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Abstract—Driver anomaly quantification is a fundamental
capability to support human-centric driving systems of intelligent
vehicles. Existing studies usually treat it as a classification task
and obtain discrete levels for abnormalities. Meanwhile, the
existing data-driven approaches depend on the quality of dataset
and provide limited recognition capability for unknown activities.
To overcome these challenges, this paper proposes a contrastive
learning approach with the aim of building a model that can
quantify driver anomalies with a continuous variable. In addition,
a novel clustering supervised contrastive loss is proposed to
optimize the distribution of the extracted representation vectors
to improve the model performance. Compared with the typical
contrastive loss, the proposed loss can better cluster normal
representations while separating abnormal ones. The abnormality
of driver activity can be quantified by calculating the distance
to a set of representations of normal activities rather than being
produced as the direct output of the model. The experiment
results with datasets under different modes demonstrate that the
proposed approach is more accurate and robust than existing
ones in terms of recognition and quantification of unknown
abnormal activities.

Index Terms—Driver anomaly, online quantification, continu-
ous variable, contrastive learning, representation clustering.

I. INTRODUCTION

INTELLIGENT driving has attracted considerable atten-

tion, and tremendous progress has been achieved in re-

cent years[1, 2]. Autonomous vehicles have been primarily

investigated to replace human drivers in order to enhance

driving performance and avoid possible fatalities. However,

human drivers will still play an important role in the driving

task for a certain period before full driving automation is

achieved. Hence, the coexistence and cooperation of humans

and vehicles represents an urgent and exciting new focus

for the development in-vehicle technology[3, 4]. To enhance

user safety and the efficiency of collaboration with intelligent

vehicles, a reliable driver monitoring system (DMS) should be

further pursued to parse the state of a human driver, which

is a fundamental functionality to support advanced driver

assistance systems and partially automated vehicles[5–8].
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Fig. 1: Driver anomaly quantification using a set of represen-

tations of normal activities. The demonstration can be found

on the YouTube website.

Driver anomaly quantification, as a typical task of a DMS,

has been studied for a long time[9–15]. Recently, many

researchers have revisited this topic by leveraging the powerful

representation capabilities of deep learning, leading to impres-

sive achievements[16–24]. However, these studies usually treat

it as a classification task, in which driver activity is classified

into several predefined classes. Unfortunately, this approach

does not provide a reasonable solution for downstream ap-

plications. For example, a shared control algorithm usually

needs to allocate a continuous value (0 ∼ 1), representing

an authority weight, to the human driver in accordance with

the driver’s state [25–29]. From the perspective of application

and control, the vehicle does not need to recognize the specific

activity of the driver; it needs only to know whether the driver

is in a normal or abnormal state and how close to or far away

from the normal driving state the driver is. This means that

the typical driver activity classification method is not suitable

for constructing a human-centric intelligent driving system.

Another problem is that any collected dataset has difficulty

covering all possible types of abnormal human activities,

and the existing datasets usually include only several typical

activities, limiting the recognition capability of models trained

on these datasets for previously unseen activities. Furthermore,

the collection of labeled activity samples of different types is a

laborious task. Therefore, this study aims to propose a method

that can recognize driver anomalies, especially unknown ones,
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and quantify abnormality in the form of a continuous value

rather than through discrete classification.

Contrastive learning is an emerging technique that has

recently attracted considerable attention[30, 31]. In contrastive

learning, a self-supervised (unsupervised) methodology is

adopted to learn a general representation of a domain by

minimizing the distance between similar samples and max-

imizing the distance between different samples. This tech-

nique provides some inspiration regarding how to alleviate

the reliance on a complete anomaly dataset and quantify the

abnormality. Typical contrastive learning can be regarded as

self-supervised metric learning, in which data augmentation

techniques are leveraged to create image pairs: two randomly

augmented versions of the same image are fed into the model

as a positive pair, while other images in the same batch are

fed in as negative pairs. The goal of contrastive learning

is to find the trade-off point that can balance alignment

and uniformity on the hypersphere[32]. Alignment refers to

the requirement for features extracted from similar samples

to be close to each other in the projected space, whereas

uniformity refers to the need for the projected features to have

a uniform distribution to preserve the unique information of

each one. Theoretically, better performance can be achieved in

downstream applications by fine-tuning the model accordingly.

Therefore, in this study, the aim is to obtain a feature extractor

by leveraging contrastive learning and then use it to build a

set of representation vectors corresponding to normal driver

activities. Abnormal activity can then be recognized by calcu-

lating the distance from normal activities, and this distance can

be used not only to distinguish anomalies but also to quantify

the abnormality, as shown in Fig. 1. To this end, the alignment

of normal samples should be enhanced, while the uniformity

with respect to abnormal samples should be maintained. In this

study, the label information is utilized to form a supervised

contrastive loss for improving model performance[33]. The

positive pairs may be formed not only from different versions

of a same image, but also from samples with the same

label. Furthermore, this study introduces the conception of

clustering, such that normal activity representations are forced

to cluster around the center of the normal feature set. Finally,

a clustering supervised contrastive loss (C-SCL) is proposed

to train the feature extractor model.

The main contribution of this study is that contrastive learn-

ing is introduced to obtain a well-established representation

set of driver normal activities that can be utilized to quantify

anomalies using a continuous value rather than through tra-

ditional discrete classification, with the goal of bridging the

gap with downstream applications. Meanwhile, a novel C-SCL

that can further cluster the representations of normal samples

is proposed to improve the model representation capability.

This paper is organized as follows. Section 2 comprehen-

sively discusses related work. Section 3 describes the proposed

method and the training framework. Section 4 analyzes and

discusses the experimental results. Conclusions are presented

in Section 5.

II. RELATED WORK

The existing works for driver activity basically treat it

as a classification problem, then it can be tackled by the

efficient deep learning approach[34–36]. A commonly used

input is an in-cabin image, and many convolutional neural

network (CNN)-based approaches have been proposed from

different perspectives[11, 13, 37]. [9] presented an ensemble

of four CNN models to handle different parts of the driver,

including the face, hands, and body, to recognize driver

activity. [38] proposed an attend and guide network to classify

driver behavior by obtaining the spatial structures of images

through the identification of semantic regions and their spatial

distributions. [39] concatenated three CNN models to construct

a hybrid framework for detecting distracted driver behavior.

[22] leveraged the generative adversarial network approach to

augment a collected dataset with new training samples and

trained a CNN model to recognize driver distraction. [24]

proposed a coarse temporal attention network by exploiting

spatiotemporal attention to model driver activity, utilizing

an attention mechanism to generate high-level action-specific

contextual information. [40] adopted a multitask learning

approach and constructed triplets of images to improve the

performance of vision-based driver distraction recognition.

The image triplets were used to force networks to explore

global information.

To improve model performance, additional information may

be utilized. [18] proposed a bidirectional posture–appearance

interaction network that utilizes skeleton data to enhance the

model performance, and the proposed model was verified

on a collected bus driver behavior dataset. Furthermore, [16]

utilized semantic contextual cues in addition to skeleton data

to improve the recognition accuracy by modeling the pairwise

relation between body joint configurations and objects of

interaction to capture structural information. [20] utilized mul-

tistream inputs and proposed a dedicated CNN model to handle

them, which has the form of a tight ensemble architecture

to improve the robustness of the model. [7] leveraged a

smartphone to monitor driver behavior by using the camera

and other built-in sensors, including the accelerator, gyroscope,

Global Positioning System (GPS) receiver, and microphone.

Some studies have attempted to reduce the computation

time. [19] proposed a new CNN-based driver activity recog-

nition model by decreasing the filter size to reduce the size of

the model. [21] proposed a lightweight CNN model with an

octave-like convolution mixed block that uses pointwise con-

volution to expand the feature maps into two sets of branches.

[23] utilized the neural architecture search technique, which

can automatically search for the optimal model architecture,

to build a fine-grained detection method for driver distraction.

[8] adopted the depthwise separable convolution approach to

build a lightweight CNN model for driver activity recognition.

In addition to data collected by vision-based sensors, driving

data collected in different modes have also been adopted to

recognize driver behavior. [17] leveraged multimodal driving

data and adopted a stacked long short-term memory (LSTM)

network architecture with an attention mechanism to detect

driver distraction. [28] also used driving data as input, recog-
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nizing driver distraction by comparing normal driving parame-

ters against those obtained while performing a secondary task

and employing an effective fuzzy logic algorithm. [41] utilized

the steering angle and velocity to recognize anomalous driving

behavior by using a CNN model.

In contrast to existing works, this study aims to obtain a

continuous value for quantifying the anomalies by leveraging

the contrastive learning approach with representation cluster-

ing. Some studies have predefined different driver activities

into three distraction severity levels with corresponding scores

by using the fuzzy logic approach, as in the work of [29].

However, the problem is still treated as a multiclass classifi-

cation task, and the distraction value is discrete. The previous

work most closely related to ours is [42], which also utilized

a supervised contrastive loss for model training. Relative to

that work, this study introduces the clustering conception to

enhance the alignment of normal samples and improve the

representation performance of the model.

III. METHODOLOGY

In this section, we will introduce the proposed contrastive

learning approach for quantifying driver activity anomaly and

the novel C-SCL for representation clustering.

A. Contrastive Learning for Driver Anomaly Quantification

Driver activities can basically be classified into two cate-

gories: normal and abnormal. Abnormal activities are usually

uncertain, whereas normal activities are definite. As a result,

we can build a representation set for normal activities and

then calculate the distance from a given activity sample to the

set of normal samples, and the obtained continuous distance

can indicate the abnormality of the given sample. Doing so

requires a model with good feature representation capabilities,

and the emerging contrastive learning approach provides us

with some inspiration on how to do this.

Contrastive learning can be regarded as a self-supervised

metric learning technique that can be used to learn a general

representation of a domain without labels by teaching the

model which samples are similar or different. In practice, a

combination of two random augmentations (cropping, rotation,

noise, dropout, etc.) can be applied to each image in a dataset

to create a corresponding image pair (xi′ , xi′′), which are then

fed into a deep learning model fθ(·) : χ → R
d to extract

the corresponding representation vectors, and the goal is to

train the model to learn that the two samples in each pair are

similar because they are essentially different versions of the

same image. This goal can be abstractly described as follows:

d(fθ(xi′), fθ(xi′′)) << d(fθ(xi), fθ(xj)) (1)

The above equation means that the model needs to reduce

the distances between the embedding vectors of positive

pairs while increasing the distances between negative pairs,

and various studies have proposed different distance met-

ric approaches for this purpose[43, 44]. In self-supervised

contrastive learning, a positive pair consists of differently

augmented versions of the same image, while a negative pair

consists of different images. In supervised metric learning, a

positive pair consists of images with the same label, whereas

a negative pair consists of images with different labels. In

particular, the commonly used InfoNCE loss [45] function in

self-supervised contrastive learning is defined as follows:

£cl = −
∑

i

log
exp(( ˆfθ(xi′) · ˆfθ(xi′′))/τ)

∑2N
k=1 ✶[k ̸= i′] · exp(( ˆfθ(xi′) · ˆfθ(xk))/τ)

(2)

where xk is an augmented version of some sample in the

dataset χ ∈ [N ], · denotes the inner (dot) product, ˆf(·)
denotes the normalization of a vector, and τ is a temperature

hyperparameter.

The goal of contrastive learning is to project normalized rep-

resentation vectors onto a hypersphere where the distribution

of the projected vectors has the characteristics of alignment

and uniformity simultaneously. Alignment refers to the re-

quirement for the extracted representations of similar samples

to be close to each other, whereas uniformity refers to the

need for the representations to have a uniform distribution to

preserve the unique information of each one. Theoretically, the

feature representations can be optimized in this way. However,

the uniformity characteristic in self-supervised learning will

drive the model to maximize the distance between different

images (xi′ , xk) even if xi′ and xk are both normal activity

samples. This goes against our purpose, which is to cluster all

normal samples together. Therefore, this study still leverages

label information to improve the model performance, and

our goal is for samples of normal activity to gather close

to each other while remaining separated from samples of

abnormal activity, which is essential for obtaining a reasonable

continuous abnormality value.

B. Novel Supervised Contrastive Loss for Representation

Clustering

The typical self-supervised contrastive loss considers only

samples from the same image as positive pairs, while the

remainder of the training batch is treated as negative pairs. As

a result, various normal and abnormal samples will be equally

distributed across the hypersphere, and each normal sample

may be located nearby one or more abnormal samples, which

is in contrast to our purpose. Therefore, the contrastive loss is

modified to include label information such that a positive pair

consists of samples with the same label rather than different

versions of the same image, whereas a negative pair consists

of samples with different labels, as follows:

£scl = −
∑

i

1

|P (i)|

∑

j∈P (i)

log
exp(

( ˆfθ(xi)·
ˆfθ(xj))

τ
)

∑2N
k=1 ✶[k ̸= i] · exp( (

ˆfθ(xi)·
ˆfθ(xk))

τ
)

(3)

where P (i) denotes samples that have the same label as xi.

The modified supervised contrastive loss drives the feature

extractor to align embedding representations with the same

label, resulting in a clustering of the representation space that

is more robust than the original one.

To further align normal activity samples, the clustering

conception is introduced by minimizing the distances from
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Fig. 2: Overview of the proposed contrastive learning approach with representation clustering for driver anomaly quantification.

In practice, the input can be either a single image or sequential frames.

the embedding representation vectors of normal activities to

their center vector. Thus, we translate the original center of the

hypersphere to the center of the set of representation vectors of

normal activities, and the contrastive loss is further modified

as follows:

£cscl = −
∑

i

1

|P (i)|

∑

j∈P (i)

log
exp(

(ci·cj)
τ

)
∑2N

k=1 ✶[k ̸= i] · exp( (ci·ck)
τ

)

s.t. ci =
ˆfθ(xi)− cent

∥

∥

∥

ˆfθ(xi)− cent
∥

∥

∥

, cent =
1

|N(i)|

∑

i

ˆfθ(xi)

(4)

where N(i) denotes the set of representation vectors of normal

activities and |N(i)| denotes the corresponding cardinality.

The contrastive loss utilizes the angle between two embed-

ding vectors as the distance metric, which forms a uniform

distribution around the representation hypersphere upon nor-

malization of the vectors. The normalized center of the feature

set of normal activities is still located within the hypersphere.

As is well known, the geometric theorem regarding the angle

at the circumference is that an angle at the circumference of

a circle is equal to half the angle at the center subtended by

the same arc. The angle change in the translated hypersphere,

which is centered on the mean vector of the normal sample

feature set, will be amplified in the original hypersphere. As

a result, the modified contrastive loss further forces abnormal

samples farther from normal ones. Finally, the training loss

function can be described as follows:

£ = £cscl +£c +£bce

= −
∑

i

1

|P (i)|

∑

j∈P (i)

log
exp((ci · cj)/τ)

∑2N
k=1 ✶[k ̸= i] · exp((ci · ck)/τ)

+
∑

i∈N(i)

ci +
∑

i

[yiz(xi) + (1− yi)(1− z(xi))]

(5)

where z(x) denotes the output of the projection head and yi
denotes the label of the corresponding sample. The proposed

loss function, which includes the modified supervised con-

trastive loss, the representation clustering loss, and the binary

cross-entropy loss, can force normal activity representations

to cluster together, far away from abnormal ones, which can

enhance the availability of using the continuous distance to

quantify the abnormality.

C. The Architecture of the Proposed Approach

The final architecture of the proposed approach is shown

in Fig. 2, and the pseudo-code of the training strategy can

be found in Algorithm 1. In the training phase, each image

(or set of sequential frames) is randomly augmented to obtain

two different samples. Then, these samples are fed into the

same feature extractor to obtain their representation vectors.

The extracted vectors are first normalized, then subtracted

with the center vector of the representation set of normal

activity samples; then, the results are used to calculate the

supervised contrastive loss and the clustering loss. Meanwhile,

the non-normalized extracted vectors are fed into a projection

head with a fully connected (FC) layer, which is trained

with a binary cross-entropy loss, for class prediction. The
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Algorithm 1 Training strategy for the proposed contrastive

learning approach with representation clustering.

1: for Number of epochs do

2: for Number of normal driver activity samples in the

training set do

3: Sample an image of normal activity xi from dataset

E.

4: Calculate the representation of the selected normal

activity sample using the model fθ(·).
5: Append the normalized version of the extracted vec-

tor to the normal activity feature set N .

6: end for

Update the center vector cent of the feature set N as

follows: 1
|N(i)|

∑

i
ˆfθ(xi)

7: for Number of training iterations do

8: Sample m images of normal driver activity

xn1
, ..., xnm

with labels yn1
, ..., ynm

and n images

of abnormal driver activity xa1
, ..., xan

with labels

ya1
, ..., yan

from dataset E.

9: Update the entire model with the updated center

vector cent as follows:

▽θ[
1

m+n

∑m+n

i=1 £sccl(xi, cent) +
1

m+n

∑m+n

i=1 £bce(xi, yi) +
1
m

∑m

i=1 £c(xni
, cent)]

10: end for

11: end for

Output: Updated feature extractor model and representation

set of normal activities

normal activity representation set is updated after each epoch

of training. In the testing phase, the representation vector

of all normal activity samples in the training set is firstly

calculated by using the trained feature extractor, then the

representation set can be obtained. For the extracted vector

of each test sample, their distances from all vectors in the

representation set are calculated. Finally, the minimal distance

that is found by the k-nearest neighbor (KNN) algorithm [46]

is utilized as the continuous abnormality value to quantify

anomalies. This relies on the trained feature extractor, which

can cluster the normal representations while separating the

abnormal representations.

IV. EXPERIMENT

A. The Datasets

Datasets collected in two different modes are utilized to

evaluate the proposed method: the American University in

Cairo (AUC) Distracted Driver Dataset [9] and the Driver

Anomaly Detection (DAD) dataset [42], as shown in Fig. 3.

The AUC dataset is a commonly used dataset for driver

activity recognition. The authors of this dataset recruited 31

participants, of whom 22 were male and 9 were female, from

7 different countries. The driver activity data were collected

in 4 different cars and are classified into ten classes, such

as drinking, adjusting the radio, driving in a safe posture,

fiddling with hair or makeup, reaching behind, talking to

passengers, and talking on a cell phone. In these experiments,

the input from the AUC dataset consists of a single frame for

Fig. 3: Two driver activity datasets: AUC (top two rows) and

DAD (bottom two rows).

Fig. 4: Confusion matrix of the feature extractor used for

recognizing multiple driver activities in the AUC test set. The

value ranging from 0− 9 represents the provided label index

of different activity classes in the original AUC dataset. 0
indicates that diver state is safe.

consistency with existing works to ensure fair comparisons. In

this study, the AUC dataset is chosen as the main benchmark

to evaluate the proposed method because it is commonly used.

The DAD dataset was collected from a driving simulator.

Two depth cameras were mounted on top of the vehicle and

in front of the driver. The front camera recorded the driver’s

head and body and the visible parts of the hands, while the top

camera focused on the driver’s hand movements. The dataset

also includes infrared images that are synchronized with the

depth maps. In total, 31 subjects were asked to drive in the

simulator while performing normal and abnormal activities,

and each subject was assigned to either the training set or

the test set. The training set consists of 25 subjects, each

performing six normal driving activities and eight abnormal

driving activities. Meanwhile, the test set contains 6 subjects,

each performing 6 normal driving activities and 24 abnormal

driving activities, of which 16 do not appear in the training set.

This requires that the model can recognize previously unseen

abnormal activities, which is aligned with the purpose of this
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study. It should be noted that only the front depth images are

utilized in this study. In these experiments, the input from the

DAD dataset consists of 16 frames of activity video, which is

also consistent with existing work.

These two datasets are highly complementary in terms of

their data modes (color and depth) and input forms (single

images and sequential frames). They both contain many differ-

ent types of abnormal activities and thus can be conveniently

used to test the ability of a model to handle previously unseen

activities. These characteristics will be beneficial to us in

comprehensively evaluating the proposed method.

B. Evaluation of the Proposed Contrastive Learning Approach

1) Feature Extractor: For the AUC dataset, ResNet18 [47]

is utilized as the feature extractor and the baseline model, and

the multiclass learning capability is first verified to ensure

a fair evaluation of the proposed method. Accordingly, the

number of final output dimensions of the FC layer of ResNet18

is modified to 10 for consistency with the AUC dataset. Then,

the cross-entropy loss function is utilized to train the model

with the stochastic gradient descent (SGD) optimizer with an

initial learning rate of 1e × 10−4. The confusion matrix of

the evaluation results can be found in Fig. 4, which clearly

indicates that the overall classification accuracy is high. In the

results of various classes, the samples of the Reach Behind

(labeled as 8) class easily tends to be recognized as the

Talking Passenger (labeled as 9) because they are similar in

some ways, resulting in the relatively low accuracy in its

classification, as well as the Talk Right (labeled as 4) and

the Hair Makeup (labeled as 7). We also compare this model

with other state-of-the-art methods, as shown in Tab. I. The

utilized modified ResNet18 can outperform most of the state-

of-the-art methods by leveraging only the raw image rather

than the other extra complementary features. The VGG-16

modified by the [48] has a slightly higher accuracy using more

parameters. This study does not focus on elaborately designing

a classification model, whereas proposing an efficient con-

trastive learning framework. In general, the comparison shows

that the modified ResNet18 can achieve the state-of-the-art

performance. The experimental results indicate that ResNet18

has an outstanding ability to recognize multi-class driver

activities and thus is suitable to be used as the feature extractor.

To handle sequential frames, the 3D Resnet18 network [49] is

chosen as the feature extractor for the DAD dataset. Because

the DAD dataset is designed for abnormal activity recognition,

the learning capability of 3D Resnet18 is directly verified in

the next comparison.

2) Clustering Supervised Contrastive Loss: Driver anomaly

quantification can first be considered as a binary classification

task to evaluate the availability of the obtained abnormality

value. Therefore, an intuitive method is to use an FC layer

as a binary classifier to recognize the extracted features while

adopting only the binary cross-entropy loss function to train

the model. In this study, this approach is adopted as the

baseline model, with the output of the FC layer serving as the

classification metric. The baseline model also considers only

the £bce loss, without the contrastive loss or the clustering

TABLE I: Comparison of multiclass driver activity recognition

based on the AUC dataset.

Method Input Accuracy (%)

AlexNet [9]
Raw Image 93.65

Face & Hands 86.68

InceptionV3 [9]
Raw Image 95.17

Face & Hands 90.88

MVE [50] Image & Face & Hands & Skin 95.77

GA-WE [50] Image & Hands & Face & Skin 95.98

Fusion [51] Multiple Images 92.36

DenseNet [52] Raw Image & Body Pose 94.20

Modified VGG-16 [48] Raw Image 96.31

Modified Resnet18 Raw Image 95.01

Fig. 5: Comparison of the receiver operating characteristic

(ROC) curves of the different approaches trained on different

numbers of abnormal activity samples from the AUC dataset

loss. To evaluate the recognition capability for previously

unseen activities, the impact of different numbers of training

samples is investigated while using the same whole test set.

For the AUC dataset, the training set includes 1 normal

driver activity and 9 abnormal activities. In this experiment,

separate models are trained on the 1 normal activity in

combination with 2, 4, 6, and all abnormal activities, with

the same hyperparameter configuration, where the input is

resized to (224× 224), the batch size is 256, the learning rate

is 1e × 10−4 with the SGD optimizer, and the temperature

coefficient τ of the contrastive loss is 0.25. The experimental

results are evaluated in terms of various metrics, as shown in

Fig. 5, Fig. 6 and Tab. II. For the Accuracy and the F1-Score,

the best result is found by traversing different thresholds. In

this comparison, the used feature extractor is Resnet18 for all

approaches, while the Baseline method, as above described,

utilizes the final binary output to recognize the abnormal

samples. SCL denotes the supervised contrastive loss without

the center modification and the clustering loss, and C-SCL

denotes the proposed loss function. With both the SCL and the

C-SCL, the abnormal samples can be identified by calculating

the minimum distance from the normal activity representation

of the training set rather than the direct binary output, and the
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(a) (b) (c)

Fig. 6: Comparison of the different approaches trained on different numbers of abnormal activity samples from the AUC

dataset.

TABLE II: Comparison of the different approaches

trained on different numbers of abnormal activity sam-

ples from the AUC dataset.

Method
Abnormal

Number
AUC (%) Accuracy (%) F1-Score (%)

Baseline

20% 84.93 84.30 90.57

40% 90.94 86.80 91.84

60% 93.78 87.47 92.18

100% 98.81 96.97 98.07

SCL

20% 96.00 92.92 95.57

40% 96.56 93.61 95.98

60% 96.92 93.59 95.97

100% 98.62 96.27 97.63

C-SCL

20% 96.07 93.36 95.86

40% 97.09 93.18 95.71

60% 97.17 93.22 95.76

100% 99.01 96.90 98.03

minimum distance is calculated by using the KNN algorithm

with the hyper-parameter 2. A comparison of the results shows

that different approaches achieve equivalent performance when

the models are trained with all abnormal samples, and even the

baseline model slightly outperforms the SCL method at this

point. However, the contrastive learning approach significantly

outperforms the baseline approach when training is conducted

with partial abnormal samples, where the performance of the

baseline drops drastically. This demonstrates that the con-

trastive learning approach is more robust in recognizing unseen

abnormal activities. Further, the proposed C-SCL leveraging

representation clustering can improve the model performance

without requiring additional computations compared to the

SCL.

A similar comparison is also conducted on the DAD dataset,

with the different approaches being trained on 2, 4, and 8

abnormal activities. For the DAD dataset, the input consists

of 16 front-view depth maps with dimensions of (112× 112).
Therefore, the used feature extractor is the 3D Resnet18 for

handling the sequential input in this comparison. The training

hyperparameters are the same as those used on the AUC

Fig. 7: Comparison of the ROC curves of the different ap-

proaches trained on different numbers of abnormal activity

samples from the DAD dataset.

dataset. The experimental results are shown in Fig. 7 and Fig.

8. A comparison of the different approaches yields similar

conclusions to those found on the AUC dataset. It is worth

noting that the training set of the DAD dataset contains

only 8 abnormal activities, whereas the test set contains 16

additional abnormal activities. Therefore, the performances of

the different approaches when trained on all training samples

are still not equivalent, unlike the case of the AUC dataset.

The performance of the model trained using the proposed C-

SCL approach on only two abnormal activities is competitive

with that of the model trained using the baseline approach

on all eight abnormal activities in the training set. This

finding further demonstrates that contrastive learning is more

robust than the baseline approach in recognizing unknown

abnormal activities. Furthermore, the proposed C-SCL can

more significantly improve the model performance on the

DAD dataset compared to the AUC dataset.

The proposed contrastive learning approach with represen-

tation clustering has been evaluated on datasets corresponding

to two different modes. The experimental results demonstrate
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(a) (b) (c)

Fig. 8: Comparison of the different approaches trained on different numbers of abnormal activity samples from the DAD

dataset.

(a) (b)

Fig. 9: Abnormality scores of normal and abnormal samples

calculated using the proposed method on the AUC and DAD

test sets.

the efficiency and feasibility of its obtained abnormality value

for recognizing abnormal activities; in particular, it is robust

in recognizing unknown anomalies.

C. Continuous Abnormality Quantification Evaluation

The core point of this study is to obtain a continuous

abnormality value that can quantify the driver anomalies.

The preceding experiments have demonstrated that the ob-

tained abnormality value used proposed method can effi-

ciently recognize abnormal activities in particular previously

unseen anomalies. Another important characteristic we wish

to achieve is that the model output can correctly reflect the

degree of abnormality. The distributions of the abnormality

values calculated using the proposed method on the test sets

of the two datasets used in this study are shown in Fig. 9.

First, the results verify that the proposed method can clearly

split normal and abnormal samples, with the exception of only

a few samples and outliers. The abnormality values of the

normal samples are small and close together, especially on

Fig. 10: Comparison of the mean abnormality scores of

different activities as calculated with different approaches on

the AUC test set.

the AUC dataset, while the abnormality values of abnormal

ones are diversely distributed and separated from the normal

ones. The results also reflect the greater diversity of the AUC

dataset (which consists of RGB images) compared to the DAD

dataset (which consists of depth maps) from the perspective of

the distribution of the data domain. The distinction between

the normal and abnormal samples reveals that the proposed

method provides a loose range for selecting a reasonable

threshold and demonstrates its robustness in determining the

threshold.

To further evaluate the rationality of the abnormality values

for different kinds of abnormal activities, the skeleton poses

of the drivers in the AUC dataset are obtained using a

human body pose detector. The obtained skeleton keypoints

are normalized and reshaped into a vector to calculate the

distances of different abnormal activities from normal ones.

The mean abnormality values of the various abnormal activ-

ities calculated with the different approaches are shown in

Fig. 10, where the abnormality values calculated from the
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(a) Baseline (b) SCL (c) C-SCL

Fig. 11: Visualization of the features extracted using different approaches on the AUC test set, generated by leveraging the

t-SNE algorithm. The results show that the proposed C-SCL has the best clustering characteristics.

skeleton keypoints are adopted as the reference and conform

to intuitive knowledge. The Reach Behind activity shows the

largest pose change amplitude, followed by the Talk Right

activity due to the camera being mounted on the right, which

causes the Talk Right activity to be more obvious from the

captured images than the Talk Left activity. Fig. 10 shows

that the results obtained with the proposed C-SCL are most

consistent with the skeleton results, while the baseline model

has difficulty reflecting the differences between the different

abnormal activities. This shows that the output of the proposed

method yields more intuitive results that can better reflect the

degree of abnormality.

D. Visualization of the Proposed Approach

To further understand the proposed method, the features

extracted using the different approaches on the AUC test

set are visualized using the t-distributed stochastic neighbor

embedding (t-SNE) algorithm[53]. The results can be found

in Fig. 11. This figure clearly shows that contrastive learning

can cluster the normal samples, while the features of normal

samples and abnormal samples as extracted by the baseline

model are entangled. Compared with the SCL approach, the

proposed C-SCL leverages the clustering concept and trans-

lates the center vector, resulting in more significant distinctions

between the normal and abnormal samples. This characteristic

is beneficial for quantifying driver anomaly with a continuous

value and improving the model performance.

V. CONCLUSION

Driver anomaly quantification is a fundamental task for

understanding a driver’s state and building a human-centric in-

telligent driving system. Existing studies have basically treated

it as a classification task, for which outstanding performance

can be achieved by leveraging the capabilities of deep learning.

However, there are two potential problems that need to be

further investigated. The first is that it is impossible for any

collected dataset to cover all types of activities, and the

existing datasets contain only several typical activities, which

will limit the recognition capabilities of models trained on

these datasets for unseen activities. The second problem is that

the typical driver activity classification is not a natural solution

for the downstream applications, in particular, most shared

control or decision algorithms need a continuous value that can

indicate the driver’s state rather than a discrete classification

result. To overcome these problems and bridge the gap, this

study revisits it and applies the contrastive learning approach.

The aim of this study is to train a feature extractor with good

representation capabilities and build a set of representation

vectors of normal driver activities based on the trained extrac-

tor. In the testing phase, the anomalous nature of a sample can

be quantified by calculating the distance from its features to

the predefined representation set rather than being indicated

by the direct output of the model. The calculated continuous

distance can be used not only to distinguish anomalies but also

to indicate the degree of abnormality. This approach requires

the distribution of the extracted features to exhibit alignment

and uniformity simultaneously. Therefore, this study intro-

duces the clustering conception to enhance the representation

capabilities of the model, and the proposed C-SCL can be

used to further cluster normal activity samples while separating

samples with different labels without additional computation.

Comprehensive experiments are conducted on datasets corre-

sponding to two different modes. The experimental results

show that the proposed contrastive learning approach with

representation clustering is more robust in recognizing pre-

viously unseen abnormal activities and that its continuous

output can better indicate the degree of abnormality than the

output of the baseline method relative to the variation in the

skeleton information. Combined with the visualization of the

features extracted using different approaches, the experimental

comparisons demonstrate that the proposed method is efficient

and feasible in quantifying the anomalies, and the obtained

continuous abnormality value is reasonable.
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