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Abstract

The rapid technological advances of cellular technologies will revolutionize the network automation,

laying the foundation for realizing industrial Internet of things (IIoT) . In this paper, we investigate the

two-timescale resource allocation problem in IIoT networks with hybrid energy supply. In such a system,

the temporal variations of energy harvesting (EH), electricity price, channel state, and data arrival exhibit

different granularity. The formulated resource allocation problem consists of energy management at large

timescale, as well as rate control, channel selection, and power allocation at small timescale. To address

this challenge, we combine Lyapunov optimization, alternating direction method of multipliers (ADMM),

and matching theory to develop an online solution, which guarantees bounded performance deviation

with only causal information. Specifically, Lyapunov optimization is leveraged to transform the long-

term stochastic optimization problem into a series of short-term deterministic optimization problems.

Then, a low-complexity rate control algorithm is developed based on ADMM, which accelerates the

convergence speed via the decomposition-coordination approach. Next, the joint channel selection and

power allocation problem is transformed into a one-to-many problem, and solved by the proposed price-
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based matching with quota restriction. Finally, the proposed algorithm is verified through simulations

under various system configurations.

Index Terms

Automated network, IIoT, two-timescale resource allocation, Lyapunov optimization, one-to-many

matching, ADMM.

I. INTRODUCTION

A. Background and Motivation

Automated networks relies on seamless integration of advanced self-optimized techniques to

improve efficiency, reliability, and operation economics for industrial Internet of things (IIoT)

applications. In such a paradigm, billions of IIoT devices will be deployed in the industrial sector,

and huge volume of data has to be transmitted on a real-time basis [1]. Fifth-generation (5G)

cellular technologies provide more resilient network infrastructure for connecting the massive

number of IIoT devices. However, carbon dioxide generated by powering the cellular infras-

tructures puts a tremendous pressure on the environmental as well as raise doubts about the

sustainability of 5G-empowered IIoT networks [2]. Faced with the urgent need of green cellular

networks for supporting various IIoT applications, researchers have focused on energy-saving

strategies both on data transmission side and energy supply side.

On the data transmission side, network sleeping mode [3] and energy-efficient resource allo-

cation techniques [4] are widely mentioned, applied and continuously improved. On the energy

supply side, harvesting renewable energy such as solar and wind energy is advocated to power

base stations (BSs) [5]. However, renewable energy sources with intermittent and fluctuating

characteristics cannot provide reliable quality of service (QoS) guarantees. A more feasible

approach is to utilize both unreliable renewable energy sources and reliable grid power in a

complementary manner [6], [7]. In this sense, the coexistence of various energy sources further

complicates the resource allocation problem in 5G-empowered IIoT networks. There exist several

challenges that remain unsolved.

First, energy resource allocation and communication resource allocation are intertwined with

each other and should be jointly optimized. The formulated joint optimization problem is gener-

ally NP-hard due to the coupling between energy and communication domains. Second, energy

harvesting (EH), electricity price, channel state, and data arrival all exhibit high temporal-spatial
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dynamics [8], which may have different granularity. Generally, the former two change in large

timescale such as minutes [9], while the latter two change in small timescale such as seconds or

even milliseconds [10]. How to optimize resource allocation under multi-dimensional randomness

with different timescales is still an open issue. Third, the optimization of communication resource

allocation involves long-term cooperation between different layers, e.g., rate control in the

network layer and power allocation in the physical layer. In such a long-term cross-layer resource

allocation paradigm, the coupling of strategies among different time slots as well as the coupling

between physical and upper layers are neglected in most existing works, which focus on either

performance optimization of a single layer, or the short-term deterministic optimization. Last

but not least, the large-scale deployment of IIoT devices brings new scalability issues. The

strategies of different devices are coupled together due to the constraint of sum rate or sum

power consumption, which leads to prohibitive computational complexity when the number of

devices is large.

Powering cellular networks with renewable energy sources has attracted intensive attentions

from both industry and academia [11]. In [12], Zhang et al. proposed several energy-aware

traffic offloading schemes to make efficient use of the harvested energy for reducing grid energy

consumption. In [13], Doost et al. optimized the policy of downlink scheduling for EH-based

cellular networks. Nevertheless, these research attempts mainly target at single-timescale resource

allocation, and ignore the different time granularity of the above-mentioned stochastic processes.

There are some works taking different time granularity into consideration. In [14], Gong

et al. studied the timescale difference between energy arrival variation and channel fading, and

proposed a low-complexity two-stage joint power allocation and energy management optimization

algorithm based on Markov decision process (MDP) and dynamic programming. In [15], Liu et

al. investigated the minimization of on-grid energy consumption from both the space and time

dimensions, and developed a low-complexity offline algorithm based on non-causal information

as well as several heuristic online algorithms based on only causal information. However, both

[14] and [15] rely on the assumption that the uncertainties follow some well-known probability

distribution. They are not suitable for the scenario where the practical probability distributions

of uncertain factors disagree with the pre-assumed statistical models. Actually, in real-world

implementation, even the knowledge of statistical information is difficult to be identified.

Lyapunov optimization allows a distribution-free model of stochastic processes and provides

bounded performance guarantees under all possible realizations of uncertainties [16]. It has
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been widely applied for resource allocation optimization in time-varying wireless networks [17],

hybrid energy powered green cellular networks [18], and EH-based two-way relay cooperative

networks [19], etc. Nevertheless, the above-mentioned works mainly focus on one-timescale

stochastic models, and cannot be directly applied to solve the two-timescale resource allocation

problem addressed in this paper. Moreover, they cannot well handle the large-scale optimization

problem with massive number of IIoT devices, because the computational complexity grows

rapidly with the number of devices due to the coupling of strategies across different devices.

B. Contribution

Motivated by these gaps, we propose a two-timescale resource allocation algorithm for 5G-

empowered automated networks that apply in IIoT by combining Lyapunov optimization, al-

ternating direction method of multipliers (ADMM), and matching theory. The main objective

is to maximize the long-term network utility via the joint optimization of communication re-

sources and energy resources. First, we establish both data queue and energy queue in different

timescales. The joint optimization problem is formulated as a long-term reward-plus-penalty

problem, in which the network quality of experience (QoE) is taken as the reward while the

energy purchasing cost is taken as the penalty. Then, the long-term stochastic optimization

problem is further converted to a short-term deterministic optimization problem and decomposed

into several subproblems with different timescales by leveraging Lyapunov optimization. Next,

by opportunistically minimizing the upper bound of drift-minus-utility, the separated energy

management, rate control, as well as joint channel selection and power allocation subproblems

are solved sequentially by using linear programming, ADMM, and price-based one-to-many

matching, respectively.

The main contributions are summarized as follows.

• Two-timescale resource allocation with bounded performance deviation: The proposed al-

gorithm consists of the optimization of energy management at large timescale, as well as

the optimization of rate control, channel selection, and power allocation at small timescale.

It can guarantee bounded deviation from the optimum performance without requiring any

prior knowledge of future channel state information (CSI), EH, and electricity prices.

• Low-complexity rate control based on ADMM: We develop an ADMM-based low-complexity

rate control algorithm for the scenario with massive number of IIoT devices. It significantly

reduces computational complexity by decomposing the large-scale optimization problem
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into a series of subproblems with lower complexity, and accelerates the convergence speed

via effective coordination of subproblem solutions.

• Joint channel selection and power allocation based on matching: The coupling between

channel selection and power allocation is resolved by transforming the joint optimization

problem into a one-to-many matching problem, which is then solved by the proposed price-

based matching algorithm with quota restriction.

• Comprehensive theoretical analysis and performance validation: We provide a comprehen-

sive theoretical analysis for the proposed algorithm in terms of optimality, convergence,

and complexity. Intensive simulation results are conducted under different scenarios to

demonstrate its performance gains.

C. Organization

The rest of this paper is organized as follows. System model is described in Section II. Problem

formulation is provided in Section III. Section IV elaborates the proposed two-timescale resource

allocation algorithm. A comprehensive property analysis is provided in Section V. Numerical

results and analysis are introduced in Section VI. Finally, the conclusion is summarized in Section

VII.

II. SYSTEM MODEL

We consider the downlink scenario of a hybrid energy powered cellular network for IIoT as

shown in Fig. 1. The BS provides wireless connection and data transmission for the IIoT devices

within its coverage. It is connected with a rechargeable battery, which supplements energy by

either harvesting energy from external renewable energy sources, or purchasing energy from

the power grid. The energy supply volatility caused by intermittent renewable energy sources is

compensated by the reliable grid power. In addition, the BS maintains a data buffer to store the

burst traffic flow towards the IIoT devices. In the following, the models of timescale difference,

data queue, and energy queue are introduced in details.

A. The Model of Timescale Difference

Fig. 1 shows the timescale difference between data arrival and energy arrival. The two-

timescale model proposed in [8], [20] is adopted, where the continuous time dimension is

partitioned into successive identical data slots with slot duration T0 seconds, which is indexed by
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Fig. 1. Automated networks with hybrid energy supply for IIoT applications.

τ = 1, 2, · · · ,MT . Since energy arrival changes much slower than data arrival, we can assume

that energy arrival remains constant during T (T >> 1) data slots. Therefore, T data slots are

grouped as an energy frame with duration of TT0 seconds, which is indexed by m = 1, 2, · · · ,M .

B. The Model of Data Queue

Let N = {1, 2, · · · , n, · · · , N} and K = {1, 2, · · · , k, · · · , K} denote the sets of IIoT devices

and channels, respectively. Let rn (τ) denote the amount of data arriving at the BS’s network

layer per second for device n at data slot τ , which is firstly stored in an infinite buffer before

transmission. The experience of device towards the service quality can be characterized by quality

of experience (QoE) [21]. We assume that the QoE of device n, i.e., Un (τ), is positively related

to the amount of admitted data, which is given by

Un (τ) = χn log2 [1 + rn (τ)] (1)

Here, χn is a service weight parameter which indicates the importance or priority of rn (τ) to

the QoE of device n. Intuitively, device n with a larger χn prefers higher admission rate rn (τ)

because Un (τ) increases more rapidly with rn (τ) when χn is large. The logarithmic function

represents that the marginal increment of QoE declines gradually with rn (τ).
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Let xn,k (τ) ∈ {0, 1} be the channel selection index. When xn,k (τ) = 1, the downlink signal

to noise ratio (SNR) of device n over channel k is given by

γn,k (τ) =
pn,k (τ)hn,k (τ)

σ2
(2)

where pn,k (τ) is denoted as the transmission power allocated to device n over channel k at

data slot τ . hn,k (τ) is the channel gain between the BS and device n over channel k. σ2 is the

Gaussian white noise power.

Then, the downlink transmission rate vn (τ) from the BS to device n can be derived according

to the Shannon-Hartley theorem [22], i.e.,

vn (τ) =
K
∑

k=1

xn,k (τ)Bk (τ) log2 [1 + γn,k (τ)] (3)

where Bk (τ) denotes the bandwidth of channel k.

The data buffered at the BS towards each IIoT device can be regarded as a data queue. Denote

the data queue related to device n as queue n, where rn (τ)T0 and vn (τ)T0 can be regarded

as the data input and data output of queue n, respectively. Particularly, rn (τ)T0 indicates how

much data should be sent to the BS in the view of the network layer at data slot τ and vn (τ)T0

indicates how much data should be sent from the BS to device n via wireless link in the physical

layer at data slot τ . Let Qn (τ) denote the data backlog of queue n at data slot τ , which is evolved

as

Qn (τ + 1) = max [Qn (τ)− vn (τ)T0, 0] + rn (τ)T0 (4)

Qn (τ) is mean rate stable [23] if lim
τ→∞

E [|Qn (τ)|]

τ
=0, which implies that the time-average data

output is greater than or equal to the time-average data input, i.e.,

lim
M→∞

1

MT

MT
∑

τ=1

vn (τ) ≥ lim
M→∞

1

MT

MT
∑

τ=1

rn (τ) (5)

The network is considered to be mean rate stable if lim
τ→∞

E [|Qn (τ)|]

τ
=0 holds for any device

n ∈ N .

In addition, the time-average communication delay dn after the n-th queue stabilizes is taken

into account [24], which is given by

dn =

lim
M→∞

1

MT

MT
∑

τ=1

rn (τ)

{

lim
M→∞

1

MT

MT
∑

τ=1

vn (τ)

}{

lim
M→∞

1

MT

MT
∑

τ=1

[vn (τ)− rn (τ)]

} ≤ d∗n (6)
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where d∗n is the upper bound of delay for device n.

Remark 1: Since data arrival and CSI vary across different data slots, the BS has to schedule

the values of rn (τ), xn,k (τ), and pn,k (τ) for each device n ∈ N every data slot.

C. The Model of Energy Queue

The BS can either exploit the renewable energy or purchase the grid power. Denote the

harvested energy at data slot τ as ϑ (τ), which satisfies the following EH constraint

0 ≤ ϑ (τ) ≤ Φ (τ) (7)

where Φ (τ) denotes the upper bound of harvested energy, which also changes randomly. Denote

g (τ) as the amount of energy purchased from the power grid, which is upper bounded by gmax

at slot τ .

Remark 2: Notably, the EH process and electricity price vary much slower than data arrival

and channel fading. The latter two change at every data slot, while the former two change at

every energy frame, i.e., every T data slots. On the other hand, in order to accomplish stable

power supply, the grid energy is expected as a supplement of the clean energy. As a result, the

BS has to schedule ϑ (τ) and g (τ) on the same time scale.

Denote pc (τ) as the total amount of energy consumed by the BS at data slot τ , which is given

by

pc (τ) =
N
∑

n=1

K
∑

k=1

xn,k (τ) pn,k (τ)T0 (8)

The battery state of the BS can be regarded as an energy queue, where the harvested and

purchased energy serves as energy input, and the consumed energy serves as energy output. The

energy queue backlog E (τ) is evolved as

E (τ + 1) = max [E (τ)− pc (τ) , 0] + g (τ) + ϑ (τ) (9)

According to the causality constraint, the consumed energy is bounded by pc (τ) ≤ E (τ),

which means that the consumed energy cannot exceed the currently available energy in the

battery. On the other hand, the energy queue backlog is also limited by the battery capacity

Emax, i.e.,

E (τ) + g (τ) + ϑ (τ) ≤ Emax (10)
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III. PROBLEM FORMULATION

In this paper, we aim at maximizing the long-term QoE performance of the overall network

while minimizing the energy cost. The objective function is defined as a weighted sum of QoE

and energy cost, which is given by

f (τ) =
N
∑

n=1

Un (τ)− βη (τ) g (τ) (11)

where η (τ) is the electricity price of grid power, which also changes every energy frame. To

encourage the consumption of harvested energy, the price of harvested energy is set as zero. β

is a parameter used to balance the tradeoff between energy cost and QoE.

Denote r (τ) = {rn (τ)}, x (τ) = {xn,k (τ)}, and p (τ) = {pn,k (τ)} as the sets of rate control,

channel selection, and power allocation optimization variables, respectively. The two-timescale

resource allocation problem with long-term optimization objective is formulated as

P1 : maximize

g (τ) , ϑ (τ) , r (τ) ,x (τ) ,p (τ)

lim
M→∞

1

MT

MT
∑

τ=1

f (τ)

s.t.

C1 : 0 ≤ ϑ (τ) ≤ Φ (τ) , ∀τ

C2 : 0 ≤ g (τ) ≤ gmax, ∀τ

C3 : 0 ≤ E (τ) + g (τ) + ϑ (τ) ≤ Emax, ∀τ

C4 : 0 ≤ pc (τ) ≤ E (τ) , ∀τ

C5 : 0 ≤ pn,k (τ) ≤ pmax
n,k , ∀k, ∀n, ∀τ

C6 : xn,k (τ) ∈ {0, 1} , ∀k, ∀n, ∀τ,

C7 :
K
∑

k=1

xn,k (τ) ≤ q, ∀n, ∀τ

C8 :
N
∑

n=1

xn,k (τ) ≤ 1, ∀k, ∀τ

C9 : 0 ≤
N
∑

n=1

rn (τ) ≤ Rmax, ∀τ

C10 : dn ≤ d∗n, ∀n

C11 :E, Qn, ∀n, aremean rate stable.

(12)

Here, C1 and C2 denote the upper bounds of harvested energy and purchased energy, respectively.

C3 is the battery capacity constraint. C4 is the energy causality constraint. C5 is the instantaneous

constraint of maximum transmission power. C6 − C8 denote the channel selection constraints,
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i.e., each channel could be only used by one device and one device could use at most q channels.

q also indicates the quota of channel for device, i.e., the maximum number of channels that can

be allocated to any device. C9 is the instantaneous rate control constraint of the overall network.

C10 is the time-average delay constraint. C11 denotes the stability constraints of data queue and

energy queue.

There are several key challenges that have to be addressed when solving problem P1. First, P1

involves the joint optimization of rate control, channel selection, power allocation, and energy

management from a long-term perspective under both long-term and short-term constraints.

However, the prior knowledge of future CSI, data arrival, energy arrival and electricity price

is unknown. Second, it involves resource allocation with different timescales, i.e., rate control,

channel selection, and power allocation have to be jointly optimized every data slot, while

energy management has to be optimized every energy frame. Third, it is an mixed integer

nonlinear optimization (MINP) problem which involves both binary and continuous optimization

variables. Last but not least, the sum-rate constraint C9 raises scalability issues for real-world

implementation as the problem dimension increases significantly with the number of IIoT devices.

Therefore, how to solve P1 remains nontrivial.

IV. TWO-TIMESCALE RESOURCE ALLOCATION OPTIMIZATION

In this section, we aim to solve the two-timescale long-term optimization problem, by com-

bining Lyapunov optimization, ADMM and matching theory. First, Lyapunov optimization is

introduced to transform the long-term optimization problem into a series of single-slot opti-

mization subproblems, which are further decomposed over two timescales. Then, ADMM is

introduced to solve the large-scale rate control problem with the sum-rate constraint. Finally, a

joint channel selection and power allocation algorithm is developed based on price-based one-

to-many matching. The proposed two-timescale resource allocation algorithm is summarized in

Algorithm 1.

A. Problem Transformation and Decomposition based on Lyapunov Optimization

Denote Q (τ) = [Q1 (τ) , Q2 (τ) , · · · , QN (τ)]. Let H (τ) = [Q (τ) , E (τ)] be a concatenated

vector of queue states. Subsequently, the Lyapunov function is defined as [8]

L (τ) =
1

2

{

N
∑

n=1

Q2
n (τ) + [Emax − E (τ)]2

}

(13)
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Algorithm 1 Two-timescale Resource Allocation Algorithm

1: Input: N , K, T , M , Emax, gmax, pmax
n,k , Rmax, q.

2: Output: g∗, ϑ∗, r∗, x∗, p∗.

3: Initialize: Qn (1), E (1).

4: for m = 1 : M do

5: Energy management: Obtain the optimal solution g∗ [(m− 1)T + 1] and

ϑ∗ [(m− 1)T + 1].

6: for t = 1 : T do

7: Rate control: Obtain the optimal solution r∗n [(m− 1)T + t] , ∀n ∈ N , using Algorithm

2.

8: Joint channel selection and power allocation: Obtain the optimal solution

x∗

n,k [(m− 1)T + t] and p∗n,k [(m− 1)T + t], ∀n ∈ N , ∀k ∈ K, using price-based one-

to-many matching algorithm.

9: Update the data queues and the energy queue:

Qn [(m− 1)T + t+ 1] = max {Qn [(m− 1)T + t]− vn [(m− 1)T + t]T0, 0}

+rn [(m− 1)T + t]T0

E [(m− 1) + t+ 1] = max {E [(m− 1) + t]− pc [(m− 1)T + t] , 0}

+g [(m− 1)T + t] + ϑ [(m− 1)T + t]

10: end for

11: end for

The Lyapunov drift over T slots which is conditioned on the states of both data queues and

energy queue is given by

∆T (τ) = E [L (τ + T )− L (τ) |H (τ) ] (14)

Accordingly, the drift-minus-utility (DMU) function is defined as

D [H (τ)] =E [∆T (τ)− V f (τ) |H (τ) ] (15)

where V is a tunable weight which represents the relative importance of “utility maximization”

compared with “queue stability”.
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Considering the timescale difference of energy management, rate control, channel selection,

and power allocation, the upper bound of D [H (τ)] is derived based on the following theorem.

Theorem 1. The DMU function D [H (τ)] is upper bounded by

D [H (τ)] ≤
1

2

[

B +
(T − 1)

2
(gmax + ϑmax)

2

]

T

+E







D1 [(m− 1)T + 1]+
mT
∑

τ=(m−1)T+1

[D2 (τ)−D3 (τ)]







(16)

where

B =N
(

r2max + v2max

)

T 2
0 + E2

max + (gmax + ϑmax)
2

E [(m− 1)T + 1] =Emax − E [(m− 1)T + 1]

D1 [(m− 1)T + 1] = {V Tβη [(m− 1)T + 1]− E [(m− 1)T + 1]} g [(m− 1)T + 1]

−E [(m− 1)T + 1]ϑ [(m− 1)T + 1]

D2 (τ) =
N
∑

n=1

[Qn (τ) rn (τ)T0 − V Un (τ)]

D3 (τ) =
N
∑

n=1

K
∑

k=1

xn,k (τ) [Qn (τ) vn (τ)T0 − E (τ) pn,k (τ)]

Proof: See Appendix A.

In the Theorem 1, B is a positive constant. Following the Lyapunov optimization approach,

the problem (12) could be transformed into opportunistically minimizing the right-hand side of

(16) at each energy frame subject to C1 ∼ C10. Thus, the long-term stochastic optimization

problem P1 is converted into a deterministic short-term optimization problem, which is given

by

P2 : minimize
g[(m−1)T+1],ϑ[(m−1)T+1],r(τ),x(τ),p(τ)

D1 [(m− 1)T + 1]+
mT
∑

τ=(m−1)T+1

[D2 (τ)−D3 (τ)]

s.t.C1 − C10

(17)

It is noted that the first term of P2 involves only the energy management decisions g [(m− 1)T + 1],

and ϑ [(m− 1)T + 1], the second term involves only the rate control decisions r (τ), and the

third term involves only the joint channel selection and power allocation decisions x (τ), and
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p (τ). Therefore, we can further decompose P2 into three subproblems with different timescales,

which are introduced as follows.

1) Energy management at each energy frame: Both electricity price and energy arrival change

every T slots. Accordingly, BS schedules the harvested energy and the purchased energy every

T data slots. To minimize the first term D1 [(m− 1)T + 1], ∀m ∈ {1, 2, . . . ,M} the following

energy management subproblem is solved at τ = (m− 1)T + 1, which is given by

P3 : minimize
g[(m−1)T+1],ϑ[(m−1)T+1]

D1 [(m− 1)T + 1]

s.t.C1,C2,C3, τ = (m− 1)T + 1
(18)

Minimizing D1 [(m− 1)T + 1] is equivalent to using harvested energy as much as possible.

However, the available amount of harvested energy is limited by the upper bounds of both

the harvested energy Φ [(m− 1)T + 1] and the remaining battery capacity E [(m− 1)T + 1].

Therefore, the optimal scheduling policy of harvested energy is derived as

ϑ∗ [(m− 1)T + 1]=min {Φ [(m− 1)T + 1] , E [(m− 1)T + 1]} (19)

Take ϑ∗ [(m− 1)T + 1] into D1 [(m− 1)T + 1] and optimize it, regarding g [(m− 1)T + 1]

under the constraint gmax, the optimal amount of purchased energy is derived as

g∗ [(m− 1)T + 1]

=







min {E [(m− 1)T + 1]− ϑ∗ [(m− 1)T + 1] , gmax}, ifΨ [(m− 1)T + 1] < 0

0 otherwise

(20)

where Ψ [(m− 1)T + 1]=V Tβη [(m− 1)T + 1] − E [(m− 1)T + 1]. We could find that the

values of ϑ [(m− 1)T + 1] and g [(m− 1)T + 1] are optimized every energy frame, i.e., T data

slots, while the energy queue length E (τ) changes over each data slot. Therefore, the energy

scheduling policy only depends on the current energy queue state.

2) Rate control at each data slot: To minimize the second term D2 (τ), the following rate

control subproblem is solved at τ ∈ [(m− 1)T + 1,mT ], ∀m ∈ {1, 2, . . . ,M} which is given

by

P4 : minimize
r(τ)

D2 (τ)

s.t.C9

(21)

P4 can be proved as a convex optimization problem by verifying its corresponding second-order

derivative. However, due to the sum-rate constraint C9, the optimization variables of different

devices are coupled with each other, and the computational complexity grows enormously as the
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number of devices increases. When the number of IIoT devices is large, it will take tremendous

amount of time to solve the large-scale rate control problem by using the conventional convex

optimization approach. Thus, we develop a low-complexity rate control algorithm to solve P4

based on ADMM. The details are given in Subsection IV-B.

3) Joint channel selection and power allocation at each data slot: To maximize the third

term D3 (τ), the following joint channel selection and power allocation subproblem is solved at

τ ∈ [(m− 1)T + 1,mT ], ∀m ∈ {1, 2, . . . ,M} which is given by

P5 : maximize
x(τ),p(τ)

D3 (τ)

s.t.C4 − C8,C10

(22)

In P5, the time-average delay constraint C10 imposes a new challenge. The tight coupling

between rn (τ) and vn (τ) makes it difficult to transform C10 into a constraint of virtual queue

stability as [25], [26]. Furthermore, despite the time-average delay constraint, IIoT services

and applications also demand strict instantaneous delay constraint. Thus, we tighten the delay

constraints over every data slot as

rn (τ)

vn (τ) [vn (τ)− rn (τ)]
≤ d∗n (23)

Rearranging (23), we can get

fd [vn (τ)] = rn (τ)− d∗n[vn (τ)]
2 + d∗nvn (τ) rn (τ) ≤ 0 (24)

where fd [vn (τ)] is a one-variable quadratic inequality with respect to vn (τ). Since fd (0) =

rn (τ) > 0 and d∗n > 0, there exist a positive solution and a negative solution which make the

equality in (24) hold. The positive solution is given by

v∗n (τ) =
d∗nrn (τ) +

√

[d∗nrn (τ)]
2 + 4rn (τ) d∗n

2d∗n

(25)

Accordingly, the delay constraint could be converted into a transmission capacity constraint as

C12 : vn (τ) ≥ v∗n (τ) (26)

Replacing C10 with C12, P5 is rewritten as

P6 : maximize
x(τ),p(τ)

D3 (τ)

s.t.C4 − C8,C12

(27)

How to solve P6 is provided in Subsection IV-C.
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B. Low-complexity Rate Control Algorithm based on ADMM

ADMM provides a powerful methodology to solve large-scale high-dimensional data pro-

cessing and control optimization problems. It has already been successfully applied in various

aspects including distributed energy management, machine learning, and image recognition

[27]. The major concept of ADMM is to alternatively update primal and dual variables in an

iterative fashion [28]. It can rapidly find the optimal solution in low complexity based on the

decomposition-coordination approach.

In order to obtain the optimal solution, we partition the vector of rate control variables into

two parts, i.e., r1 = [r1 (τ) , r2 (τ) , · · · , rlr (τ)] and r2 = [rlr+1 (τ) , rlr+2 (τ) , · · · , rN (τ)]. Then

defining xr = r1
T and zr = r2

T , P4 is rewritten as [29]

P7 : minimize
xr,zr

Fr (xr) +Gr (zr)

s.t.Arxr +Brzr = Cr

(28)

where xr ∈ R
lr×1, zr ∈ R

(N−lr)×1, Ar ∈ R
1×lr , Br ∈ R

1×(N−lr), and Cr = Rmax. Ar and Br

are unit vectors. Fr(xr) and Gr(zr) satisfy

Fr (xr) =Q1xr −V1,χlog2 (xr) (29)

Gr (zr) =Q2zr −V2,χlog2 (zr) (30)

where Q1 = [Q1 (τ) , Q2 (τ) , · · · , Qlr (τ)]T0, Q2 = [Qlr+1 (τ) , Qlr+2 (τ) , · · · , QN (τ)]T0, V1,χ =

[χ1, χ2, · · · , χlr ]V , and V2,χ = [χlr+1, χlr+2, · · · , χN ]V .

In this paper, we adopt the scaled ADMM algorithm [27], and form the augmented Lagrangian

associated with P7 as

Lρ (xr, zr, y) = Fr (xr) +Gr (zr) +
ρ

2
‖R + µ‖22 −

ρ

2
‖µ‖22 (31)

where R = Axr + Bzr − Cr is the residual. ρ > 0 represents the penalty parameter, which is

related to the convergence speed of ADMM. Let y be the Lagrange multiplier. µ =
y

ρ
is the

scaled dual variables. Then, we can iteratively update both primal and dual variables as

xi+1
r =argmin

{

Fr

(

xi
r

)

+
ρ

2

∥

∥Arx
i
r +Brz

i
r − Cr + µi

∥

∥

2

2

}

(32)

zi+1
r =argmin

{

Gr

(

zir
)

+
ρ

2

∥

∥Arx
i+1
r +Brz

i
r − Cr + µi

∥

∥

2

2

}

(33)

µi+1 =µi+Arx
i+1
r +Brz

i+1
r − Cr (34)

where i denotes the index of iteration.
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Algorithm 2 ADMM-based Low-complexity Rate Control Algorithm

1: Initialize: i, xr, zr,µ ,ρ, ǫpri, and ǫdual.

2: output: xr, zr.

3: while
∥

∥Rp
i
∥

∥

2
> ǫpri or

∥

∥Rd
i
∥

∥

2
> ǫdual do

4: Update xi+1
r according to (32);

5: Update zi+1
r according to (33);

6: Update µi+1 according to (34);

7: Update
∥

∥Rp
i+1

∥

∥

2
and

∥

∥Rd
i+1

∥

∥

2
;

8: Update i → i+ 1;

9: end while

Next, based on the optimality conditions [30], the primal residual Rp and the dual residual

Rd are expressed as

Rp
i+1 =Arx

i+1
r +Brz

i+1
r − Cr (35)

Rd
i+1 =ρAT

r Br

(

zi+1
r − zir

)

(36)

The termination criteria is defined as

∥

∥Rp
i+1

∥

∥

2
≤ ǫpri and

∥

∥Rd
i+1

∥

∥

2
≤ ǫdual (37)

where ǫpri > 0 and ǫdual > 0 denote feasibility tolerances with respect to primal conditions

and dual conditions. Consequently, the ADMM-based low-complexity rate control algorithm is

summarized in Algorithm 2.

C. Joint Channel Selection and Power Allocation based on One-to-many Matching

We rearrange P6 as

maximize
x(τ),p(τ)

N
∑

n=1

fD3
[xn,k (τ) , pn,k (τ)]

s.t.C4 − C8,C12

(38)

where fD3
[xn,k (τ) , pn,k (τ)] = Qn (τ) vn [xn,k (τ) , pn,k (τ)]T0−E (τ) xn,k (τ) pn,k (τ). The prob-

lem defined in (38) is NP-hard due to the coupling between integer variables and continuous

variables. To provide a tractable solution, we transfer it into a one-to-many matching problem,
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which is represented as a triple (N ,K,F). F denotes the set of devices’ preference lists. The

definition of one-to-many matching is introduced as follows.

Definition 1. (One-to-many matching) For the formulated matching problem Mq = (N ,K,F),

the matching ϕ is a one-to-many mapping from set N ∪K onto itself under preference F , i.e.,

ϕ (n) ∈ K ∪ {n}, ∀n ∈ N . ϕ (n) = k means that channel k is matched with device n, i.e.,

xn,k = 1. ϕ (n) = n represents that device n is not matched with any channel. Quota is set as

q = [q, 1], i.e., each device could select at most q channels and each channel could be only used

by at most one device.

A matching ϕ is blocked if device n and channel k are not matched with each other but prefer

each other to their mates under ϕ. Thus, n and k form a blocking pair for matching ϕ, namely

that (n, k) blocks the matching. We say that matching ϕ is not stable because n and k would

prefer to disrupt the matching in order to be matched with each other.

Definition 2. (Stable matching) A matching ϕ is stable if there exists no blocking pair.

When ϕ (n) = k, the maximum value of fD3
[pn,k (τ) |xn,k (τ) = 1] can be obtained by solving

the following power allocation problem

P8 : maximize
pn,k(τ)

fD3
[pn,k (τ) |xn,k (τ) = 1]

s.t.C5

(39)

P8 is also a convex optimization problem and can be solved by applying Karush-Kuhn-Tucker

(KKT) conditions. The Lagrangian associated with P8 is given by

L [pn,k (τ) , λ] = −fD3
[pn,k (τ) |xn,k (τ) = 1] + λ

[

pn,k (τ)− pmax
n,k

]

(40)

where λ is the Lagrange multiplier corresponding to constraint C5. The optimal solution p∗n,k (τ)

is given by

p∗n,k (τ) = min

[

pmax
n,k ,

Qn (τ)T0Bk (τ)

E (τ) ln 2
−

σ2

hn,k (τ)

]

(41)

We can notice that p∗n,k (τ) is positively related to Qn (τ), and is negatively related to hn,k (τ)

and E (τ).

We define the preference of device n towards channel k as

Fn,k|ϕ(n)=k = fD3

[

p∗n,k (τ) |xn,k (τ) = 1
]

− Λk (42)
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where Λk is the virtual price of channel k which is added to resolve the conflict of matching. It

can be set as zero initially.

Thus, by temporarily matching device n with every channel, we can obtain its preferences

towards all the channels. The preference list of device n, i.e., Fn, is constructed by sorting all

K channels in descending order according to the preferences, i.e., Fn,k|ϕ(n)=k, ∀k ∈ K. The

total set F is constructed as F = {Fn, ∀n ∈ N}. Then, the price-based one-to-many matching

is implemented as follows.

Initially, set ϕ (n) = ∅, Ω = ∅, and Λk = 0, ∀k ∈ K. Ω represents the set of channels which

receive more than one matching proposal from devices.

In the proposal process, if ∃ϕ (n) = ∅, device n ∈ N will propose to the first q channels in its

preference list Fn. Afterwards, if any channel k ∈ K receives only one proposal from a device,

then they will be directly matched. Otherwise, if k receives more than one proposal, add k into

set Ω and enter into the price rising process.

In the price rising process, every channel k ∈ Ω increases its price Λk by ∆Λk. Accordingly,

all the devices that are competing for channel k have to update their preferences towards channel

k and renew their proposals. A device may give up channel k if its price is too high. The price

rising process will continue until only one device remains, which is eventually matched with

channel k, Then, k is removed from Ω.

The iterative matching process will be finished until a stable matching is produced.

V. PERFORMANCE ANALYSIS

In this section, some theoretical properties in terms of optimality performance, convergence

performance, and computational complexity are analyzed.

A. Trade-off between Queue Stability and Utility Maximization

Theorem 2. Algorithm 1 achieves a
[

O (V ) , O
(

1/V

)]

trade-off between queue stability and

utility maximization by adjusting the control parameter V . The time-average data queue backlog,
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time-average energy queue backlog, and time-average network utility are bounded by

lim
M→∞

1

MT
E





M
∑

m=1

mT
∑

τ=(m−1)T+1

N
∑

n=1

Qn (τ)



 ≤
B

2δ1
+

V (fmax − fopt)

δ1
(43)

lim
M→∞

1

MT
E





M
∑

m=1

mT
∑

τ=(m−1)T+1

E (τ)



 ≥Emax −
B

2δ2
−

V (fmax − fopt)

δ2
(44)

lim
M→∞

1

MT
E





M
∑

m=1

mT
∑

τ=(m−1)T+1

f (τ)



 ≥fopt −
B

2V
(45)

Proof: See Appendix B.

Theorem 3. The joint channel selection and power allocation algorithm produces a stable

matching between devices and channels within finite iterations, which is also weak-Pareto optimal

for devices.

Proof: Due to the space limitation, the detailed proof is omitted here. A similar proof can

be found in [31], [32].

B. Convergence of ADMM-based Low-complexity Rate Control Algorithm

The objective function of P7 is closed, proper, and convex, and the Lagrangian Lρ(xr,yr,y)

has a saddle point. Thus the iterations satisfy the following convergence properties.

Theorem 4. The residual convergence, objective convergence, and dual variable convergence

are expressed as follows:

1) Residual convergence: The primal and dual residuals converge to 0 as i → ∞, which implies

that the iterations approach feasibility.

2) Objective convergence: The objective function of P7 eventually converges to the primal

optimal value under the stopping criterion as i → ∞.

3) Dual variable convergence: The dual variable yi+1 eventually converges to the dual optimal

value under the stopping criterion as i → ∞.

Proof: Due to the space limitation, the detailed proof is omitted here. A similar proof can

be found in [33].
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TABLE I

SIMULATION PARAMETERS.

Parameter Value

Number of devices N = 5

Number of channels K = 12

Channel bandwidth B = 1 MHz

Tunable weight of DMU V = 100

Number of energy frames M = 200

Number of data slots at each energy frame T = 5

One data slot duration T0 = 1 second

Upper bound of purchased energy gmax = 2.5 joule(J)

Capacity of recharge battery Emax = 5 J

Maximum sum of arrival data Rmax = 20 Mbps

Service weight parameter χ = [0.1, 0.15, 0.2, 0.25, 0.3]

Penalty factor of utility β = {0, 5000}

The initial state of data queue Qn (1) = 3 Mbits

The initial state of energy queue E (1) = 2 J

Time-average delay constraint d∗n = 10 microseconds

Quota restriction q = [3, 1]

C. Computational Complexity

1) Computational complexity of energy management: The energy management problem is

a linear programming problem with two variables, which are optimized at each energy frame.

Thus, its computational complexity of O (2M).

2) Computational complexity of rate control: Rate control is optimized at each data slot with

N optimization variables. Thus, updating primal and dual variables introduces a complexity

of O [max (lr, N − lr)]. Assuming that xr, zr, and µ are updated ξ times before reaching

convergence, the total complexity of rate control is O [max (lr, N − lr)×MTξ].

3) Computational complexity of joint channel selection and power allocation: The complex-

ities for each device to acquire the preferences and construct the preference list are O (K) and

O (K log (K)), respectively. Assuming that the number of iterations required for resolving the

conflict in the price rising process is ς , and there are max (N,K) conflict elements in the price

rising process, the complexity is O {MT {max(N,K)× ς + [NK +NK log (K)]}}.
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Fig. 2. Data queue backlog of the pro-

posed algorithm.
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Fig. 3. Data queue backlog of the base-

line 1 algorithm.
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Fig. 5. Data arrival rate of the proposed

algorithm.
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1 algorithm.
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VI. SIMULATION RESULTS

In this section, we verify the proposed two-timescale resource allocation algorithm through

simulations. Simulation parameters are summarized in Table I [12] [34]. Three heuristic algo-

rithms are used as baseline for comparison purpose. In the baseline 1 algorithm, the optimization

of channel selection is neglected, and channels are allocated to devices randomly [32]. The

baseline 2 algorithm only maximizes the time-average QoE of network, while the minimization

of energy cost is neglected, i.e., β = 0. In the baseline 3 algorithm, the rate control problem is

solved by the convex optimization toolbox [34], i.e., the CVX toolbox.

A. Data Queue Performance

1) Data queue backlog: Fig. 2 and Fig. 3 show the evolutions of data queue backlog cor-

responding to the proposed algorithm and the baseline 1 algorithm, respectively. It is observed

that data queue backlog of the proposed algorithm tends to be stable within a short period of
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Fig. 8. Shaded error bar of transmission

rate.
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Fig. 13. Grid energy consumption of the

baseline 2 algorithm.

time, which guarantees reliable service provision, while the data queue backlog of the baseline

1 algorithm fluctuates more violently, thus making the network less stable. Compared with the

baseline 1 algorithm, the proposed algorithm can reduce the peak to average ratio (PAR) of data

queue backlog by 35.5%. This phenomenon has also been validated in Fig. 4, which shows the

empirical cumulative distribution function (CDF) performance of data queue backlog. Taking

device 1 as an example, the probability that the data queue backlog Q1 lies within the region

[2.501, 2.548] is 0.5604, while the probability corresponding to the baseline 1 algorithm is only

0.1608.

2) Data arrival rate: The data arrival rate performances for the proposed algorithm and

the baseline 1 algorithm are shown in Fig. 5 to Fig. 7. Similar as in the data queue backlog

performance, the data arrival rate fluctuation of the proposed algorithm is much less than that

of the baseline 1 algorithm. The proposed algorithm can reduce the PAR of data arrival rate by

28.5%, which infers a more stable rate control performance.
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3) Data transmission rate: Fig. 8 shows the shaded error bar of data transmission rate,

where the width of the shadow represents the standard deviation. Compared with the baseline 1

algorithm, the proposed algorithm has a much narrower shadow, which provides a more stable

transmission rate. Furthermore, we can find that the proposed algorithm can differentiate devices

with different service priorities by providing higher transmission rate to devices with larger

service weights. In comparison, the baseline 1 algorithm treats all the devices as if they have

the same service weight.

4) Queuing delay: Fig. 9 shows the time-average queuing delay performance. For the proposed

algorithm, we can find that devices with higher service priorities, e.g., device 5, experience less

delay compared with devices with lower service priorities, e.g., device 1. This is consistent

with the transmission rate results shown in Fig. 8. While for the baseline 1 algorithm, delay is

uncorrelated with service priority, thus making differentiated service provisioning impossible.
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5) Network utility: Fig. 10 and Fig. 11 show the network utility performances of the proposed

algorithm and the baseline 1 algorithm, respectively. The proposed algorithm achieves more stable

network utility performance than the baseline 1 algorithm, which implies a better adaptiveness

to the random variation of channel state.

B. Energy Queue Performance

1) Grid energy consumption: Fig. 12 and Fig. 13 show the relations between electricity price

and grid energy consumption for the proposed algorithm and the baseline 2 algorithm respec-

tively. We assume that the variation of electricity price follows a sinusoid with the minimum value

of 1.8 RMB/kWh and the maximum value of 9.0 RMB/kWh. Simulation results demonstrate

that the proposed algorithm can dynamically adapt grid energy consumption with time-varying

electricity price by avoiding purchasing the expensive grid power during the peak-price period.

In comparison, the baseline 2 algorithm is unaware of the energy cost, and consumes grid energy

any time if needed. This inevitably leads to higher energy cost, which is demonstrated in Fig.

14 and Fig. 15.

2) Grid energy cost: Fig. 14 and Fig. 15 show the grid energy cost per energy frame and the

total energy cost accumulated over 200 energy frames, respectively. Compared with the baseline

2 algorithm, the proposed algorithm can reduce the energy cost by 48.23%, due to the awareness

of electricity price and dynamic adaptation of gird energy consumption.

3) QoE and energy backlog: Fig. 16 and Fig. 17 show the network QoE and energy queue

backlog, respectively, where the bar graph represents the time-average value and the error bar

represents standard deviation. It is observed that time-average QoE performance of the proposed
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algorithm is only 0.54% lower than the baseline 2 algorithm, while the energy queue backlog is

only 5.40% lower. In other words, the proposed algorithm trades only 0.54% QoE performance

degradation and 5.40% energy queue backlog reduction for energy cost reduction as high as

48.23%.

C. Computational Complexity and Convergence Performances

1) Convergence of Algorithm 2: Fig. 18, Fig. 19, and Fig. 20 show the primal residual

converge, dual residual convergence, and optimal convergence of the ADMM-based rate control

algorithm at τ = 1000, respectively. It is observed that the stopping criterion constraints ǫpri and

ǫdual, i.e., the dotted lines shown in Fig. 18 and Fig. 19, can be satisfied within 16 iterations. Fig.

20 demonstrates that the objective value converges to the optimal value within only 7 iterations.

2) Optimality gap and computational complexity: Fig. 21 and Fig. 22 compare optimality

and computational complexity between the proposed algorithm and the baseline 3 algorithm,

respectively. Simulation results demonstrate that the performance gap between the two algorithms

is always less than 1%. On the other hand, the proposed algorithm can reduce the computational

time by 99% compared with the baseline 3 algorithm. Furthermore, the computational time of

the baseline 3 algorithm increases significantly with the number of devices, while that of the

proposed algorithm remains in a much lower level.

VII. CONCLUSIONS

In this paper, we studied the two-timescale resource allocation problem in 5G-empowered

networks for IIoT applications. We proposed a two-timescale resource allocation algorithm to

maximize the long-term QoE performance while simultaneously minimizing the grid energy cost,

in which the optimization of energy management is performed every energy frame, while the

optimization of rate control, channel selection, and power allocation is performed every data

slot. We proved that the proposed algorithm can achieve bounded performance deviation based

only on causal information of CSI, EH, and electricity price. We further compare it with three

heuristic algorithms under various simulation configurations. Simulation results demonstrate that

the proposed algorithm can effectively reduce the PARs of data queue backlog and data arrival

rate by 35.5% and 28.5%, respectively. It allows differentiated service provision and achieves

48.23% energy cost reduction by dynamically adapt resource allocation with service priority and

time-varying electricity price. It is able to trade only 1% optimality performance degradation for
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99% computation time reduction. In the future work, we plan to study how to adopt the machine

learning with existing framework to further improve the performance.

APPENDIX A

PROOF OF THEOREM 1

According to (4), for any nonnegative real numbers Qn (τ), rn (τ) and vn (τ), there holds

1

2
[Q2

n (τ + 1)−Q2
n (τ)] ≤

1

2
r2n (τ)T

2
0 +

1

2
v2n (τ)T

2
0 +Qn (τ) [rn (τ)− vn (τ)]T0 (46)

Applying the law of telescoping sums over τ ∈ [(m− 1)T + 1,mT ], we can derive

1

2

[

Q2
n (τ + T )−Q2

n (τ)
]

≤
1

2

mT
∑

τ=(m−1)T+1

[

r2n (τ) + v2n (τ)
]

T 2
0

+
mT
∑

τ=(m−1)T+1

{Qn (τ) [rn (τ)− vn (τ)]}T0 (47)

Similarly, for energy queue, we can derive

1

2
[E2 (τ+1)− E2 (τ)] ≤

1

2
p2
c
(τ) + [g (τ) + ϑ (τ)]2 + E (τ) {pc (τ)− [g (τ) + ϑ (τ)]} (48)

Combining (47) and (48) as well as applying the law of telescoping sums and the law of iterated

expectations, we derive

∆T (τ) ≤
1

2
BT+

mT
∑

τ=(m−1)T+1

N
∑

n=1

E {T0Qn (τ) [rn (τ)− vn (τ)] |H (τ)}

+
mT
∑

τ=(m−1)T+1

E {E (τ) {pc (τ)− [g (τ) + ϑ (τ)]} |H (τ)} (49)

Based on the definition of DMU given in (15), we can subtract the term E [V f (τ) |H (τ) ] from

both sides of (49), and then apply the law of iterated expectations to derive the upper bond of

DMU, which is given by

D [H (τ)] ≤
1

2
BT+

mT
∑

τ=(m−1)T+1

E {{V βη (t) g (t)− E (τ) [g (τ) + ϑ (τ)]} |H (τ)}

+
mT
∑

τ=(m−1)T+1

N
∑

n=1

E {{[Qn (τ) rn (τ)T0]− V Un (τ)} |H (τ)}

−
mT
∑

τ=(m−1)T+1

N
∑

n=1

K
∑

k=1

xn,kE {{Qn (τ) vn (τ)T0 − E (τ) pn,k (τ)} |H (τ)} (50)
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Define D0 (τ) as

D0 (τ) =
mT
∑

τ=(m−1)T+1

E {{V βη (t) g (t)− E (τ) [g (τ) + ϑ (τ)]} |H (τ)} (51)

According to the energy causality, for ∀τ
′

> τ , the following inequality holds

E (τ)−
(

τ
′

− τ
)

pc ≤ E
(

τ
′

)

≤ E (τ) +
(

τ
′

− τ
)

(gmax + ϑmax) (52)

where ϑmax is the upper bound of E [ϑ (τ) |H (τ) ].

Using these inequalities (52) over τ ∈ [(m− 1)T + 1,mT ], we can derive

D0 (τ) ≤
(T − 1)T

2
(gmax + ϑmax)

2 + TV βη [(m− 1)T + 1] g [(m− 1)T + 1]

+E [(m− 1)T + 1] {g [(m− 1)T + 1] + ϑ [(m− 1)T + 1]} (53)

By taking (53) into (50), we can derive (16). This completes the proof of Theorem 1.

APPENDIX B

PROOF OF THEOREM 2

To prove Theorem 2, we introduce some significant and practical assumptions, i.e.,

E [rn (τ)T0 − vn (τ)T0|Qn (τ) ] ≤− δ1 (54)

E {pc (τ)− [g (τ) + ϑ (τ)]|E (τ)} ≤ − δ2 (55)

where δ1 > 0 and δ2 > 0 are the gap between data queue input and output, and the gap between

energy queue input and output, respectively.

According to Theorem 1, we can derive

D [H (τ)] ≤
1

2
BT − V fopt

+
mT
∑

τ=(m−1)T+1

N
∑

n=1

E {Qn (τ) [rn (τ)− vn (τ)]}

+
mT
∑

τ=(m−1)T+1

E {E (τ) {pc (τ)− [g (τ) + ϑ (τ)]}} (56)

where fopt is the optimal value obtained by Algorithm 1.
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Applying the law of telescoping sums over τ ∈ [1,MT ] and the law of iterated expectations

for the above equation, we derive

E
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L (MT )− L (1)− V
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According to (57), we can derive

E
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Rearranging (58), we obtain

E
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where fmax is the maximum value of network utility. There exists a bound that fmax ≥ fopt.

Dividing both sides of (59) by MTδ1 and taking the limit M → ∞, we can obtain

lim
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Similarly, based on (57), we can obtain

1

MT
E





M
∑

m=1

mT
∑

τ=(m−1)T+1

E (τ)



 ≤
1

2δ2
B −

E [L (MT )− L (1)]

MTδ2
+

V (fmax − fopt)

δ2
(61)

Taking the limit M → ∞ and using lim
M→∞
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= 0, we can derive
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Rearranging (62), we have
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Similarly, based on (57), we can obtain

lim
M→∞

1
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Since lim
M→∞

1

VMT
E [L (MT )− L (1)] = 0, we have

lim
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This completes the proof of Theorem 2.
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