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Abstract 

This study aims to develop a sustainable freight transportation network considering capacitated 

cross-docks for minimising the overall supply chain costs, including carbon emission cost. The 

problem is inspired by a major retail company based in India, which would like to expand its 

product portfolio in the new region. A mathematical model is developed to minimise total costs 

encompassing transportation cost, pipeline and retailers inventory cost, fixed cost of cross-dock 

and carbon emission costs. The deterministic time dependant demand, multiple products and 

multiple sourcing and distribution are some of the challenges faced by the retail industry. A two-

level self-adaptive variable neighbourhood search algorithm is applied to solve a computationally 

complex problem. The results based on a two-level self-adaptive variable neighbourhood search 

algorithm are compared with the variable neighbourhood search algorithm to test the robustness 

of the developed model. Results reveal that an increase in retailers over suppliers significantly 

influences the number of open cross-docks. A multiple-case scenario approach captures the 

implications of varying capacity on the number of open cross-docks; thus, supporting the freight 

distribution managers in making sustainability-driven decisions. 
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1. Introduction 

Globalisation and rapid economic growth have created an increasing demand for the logistics 

sector leading to a surge in the carbon emission levels (Shankar et al., 2019, Kumar and 

Anbanandam, 2020; Yazdani et al., 2020). The freight transportation has been imposing several 

negative externalities on the environment such as air pollution, traffic congestion, noise pollution 

and accidents (Demir et al., 2019; Yazdani et al., 2020). With regards to the social dimension of 

sustainability, globally 1.35 million people lose their lives every year or left with severe injuries 

due to road traffic accidents (WHO, 2020). Sustainable freight transportation helps to reduce 

energy consumption and greenhouse gas emission through the use of low-carbon fuel, electric 

mobility and adoption of environmental standards and green practices resulting in the substantial 

savings in operational costs and carbon footprint regulations (Pathak et al., 2019; Goswami et al., 

2020; Mahapatra et al., 2020). It also provides several social benefits related to employment, 

education, health and balanced economic development (de Campos et al., 2019; Mogale et al., 

2020). The research on the sustainable freight transportation has received ever-increasing attention 

from researchers and practitioners due to changes in governmental policies, technological 

developments, climate change and consumers pressure in the recent times (SteadieSeifi et al., 

2014; Dente and Tavasszy, 2017; Kumar and Anbanandam, 2019, Ghadge et al., 2020).  

 Cross-docking is recognised as the most appealing sustainable approach for freight 

transportation (Dulebenets 2018; Rezaei and Kheirkhah 2018; Kiani Mavi et al., 2020), and has 

received significant research interest in recent times (e.g., Abad et al., 2018; Chargui et al., 2019; 

Tirkolaee et al., 2020, Urzúa-Morales et al., 2020, Pan et al., 2021). Cross-docking efficiently cuts 

the costs of retrieval and storage of products up to 70% compared with traditional warehouses 

(Vahdani and Zandieh, 2010, Abad et al., 2018, Vahdani et al., 2019). The inventory stock does 

not stay more than 24 hours at the cross-docking facility (Ladier and Alpan, 2016), which results 

into the reduction of energy consumption for keeping and managing the stocks (Dulebenets 2018, 

Vahdani, 2019). It synchronises the inbound and the outbound transportation systems and avoids 

inappropriate procedures (transportation loops and Less-Than-Truckload (LTL)) shipments, 

reduces operational and transportation cost, storage time, delivery time, reduces risks of product 

damage and obsolescence, and carbon emissions (Van Belle et al., 2012; Moghadam et al., 2014; 

Yu et al., 2016; Dulebenets, 2018; Rezaei and Kheirkhah, 2018; Gaudioso et al., 2021). Given 

significant impact and benefits of freight transportation with cross-docking to sustainability, it is 
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imperative to re-design freight transportation by considering cross-docking, sustainability, and 

traditional factors (Kumar et al., 2019, Vahdani et al., 2019, Kumar and Anbanandam, 2020, 

Tirkolaee et al., 2020).  

This research study is motivated by a major Indian retail company, which has stores located 

mainly in the southern region of India like Bangalore, Chennai, and Hyderabad. The company is 

looking for expansion in the northern region due to the entry of external/global players in the 

Indian market to target more customers. A large number of retail shops, high product variety, 

continuously changing lifestyle and logistics requirements make the Indian retail sector more 

complex and dynamic (Gawankar et al., 2020). This sector contributes 10% to India’s Gross 

Domestic Product (GDP) and employs approximate 8% of its workforce (Khanna, 2020). Many 

big retail players are utilising the cross-docking facility worldwide, and the company under study 

would like to follow a similar approach. Hence, they are interested in optimising freight supply 

chain cost by establishing a cross-dock facility instead of a warehouse to meet the demand of 

customers from the northern region. The transport sector in India contributes nearly 10% of total 

CO2 Emissions (Garg et al., 2017). The Intended Nationally Determined Contributions (INDC) of 

India considers transport as a key sector to reduce the CO2 emissions by 30-35% from 2005 to 

2030 (UNFCCC, 2015). To achieve this carbon footprint goal, the central government in India is 

setting up various emission norms, and regulatory bodies make sure that the freight transport 

companies meet emission compliance (Goswami et al., 2020). Following the need for considering 

cross-docking in sustainable supply chains, this research aims to develop a sustainable freight 

transportation network by designing a capacitated cross-docking system for minimising the overall 

retail supply chain costs.  

The computation of the proposed sustainable freight transportation problem becomes 

complicated as the problem size increases exponentially with the increase in number of suppliers, 

cross-docks and retailers. Contemporary optimization techniques such as exact heuristics require 

the mathematical model to be continuous and linear and furthermore, demands substantial 

computational effort in terms time complexity for solving purpose (Govindan et al. 2019, De at al. 

2019a, Maiyar et al. 2019). Thereby, highlighting that exact solution methods are insufficient in 

solving large instances of real-world sustainable freight transportation problem (De et al. 2020). 

Yang et al. 2015 employed a variable neighborhood search (VNS) heuristic for dealing with 

medium and large size problems as it becomes increasingly difficult to solve problem instances 
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exact methods. VNS algorithm is used with the motivation of obtaining near-optimal solution for 

the problem with a better computational efficiency.  

Several researchers have implemented meta-heuristic such as VNS algorithm to address 

complex problems such as packing problems (M’Hallah et al. 2013), location routing problems 

(Jarboui et al. 2013), etc. VNS has also been used as a methodology to solve inventory routing 

problem (Hansen et al. 2010, Hansen et al. 2001). Furthermore, VNS algorithm gives superior 

results in less computational time for a variety of problems when compared with several other 

benchmark algorithms (Govindan et al., 2019; Gruler et al., 2020). VNS-based algorithm has 

proved to be successful in solving a variety of combinatorial problem (Salhi et al. 2014) and 

success of two-level general VNS in addressing traveling salesman problem is well documented 

(Mladenović et al. 2014). Hence, for solving the sustainable freight transportation problem, VNS 

algorithm and Two-Level Self-Adaptive Variable Neighbourhood Search (TLSAVNS) algorithm 

have been adopted in this work. Evidently, there is a methodological research gap within the 

literature pertaining to the lack of exploring the potential of VNS algorithm for solving sustainable 

freight transportation problem. Thus, this research work explores the application of VNS and 

TLSAVNS algorithms and validates its pertinency for the aforementioned problem, while 

considering large-size real-world problem instances. 

The contribution of the paper is in two folds. Firstly, this paper attempts to develop a 

decision support model for the capacitated cross-docking system problem in the retail industry, to 

reduce overall supply chain costs, including the cost associated with carbon emissions. The 

complex problem considers several suppliers, multiple locations of cross-docks and retailers. 

Furthermore, the developed mathematical model considers the scenario of multiple product types 

and time-dependent demands. Secondly, the study presents the application of the Two-Level Self-

Adaptive Variable Neighbourhood Search (TLSAVNS) algorithm and justifies its applicability for 

the capacitated cross-docking system problem. Considering several large-size problems, the 

superiority of the TLSAVNS algorithm over the VNS algorithm is established from the perspective 

of total cost and computational time. 

The rest of the paper is organised as follows: In section 2, a brief literature background of 

sustainable freight transportation and cross-docking, and VNS algorithm along with research gap 

and contributions is provided. Problem description and development of the proposed mathematical 

model are presented in section 3. Section 4 explains the algorithms used for solving a capacitated 
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cross-docking system. Experimental computation, analysis of results, and the contribution to 

theory and practice are presented in section 5. Finally, section 6 concludes with key findings and 

limitations of the research. 

2. Literature review 

In this section, background literature on sustainable freight transportation and cross-docking, and 

VNS are discussed.  

2.1. Sustainable freight transportation and cross-docking  

Bertazzi et al. (2016) addressed a freight (inventory) transportation problem of the first kind with 

the delivery of a single product via outsourced vehicles. However, the consideration of variable 

transportation costs and carbon emission costs were not considered in their model. Similarly, Lee 

et al. (2016) designed a synchronised supply chain by minimising the expected inventory cost for 

the freight transportation problem but lacked the consideration of sustainability-related costs. 

Recently, Dulebenets (2018) addressed the sustainable truck scheduling problem at a cross-

docking facility to minimise total truck service cost. The environmental sustainability aspect was 

missing in this study. Similarly, several researchers have incorporated freight transportation 

models into their frameworks (e.g., Berman and Wang, 2006; Konur and Schaefer, 2014; Schaefer 

and Konur, 2015; Zhao et al., 2016; Mogale et al., 2018, Urzúa-Morales et al., 2020). However, 

consideration of the carbon emission costs, and other cost elements were found to be lacking in 

the extant literature (Abouee-Mehrizi et al., 2014, Dulebenets 2018, Kumar and Anbanandam, 

2019, Kumar et al., 2019). A cross-dock helps to achieve economies in transportation through the 

consolidation of inventory for a shorter period (Benrqya, 2019; Dulebenets et al., 2019; Wu et al. 

(2015). Furthermore, Chen et al. (2016), Goodarzi et al. (2020), Goodarzi and Zegordi (2016) and 

Maknoon and Laporte (2017) solved a cross-dock location-routing problem to minimise the 

operating costs. These studies add to the existing literature in cross-docking logistics with vehicle 

routing and allocation problems. Interested readers can refer to the review articles on cross-

docking by Van Belle et al. (2012), Ladier and Alpan (2016) and Kiani Mavi et al. (2020) for 

further details.  

2.2. Variable Neighbourhood Search (VNS) 

Initially developed by Mladenović and Hansen (1997), Variable Neighbourhood Search (VNS) 

algorithm is a generic local search methodology employed for solving combinatorial optimisation 
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problems (Xiao et al., 2014). It is a combinatorial and global optimisation algorithm with a 

systematic change in the neighbourhood search (Hansen and Mladenović, 2014). Successful 

application of the VNS algorithm has been observed for a variety of problems, and the VNS 

metaheuristic also provides robust results in less computational time, when compared to other 

benchmark algorithms like Genetic Algorithm (GA), Ant Colony Optimization (ACO), Simulated 

Annealing (SA) and Tabu Search (TS) (Govindan et al., 2019; Gruler et al., 2020). The reason 

behind the success of VNS is the notion of expanding the neighbourhood, when the search is stuck 

at a local optimum (Menendez et al., 2017; Govindan et al., 2019). The VNS algorithm overcomes 

the local optima through the exploration of a solution space exhaustively and employing an 

operator (named ‘shaking’) to improve the solution by utilising ‘local search’ (Alguwaizani et al., 

2011). Application of VNS-based algorithm to deal with a sustainable capacitated cross-docking 

problem is new to the broad domain of the literature. The VNS algorithm exploits the idea of 

systematic neighbourhood change in two phases - the decline phase (for finding local optimum) 

and the perturbation phase (to get out from the local minimum) (Hansen et al., 2010). The 

systematic change of the neighbourhood in the search procedure does not follow a single trajectory 

but, instead, explores increasingly distant neighbours of the demanded solution, moving from one 

local optimum to another, only if there is a visible improvement on the way. 

2.3.  Research gaps 

The existing studies in supply chain management broadly revolve around supply chain cost, carbon 

tax, cost of carbon emissions and the impact of the carbon footprint on the environment. A 

summary of the key relevant studies showcasing the novelty of our work is provided in Table 1. 

Multiple suppliers (Goodarzi et al., 2020) and echelons (De et al., 2020) are considered in the 

previous studies; however, a limited number of scholars embedded the cross-dock and multi-period 

features in their developed model (e.g., Chen et al., 2016, Küçükoğlu and Öztürk 2017, Rezaei and 

Kheirkhah 2017). Several scholars worked on vehicle routing and scheduling at the cross-docking 

facility. To the best of our knowledge, no studies have considered freight transportation, cross-

docking, and sustainability simultaneously. The sustainability issue has been mostly overlooked 

in the cross-docking context in the extant literature (Abad et al., 2018, Dulebenets 2018, Chargui 

et al., 2019, Goodarzi et al. 2020). Research in freight transportation considering capacitated cross-

docking as an approach for enhancing sustainability is lacking in the existing literature (evident 

from Table 1). The majority of past studies are from the developed regions/countries (The US and 
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Europe) and their freight transportation network and government policies are different from 

developing regions/countries. Lack of efficient and reliable transportation and logistics 

infrastructure, poor service quality, greater use of simpler technology and older equipment (e.g., 

vehicles), cutting transportation costs and improving supply chain visibility are some of the major 

challenges in the developing world. Hence, there is a huge scope for researchers to address the 

sustainable freight transportation issues from developing regions like Asia (Kumar and 

Anbanandam, 2019). With regards to decisions making, location-allocation and transportation 

decisions are mostly explored in the extant literature (Wu et al., 2015), whereas pipeline and 

retailers’ inventory are hardly observed in the literature (Bertazzi et al., 2016). Interestingly, a 

comprehensive model for a sustainable cross-docking system (as a freight transportation system), 

considering multiple economic and environmental factors is lacking in the current body of 

literature. With regards to the solution approach, none of the relevant studies discussed in the 

literature explored the potential of VNS algorithm to solve the sustainable freight transportation 

problem. This is an evident research gap, and this study attempts to address it. A mathematical 

formulation for the capacitated cross-docking system is developed and solved using VNS based 

metaheuristic approach.  

 

Table 1. Summary of the features of key relevant studies 

 

Abbreviations: 

Model features: MS: Multi-suppliers, CD: Cross-dock, ME: Multi-echelon, MP: Multi-products, CEC: Carbon 

emission cost, DIS: Direct and indirect shipment 

Decisions: Loc: Location, Alloc: Allocation, PI: Pipeline Inventory, RI: Retailer Inventory and Trans: Transportation  

Solution methods: NICE: Nested Integrated Cross-Entropy method, GA: Genetic algorithm, SLPSO: Self-learning 

particle swarm optimisation, BBO: Biogeography-based optimisation, DSPEA: Delayed Start Parallel Evolutionary 

Algorithm, SA: Simulated Annealing, TLSAVNS: Two-level self-adaptive variable neighbourhood search, MO-

VNSSA: Multi-Objective Variable Neighbourhood Search hybridized with Simulated Annealing, MO-VNSTS:  

Variable Neighbourhood Search VNS hybridized with Tabu Search, COA: Cuckoo Optimization Algorithm, MOSA: 

Multi-objective Simulated Annealing Algorithm    
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Research study 
Model features Decisions Country/ 

Region  
Solution methods 

MS CD ME MP CEC DIS   Loc Alloc PI RI Trans 

Goodarzi et al. (2020)            Middle East Lagrangian relaxation algorithm 

Fahimnia et al. (2015)            Australia NICE method 

Diabat and Al-Salem (2015)            - GA and GAMS 

De et al. (2020)            - Problem-based heuristic 

Chen et al. (2016)            - SLPSO 

Jin et al. (2014)            USA CPLEX 

Goodarzi and Zegordi (2016)            - BBO, PSO and GAMS 

Ding et al. (2016)            - Game approach 

Küçükoğlu and Öztürk (2017)            - GA and Gurobi solver 

Dulebenets et al. (2019)            - DSPEA 

Chargui et al. (2019)            - MO-VNSSA and MO-VNSTS 

Rezaei and Kheirkhah (2017)            - GAMS 

Liotta et al. (2015)            Europe CPLEX 

Maiyar and Thakkar (2019)            India PSODE 

Mogale et al. (2020)            India GLNPSO and PSO 

Rezaei and Kheirkhah (2018)            - COA 

Tirkolaee et al. (2020)            Iran MOSA and NSGA-II 

Wu et al. (2015)            - Greedy Heuristic 

Bertazzi et al. (2016)            - Min–Max Matheuristic 

Lee et al. (2016)            China  GA and SA based heuristics 

Current study            India  TLSAVNS and VNS 
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3. Problem description and mathematical model 

The model is developed following a realistic scenario of the retail company based in India, where 

inventory is shipped from a supplier p to retailer r via cross-dock q, as shown in Figure 1. The 

study considers a three-echelon supply chain network model to satisfy the deterministic time-

dependent demand. A cross-docking system not only helps to regulate the distribution but also 

avoids excess storage cost (Gaudioso et al., 2021). Currently, the organisation is covering the east 

and south regions of India and are looking for the expansion of business in the northern region. 

Thus, different production/supplier locations and cross-docks are identified and are available to 

satisfy a deterministic demand in the northern region. The company is not interested in the 

warehouse-based system due to the huge initial investment. Retailers have the option of placing 

the order through cross-dock or direct purchase from suppliers bypassing cross-docks. Multiple 

products with similar characteristics (such as weight, size, quantity) are grouped as a consignment 

for shipping. The model considers universal time ‘periods', for assessing quantities per unit time, 

where the period can be in days, weeks or months
pqt ,

qrt  and 
qt signifies the ratio of transportation 

time taken to a length of period. P represents the set of suppliers, R depicts the set of retailers, Q 

represents the set of cross-docks, and S depicts the set of products. The model considers the 

following parameters and variables.  

 

Figure 1. Representation of a retail cross-docking system.  

Figure 1 Alt Text: Supply chain network showing suppliers, cross-docks and retailers along with 

different vehicles movement  

 

Indices 
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p = 1, 2… P p is the index of the suppliers 

q = 1, 2… Q q is the index of the cross-docks 

r = 1, 2… R r is the index of the retailers 

s = 1, 2… S s is the index of the product types 

Inbound Parameters  

pqc  Transportation cost of one truckload of products from supplier p to cross-dock q 

pqt  The time required to transfer products from supplier p to cross-dock q 

pq
d  Total distance travelled from supplier p to cross-dock q 

psA  Available supply of product type s at supplier p 

Outbound Parameters  

qrc  Transportation cost of one truckload of products from cross-dock q to retailer r 

qrt        The time required to transfer products from cross-dock q to retailer r 

qrd  Total distance travelled from cross-dock q to retailer r 

Parameters related to cross-docking system 

  Total capacity of a truck 

qt  Time required to transfer products from inbound to outbound door at cross-dock q 

qFC  Fixed cost required to establish cross-dock q 

q  Capacity of cross-dock q 

Parameters related to a direct transfer 

prc  Direct transportation cost of one truckload of products from supplier p to retailer r. 

prt  Time required to transfer products from supplier p to retailer r 

pr
d  Total distance travelled from supplier p to retailer r. 

Parameters related to a product 

rsE       Demand of product type s required by retailer r 

sg  Truck capacity required for one unit of product type s 

sm  Cost of inventory for one unit of product type s per period  

sv  Weight of a single unit of product type s 
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sF  Factor to adjust product type s into standard units of supplier/cross-dock capacity 

Parameters related to Carbon Emission Cost 

  Carbon emission cost per gram of CO2 evolved 

  Carbon emissions per weight distance of vehicle (gm. /metric ton-km) 

Decision Variables  

         
1   If  cross dock  is open

0   Otherwise
qX

q



 

     
1   If  supplier  transfer the product  to retailer  via cross dock  

0   Otherwise
prsqY

p s r q



 

     
1   If supplier  directly transfer the product  to retailer  

0   Otherwise
prsZ

p s r



 

prsqK  Units of product type s supplied by supplier p and shipped via cross-dock q to retailer r 

prsK  Units of product type s directly supplied by supplier p to retailer r 

pqN  The number of trucks utilised for shipment between the supplier p and cross-dock q 

qrN  The number of trucks utilised for shipment between the cross-dock q and retailer r  

prN  The number of trucks utilised for direct shipment between the supplier p and retailer r 

The objective of the model is to minimise the total (supply chain) cost considering multiple 

costs associated with the network such as pipeline and retailer inventory cost, transportation cost, 

fixed cost of cross-dock and cost incurred for the carbon emissions. To achieve the set objective, 

the following decisions must be made: 

• Location decision - To decide the number of locations of cross-docks.  

• Allocation decision - To decide whether to choose direct transportation of goods or via the 

cross-dock. 

• Pipeline and retailer inventory, and transportation decision - To determine the pipeline 

and retailer inventory, frequency of inbound and outbound shipments from a cross-dock 

The following costs are considered in the cross-docking system model: transportation cost, 

pipeline inventory cost, retailer inventory cost, fixed cost associated with each cross-dock and 

carbon emission cost. The transportation cost is assumed to follow the linear behaviour concerning 
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the number of products shipped (Berman and Wang, 2006). Inbound transportation cost 
pqc , 

outbound transportation cost
qrc and direct transfer cost

prc are considered separately. Likewise, 

inbound transportation time
pqt , outbound transportation time

qrt  and 
prt  direct transfer time are 

considered separately. 

The objective of the model is to minimise the total cost and is formulated as follows: 

Minimize Total cost = Total Transportation cost (TTC) + Total inventory Cost (TIC) + Fixed cost 

of cross-dock (FCCD) + Carbon emission cost (CEC) 

To define the total transportation cost (TTC), the following variables are considered: 

The inbound shipment frequency for each supplier p and cross-dock q is calculated as

,

s prsq

pq

r s

g K
N


=           (1) 

Moreover, the total cost of inbound transportation is given by equation (2) 

ITC = 
,

pq pq

p q

N c           (2) 

Similarly, for every cross-dock q and retailer r, the outbound shipment frequency is given by  

,

s prsq

qr

p s

g K
N


=           (3) 

The total cost of outbound transportation is given by the following equation (4), 

OTC = 
,

qr qr

q r

N c           (4) 

In case of direct transfer, shipment frequency for each supplier p to retailer r is determined as  

s prs

pr

s

g K
N


=           (5) 

The total cost of direct transportation is calculated using below equation (6). 

DTC = 
,

pr pr

p r

N c           (6) 

Hence, the transportation cost is the sum of the inbound, outbound and direct cost of transportation 

Total Transportation cost (TTC) = Inbound Transportation cost (ITC) + Outbound 

Transportation cost (OTC)+ Direct Transportation Cost (DTC) 

TTC = ITC + OTC + DTC 
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TTC = 
, , , , ,

s s s
prsq pq prsq qr prs pr

p q r s q r p s p r s

g g g
K c K c K c

  
    

+ +    
    

         (7) 

For all routes from supplier p to retailer r via cross-dock q, the total transportation time is given as

( )
pq qr q

t t t+ +            (8)  

Similarly, transportation time for direct route from supplier p to retailer r is given by 
prt . 

Total inventory cost (TIC) = Pipeline inventory cost (PIC) + Retailer Inventory cost (RIC) 

Therefore, the Pipeline inventory cost (PIC) 

=  
, , ,

( )
s prsq pq qr q prs pr

p r s q

m K t t t K t + + +         (9) 

To calculate the inventory cost at the retailers (equation 10), the number of products 

shipped from cross-dock q to retailer r and directly transferred product from supplier p to retailer 

r are considered to be ( )
,

prsq prs

p s

K K+ . Cross-dock q transfers these products in
qrN shipments to 

retailer r and supplier transfers it into
prN . With the help of these two entities, we can determine 

the total number of products directly shipped from supplier p to retailer r and from cross-dock q 

to retailer r in each delivery is 
, ,

prsq

p s p s

prsqr pr
N NK K+

   
   
   
  . Due to the deterministic nature of 

the demand and existence of the linear relationship between inventory and demand, the average 

retailer inventory cost can be calculated (Berman and Wang, 2006). 

Average retailer inventory Cost (RIC) = 

( )
( )

,

, , 2 *

s pr prsq qr prs

p s

p r q qr pr

m N K N K

N N

+
        (10)  

Fixed cost of cross-dock (FCCD) = q q

q

X FC       (11)  

The total distance covered by the trucks is the sum of the inbound, outbound and direct distance 

travelled ( )pq qr prd d d+ + . The carbon emission cost is assumed to be proportional to the weight of 

the load, type of fuel used, and distance travelled while carrying the load. 

Carbon emission cost (CEC) = 
, , ,

( )( ) ( )pq qr prsq s pr prs s

p r s d

d d K v d K v + +     (12) 

Equation (7) can be expressed in the following way. 
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TTC = ( ) ( )
, , ,

s s
pq qr prsq pr prs

p r s q

g g
c c K c K

 
   + +      

  

Where ( )( )'

prsq s pq qrU g c c = + and ( )'

prs s prU g c =      (13) 

Pipeline inventory cost per unit product can be obtained from equation (8) and (9), and it is given 

by 

'' ( )prsq s pq qr qU m t t t= + + and ''

prs s prU m t=        (14) 

The objective function of the mathematical model is presented as: 

Minimize = TTC + TIC + CEC + FCCD  
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 

            (15) 

The objective function given in equation (15) comprises five terms. The first term presents 

the total transportation cost, including the inbound, outbound and direct shipment. The second and 

third term represents the pipeline and retailer inventory cost, respectively. The fourth term shows 

the cost associated with the carbon emission emitted from the vehicles used for the shipment of 

the products through cross-dock or direct. The last term presents the fixed cost incurred for opening 

the cross-docks. 

Subject to the following conditions. 

,

prs

r q

sq p

r

pr sK AK +     ,p P s S         (16) 

,

prsq prs

p q

s

p

rK K E+ =    ,r R s S         (17) 

, ,

prsq s prsq q q

p r s

K F Y X   q Q        (18) 

prs prsK MZ    , ,p P r R s S          (19) 

, 0prsq prsK K     ,  ,  , p P r R s S q Q          (20) 
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, ,pq qr prN N N
+   , ,p P r R q Q          (21)

 1,, 0,q prsq prsX ZY    ,  ,  ,  p P r R s S q Q          (22) 

 

Equation (16) presents the supply constraint, which takes into consideration both direct 

shipment and indirect shipment via cross-docking facility. Equation (17) satisfies the demand of 

the retailers for different product types. Equation (18) states that the demand of the retailers should 

be met from the suppliers only via opened cross-docks and then the capacity restrictions for the 

cross-docking facility need to be maintained. Constraint (19) ensures that the direct shipment can 

be performed, if a supplier is assigned to a specific retailer using Big M constraint. The M is a 

sufficiently large number. Constraints set (20) - (22) present the non-negative integer variables, 

integer variables and binary variables, respectively.  

4. Solution approach 

The computation of the proposed mathematical model based on capacitated cross-docking problem 

becomes complicated, as the problem size increases exponentially with the increasing number of 

suppliers, cross-docks, retailers and product types; as the case company attempts to expand its 

business in the northern region of India. The computational effort and memory requirements for 

complex models are massive due to large number of variables and parameters, while employing 

the exact techniques (Maiyar and Thakkar 2019; Mogale et al., 2020). Metaheuristic algorithms 

play a crucial role in tackling the complicated and real-life high dimensional problems, which are 

challenging to solve using commercial solvers in a reasonable computational time (Chen et al., 

2016; De et al., 2019b). Also, most conventional solvers are incapable of handling the non-linear 

equations of the mathematical model (Yu et al., 2017).  

Further, the neighbourhood search of these algorithms becomes complicated to employ due 

to the concurrent integration of various decisions into the neighbourhood moves (Vidal et al., 2016; 

Tang and Wang, 2006). Neighbourhood search algorithms are commonly used for solving complex 

scheduling, location and vehicle routing problems (e.g., Şevkli and Güler, 2017; Sze et al., 2017). 

The motivation to use VNS and other metaheuristics were driven by their capability to solve 

complex mixed integer non-linear programming problems (e.g., Govindan et al., 2019; Rostami et 

al., 2020; Gruler et al., 2020). Thus, the VNS based algorithm is implemented, which is an effective 

metaheuristic and provides encouraging results for combinatorial problems in the literature (Kuo 
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and Wang, 2012; Stenger et al., 2013). The VNS is relatively easy to implement due to the small 

number of parameters (Li and Tian, 2016; Govindan et al., 2019). The multiple integer non-linear 

programming model presented above is solved using a random search algorithm named two-level 

self-adaptive variable neighbourhood search (TLSAVNS) algorithm. TLSAVNS algorithm 

developed by Li and Tian (2016) is used to solve two-level decisions in the supply chain network. 

The solution obtained from the TLSAVNS is validated with the solution obtained through the VNS 

algorithm.  

4.1. Variable Neighbourhood Search (VNS) algorithm 

The VNS is a local search-based algorithm, which explores the solution space in the 

neighbourhood structures for escaping from the local entrapment (Hansen et al., 2010). A relation 

among these neighbourhood structures is established according to the problem undertaken 

(Alguwaizani et al., 2011).  Components of variable neighbourhood search algorithm include an 

initial feasible solution, shaking procedure, first improvement, neighbourhood change and a 

terminating condition. Algorithm A.1 presents the pseudo-code for the VNS algorithm. Let x  be 

an initial feasible solution and ( )f x  be the objective function value considering the initial feasible 

solution. Let ( )kN x  be a set of solutions in the kth neighbourhood structure where x  is one of the 

solution. Kmax is the maximum number of different neighbourhood structures generated in the 

shaking stage. In the shaking procedure, from the kth neighbourhood structure, a solution ’x  is 

randomly chosen and updated in the following way, ” ’x x= . Within First Improvement local 

search procedure, ”x  is used as an initial solution and the local search operator searches the 

solutions ( )kN x  within the kth neighbourhood structure.  If the fitness function value of solution 

”x , ( ”)f x  is less than the fitness function value of x , ( )f x , or ( )( ”)  f x f x , then the initial 

solution of the First Improvement local search procedure is updated as ” ’x x=  and ( )( ”) = f x f x . 

The local search procedure also checks whether the fitness function value of the local best solution 

”x , ( ”)f x  is better than the fitness function value of the global best solution *x , ( *)f x . If 

( ”) ( *)f x f x , then the global best solution is updated, *  ”x x=  and the algorithm searches the 

next neighbourhood structure ( ) ( )1kN x+ . For determining the fitness function values, the decision 

variable values given in each solution (please refer to figure 2 where each row of the 
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neighbourhood structure depicts a solution comprising of decision variable values), is used and 

value of the objective function of the mathematical model (given in equation 15) is determined. 

Algorithm A.1 provides detailed procedure of the Variable Neighbourhood Search algorithm.  

Within variable neighbourhood search algorithm, we have considered first improvement as the 

local search (for intensification) operator and shaking procedure as the perturbation operator (for 

diversification). First Improvement operator is employed as a single local search operator within 

VNS algorithm in past literature (Wassen et al., 2017, Samà et al., 2017, Todosijević et al., 2016). 

The first improvement procedure uses the initial solution ’x  and rigorously searches the given 

neighbourhood structure ( )  kN x  (refer to figure 2 for an example of the encoding scheme of a 

neighbourhood structure) and compares each solution of the neighbourhood structure with the 

initial solution ’x . If a better solution is obtained, then the overall best solution ”x  is updated. 

After performing the local search, the neighbourhood change takes place. Although, if an 

improvement is achieved in the first improvement procedure in terms of obtaining a better solution

”x , then the local search returns to its first neighbourhood structure (k = 1) and updates the best-

known solution. Otherwise, the algorithm keeps on performing the search on different 

neighbourhood structure (k = k + 1) for obtaining a better solution. Once the local search is 

performed on all the neighbourhood structures, the VNS algorithm stores the best-known solution 

and moves on to the next iteration. In this way, the VNS performs its searching procedure and 

obtain the overall best solution with the objective function value ( )*
f x . Furthermore, in order to 

resolve local optima traps where the proposed local search may be stuck, we consider the Shaking 

procedure as the perturbation operator. Shaking procedure randomly selects a solution 
,

x  from the 

kth neighbourhood structure which is employed as an initial solution for the procedure. Past 

literature focusing on variable neighbourhood search algorithm have also considered first 

improvement as the local search operator and shaking procedure as the perturbation operator 

(Wassen et al., 2017, Samà et al., 2017, Todosijević et al., 2016). The VNS algorithm terminates 

after reaching the maximum number of iterations. Algorithm A.1 highlights the VNS algorithm 

with input parameters as N (Number of iterations), Kmax (Number of Neighbourhood structures), 

x (initial feasible solution) and f(x) (fitness function value of the initial feasible solution x). Output 
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parameters of algorithms (1) are 
*

x  (overall best solution obtained at the end of the number of 

iterations) and ( )*
f x  (fitness function value for the overall best solution). 

The parameters of the VNS algorithm are the number of iterations and the maximum number of 

the neighbourhood structures. The pseudo-code of the VNS algorithm is provided in algorithm 

A.1. Each neighbourhood structure considered in the VNS can be considered as a configuration of 

several suppliers, retailers, opened cross-docks and products to be transported, which results in the 

variables for units of goods (freight) and number of vehicles moving from one point to another. 

Each solution in the neighbourhood structure comprises of the values of the decision variables of 

the mathematical model – (i) Units of product s supplied by supplier p and shipped through cross-

dock q to retailer r (
prsqK ), (ii) Units of product s directly supplied by supplier p to retailer r (

prsK

), (iii) Whether cross-dock q is open or not (
qX ) and (iv) Whether supplier p is transferring the 

product s to retailer r through cross-dock q and (v) Whether supplier p is directly transferring the 

product s to retailer r ( prsZ ). Moreover, the solutions also comprise of the number of trucks utilised 

for product shipment between suppliers to cross-docks ( pqN ), suppliers to retailers ( qrN ) and 

cross-docks to retailers ( prN ). Figure 2 presents the encoding scheme for Case 8 (3-30-1-2) where 

suppliers P = 3, retailers R = 30, products S = 1 and cross-docks Q = 2. Figure 2 comprises one 

neighbourhood structure which consists of 100 solutions presenting the values of 698 decision 

variables for the Case 8 (3-30-1-2). 
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Algorithm (A.1): The pseudo-code of Variable Neighbourhood Search (VNS) 

( )( ) ( )( )

( )

*,  * ,  ,  ,  

 

Algorithm :   
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Figure 2: Encoding scheme of a neighbourhood structure for the VNS algorithm which comprise 

of decision variables values for 100 solutions 

 

4.2. Two-Level Self-Adaptive Variable Neighbourhood Search (TLSAVNS) algorithm 

TLSAVNS algorithm is an improved variant of the VNS algorithm introduced by Li and Tian 

(2016). The TLSAVNS algorithm aims to adopt VNS at two levels for obtaining more promising 

results in less computational time. The TLSAVNS algorithm comprises of two parameters – 

maximum number of first level neighbourhood structure and maximum number of second level 

neighbourhood structure. Let us assume that the index of the first level neighbourhood structure 

as m and that of the second level neighbourhood structure as n. The first level neighbourhood 

structures are predetermined by random allocation and the second level neighbourhood structures 

are self-adaptively selected based on the previous searches rather than a pre-regulated sequence of 

the neighbourhood structures (Li and Tian, 2016). Two crucial features of this algorithm are, 

namely, two-level VNS architecture and self-adaptive technique of neighbourhood selection (more 

discussion about the self-adaptive technique is presented on section 4.3). Each neighbourhood 

structure in the second level is assigned with a selection ranking sri > 0, which is initially set to a 

constant value with a rough estimation. 

In the first level of TLSAVNS, a solution is randomly chosen from the first neighbourhood 

structure using an important operator of the algorithm named as shaking function (Nm) which acts 

as a perturbation operator for diversification within the solution space (Hansen and Mladenović 

2014). Now, First Improvement local search operator (for intensification) is performed on the 

current neighbourhood structure Nm. During the local search procedure for obtaining a local 

optimum on first level neighbourhood structure, this local optimum (say S1) is compared with that 

of the second level neighbourhood structure (say S2). If the second level search provides a better 
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solution, then its selection ranking sri is updated to a better ranking (say by adding α). Li and Tian 

(2016) adopted the local search operator discussed over here as the intensification operator and 

Shaking procedure as perturbation operator. This procedure is repeated until the stopping condition 

is met (refer to Algorithm-2). The pseudo-code of the TLSAVNS algorithm is shown in algorithm 

B.1. 

In algorithm B.1, the shaking procedure is adopted to obtain solutions a and b for first level 

and second level neighbourhood structures respectively. The shaking operator in the first level 

neighbourhood structure is referred to as shaking (a, Na) and the corresponding local optimum ’a  

is obtained using the local search operator. Within first level neighbourhood structure ( )kN a , 

First Improvement local search procedure is performed where a  is used as an initial solution and 

the local search operator searches the solutions within the neighbourhood structure.  If the fitness 

function value of any solution ”a  within the neighbourhood structure, ( ”)f a  is less than the 

fitness function value of initial solution a , ( )f a , or ( )( ”)  f a f a , then the initial solution of the 

First Improvement local search procedure is updated as ”a a= . Then, the local search procedure 

also checks whether the fitness function value of the updated initial solution a , ( )f a  is better than 

the fitness function value of the local optimum ’a , ( ’)f a . If ( ) ( ’)f a f a , then the local optimum 

value is updated, ’  a a= . For determining the fitness function, the values of decision variables 

mentioned in each solution is used to obtain the objective function of the mathematical model 

(given in equation 15). 

 

In the second level, the shaking operator is denoted by shaking (b, Nb) and its local optimum 

’b  is obtained using local search operator. Within second level neighbourhood structure ( )kN b , 

First Improvement local search procedure is adopted considering b as the initial solution. If the 

fitness function value of any solution ”b , ( ”)f b  within the second level neighbourhood structure 

is less than the fitness function value of the initial solution b, ( )f b  or ( ”) ( )f b f b , then the initial 

solution is updated ”b b= . Furthermore, the algorithm compares the fitness function value of the 

initial solution with the fitness value of the local optimum solution, if ( ) ( ’)f b f b , the local 

optimum solution is updated in the following way, ’  b b= .  
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Now, if the optimum solution ’b  of second level neighbourhood structure ( )kN b , is better 

than local optimum ’a  of the first level neighbourhood structure ( )kN a , so if ( ’) ( ’)f b f a  then 

the selection probability is upgraded. Else, it is downgraded, and the searching procedure moves 

to the next neighbourhood structure ( ) ( )1kN b+  within the second level neighbourhood structure. 

Section 4.3 highlights the detailed procedure of the neighbourhood selection and update of 

selection probability. The main advantage of this algorithm is that the adaptive technique for 

neighbourhood selection allows only neighbourhood structure with a better solution, owing to 

selection probability (Li and Tian, 2016). This approach not only makes the search more 

competent, but also enhances the robustness of the basic VNS. The L used in the pseudo-code of 

the TLSAVNS algorithm represents a maximum number of iterations. 

4.3. Neighbourhood selection and update of selection probability 

In the TLSAVNS algorithm, the first level neighbourhood follows the conventional VNS 

procedure having the pre-determined sequence of neighbourhood structures, whereas the second 

level neighbourhood of the TLSAVNS algorithm is self-adaptively selected based on its selection 

probability instead of the pre-determined sequence. The selection probability of each 

neighbourhood structure on the second level neighbourhood is dependent on the concept of success 

and failure of a neighbourhood search. If the local search procedure on a neighbourhood structure 

results in a new solution and if it’s better than the input solution, then the neighbourhood structure 

is viewed as a successful one. When no better solution is obtained from the neighbourhood 

structure, then the neighbourhood structure is viewed as unsuccessful. The selection probability 

operator is initially set during the first few tests runs so that the algorithm is trained, and it can 

analyse the suitability and performance of the neighbourhood structures. The algorithm B.1 

calculates the success count as si and failure count as fi for each of the neighbourhood structure. 

The selection probability of each neighbourhood 'kN  is computed using the following equation:  

2

1

K

k k i

i

SP S S
=

=  ,          (23) 

Here, iS  is the success ratio, and it is computed using the following equation

( ) 0.05i i i iS s s f= + +   , 21,...,i K=         (24) 
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The value 0.05 is added to each iS  in order to ensure that the selection probability of some 

neighbourhoods can avoid the value zero if better solutions are not obtained in the previous search. 

Based on the computation method presented in equations (23) and (24), the TLSAVNS algorithm 

ensures that successful neighbourhood structures with larger selection probability are employed to 

generate new solutions. The self-adaptive mechanism helps the TLSAVNS to reduce the burden 

of computational complexity, as the local search is performed on the successful neighbourhood 

structures only. Pseudo-code of the TLSAVNS Algorithm is presented in Algorithm B.1 to 

highlight the ways operators of the TLSAVNS such as shaking operator, local search operator and 

selection probability operator interacts with each other. Input parameters of Algorithm B.1 are L 

(Number of iterations), kN  (set of Neighbourhood structure for first level), 'kN  (set of 

Neighbourhood structure for the second level), x (initial feasible solution) and f(x) (functional 

value or fitness function value of the initial feasible solution x). Output parameters of the 

Algorithm B.1 comprises of x (the overall best solution at the end of the iteration) and f(x) 

(functional value or fitness function value of the overall best solution x). 
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Algorithm (B.1): The pseudo-code of Two-Level Self-Adaptive Variable Neighbourhood Search 

( )( ) ( )( )
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Algorithm :     
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End
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4.4. Initial Solution Generation Procedure – Building Neighbourhood Structure 

The sub-section aims to highlight the detailed procedure adopted to obtain the initial solution in 

the form of a neighbourhood structure associated, which comprises of decision variables of the 

mathematical model. The neighbourhood structure is developed considering the problem structure 

and thus, helps to eliminate the infeasible solutions which arise during random solution generation 

(De et al. 2020).  
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Several capacitated vehicles available at supplier are used to transfer the products directly 

to retailers or through cross-docks. Initially, suppliers select the capacitated vehicle following the 

demand of the retailer and fixed costs of the vehicle. If the demand of a particular retailer is 

sufficient for full truckload capacity, then the supplier satisfies the demand of that retailer through 

direct transfer. Using equation (25), the value of rs  is determined where rs  is a positive integer 

value, determining whether supplier decides to use full truckload capacity and satisfies the demand 

of the retailer through direct shipment. 

rs
rs

E


 =   
    ,r R s S         (25) 

 When rs  is an positive integer value, then a supplier nearest to the particular retailer in 

terms of distances is chosen for employing the direct shipment for satisfying the demand of the 

retailer. Therefore, considering the distances pr
d  between the particular retailer and for all the 

suppliers. Now, identifying the supplier minp  for which the 
minp rd  is minimum for the particular 

retailer r while considering all the suppliers. As the direct shipment is adopted in this case, hence 

the value of the decision variables 
minp rsK  and 

minp rsZ  are determined (here, minp p= ) using 

equations (26) and (27) given below, 

,       
min rs min rsp rsK E For p p and positive integer= = =   ,r R s S     (26) 

1,       

0,       min

rs

rs

p rs

For positive integer
Z

For fraction value




=
=  =

  minFor p p=   ,r R s S     (27) 

The value of the decision variable prsK  helps to determine the decision variable 
prN , 

related to the number of trucks utilised for the shipment of products from the supplier to the retailer 

using equation (5). Algorithm C.1 presents a detailed procedure for the generation of the decision 

variables prsK , prsZ  and prsqY . 

 When the value of rs  is in fraction, the supplier decides to use the cross-docking facility 

for meeting the demand of the respective retailer. In such a case, the distance of all the cross-docks 

from the particular retailer r is determined and accordingly the cross-dock minq , with least distance 
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minq rd  from the specific retailer r is selected. Now, the distance of all the suppliers from the selected 

cross-dock minq  is taken into consideration and accordingly the supplier minp  with least distance 

min minp qd  from the cross-dock minq  is preferred. Therefore, the value of decision variable 
min minp rsqY  

is obtained for supplier minp p=  and cross-dock minq q=  and accordingly presented in equation 

(28).  

1,       

0,       min min

rs

rs

p rsq

For fraction value
Y

For positive integer




=
=  =

 ,  min minFor p p q q= =  ,r R s S     (28) 

Suppliers select the route with minimum distance for transferring the products to the cross-

docking facility and finally to the retailers. Therefore, equation (25) helps supplier in deciding 

whether to meet the demand of a certain product type for a specific retailer through direct shipment 

or via cross-dock facility. If the demand is not sufficient to fulfil the full truck capacity, then the 

supplier combines the demand of multiple retailers to fully load the truck and transport it through 

the cross-docking facility. Algorithm C.1 computes the value of a binary variable prsqY  which gives 

necessary information regarding the transportation route to be accessed from supplier to the retailer 

via specific cross-dock. Input parameters of Algorithm C.1 are number of product types S, number 

of retailers R, number of suppliers P, number of cross-docks Q, demand of retailer for the product 

type rsE , capacity of truck   and distance parameters ,  ,  pr qr pqd d d . Output parameters of 

Algorithm C.1 are decision variables prsK , prsZ  and prsqY . 

Depending upon the available capacity of the preferred supplier for a certain product type, 

the cross-dock determines the amount of product to be shipped from the supplier to the cross-dock. 

If the capacity of the product type available with the supplier is more than the demand of the 

retailer for the product type, then the demand of the retailer is met from the supplier and 

accordingly the decision variable prsqK , is updated. Although, when the capacity available with 

the supplier for the specific product type is less than the demand of the retailer for the product 

type, then the available supplier capacity is sent to the retailer and the value of the decision variable 

prsqK  is updated. Equation (29) aims to determine the value of the decision variables prsqK , when 
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,  min minp p q q= =  for a specific retailer and 1
min minp rsqY = . The value of the prsqK  is used to estimate 

the value of the decision variables pqN  and qrN  using equations (1) and (3) respectively. The 

variables pqN  and qrN  are related to the number of trucks utilised for product shipment from 

suppliers to cross-docks and number of trucks deployed from cross-docks to retailers respectively.  

,  
  1 &  ,  

,  min min min min

rs ps rs

min min

ps ps rs

p rsq p rsq

E A E
K For Y p p q q

A A E

= = = = 
 ,r R s S     (29) 

When the capacity of the supplier for the product type is less than the demand of the retailer 

or 
ps rsA E , then the remaining amount ( )rs psE A−  pertaining to the demand of the retailer is met 

via different strategy, where the cross-docking facility randomly chooses another supplier 
rand

p . 

The cross-dock checks whether the chosen supplier 
rand

p  has enough capacity or not to meet the 

remaining demand ( )rs psE A−  of the specific retailer. The algorithm D.1 gives the detailed 

procedure for the generation of the variables prsK  and prsqY . Based on the value obtained for binary 

variable prsqY , the value of binary variable 
qX  is updated using equation (30). 

1,    1

0,   0
q

prsq

prsq

Y
X

Y

==  =
   , , ,p P r R s S q Q         (30) 

Input parameters of Algorithm D.1 are number of product types S, number of retailers R, 

number of suppliers P, number of cross-docks Q, demand of retailer for the product type rsE , 

decision variable  prsqY  and capacity of supplier for the product type 
psA . Output parameters of 

Algorithm D.1 are decision variables prsK  and prsqY . It must be noted that the algorithm randomly 

selects the supplier for meeting the remaining demand and this random selection helps to obtain 

different feasible solutions, which are fed into the VNS algorithm and TLSAVNS algorithm. 

 

Algorithms C.1 helps in obtaining the values of the decision variables 
prsK (number of 

product s directly supplied by supplier p to retailer r), prsZ  (whether supplier p is directly 

transferring the product s to retailer r), prsqY  (whether supplier p transfers product s to retailer r via 



28 

 

cross dock q). Algorithm D1 assists in determining the values of decision variables 
prsqK  (number 

of product s supplied by supplier p and shipped through cross-dock q to retailer r) and updating 

the values of prsqY . Using the values of the decision variables from algorithms C.1 and D.1, we 

obtain the values of the number of trucks utilised for product shipment between suppliers to cross-

docks ( pqN ), suppliers to retailers ( qrN ) and cross-docks to retailers ( prN ). Therefore, algorithms 

C.1 and D.1 determines values of the decision variables which comprise of one solution within the 

neighbourhood structure given in figure 2. Accordingly, algorithms C.1 and D.1 are employed to 

obtained the values for all the solutions with the neighbourhood structure given in figure 2. 

Variable neighbourhood search algorithm (pseudo code given in Algorithm A.1) uses algorithms 

C.1 and D.1 to determine Kmax number of different neighbourhood structures, used in every 

iteration within the algorithm A.1. Furthermore, TLSAVNS algorithm (pseudo-code given in 

algorithm B.1) uses algorithms C.1 and D.1 to determine K1 and K2 associated with number of 

different neighbourhood structures for first and second levels respectively. 
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Algorithm C.1: Procedure about the generation of the variables prsK , prsZ  and prsqY  

( ) ( )
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,   _ 3 ,  ,  ,  ,  ,  ,  ,  ,  

  1     ,   

       1    

rs pr qr pq

prs prs prsq
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end
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end
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Assign the value of Y as or Y 1,   , 
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min min minq

prs prs prsq

where p p q q

end if

end for

end for

Return K Z and Y
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Algorithm D.1: Procedure about the generation of the variables 
prsqK  and prsqY  

( ) ( )
:       

, _ 4 ,  ,  ,  ,  ,  ,  

 1     ,  1    ,  

      1    

ps rs

prsq prsq

prsq prsq prsq

Procedure Generation of decision variables K and Y

K Y Algorithm S R Q P Y A E

for s to number of product types r to number of retailers
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= =
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           1,   1

             ,           
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s docking facilities p to number of suppliers
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                 ,  

                        ,   
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rs rs
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ps rs
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ps rs p

prsq prsq
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Assign the value of K as A or K A
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                          :         

                             ,  ran
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rs ps
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p

While Cp E A

Random Selection Step Randomly select a supplier and term it as p

if available capacity with supplier p A
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rand rand
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p rsq p rsq

p rsq

E A

Assign the value of K E A Y

Update A A K and Cp
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rand

rand
rs psp s

le capacity with supplier p A E A

Go to Random Selection Step to select another supplier

end if

end While

 −

  

       

 

   prsq prsq

end if

end if

end for

Return K and Y  

5. Results and discussions 

Different scenarios of a three-echelon supply chain network are considered by varying the number 

of suppliers, cross-docks, retailers, and product types. Table 2 presents the complexities associated 

with each problem case in terms of the number of integer variables, binary variables and constraints 

involved for a combination of suppliers (P), retailers (R), cross-docks (Q) and number of product 

types (S). All the cases are generated following the structure of retail distribution company to 
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replicate a typical supply chain (SC) network. Since the case organisation does not have an 

established SC network in the northern region, to analyse the developed model, the computational 

experiments conducted used reliable (mainly secondary) source data as presented in Table 3 

(ranges for parameters).  

 Three board case scenarios considered are based on the total number of variables involved 

in the model. Case numbers 1 to 7 belong to the group of problem sizes with less than 150 variables 

and termed small-sized cases. Case numbers 8 to 17 belong to the group of problem sizes with less 

than 1000 variables and termed medium-sized cases. Case numbers 18 to 24 belong to the group 

of problem sizes with greater than 1000 variables and termed large-sized cases. Both the 

algorithms- VNS and TLSAVNS are applied to all three case scenarios.  

 

5.1 Parameter settings 

Parameter setting was performed, as it aimed to achieve a near-optimal solution in the least 

computational time. In the beginning, the parameters of VNS algorithm (such as number of 

iterations, maximum number of neighbourhood structures (Kmax) and number of solutions within 

a neighbourhood structure) and parameters of TLSAVNS (such as number of iterations, maximum 

number of neighbourhood structures for two levels and number of solutions within each 

neighbourhood structure) were assigned values at random, and then the algorithm was run 

changing one parameter at a time, keeping other parameters constant until the best value of the 

parameter was obtained. A similar process for obtaining the values of parameters was followed in 

several published works such as Li et al. (2016), Mogale et al. (2020) and De et al. (2019b) and 

such procedure is acceptable in this research domain. Following the procedure, it was found that 

the decisive number of solutions within a neighbourhood structure of the VNS algorithm is 100. 

In the case of TLSAVNS, the maximum number of neighbourhood structures for the first level 

neighbourhood was found to be 10 and that of the second level neighbourhood structures to be 6, 

computed over 100 instances. Maximum number of neighbourhood structures, Kmax considered 

for VNS algorithm was found to be 20. The algorithm was iterated 200 times for the VNS and 

TLSAVNS approach. The computational experiment was conducted on a large data set after 

appropriately tuning the algorithmic parameters. All the experimental scenarios provided in Table 

2 were solved on MATLAB R2018a software having 8 GB RAM with Intel Core i7 1.8GHz 
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processor and 64-bit Operating System of Windows 8. The performance of both the algorithms 

was compared with each other to observe the differences in results and to develop useful insights. 

 

Table 2. Supply chain network model complexity for varying problem sizes 

 

Table 3. Data span of parameters related to the model 

 
Parameter Range of value  Parameter Range of value 

pqc   [1,10000] 
qt  [.1,.2] 

pqt   [0,2] 
qFC   [10000-20000] 

pq
d   [1,1000] 

rs
E   [5,15] 

qrc   [1,10000] 
s

g   [1,10] 

qrt   [0,2] 
s

m   [1,10] 

qrd   [1,1000] 
sv   [1,15] 

prc   [1,15000] 
sF   [.1,.2] 

Problem 

size 

Case type P 

(Suppliers) 

R 

(Retailers) 

S 

(Products) 

Q 

(Cross-

docks) 

Variables  Constraints 

Integer  Binary  Total 

Small Case 1 (2-2-1-2) 2 2 1 2 24 14 38 34 

 Case 2 (2-3-1-3) 2 3 1 3 45 27 72 68 

 Case 3 (3-10-1-2) 3 10 1 2 146 92 238 225 

 Case 4 (2-3-1-10) 2 3 1 10 122 76 198 201 

 Case 5 (10-3-1-3) 10 3 1 3 189 123 312 376 

 Case 6 (3-20-1-2) 3 20 1 2 286 182 468 445 

 Case 7 (2-3-1-20) 2 3 1 20 232 146 378 391 

Medium Case 8 (3-30-1-2) 3 30 1 2 426 272 698 665 

 Case 9 (20-3-1-3) 20 3 1 3 369 243 612 626 

 Case 10 (2-3-1-30) 2 3 1 30 342 216 558 581 

 Case 11 (30-3-1-3) 30 3 1 3 549 363 912 936 

 Case 12 (3-50-1-2) 3 50 1 2 706 452 1158 1105 

 Case 13 (2-3-1-50) 2 3 1 50 562 356 918 961 

 Case 14 (50-3-1-3) 50 3 1 3 909 603 1512 1556 

 Case 15 (3-100-1-2) 3 100 1 2 1406 902 2308 2205 

 Case 16 (2-3-1-100) 2 3 1 100 1112 706 1818 1911 

 Case 17 (100-3-1-3) 100 3 1 3 1809 1203 3012 3106 

Large Case 18 (12-14-9-13) 12 14 9 13 21674 21181 42855 43255 

 Case 19 (27-17-3-17) 27 17 3 17 25993 24803 50796 56147 

 Case 20 (27-10-4-26) 27 10 4 26 30392 29186 59578 64434 

 Case 21 (24-17-6-16) 24 17 6 16 42680 41632 84312 87574 

 Case 22 (16-26-5-22) 16 26 5 22 49810 47862 97042 102984 

 Case 23 (27-8-7-42) 27 8 7 42 66702 65058 131760 137879 

 Case 24 (28-15-8-33) 28 15 8 33 116079 114273 230352 239357 

 Case 25 (29-23-9-30) 29 23 9 30 188320 186123 374443 386691 
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prt   [0,5]   .0013 

pr
d   [1,1000]    [2,7] 

   [100,1000]   1.5*Total Product Demand 

 

5.2 The effectiveness of the algorithms 

In this section, the results obtained by solving the mixed-integer non-linear programming model 

using VNS and TLSAVNS algorithms are tabulated. Table 4 presents the total cost incurred, 

considering both the algorithms along with the percentage variation in mean total cost with respect 

to the minimum total cost obtained. It is evident from Figure 3 that the TLSAVNS algorithm 

converges in a smaller number of iterations, as compared to the VNS algorithm. The TLSAVNS 

algorithm also solves the problem instances in less computational time compared to VNS and 

provides a solution nearer to the central tendency, even for large size problems (Table 4). 

Furthermore, to evaluate the performance of the algorithms, a graphical approach is applied as 

shown in Figure 4 on the small-sized, medium-sized and large-sized case scenarios. It is evident 

from these results that TLSAVNS is a more efficient algorithm for obtaining a near-optimal 

solution. 

 

 

Figure 3. Convergence graph for Case 1 (2-2-1-2) 

Figure 3 Alt text:  Convergence graph for VNS and TLSAVNS showing the number of iterations 

on X-axis and total cost on Y-axis 
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Figure 4. VNS and TLSAVNS objective function performance in a) Small-sized problems b) Medium-sized problems c) Large-sized 

problems. Line chart showing the performance of two algorithms in terms of objective functions for selected cases 
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Table 4. Computational results obtained from VNS and TLSAVNS for all the problem sizes 

Problem Size Case Type Computational time (s) Total Cost (INR) % Variations in Cost Carbon emission Cost % Carbon emission 

variation 

    VNS TLSAVNS VNS TLSAVNS VNS TLSAVNS VNS TLSAVNS VNS TLSAVNS 

Small-sized  

Case 1 (2-2-1-2) 42.7 28.7 21365.53 21033.74 0.16 0.59 18.56 17.95 0.07 0.09 

Case 2 (2-3-2-1-3) 83.5 60.5 22378.69 22178.5 0.89 1.12 980.97 960.35 4.38 4.33 

Case 3 (3-10-1-2) 311.2 208.6 26617.84 24674.89 0.51 0.76 892.55 830.46 3.35 3.37 

Case 4 (2-3-1-10) 223.5 174.6 26479.74 23215.45 0.84 0.55 540.79 514 2.04 2.21 

Case 5 (10-3-1-3) 371.2 293.5 32760.72 32531.58 0.3 1.03 1370.24 1299.94 3.57 3.34 

Case 6 (3-20-1-2) 454.7 328.1 46462.68 46301.95 1.26 1.54 1551.38 1668.17 3.41 3.59 

Case 7 (2-3-1-20) 368.5 332.5 28821.3 28714.19 0.3 1.02 573.18 535.07 2.02 1.86 

Medium-sized  

Case 8 (3-30-1-2) 656.8 497 65944.17 51063.76 1.25 0.67 793.87 790.87 1.17 1.55 

Case 9 (20-3-1-3) 624.7 525.8 36638.18 32270.91 0.51 1.24 383.36 347.85 1.05 1.08 

Case 10 (2-3-1-30) 536 461.3 51625.15 51614.04 0.77 0.88 1781.09 1701.54 3.45 1.36 

Case 11 (30-3-1-3) 885 720.6 64253.23 62192.09 1.97 0.11 1771.81 1724.7 2.45 2.77 

Case 12 (3-50-1-2) 636.4 494.4 69169.18 63753.72 0.41 1.63 778.09 776.43 1.11 1.22 

Case 13 (2-3-1-50) 917.8 690.9 82338.33 82260.12 0.83 0.28 4987.78 4937.8 5.91 4.79 

Case 14 (50-3-1-3) 1062.9 843.3 69074.21 69039.9 1.11 0.68 2256.66 2239.61 3.07 3.24 

Case 15 (3-100-1-2) 1035.3 991.3 93997.43 93451.4 1.05 0.38 1678.86 1525.88 1.79 1.63 

Case 16 (2-3-1-100) 1442.2 1094.5 109758.71 107865.84 1.52 0.62 1488.87 1486.53 1.35 1.38 

Case 17 (100-3-1-3) 1558.3 1152.5 108594.9 107277.1 0.93 1.02 3338.94 3114.27 2.57 2.9 

Large-sized  

Case 18 (12-14-9-13) 3324.1 2209.58 786334.5 763610.4 5.27 1.37 10565.32 10443.97 1.29 1.37 

Case 19 (27-17-3-17) 3418.3 2961.45 827399.51 808338.25 2.02 2.11 17227.8 17067.53 2.08 2.11 

Case 20 (27-10-4-26) 3283.8 2091.36 798865.2 795069.32 7.78 3.28 26060.18 26051.4 3.14 3.28 

Case 21 (24-17-6-16) 4639.8 3169.95 892350.89 886133.92 7.19 2.22 19654.6 19647.14 2.25 2.22 

Case 22 (16-26-5-22) 4657.4 3751.08 953787.1 932568.3 4.67 3.36 31329.52 31292.97 3.18 3.36 

Case 23 (27-8-7-42) 3403.4 2290.7 1014346.9 991562.2 7.34 4.34 43360.13 43035.43 4.27 4.34 

Case 24 (28-15-8-33) 6443.9 5084.28 1754262.5 1607069.4 8.11 5.97 95899.18 95895.21 5.3 5.97 

Case 25 (29-23-9-30) 7235.3 6451.1 2438759.08 2066201.2 9.21 4.28 172275.8 171164.61 6.57 8.28 
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5.3 Analysis of Results  

The solution presented in this section showcases the relationship between prominent factors of the 

problem. Figure 5 explains the structure of the supply chain network, enlisting the various input 

parameters of case 1. The transportation links specify that the products are transported through the 

shown path. The values of the inbound transportation cost for that path ( c ), distance between 

supplier p and cross-dock q ( pq
d ), distance between cross-dock q and retailer r ( qrd ) and the units 

of product moving in that path ( K ) are shown on the transportation link. The capacity of cross-

dock q, and the demand at retailer r is mentioned in figure 5. It is evident that the number of units 

moved is more for the routes with less transportation cost and minimum distance.  

 It is to be noted that, Table 4 also quantifies the effect of the imposition of carbon emission 

cost on a supply chain network. It illustrates the amount of carbon emission cost incurred and the 

percentage of variation of the carbon emission cost with respect to the overall supply chain cost. 

The carbon tax (cost) is imposed for polluting the environment, and this cost is expected to be 

higher for the complete supply chain network, thus compelling that the concerned authorities need 

to rethink their freight transportation network and aim to design a more sustainable supply chain 

network. A comparison between the total number of available cross-docks and the total number of 

open cross-docks under different demand conditions is presented in Table 5. Here, four cases are 

evaluated as an example under varying demand conditions. The table signifies an increase in the 

number of open cross-docks with an increase in demand. The study explored the changes in the 

capacity of the cross-docks in relation to the number of open cross docks for a deterministic 

demand. The capacity of cross-dock q is varied from 0.5 5r rE to E  , where,

r rs

s

E Max E r
  

=   
  
 . It was observed that as the capacity of the cross-docks increases, the 

number of open cross-docks decreases for a given demand. This result can be used to analyse 

whether it is profitable to establish a single cross-dock with higher capacity or multiple cross-

docks with smaller capacity.  

Furthermore, the study provides insights into the number of suppliers and retailers that are 

affected due to the opening of cross-docks. To study this, the number of suppliers and retailers 

were varied keeping other factors constant. It is found that the number of suppliers does not affect 

the number of open cross-docks until the number of suppliers is slightly high. It is also observed 
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that the number of open cross-docks increases with an increase in the number of retailers. An 

increase in retailers over suppliers, significantly influences the number of open cross-docks is 

another useful inference. 

 

Figure 5. Pictorial representation of the dynamics of case 1 (2-2-1-2) 

Figure 5 Alt text: Supply chain network showing the values of decision variables. 

 

Table 5. Number of open cross-docks at different demand conditions 

 

 

 

 

Case Type 

Demand conditions 

 

 [5,15] [20,100] [100,1000] 

Available 

Cross docks 

Open 

Cross 

docks 

Available 

Cross docks 

Open 

Cross 

docks 

Available 

Cross docks 

Open 

Cross 

docks 

Case 1 (2-2-1-2) 2 1 2 1 2 2 

Case 2 (2-3-1-3) 3 1 3 2 3 3 

Case 4 (2-3-1-10) 10 3 10 6 10 9 

Case 13 (2-3-1-50) 50 3 50 26 50 42 

 

5.4. Contribution to research and practice 

The influence of carbon tax (cost) on overall supply chain costs is studied while designing a 

sustainable freight transportation network with cross-docks. It was observed that, although the 

 

 

K =4 
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carbon emission cost is much less compared to overall costs, it plays a vital role by encouraging 

decision-makers to consider them for meeting sustainability targets of the individual firm and the 

associated network. With stricter government regulations and the adverse impact of climate 

change, companies can afford to pay this nominal increase in costs to limit their carbon footprint 

in the environment. The research provides three significant contributions to the theory. Firstly, a 

sustainable model for a capacitated cross-docking system with varying (consisting of multiple 

suppliers and retailers) supply and demand conditions was developed, directly contributing to the 

theory development in sustainable freight transportation. Secondly, the contextual gap in utilising 

cross-docking systems for improving sustainability in freight transportation networks ((Wu et al. 

2015) is bridged following the development of capacitated model considering multiple case 

scenarios. Thirdly, the research provides a methodological contribution by applying and validating 

the appropriateness of the TLSAVNS algorithm for complex supply chain problems. To the best 

of the authors' knowledge, the TLSAVNS algorithm, first proposed by Li and Tian (2016), has not 

been applied to or tested in the supply chain context. The carbon tax (cost) is an essential 

consideration for sustainable freight transportation due to the increased reverse logistics activities 

(Sarkar et al., 2016; Ghadge et al., 2016). The findings obtained from the study further strengthen 

the need for applying a carbon tax policy for building a sustainable freight transportation network. 

Researchers and practitioners are focused on finding emerging solutions for minimising negative 

externalities in the design of transportation systems (Demir et al., 2019). The study proves that the 

cross-docking strategy can support carbon emissions containment in freight transportation 

networks under varying supply chain nodes and demand scenarios.  

 The research also contributes to logistics and supply chain practice. The developed freight 

transportation network model supports freight distribution managers, particularly in understanding 

the usefulness of cross-docking systems in reducing carbon emissions and other operational costs, 

as it helps to reduce inventory holding and transportation costs. For the case company in India, 

this study helps to plan their cross-docking numbers and locations for a varying set of suppliers 

and retailers for different supply and demand settings. This model could be applied to other 

developing countries cases also considering their logistics and transportation infrastructure, 

technologies, government regulations and other policies. Developed case scenarios based on the 

combination of suppliers, retailers, cross-docks, and products, help in making evidence-based, 

robust decisions related to several open cross-docks for varying capacity. The number of open 
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cross-docks increases with higher demand distribution, which implies it is better to opt for direct 

shipment for small demand size; but as the demand size increases, it is more economical to use a 

cross-dock logistics network. Also, it is found that the capacity of the cross-docks is closely related 

to the number of open cross-docks, as with the increases in the capacity, the number of open cross-

docks decreases. These results can be used for a trade-off between the two, in terms of cost incurred 

to determine whether it is profitable to establish a new cross-dock or to invest in a cross-dock of 

higher capacity. The relational dynamics between supply and demand for open cross-docks is 

another useful insight for freight transportation practitioners. The results are likely to bring 

meaningful savings in the operational and regulatory costs associated with cross-docking systems 

and broader sustainable freight transportation.  

6. Conclusion and future scope of research  

This research study is inspired from the realistic problem of a major retail distribution company 

based in India. The proposed model for a cross-docking system computed the total cost of the 

supply chain network considering several suppliers and retailers. A mixed-integer non-linear 

programming model is formulated to address the sustainable three-echelon supply chain network 

problem for deterministic demand and supply scenarios. Due to the inherent complexity, the 

mathematical model is solved by applying two neighbourhood search algorithms. Unlike the VNS 

algorithm, which uses a pre-determined sequence of neighbourhoods, the TLSAVNS algorithm 

applies a self-adaptive neighbourhood search strategy based on the selection probability of each 

neighbourhood. Multiple findings are reported after solving several cases using both algorithms. 

It is also found that the self-adaptive approach of the TLSAVNS algorithm is robust in providing 

near-optimal solutions in less computational time. The searching procedure of the TLSAVNS 

algorithm helps to smoothly escape from the local optima and promptly achieve a near-optimal 

solution, which can be consistently witnessed from the results.   

Like any other study, this study has some limitations which can be addressed in the future. 

The heterogeneous capacitated vehicles and their limited availability can be included in new 

models. Although an attempt is made to accommodate important costs, several additional costs 

(such as administrative and technology costs) and the time dimension are challenging to 

incorporate in the mathematical formulation (Agamez-Arias and Moyano-Fuentes, 2017); thus, 

were not considered while modelling this problem. Future research can investigate accommodating 

such missing variables/factors. Another exciting direction for this research could be the 
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consideration of the stochastic demand, supply, and travel time to make the model robust in 

tackling uncertain scenarios. The integration of vehicle routing and scheduling could be another 

interesting future search avenue that helps to optimise the overall network cost. The environmental 

impact of facility location and inventory could be added to the developed model. The multi-

objective model can be formulated with the consideration of the third dimension of sustainability, 

i.e., social factors in the form of employment opportunities, the impact of traffic congestions, noise 

pollution and accidents. Finally, scholars can verify the applicability of the proposed TLSAVNS 

algorithm by solving different type of supply chain network problems.  
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