that ∆p is as well related to ∆gear, because the efficiency of the
gearbox affects the power output especially for moderate–high wind speeds. Nevertheless,
it should be taken into account that the behavior of the blade pitch is critical in Region 2 1/2

and in general in that region, as the gearbox substantially operates at the rated speed: thus,
it is non-trivial to estimate how ∆p and ∆gear are related.

The above considerations, as is discussed in detail in Section 4, can be drawn similarly
for all the considered test cases and the achieved results are expected to be quite general.

The critical role of the hydraulic blade pitch can be comprehended by comparing the
achieved results for the data-driven regressions and for the operation curve analysis. The
comparison can be pursued in general between the wind farms, in order to highlight if
regular behaviors occur and can be associated with the features of the employed technology,
and at the level of a single wind farm, in order to highlight how the under-performance is
related to the main operation variables.

The principles of wind turbine control [26] are taken into account in order to properly
interpret the above comparison. As discussed in detail in relation to the results collected in
Section 4, the reverse engineering based on SCADA data analysis is particularly appropriate
in order to quantify the consequences of a given behavior but is more critical to apply for
individuating its root causes. Nevertheless, SCADA data are available at zero additional
cost to wind turbine owners and managers and their optimal exploitation can be very
useful in order to address possible further measurement campaigns, which can corroborate
the malfunctioning diagnosis. Furthermore, as discussed in detail in Section 4, the observed
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behavior is compatible with the degradation of the blade pitch rate as discussed in [26] and
the comparative test case analysis helps in corroborating this hypothesis.

3.5. Justification of the Use of the Support Vector Regression

The selection of the SVR regression has been based on previous studies by the au-
thors [13,27], where it has been observed that it is appropriate for the application to wind
turbine operation curves, and on a verification for the test cases of interest, which is sum-
marized here on. Other types of approaches are conceivable, but it should be noticed that,
given the above general considerations, typically non-trivial statistical methods are, in
general, required: for example, in [28], the covariate matching approach is employed for
space–time performance comparison of wind turbines.

In the following, the most common error metrics (mean error ME, mean absolute
error MAE, root mean square error RMSE) are reported for the regression testing on a
sample yearly data set for WF1. Two thirds of the data are employed for training and one
third is used for testing and error metrics evaluation. In relation to Table 3, in Table 4, the
error metrics are reported for the rotor speed–power regression in Region 2 and Table 5 is
devoted to the blade pitch–power regression in Region 2 1/2. Several regression types are
compared, which are:

• Support vector regression with Gaussian or polynomial kernel;
• Gaussian process regression;
• Polynomial regression (third order);
• Regression ensemble based on 100 regression trees using least-squares boosting;
• Regression ensemble based on 100 regression trees using bagging;
• Feedforward neural network.

It is out of the scope of the present study to report details about each of the above
regressions: the interested reader might consult textbooks.

Table 4. Error metrics for testing of different model types for the rotor speed–power regression in
Region 2: WF1, average of the wind farm.

Model ME (kW) MAE (kW) RMSE (kW)

SVR Gaussian −1.4 23.6 34.5

SVR Polynomial −2.3 29.6 48.8

SVR Linear 14.5 53.7 70.2

Gaussian Process 2.1 24.6 36.5

Polynomial 3.7 35.6 53.4

Ensemble LS −2.3 25.1 37.1

Ensemble Bag −1.9 24.7 36.5

Feedforward ANN −1.6 23.9 35.7
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Table 5. Error metrics for testing of different model types for the blade pitch–power regression in
Region 2 1/2: WF1, average of the wind farm.

Model ME (kW) MAE (kW) RMSE (kW)

SVR Gaussian −2.5 54.6 78.3

SVR Polynomial −5.6 72.4 94.6

SVR Linear 22.6 103.7 137.2

Gaussian Process 4.8 58.6 76.5

Polynomial 14.7 86.6 101.7

Ensemble LS −2.8 63.2 79.3

Ensemble Bag 4.2 69.1 81.5

Feedforward ANN −2.6 57.2 77.4

From Tables 4 and 5, it can be seen that the support vector regression with Gaussian
kernel has the lowest error metrics and thus has been selected for this study. The SVR
linear or the polynomial both provide error metrics that are considerably higher and, for
this reason, these kinds of models are considered too simple for the scope of a precision
wind turbine performance analysis and are not employed typically in the literature. It
should be noticed that the other selected benchmarks have error metrics in the order of
those achieved with the SVR with Gaussian kernel: this is expected and reasonable, because
they are non-trivial models. Similar results have been obtained for WF2 and are omitted
for brevity.

4. Results
4.1. WF1

In Figures 5 and 6, the trend of the rotor speed–power curve and blade pitch–power
curve are appreciable for a sample wind turbine from WF1. The error bars reported
in the plots are the standard deviations of the measurements that fall into each bin. It
can be seen that most parts of the curves represented in the differences between the
rotor curves are negative, which indicates that there is a slight performance decline with
respect to the earliest data set. Nevertheless, a clear trend of decline with age does not
arise and the reported standard deviation bars indicate that the curves could likely be
considered compatible.
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Figure 5. A sample binned rotor speed–power curve in Region 2 for WF1: the curves are reported in
the form of difference with respect to the year 2011.
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Figure 6. A sample binned blade pitch–power curve in Region 2 1/2 for WF1: the curves are reported
in the form of difference with respect to the year 2011.

The above considerations can be translated in quantitative estimates using the methods
of Sections 3.2 and 3.3, from which the results in Table 6 are obtained for the energy yield
decline with age ∆̄Reg, averaged on all the data sets at disposal. The first and second
columns of Table 6 correspond, respectively, to the estimate labeled ∆g and ∆r in Section 3.3:
by difference, using Equation (16), it can be argued that the behavior of the gearbox provides
a negligible contribution to the performance of the wind turbine. From Table 6, it also
arises that the estimates computed with the multivariate regression in Region 2 (thus also
including the blade pitch) are practically indistinguishable with respect to those that are
based only on the relation between rotational speed and power. By averaging the obtained
rates on ten years, the estimates are those reported in Table 6, which noticeably agree with
the claims in [8] (−0.17% of decline per year), but would not agree if considering a subset
of those 10 years. The lesson coming from SCADA analysis is therefore that cumulative
data might yield misleading perceptions of aging and should be treated cautiously.

Table 6. Estimates of the average percentage energy yield decline with age for the considered
working region and operation curves: WF1. ∆g and ∆gp (respectively, ∆r and ∆rp) quantify the
average percentage energy yield change due to the decrease in extracted power for a given generator
(respectively rotor) speed in Region 2; ∆p quantifies the same quantity as a function of the blade pitch
in Region 2 1/2. The metrics are computed according to Equation (15).

Wind Turbine ∆g ∆r ∆gp ∆rp ∆p

T1 −0.1 −0.1 0.0 0.0 0.06

T2 −0.1 −0.1 0.0 0.0 0.07

T3 −0.2 −0.2 −0.3 −0.3 −0.07

T4 −0.1 −0.1 0.0 0.0 0.05

T5 −0.2 −0.2 −0.2 −0.2 0.02

T6 −0.3 −0.3 −0.3 −0.3 −0.03

Average −0.15 −0.15 −0.14 −0.14 0.002

Std Dev 0.1 0.1 0.15 0.15 0.002

4.2. WF2

In regards to WF2, the general picture of the performance trend with age is much more
complex than in WF1. In order to appreciate this, in Figures 7 and 8, the average power
curves (computed with the binning method) are reported for the years 2014 and 2020. It
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arises that T01 was one of the best-performing wind turbines in 2014, while it is the second
worst in 2020. Similarly, T05 was in the average of the wind farm in 2014 and it is the worst
performing in 2020. According to the line of reasoning in [29], the comprehension of these
wind turbines should be prioritized in order to improve the energy yield of the wind farm.
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Figure 7. Average power curves for the year 2014: WF2.
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Figure 8. Average power curves for the year 2020: WF2.

Based on the above considerations, in Figures 9 and 10, the trend of the generator
speed–power and blade pitch–power curves are reported for T01. Similarly to the case
of WF1, indicative error bars are plotted, which are the standard deviations of the power
measurements for each rotational speed or blade pitch bin. It arises that the amount of
extracted power for a given rotational speed progressively diminished in 2015 and 2016 for
T01 and the curves for the year 2017 and subsequent are not compatible with the 2015 curve
because the reported error bars do not overlap. An abrupt decline is observed in 2016 and
the performance keeps stable from there on. Similar considerations apply to Region 2 1/2,
despite being less in proportion to the performance decrease weights. The same kind of
curves are reported in Figures 11 and 12 for T02, from which it arises that the differences in
time are only very few kWs and therefore negligible (appreciate the different scale with
respect to Figures 9 and 10).

The findings in Figures 9 and 10 raise the question of how to understand what we
mean when we say wind turbine aging and what causes it. The behavior of the curves for
T01, in particular for the years 2016 and 2017, led to the suspicion that an event occurred in
2016, after which the curves changed and were considerably steady. The so-called Cp − λ
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curve, which represents the power coefficient Cp as a function of the tip speed ratio λ, is
theoretically comparable to Figure 9. The power coefficient is given in Equation (17)

Cp =
P

1
2 ρAv3

(17)

and in practice it is the ratio between the extracted power P and the mechanical power of
the wind flow passing through the rotor of area A; ρ is the air density and v is the wind
intensity. The tip–speed ratio λ is defined in Equation (18):

λ =
ωR
v

(18)

and is the ratio between the tangential velocity of a point at the tip of the blade (given by
the product between rotational speed ω and rotor radius R) and the wind intensity v.

A decreased extracted power for a given rotational speed (as visible from Figure 9)
is equivalent to a decreased power coefficient Cp for a given tip–speed ratio λ. Based
on the principles of wind turbine functioning, a Cp − λ curve, which operates at a less-
than-optimal working point is achieved by pitching the blades [26]. As discussed in
detail in [26], this kind of behavior is compatible with a degradation of the pitch rate
control or with a design problem related to the power converter. The latter hypothesis is
implausible and has been excluded by the wind turbine manufacturer. Furthermore, the
former hypothesis is also corroborated by the comparative test case analysis, because the
electrical and hydraulic pitch control have different rates by construction and the latter is
more subjected to degradation (being mechanical), while the technology of the converter of
WF1 and WF2 is the same.

In fact, coherently with this interpretation, it should also be noticed that the behavior of
the blade pitch visibly changes in time for wind turbine T01 (Figure 10) , which is different
with respect to what happens for T02. In general, it is difficult to use SCADA data analysis
for individuating the root cause of a behavior change: in other words, one might ask if a
decrease in the power extracted for given rotational speed is the cause of the performance
decline or is the consequence of some other problem. The line of reasoning proposed in
this study, based on the comparison of multiple test cases with different technology and on
the principles of wind turbine control, suggests that in general it is advisable to interpret
the data coherently because this can provide meaningful information. In particular, there
are two clues regarding the behavior of T01:

• The comparison against WF1 and against the other wind turbines in WF2;
• The behavior of the blade pitch.

WF1 wind turbines use electric pitch control, but WF2 wind turbines have hydraulic
pitch control. Figure 5 compared to Figure 9 is likely related not just to the fact that WF1s
wind turbines are newer, but also to the fact that electric pitch control is more efficient
(at the cost of a larger failure probability) than hydraulic pitch control (lower failure rate
against higher efficiency degradation in time). Figures 13 and 14 illustrate the binned
wind speed–blade pitch curves for T01 and T02 in the form of a difference between the
curves, which supports this conclusion. Similarly, Figures 15 and 16 report the binned rotor
speed–blade pitch curves for T01 and T02 and it arises that they have different shapes and
different variability in time. It arises that the curves of T02 change in time considerably less
than those of T01, for which instead a sort of shift in the blade pitch settings is observable
in 2016 and subsequently since 2017 in a stable manner (as can be seen also from Figure 17).
The behavior in Region 2 (according to the nomenclature in Table 2) is particularly worth
noticing: in that operation region, the blade pitch on average is held practically fixed.
Comparing the year 2015 to the years 2017 and there on, it looks as if the reference blade
pitch in Region 2 has undergone at first a major shift and subsequently a further slight drift
(see 2018 against 2020). To the best of the authors’ knowledge, such difference in behavior
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is not due to a different control of T01 with respect to T02: therefore, it is suspected that
T01 has undergone a degradation.

A deeper investigation of the SCADA data poses issues also on the time dynamics of
the behavior change: in Figure 18, the generator speed–power curve is reported for T01 for
the year 2016, upon dividing the data set in 10 sub-periods. Regarding the year 2016, Sub-
Period 1 is characterized by the best performance, Sub-Periods 3 and 4 are slightly lower
than 1 and 2 and Sub-Period 5 is the bridge with the subsequent periods characterized by
worst performance. Based on this observation, the residuals between power measurements
of the year 2016 and model estimates (based on the training with the data from the year
2015) have been reported in Figure 19: a moving average composed of 200 data has been
employed, in order to smooth the fluctuations. From this figure, it arises that in year 2016,
the performance has been degrading progressively and, at a certain point, an abrupt decline
occurred, after which the performance has been substantially stable.
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Figure 9. Binned generator speed–power curve in Region 2 for T01 in WF2: the curves are reported
in the form of difference with respect to the year 2014.
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Figure 10. Binned blade pitch–power (right) in Region 2 1/2 for T01 in WF2: the curves are reported
in the form of difference with respect to the year 2014.
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Figure 11. Binned generator speed–power curve in Region 2 for T02 in WF2: the curves are reported
in the form of difference with respect to the year 2014.
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Figure 12. Binned blade pitch–power (right) in Region 2 1/2 for T02 in WF2: the curves are reported
in the form of difference with respect to the year 2014.
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Figure 13. Binned wind speed–blade pitch curve for T01 in WF2: the curves are reported in the form
of difference with respect to the year 2014.
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Figure 14. Binned wind speed–blade pitch curve for T02 in WF2: the curves are reported in the form
of difference with respect to the year 2014.

17 18 19 20 21 22 23 24 25

Rotor speed (rpm)

-0.15

-0.1

-0.05

0

0.05

0.1

B
la

d
e
 P

it
c
h
 d

if
fe

re
n
c
e
 (

°
)

T01

2015

2016

2017

2018

2019

2020

Figure 15. Binned rotor speed–blade pitch curve for T01 in WF2: the curves are reported in the form
of difference with respect to the year 2014.

17 18 19 20 21 22 23 24 25

Rotor speed (rpm)

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

B
la

d
e
 P

it
c
h
 d

if
fe

re
n
c
e
 (

°
)

T02

2015

2016

2017

2018

2019

2020

Figure 16. Binned rotor speed–blade pitch curve for T02 in WF2: the curves are reported in the form
of difference with respect to the year 2014.
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Figure 17. Average blade pitch in region for T01 and T02.
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Figure 18. The generator speed–power curve in Region 2 for the T01 wind turbine in WF2 during
2016 (left): data have been divided into 10 sub-periods.
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Figure 19. Residual between measurements and model estimates for T01 in WF2 for the year 2016 in
Region 2, after being averaged for every 200 datapoints.

The results for the yearly energy yield decline with age, averaged on all the data sets,
are reported in Table 7. Remarkable differences between the wind turbines are evident:
T01 and T05 are affected by a severe worsening, T03 by a moderate worsening and the
other wind turbines substantially, on average, do not change their performance in time. A
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noticeable result arising from Table 7 is that the ∆g and ∆r are indistinguishable, which
means, according to Equation (16), that the contribution of the gearbox to the wind turbine
performance decline is negligible, in line with what was observed for WF1. Similarly to
what happens also for WF1, the estimates of performance decline with age based on the
multivariate regression, which means that the blade pitch is indistinguishable with respect
to those based on the relation solely between the rotational speed and the power.

Table 7. Estimates of the average percentage energy yield decline with age for the considered
working region and operation curves: WF2. ∆g and ∆gp (respectively, ∆r and ∆rp) quantify the
average percentage energy yield change due to the decrease in extracted power for given generator
(respectively, rotor) speed in Region 2; ∆p quantifies the same quantity as a function of the blade
pitch in Region 2 1/2. The metrics are computed according to Equation (15).

Wind Turbine ∆g ∆r ∆gp ∆rp ∆p

T01 −1.3 −1.3 −1.3 −1.3 −0.5

T02 0.0 0.0 0.0 0.0 0.0

T03 −0.5 −0.5 −0.5 −0.5 −0.2

T04 0.0 0.0 0.0 0.0 −0.1

T05 −0.8 −0.8 −0.8 −0.8 −0.6

T06 −0.2 −0.2 −0.2 −0.2 −0.1

T07 0.1 0.1 0.1 0.1 −0.1

T08 0.0 0.0 0.0 0.0 −0.1

T09 0.0 0.0 0.0 0.0 −0.1

T10 0.1 0.1 0.1 0.1 −0.1

T11 0.0 0.0 0.0 0.0 −0.1

Average −0.2 −0.2 −0.2 −0.2 −0.2

Std. Dev 0.4 0.4 0.4 0.4 0.2

5. Conclusions

The present study has dealt with the development of SCADA data analysis techniques
for the long-term investigation of wind turbine performance and for its interpretation. The
objective has been to inquire whether it is possible to individuate clear aging trends and
has been motivated by the fact that recent studies in the literature, based on cumulative
data analysis, report average yearly rates (order of −0.5% for older wind turbines, −0.2%
for newer wind turbines).

Before discussing the main findings of this study, a methodological aspect is worth
noting. Based on the principles of wind turbine control, the data analysis has been divided
into two regions: the former (called Region 2) is characterized by a practically fixed blade
pitch and varying rotational speed; the latter (called Region 2 1/2) by rated rotational speed
and varying blade pitch. In this work, it has been observed that, for the sake of perfor-
mance analysis, it is definitely acceptable to reduce the relation between rotational speed
and power in Region 2. The blade pitch is not exactly fixed in Region 2 but undergoes
minor adjustments which maintain the wind turbine in the optimal working point. Nev-
ertheless, in this study, it has been shown that the results of the performance analysis are
indistinguishable if one considers the data-driven relation between power (output) and
rotational speed and blade pitch (input) or power (output) and rotational speed (input).
Evidently, this conclusion is strictly related to the objective, which in this case is long-term
performance analysis, and to the type of available data, which in this case are SCADA
averaged on a ten minute basis. Other objectives, for example, fault diagnosis, require us
to dig more in depth into the dynamic behavior of the machine and therefore the above
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drawn conclusion would likely be simplistic and the type of data employed in this study
would likely be non-optimal.

The results achieved in this study indicate that it is questionable to characterize the
performance of wind turbines through average annual yearly decline rates. This conclusion
has been developed through the study of two test cases: the former features six Senvion
MM92 wind turbines and the latter eleven Vestas V52; respectively, ten and seven years of
data have been analyzed.

For the former test case, the observed performance variations are very small and have
negligible practical interest. Most of all, there is no clear trend from one year to another.

In regards to the latter test case (Vestas V52 wind turbines), the performance scenario
in the wind farm is complex. Most wind turbines are characterized, similarly to the former
case, by negligible performance deviations in time. Two wind turbines are instead affected
by a performance worsening, which is most clearly visible as diminished extracted power
for given rotational speed, whose root cause is critical to determine. The line of reasoning of
Section 4 has been formulated based on SCADA-collected evidence, comparative test case
analysis and principles of wind turbine control and supports that the observed behavior
is compatible with a degradation of the hydraulic blade pitch control: a shift is visible in
the wind speed–blade pitch curve also in the operation region where the blade pitch on
average is held practically fixed. This should correspond to a less-than-optimal working
point, where the Cp − λ curve is less efficient, which means less extracted power for
given rotational speed. As discussed in [26], the capability of controlling the aerodynamic
power of a wind turbine is limited by the pitch rate, while the capability of controlling
the generator output is limited by the voltage and current rating of the power converter.
With a slow pitch rate, additional electrical load may have to be introduced to help slow
down or to stall the wind turbine and this results in decreased efficiency. In light of this,
the comparative test case analysis selected for this work is particularly instructive because
the rate of electrical and hydraulic pitch systems are likely to degrade differently. Given the
information available in the SCADA control system of the Vestas V52 wind turbines, the
consequences of wind turbine aging are clearly visible but it is more difficult to individuate
the causes. Anyway, in general, the aging of the blade pitch system is a very important topic
to investigate, as supported by the results in [21], dealing with the relation between blade
pitch and wind turbine extracted power, pitch motor efficiency, overheating and vibrations.
By this point of view, a fundamental further direction of the present study is the analysis
of newer wind turbines with hydraulic pitch control, because it is likely that the SCADA
control system provides more measurement channels (as blade piston pressures), which
are useful for appreciating a degradation of the pitch rate and an increased stall of the wind
turbine. The results of this study therefore support that the efforts for counteracting wind
turbine performance decline should be focused on the rotor, through inspections of blade
pitch and mass balance, blade pitch actuators degradation and yaw alignment to the wind
direction [30].

The average estimates of wind turbine performance aging obtained in the literature
with cumulative data should not lead to the wrong expectation that the performance of a
wind turbine can be clearly individuated as a declining of a certain rate year by year. The
results achieved in this study can be considered quite general, in the sense that it is likely
that most wind turbines undergo performance changes that are negligible or at least not
distinguishable in the limits of the real-world uncertainties. Unfortunately, a non-negligible
fraction of operating wind turbines undergo performance decline in their lifetime: this can
happen for a variety of reasons and the decline process can have a variety of characteristic
times, which can be clearly highlighted only through appropriate SCADA data analysis.
This kind of consideration should be incorporated in intelligent repowering or lifetime
extension decisions [4,31–33].

Finally, it should be noticed that the computations performed in this study refer to the
wind turbines in operation and the periods during which the machines were not productive
have been filtered out; therefore, the failure rate is not considered in this study. In a certain
sense, it is reasonable to expect that wind turbine aging means increasing failure rate [34]
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and downtime [35] increasing with time, as discussed also in [21]. This aspect is beyond
the scope of this study, but it is an interesting further direction in the wider perspective of a
general definition of what one should expect as wind turbines age.
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