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Abstract—The paper presents a high performance and low-cost
design methodology for the servo control of magnetic drive-trains
(MDTs) operating in direct drive mode. For the first time, this
paper considers using sensitivity peaks to analyse the robustness
and stability of MDT control systems. Initially, through analysis
of a dynamic model, the key spring characteristic parameters
with respect to operating points, are developed. It is also shown
that a wider dynamic performance envelope can be achieved by
linearizing the MDT model at around 60%-80% of the maximum
coupling torque, as opposed to traditional linearization under
zero torque conditions. Subsequently, the paper exploits the
spring characteristics for a design methodology based on the

are validated through simulation and experimental studies.
Index Terms—Magnetic coupling, linearization, spring dy-

namics, two-degree-of-freedom PI, H∞ mixed sensitivity, servo
control.

I. INTRODUCTION

with an effective gear-ratio of 1:1, are seldom reported.
Magnetic drive-trains (MDTs) are traditionally modelled as

two-mass systems [5] by linearizing under zero load-torque
conditions. However, the torsional stiffness of the resulting
two-mass system is then considered to be a constant, unlike
the practical stiffness characteristics of MDTs which vary

with developed load and actuation torque. To address issues
caused by the nonlinear stiffness, [6] proposes a nonlinear
control strategy based on a feedback linearizing control law.
However, the resulting implementation requires sensing of
shaft position on both sides of the MDT which is prohibitive
practically due to cost, integration and isolation issues–ideally
control schemes incorporating only primary (driving) side
measurements (not load-side) are preferable.

Pseudo Derivative Feedback (PDF) controllers are known to
improve the stiffness of two-mass systems, reduce the sensi-

to low load-torque can enter a pole-slipping regime when a
small incremental speed reference is commanded. A proposed
remedial method, also given in [12], requires prior knowledge
of real-time load-torque, which again is practically prohibitive.

[13]–[15] employ an observer-based speed controller for

provide optimum step responses for speed tracking. This is
applicable since PDDs can be regarded as reduction gears.
Additionally, non-reversible mechanic gearboxes were adopted
in these applications. Hence, load-torque disturbance handling
can be neglected in the design. However, due to not directly
incorporating an analysis of load-torque disturbance rejection

finds that using a PDF control configuration, an MDT subject 

Drive-trains incorporating magnetic torque transfer com- pseudo direct drives (PDDs), which is a variant of MDTs.
ponents overcome inherent problems of traditional mechan- To operate effectively, observer bandwidths should be set
ical counterparts due to their ability to pole-slip rather than much greater than the resonant frequency of controlled sys-
breaking or jamming as a result of over-torque conditions. To tem [16]; however, low-cost drivers cannot offer high per-
date, magnetic gears with low transmission ratios have been formance computational units and high resolution position
successfully deployed in hybrid electric vehicles [1], aerospace sensors. Moreover, controller parameters in [13]–[15] are
[2], and renewable energy [3], [4] applications. However, servo optimized on the basis of the integral of time multiplied
applications of drive-trains incorporating magnetic couplings, by absolute error (ITAE) performance index which aims to 

H∞ mixed sensitivity approach to determine suitable control tivity of control effort to load disturbances and suppress over-
parameters. Following this, the maximum exogenous load-torque shoot for step command inputs [7]–[10], and have previously 
disturbance and speed reference that will not induce pole-slipping been reported for speed control of MDTs [5], [11]. However, 
can
and optimal gains for position controllers are given to prevent

be determined. Finally, preferential position reference profiles [5], [11] overlook the sensitivity peaks from speed references 
demand-induced speed oscillations. The proposed methodologies and load-torque disturbances to control effort; hence, [12] 
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characteristics, the resulting controllers can lead to MDTs
with a gear-ratio of 1:1 entering pole-slipping even when the
applied load is far lower than the maximum specified coupling
torque.

Using classical methods, designs to accommodate both
disturbance rejection and reference tracking performance of a
speed regulation system can be realized using a two-degree-of-
freedom proportional-integral (2DOF PI) controller [17]–[20].
The low-pass pre-filter of a 2DOF PI controller performs input
shaping which can prevent significant excitation of resonant
dynamics. If load-side oscillations can be suppressed, the load-
side speed of the MDT is approximately equal to that of the
motor-side (load-side sensors are therefore no longer required),
and a low-cost implementation is realizable. However, using
input-shaping techniques to design an appropriate pre-filter
requires the full exploitation of the dynamic properties of the
system to accommodate of the nonlinear stiffness characteris-
tics of the MDT.

performance.
The primary aim of this paper is therefore to provide a low-

cost systematic speed and position control strategy for drive-
trains incorporating magnetic couplings (a direct drive scenario
without non-reversible gearboxes, which is considered a worst
case for magnetic gear variants). The control algorithms are
developed theoretically and verified on an experimental test-
bed. The benefits of the presented approach are:

1) Through appropriate selection of operating points, a wide
range of load characteristics can be accommodated with-
out the need for load-side sensing.

2) The optimized selection of pre-filter and feed-forward
dynamics of a 2DOF controller are determined with
the spring characteristic parameters of the MDTs, which
successfully suppresses the motor- and load-side speed
oscillations and reduces the possibility of pole-slipping
induced by aggressive reference command inputs.

3) The proposed PI parameter optimization, robustness and
stability analysis methods allow controllers to be de-
signed to satisfy specific performance specifications. In
particular, high-torque actuation demands induced by
controllers, both from references and load-torque distur-
bances, are investigated to avoid initiating pole-slipping.

II. DYNAMIC MODEL AND LINEARISATION

A. Experimental rig

An MDT test facility has been commissioned (as shown
in Fig.1) for controller/dynamics validation purposes, and this
provides a focus for the underlying principles that are to be

discussed. The magnetic coupling embedded in the rig has 5
pole-pairs (p), and the maximum (pull-out) coupling torque
(TG) is 1.6 N·m. The MDT rig will enter a pole-slipping
regime when a combination of the driving torque (Tem) and
load-torque (TL) exceeds TG. The experimental facility has
load- and motor-side inertias (JL and JM ) of 0.001 kg·m2

and the load- and motor-side friction coefficients (BL and
BM ) are 0.003N·m/(rad/s). A 12-bit position measurement
sensor is incorporated on the primary-side of the MDT and a
2nd actively controlled motor provides a variable load-torque.
Table. I and Table. II show the key parameters of experimental
rig. The algorithm proposed in this paper is downloaded
to the primary-side drive to verify its performance. Hence,
the algorithm is required to be developed with real-time
performance.

[21] proposes a single-loop PDF position controller rather 
than a two-loop structure (nested speed and position control
loops) that is widely adopted in servo applications. In [21]
load-torque disturbances are estimated through use of a ’low
bandwidth’ observer. The estimated value is then fed-forward
to eliminate position errors resulting from the disturbances.
However, the accuracy of model parameters can significantly
affect the precision of the resulting estimation, and hence (a)

 
(b)

Fig. 1: Experimental test facility (a) magnetic coupling (b)
motor and load side actuation.

TABLE I: Nameplate data of the converter under normal duty

Maximum continuous output current Nominal power at 400V Peak current

5.0 A 2.2 kW 5.5A

TABLE II: Nameplate data of the servo motor

Speed Rated torque Rated power Torque constant Poles

3000 rpm 6.8 N·m 2.14 kW 1.6 N·m/A 6

B. Model and linearisation

Primary-side speed and position are designated ωM and θM ,
respectively, whilst load-side speed and position are designated
ωL and θL, respectively. Note: it is assumed that θL and ωL
are not measured for control purposes, as is desirable for most



MDT systems. Defining TC as the torsional torque developed
between the two sides of the MDT, then from [5]:

TC = TG sin (p(θM − θL)) (1)

If the damping torque TD is significant, the MDT is
described by the following set of equations (also from [5]):

θ̇M = ωM

ω̇M =
1

JM
(Tem − TC −BMωM − TD)

θ̇L = ωL

ω̇L =
1

JL
(TC − TL −BLωL + TD)

(2)

where TD = αTG
2β(ωM−ωL)

(ωM−ωL)2+β2 (α is a proportion of maxi-
mum coupling torque capability, and β is the relative angular
velocity at which maximum damping torque occurs).

Defining x1 = θM , x2 = ωM , x3 = θL, x4 = ωL, u1 =
Tem, u2 = TL, and x = (x1, x2, x3, x4)

T , u = (u1, u2)
T
=

(Tem, TL)
T , (2) can be rewritten as

ẋ = f(x) + g(u) (3)

where f(x) =


x2

1
JM

(
−TC −BMx2 − αTG 2β(x2−x4)

(x2−x4)2+β2

)
x4

1
JL

(
TC −BLx4 + αTG

2β(x2−x4)
(x2−x4)2+β2

)
,

and g(u) =


0

1
JM

u1
0

− 1
JL
u2

. If the damping torque is considered

ẋ = Alinx+ g(u) (4)

where Alin =


0 1 0 0
−Klin

to be negligible (α = 0) the state equations of (3) can be
linearized to give: 

JM
−BM
JM

Klin
JM

0

0 0 0 1
Klin
JL

0 −Klin
JL

−BL
JL

, and Klin is

given by
Klin = TGp cos(p(x1 − x3)) (5)

Then, the resulting transfer function from Tem to ωM is

GωMTem(s) =
JLs

2 +BLs+Klin

A(s)
(6)

where A(s) = JMJLs
3 + (JMBL +BMJL) s

2 +
(BLBM + (JL + JM )Klin) s + (BM + BL)Klin, and
the transfer function from TL to ωM is given by

GωMTL (s) = − Klin

A(s)
(7)

Assuming BLs, (BM + BL)Klin and BMBL are negligible,
then (6) and (7) simplify to:

GωMTem(s) =
1

(JM + JL) s

(JL + JM ) s2 + JMω
2
n

JM (s2 + 2ζωns+ ω2
n)

(8)

GωMTL (s) =
−1

(JM + JL) s

ω2
n

(s2 + 2ζωns+ ω2
n)

(9)

where ωn =
√

Klin(JM+JL) , ζ = JMBL+BMJL
2JMJLωn

. Clearly, ωn

ωM (t) ≈ Tem − TL 

JM JL 
and ζ represent the natural frequency and damping ratio. 
Taking (8) and (9) into consideration and modeling Tem(s) and 
TL(s) as step input signals (Tem(s) = Tem/s, TL(s) = TL/s),
the motor-side speed response (in time domain) is given by 

TL + TemJL/JM 
t + 

ωd 
e−ζωnt sin ωdt 

JM + JL√ 

Tm =
0

Kdθ = KθD (11)

where K is the torsional stiffness, and θD = θM − θL.
However, for MDTs, the coupling torque (TC) is given by:

TC = TG sin (pθD) =

∫ θD

0

TGp cos (pθ)dθ (12)

Comparing (11) and (12), Klin in (5) can be regarded as the
torsional stiffness of MDTs under all operating conditions.

C. Problems induced by classical linearization conditions

In previous study [5], PI parameters for the control of MDTs
are optimized through the ITAE criteria. Specifically, optimal
coefficients of the fourth-order characteristic equation for step
commands are given by

s4 + 2.1ωcs
3 + 3.4ω2

cs
2 + 2.7ω3

cs+ ω4
c (13)

where ωc represents the −3 dB bandwidth. Consequently, the
resulting PI parameters are

Kp ≈ 1.85ωaJL, Ki ≈ 0.6ω2
aJL (14)

where ωa is the anti-resonant frequency given by:

ωa =

√

oscillation and a ramp component, and that increasing JM or
decreasing JL can reduce oscillatory amplitudes, but a larger
JM or JL results in a longer settling times. 

For a two-mass system, the torsional torque (Tm) is ∫ θD 

where ωd = 
(10) shows that the motor-side response contains a damped 

(10) 
1 − ζ2ωn. Since ζ is small, ωd ≈ ωn. Equation 

K

JL
(15)

Also, [5], [11], [12], regard K as being given by:

K = TGp (16)

which assumes linearisation of the dynamic model of the MDT
under no-load conditions. Moreover, equations (5), (14), (15)
and (16) show that the selection of controller parameters are
dependant on ωa, which itself is dependant on the linearized
operating point. To make this point clearer, Fig. 2 shows the
variation of ωa as a function of the linearized operating point.
It can be seen that linearizing around 60% to 80% of the pull-
out torque can widen the performance envelope by referring
back to (14).
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III. SPEED CONTROLLER DESIGN

A. Structure of 2DOF controller

2DOF controllers are well established methods of indepen-
dently accommodating the design of reference tracking and
disturbance rejection. Considering Fc(s) shown in Fig.3 as a
common PI controller Fc(s) = Kp + Ki/s, where Kp and
Ki represent the proportional and integral coefficients. It can
be seen that the 2DOF PI controller is a variant of more
traditional PI schemes: a feed-forward controller (Fff (s))
is adopted to enhance reference tracking, and a pre-filter
(Fpf (s)) is employed to reduce or eliminate overshoot. For
MDTs, the design of Fpf (s) should specifically consider the
system damping characteristics.

Fpf(s)

Fff(s)

Fc(s)
R(s) +

-

+
+

U(s)
G(s)

+

+
Y(s)

Gd(s)

TL(s)

E(s)

Fig. 3: Block diagram of the 2DOF PI control system.

To provide a concrete example of applying the methodolo-
gies to follow, we will focus on a typical practical system
configuration. Linearizing the dynamics of the MDT test
facility at 75% of the maximum coupling torque yields

GωMTem(s)|75% =
1000

(
s2 + 3s+ 5291

)
(s+ 3) (s2 + 3s+ 10582)

(17)

GωMTL (s)|75% =
−5291000

(s+ 3) (s2 + 3s+ 10582)
(18)

For simplicity, normalizing the angular velocity at ωN = 125.7
rad/s (1200 rpm) and the load-torque and electromagnetic

torque at TG = 1.6N·m, the normalized transfer functions
are then:

NωM
Tem

(s)|75% =
12.7(5s2 + 15s+ 26456)

(s+ 3)(5s2 + 15s+ 52912)
(19)

NωM
TL

(s)|75% =
−336750

(s+ 3)(5s2 + 15s+ 52912)
(20)

Here, the plant and disturbance models are considered to be
G(s) = NωM

Tem
(s)|75% and Gd(s) = NωM

TL
(s)|75%.

B. Design of pre-filter

Reference input shaping methods [22], [23] that exploit
the spring dynamics of the controlled system to shape the
reference command can greatly attenuate torsional oscillations,
particularly for flexible and nonlinear systems. For 2DOF
controllers that employ low-pass filters to shape step command
inputs, the damped period is crucial for setting the time con-
stant of the filter. Large time constants deteriorate command
tracking performance whilst small time constants can induce
speed oscillations. According to the robust shaper given in
[23], desired incremental amplitudes (Ai) and time locations
of impulses (ti) are given by:[

Ai
ti

]
=

[
1

1+2δ+δ2
2δ

1+2δ+δ2
δ2

1+2δ+δ2

0 0.5Td Td

]
(21)

where δ = e
− ζπ√

1−ζ2 , and Td is the damped period of vibration.
Equation (21) shows that at least a damped period is required
to suppress oscillations in reference tracking. According to the
definition of ωn, the damped period of the MDT is given by

Td =

√
1

K

JM
1 + JM/JL

(22)

For the specific test facility considered here, δ ≈ 1. If a first
order low-pass pre-filter is considered, Fpf (s) = 1/(τ1s+1),
where τ1 is the time constant, then the output of Fpf (s) in
response to a step input is given by:

Fpf (t) = 1− e−t/τ1 (23)

Now, Fpf (t) ≈ 0.25, 0.75, and 0.95 at times t = 0.28τ1,
1.38τ1, and 3τ1, respectively. Thus, τ1 can be set to 0.33Td.
Supposing the MDT rig is allowed to run at 96% of the pull-
out torque (that is K|96% =0.148K, where K|96% denotes the
stiffness of the MDT running at 96% of the pull-out torque)
and the actual load-side inertia JL can be up to 2ĴL (where
ĴL is the estimated load-side inertia), taking the variation of
the denominator of (22) into consideration, an acceptable time
constant for the low-pass filter is τ1 ≈ Td.

Hence, the resulting pre-filter is given by:

Fpf (s) =
1

1 + Tds
(24)



C. Design of feed-forward controller

As shown in Fig. 3, the transfer function from the reference
R(s) to the output Y(s) is

TRY (s) =
(Fpf (s)Fc(s) + Fff (s))G(s)

1 + Fc(s)G(s)
(25)

To eliminate overshoot, we can choose ideal first order
reference dynamics for the system, eg. TRY (s) = 1/(1+Tds).
From (25), the feed-forward loop is then immediately given
by

Fff (s) =
1

(1 + Tds)G(s)
(26)

However, the anti-resonant frequency of the MDT decreases
as load-torque increases. Hence, the zero, which contributes
to the anti-resonant frequency, cannot be cancelled with (26).
This means that first order dynamics can not be achieved
with the transfer function G(s) normalized at 75% of the
pull-out torque. For simplicity, Fff (s) is approximated to
2(s+3)/ (12.7(1 + Tds)) (referring to (19), if the bandwidth
of closed-loop system is smaller than 23 rad/s, 5s2 and 15s
are negligible while comparing to 26456 and 52912).

D. H∞ mixed-sensitivity method of optimizing PI parameters

Field engineers can refer to [20] for a simple parameter
setting method. But this strategy does not specify the band-
width of load-torque disturbance and speed reference that
the controller can accommodate. Here then, an alternative
method is given based on H∞ optimization to address these
deficiencies.

F1(s)
R(s) +

-

-
+

U(s)
G(s)

Y(s)

D(s)

E(s)

F2(s)

ωM(s)

Fig. 4: Equivalent diagram of the 2DOF PI control system

Fig. 4 shows an equivalent diagram of the 2DOF PI control
system (Fig. 3), where D(s) = Gd(s)TL(s)/G(s), F1(s) and
F2(s) are given by

F1(s) = Fpf (s)Fc(s) + Fff (s) (27)

F2(s) =
Fc(s)

F1(s)
(28)

According to the equivalent structure, the error E(s) and the
control effort U(s) are given by

E(s) =
1

1 +G(s)Fc(s)
R(s) +

F2(s)Gd(s)

1 +G(s)Fc(s)
TL(s) (29)

U(s) =
F1(s)

1 +G(s)Fc(s)
R(s) +

Fc(s)Gd(s)

1 +G(s)Fc(s)
TL(s) (30)

Defining Sde = − F2(s)Gd(s)
1+G(s)Fc(s)

, Sre = 1
1+G(s)Fc(s)

, Sdu =
Fc(s)Gd(s)
1+G(s)Fc(s)

and Sru = F1(s)
1+G(s)Fc(s)

, (29) and (30) can be
rewritten as [

E(s)
U(s)

]
=

[
Sde Sre
Sdu Sru

] [
TL(s)
R(s)

]
(31)

Letting W1 and W2 be weighting filter functions, and

‖T (s)‖∞ =

∥∥∥∥[W1Sde W1Sre
W2Sdu W2Sru

]∥∥∥∥
∞

(32)

the H∞ mixed-sensitivity method is employed to obtain an
optimized controller Fc(s) which ensures ‖T (s)‖∞ < 1.
For good reference-tracking and disturbance-rejection perfor-
mance, W1 is chosen to be relatively high inside the control
bandwidth to obtain small Sde and Sre. For limiting the control
effort to avoid initiating pole-slip requires selecting the sen-
sitivity peak to obtain appropriate Sdu and Sru. Additionally,
the bandwidth of W2 should be set to be lower than the
antiresonant frequency of the MDT.

Typically, weighting functions W1 and W2 are chosen to be
of the form

W1 =
s/M + ω1

s+A1ω1

(33)

W2 =
s+ ω2/M

A2s+ ω2

(34)

where A1 and A2 are the maximum allowed steady error, M
is associated with the sensitivity peak, and ω1 and ω2 can be
used to adjust the bandwidth of W1 and W2. Classically, M
provides a means for assessing robustness. M < 2 indicates
good robustness attributes, whilst M > 4 generally means both
robustness and tracking performance will be poor. Hence, A1,
A2 and M are the most readily determined parameters based
on required specifications. In this case we choose A1 = A2 =
0.05, M = 2.

It can be seen from Fig. 2 that ωa = 33.5 rad/s while the
MDT is operating at 99% of the pull-out torque. This means
that the bandwidth ωc of the speed control system should
be set to a value less than 33.5 rad/s if a wide operational
range is required. Here then we choose ω1 = ω2 = 40 rad/s
(note: some iteration may be required in practice). Equation
(32) and Fig. 5 shows that the steady-state error of speed
regulation system increases when the frequencies of references
and disturbances are greater than 2 rad/s, and that the gain of
the controller significantly decreases when the frequencies are
higher than 10 rad/s. Of note is that the maximum speed-loop
bandwidth provided by the selected drives is 255 Hz; hence,
the influence of the current control loop can be neglected in
this design.

Using MATLAB’s Robust Control Toolbox function
slTuner and hinfstruct to calculate ‖T (s)‖∞, the resulting
parameters for the PI controller are:

Kp = 2.94, Ki = 34.5 (35)
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E. Robustness and stability analysis

bances (leading to electromagnetic torque transients).

To gain in terms of performance with respect to standard
approaches, the phase margin (φm) of the speed control loop 
is adopted as a candidate performance metric. Fig. 6 shows that 
φm is approximately 700, albeit with some slight φm decrease 
as operating load-torque increases. For classic design methods 
proposed for speed control of electrical drives, this value is
considered sufficient to provide robust performance (see [17]).
However, MDT control systems cannot simply be analysed
using classic methods. MDTs can enter a pole-slipping regime
induced by speed reference changes or load-torque distur- 
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Letting Tfl and Tfm denote the load- and motor-side
friction torque, when the MDT is operating normally, the
coupling torque (TC) and developed motor torque (Tem) are
described by

TC = TL + Tfl (36)

Tem = TC + Tfm (37)

From (36) and (37), it can be seen that either TL+ Tfl > TG
or Tem > TG + Tfm invokes pole-slipping.

The peak value of Tem is determined by Sru and Sdu.
Examination of Sru and Sdu, shows that if:

= 3(BM +BL) 

ωc2 > ωc > ωc1 (38) 

Frequency  (rad/s) 

Fig. 6: Open loop responses of the speed control system under 
50%, 75% and 95% of the pull-out torque. 

JM +JL 

1
3 min 

where (√ωc1 

(JM +JL)Klin 
√ 
, J

(BM +BL)Klin

M BL+BM JL 
, JM JL 

Sru can be simplified to 

Sru ≈ ωN (JM + JL) s 

√and ωc)2 = 
K
JL 
, KBL 

, thenlinlin 

TG (Tds+ 1)
(39)

Sdu ≈
TGKlin (Kps+Ki)

, and Sdu is described by 

JMJLωNs4 + (JM + JL)ωNs2 + (Kps+Ki)TGKlin
(40)

Inversing Laplace transforming (39) yields

Sru(t) =
ωN (JM + JL)

TGTd
δ(t)− ωN (JM + JL)

TGT 2
d

e
− t
Td (41)

Equations (39) and (41) show that the sensitivity peak of
Sru will significantly increase as JL increases. However, as
shown in (41) and Fig. 7, this problem can be addressed by
adjusting the settings of speed reference (r) or time constant
(Td). Moreover, (40) indicates that increases in JL results a
large peak in Sdu. It can be seen from Fig. 8 that while the
inertia ratio (IR) rises from 1 to 5, the sensitivity peak of Sdu
increases accordingly from 1.2 to 1.4. It means the maximum
permitted load-torque disturbance reduces from 0.83TG to
0.71TG (assuming friction torque is negligible in this case).
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Fig. 7: Simulated control effort of experimental test facility
with various parameter settings (speed references are imposed
at 0.5 s, 1.5 s and 2.5 s, respectively).
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Fig. 8: Simulated control effort with regard to load-torque dis-
turbances (TL = 0.5TG, load-torque disturbances are imposed
at 0.5 s, 1.5 s and 2.5 s, respectively).

Let Us1 and Us2 denote the steady-state values (time-
domain) of Sru and Sdu, respectively. Then Us1 and Us2 are,
respectively, given by

Us1 = Tfm + Tfl

Us2 = TL
(42)

Equation (41) shows that the peak value of Fig. 7 is im-
pulsive, and can be partly damped by the delays related to
current control loops. Hence, according to Fig. 7 and Fig. 8,
the maximum controller output caused by the speed reference
r and load-torque disturbance TL are, respectively, described
by

Urm ≈ 0.95r, Udm ≈ 1.2TL (43)

Criteria for MDTs to maintain a normal running with respect
to speed references or load-torque disturbances are therefore
given by

Us1 + Us2 + Udm < TG + Tfm (44)

Us1 + Us2 + Urm < TG + Tfm (45)

Two example scenarios based on the previous analysis are now
considered.

Example 1: Assume the MDT rig is initially operating at
0.67ωN (800 rpm) under no-load torque, find the maximum
permitted load-torque disturbance (Tmd) that will not initiate
pole-slipping.

The friction torque with respect to motor- and load-side
components are Tfm = BMωM = 0.16TG and Tfl = Tfm,
respectively. According to (42), Us1 = 0.32TG, and no-load
torque gives Us2 = 0. Therefore, the maximum increment of
control effort given by (44) is Udm = TG−0.16TG = 0.84TG,
and the resulting Tmd from (43) is 0.84TG/1.2 = 0.7TG.

Example 2: When the MDT rig is running at 0.33ωN
(400 rpm) under 70% of the pull-out torque, find the maximum

speed command increment (rm) that will not initiate pole-
slipping.

The motor- and load-side friction torque corresponding to
0.33ωN are Tfm = Tfl = 0.08TG. According to (42), Us1
is therefore 0.16TG. Moreover, TL = 0.7TG gives Us2 =
0.7TG. Assuming the friction torque developed by the speed
increment is negligible, then the maximum increase of control
effort given by (45) is Urm = (1− 0.7− 0.08)TG = 0.22TG.
Hence, the resulting rm from (43) is 0.22ωN/0.95 = 0.23ωN
(=278 rpm).

IV. POSITION CONTROLLER DESIGN

Having addressed speed control dynamics, we now turn
attention to position tracking. In [21], a PDF controller was
employed to achieve servo control of an MDT encompassing
magnetic gears, and the position reference is given directly
as a step input signal. However, MDTs have a maximum
permitted speed (Vp) that is determined by the maximum per-
mitted load-torque disturbance and friction torque, to prevent
pole-slipping. Hence, a simple PDF position controller may
generate an aggressive speed demand as a result of large
position change demands; consequently, speed oscillations or
even pole-slipping can be induced.

A. Position references

Suppose the MDT is required to take a maximum of 3Td
to reach Vp, and a further 3Td to decelerate from Vp to 0.
Thus, the optimal solution for position regulation is the MDT
running at Vp except during acceleration/deceleration periods.
Fig. 9 therefore provides a desirable speed reference to achieve
position regulation.

3Td 3Td

Vp

tr Time

Sp
ee
d

Fig. 9: Desired speed reference

Consider Pos to be the reference position, when Pos ≤
3VpTd the driving motor can be scheduled to advance in
incremental steps smaller than π/2p over fixed (constant)
time intervals, which is the maximum increment that does not
initiate pole-slipping. A solution therefore readily exists for
this condition. Therefore, we now consider conditions where
Pos > 3VpTd. Letting tr represents the running time under
Vp, then, tr is given by

tr = (Pos − 3VpTd)/Vp (46)



and the acceleration/deceleration rate is a = Vp/3Td. Hence,
the position reference signal Rp with the desired reference
speed profile is scheduled as:

Rp =


s1 t ≤ 3Td
s2 3Td < t ≤ 3Td + tr
s3 tr + 3Td < t ≤ tr + 6Td
Pos t > tr + 6Td

(47)

where s1 = 1
2at

2, s2 = 9
2aT

2
d + Vp (t− 3Td), s3 = − 1

2at
2 +

Vpt− 1
2a (t− tr − 3Td).

B. Design of position controller

As load-torque disturbances have been rejected by the
2DOF PI speed controller, the position controller can then
be designed as a simple proportional controller. The position
reference for this application is defined by (47), which cannot
be considered as either a classical step or ramp. Here then, we
employ another optimization method rather than calculating
parameters directly from the characteristic equations in (13).
From Fig. 4, the speed control loop dynamics are given by

Gs(s) =
F1(s)G(s)

1 + F1(s)F2(s)G(s)
(48)

Fig. 10 illustrates the principle of optimizing the parameter for
the position controller through a servo control block diagram.
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e ωMRp
position

Gs(s)
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𝑠

1
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f  (𝐾 )

speed loop

Fig. 10: Block diagram to obtain an optimized Kθ.

The ITAE performance index can be regarded as a function
of Kθ, that is

ITAE =

∫ T

0

t|e(t)|dt = f(Kθ) (49)

where T is the running time. Then, the problem of finding an
optimized Kθ can be converted into a problem to search for
min
Kθ

f(Kθ). Here, the fminsearch function provided by the

Matlab optimization toolbox is employed to find a solution,
and the optimized result is

Kθ = 1.50 (50)

V. SIMULATION AND EXPERIMENTAL RESULTS

To show the implementation and performance of the pro-
posed control strategies during extreme operating conditions,
we will again consider the scenario specified in Example 1.
Taking the resolution of output electromagnetic torque into
consideration, the load-torque disturbance is set to 0.67TG
rather than 0.7TG. Because the position encoder integrated
with the servo motor only offers 12-bit resolution, the period
of speed control loop is set to 4 ms to ensure the accuracy
of speed measurement. The algorithm is discretized with the
zero-order hold method due to control inputs are supposed to
be piecewise constant over the sample time.

0 5 10 15 20 25 30

Time (s)

0

0.2

0.4

0.6

0.8

1

N
o

rm
al

iz
ed

 s
p

ee
d

Simulation

Rig experiment

13 13.4
0.4

0.5

0.6

0.7

Fig. 11: Simulated and experimental results of the motor-side
shaft with τ1 = Td, Kp = 2.9,Ki = 34.5 ( r = 0.67ωN ,
TL = 0N·m, 0.67TG and 0 N·m at 3-13 s, 13-23 s and 23-
30 s, respectively).
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Fig. 12: The electromagnetic torque outputs of two drives.

Fig. 11 shows the motor-side speed of simulation is seen to
match the experimental test facility measurements over a wide



operating range. Fig. 12 plots the output of electromagnetic
torque of two drives and validates the sensitivity peak analysis
described by (40), (41), (43), Fig. 7 and Fig. 8. It can be seen
from Fig. 12 that whilst the load-torque is greater than 0.7TG,
Tem will breach the stable running criterion given by (44)
(Tem is normalized at the maximum coupling torque TG).

Referring to the experimental results of Fig. 13 where the
time constant (τ1) of the pre-filter is set to 0.6Td (the recom-
mended τ1 is Td), the load-side coupling enters a pole-slipping
operating regime when the speed command 0.67ωN is given
at 3 s.
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Fig. 13: Experimental measurements of pole-slipping with
τ1 = 0.6Td, Kp = 2.9,Ki = 34.5 and TL = 0N·m.
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Fig. 14: Experimental measurements of speed at both side
of the coupling with τ1 = Td, Kp = 2.9,Ki = 34.5
(TL = 0N·m, 0.67TG and 0 N·m at 3-13 s, 13-23 s and 23-
30 s, respectively).

Fig. 14 represents very good load-side vs. motor-side cou-
pling using the proposed pre-filter design even when subject

to extreme load disturbances. The results presented in Fig. 11,
Fig. 13 and Fig. 14 indicate that designing 2DOF PI controllers
with the spring characteristic parameters (Td and ωa) and 
model linearized at 75% of the pull-out torque prevents 
the MDT from induced speed oscillations and pole-slipping
resulting from aggressive speed commands and load-torque
disturbances. Further, these results are achieved without direct
measurement of load-side speed. 
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It can be seen from Fig. 16 that the proposed strategy
provides the required acceleration/deceleration responses for
position regulation. Moreover, Fig. 16 shows that the 2DOF
PI controller substantially rejects the extreme load-torque
disturbance that that is applied between 0 N·m and 67% of
the pull-out torque and then restores the no-load condition, and
that the proportional controller achieves zero steady-state error
position tracking without the feedback of load-side position
measurements.

VI. CONCLUSION

Through discussions of models of MDTs with nonlinear
stiffness characteristics, appropriate linearization, 2DOF PI
speed regulation system design, and position control strate-
gies, the paper has addressed the most important issues of
servo control of drive-trains incorporating magnetic couplings.
Speed regulation measurements show outstanding performance
in reference tracking and load-torque disturbance rejection.

here). 

Fig. 15 shows the maximum controller outputs generated by
speed references and load-torque disturbances with regard to
the optimized 2DOF PI controller and the benchmark PDF
controller proposed by [1]. It can be seen from Fig. 15 that
1) the proposed design can accommodate a wider range of
load-torque disturbance and is more robust to load-side inertia
variations, and 2) the optimized 2DOF controller offers a faster
speed response (piecewise speed references are recommended 

S
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Fig. 15: The sensitivity peaks of Sru and Sdu (r and d are 
modelled as step inputs, the delays associated with current 
control loops are not taken into consideration). 
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Fig. 16: Experimental measurements (a) operating speed (b)
load-side position ( Rp = 18, TL = 0N·m, 0.67TG and 0 N·m
at 0-10 s, 10-20 s and 20-35 s, respectively).

Moreover, experimental results reveal that the developed posi-
tion control strategy achieves no over-shoot in position track-
ing without the need for load-side measurements. Although the
speed and position controller design methodologies presented
here have specifically focused on the control of MDTs with
nonlinear stiffness characteristics, the underlying principles are
also more generally applicable to other more traditional dual-
mass drive systems.
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