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A B S T R A C T

Corona Virus Disease 2019 (COVID-19) has developed into a global pandemic in the last two years, causing
significant impacts on our daily life in many countries. Rapid and accurate detection of COVID-19 is of great
importance to both treatments and pandemic management. Till now, a variety of point-of-care testing (POCT)
approaches devices, including nucleic acid-based test and immunological detection, have been developed and
some of them has been rapidly ruled out for clinical diagnosis of COVID-19 due to the requirement of mass testing.
In this review, we provide a summary and commentary on the methods and biomedical devices innovated or
renovated for the quick and early diagnosis of COVID-19. In particular, some of micro and nano devices with
miniaturized structures, showing outstanding analytical performances such as ultra-sensitivity, rapidness, accu-
racy and low cost, are discussed in this paper. We also provide our insights on the further implementation of
biomedical devices using advanced micro and nano technologies to meet the demand of point-of-care diagnosis
and home testing to facilitate pandemic management. In general, our paper provides a comprehensive overview of
the latest advances on the POCT device for diagnosis of COVID-19, which may provide insightful knowledge for
researcher to further develop novel diagnostic technologies for rapid and on-site detection of pathogens including
SARS-CoV-2.
1. Introduction

The ongoing outbreak of COVID-19 has caused a global pandemic
with considerable morbidity and mortality [1–4]. Without timely diag-
nosis and treatment, some COVID-19 patients may develop into worse
symptoms, including pneumonia and acute respiratory distress syn-
drome, even deaths, especially for the seniors above 50 years old [5,6].
The fighting against COVID-19, among all infectious diseases caused by
viruses, still remains challenging to the human beings, albeit tremendous
efforts and technical advances in public healthcare [7]. Although various
medicines or vaccines have been proved to be effective to the disease
[8–10], advanced techniques for rapid and accurate detection of the virus
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still greatly contribute the control on viral spreading and early treatment
[11–13].

SARS-CoV-2 is one of the beta coronavirus genera, which comprises a
nucleocapsid (N) protein associated single-stranded positive-sense RNA
(29,881 nucleotides, the genetic material) and three structural surface
proteins, including the membrane (M), the spike (S) and the envelope (E)
(Fig. 1a) [14–18]. It has been demonstrated that SARS-CoV-2 is infectious
in humans, animals, and herds [19]. Compared with the other emerging
viruses that have caused wide epidemics in recent years, such as Middle
East respiratory syndrome coronavirus (MERS), severe acute respiratory
syndrome coronavirus (SARS-CoV), Ebola virus and Zika virus,
SARS-CoV-2 is spreading with a significantly higher rate and wider range
(X. Yu), lingqianchang@buaa.edu.cn (L. Chang).
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Fig. 1. An overview of point-of-care detection methods for COVID-19. (a) Diagrammatic expression of SARS-CoV-2: a single stranded viral RNA with three surface
proteins, including Spike (S), Envelop (E), and Membrane (M). (b) Real samples collected for COVID-19 detection: throat swab for virus detection and blood samples
for antibody detection; (c) An overview of RNA detection methods, including reverse transcription polymerase chain reaction (RT-PCR), isothermal amplification
methods and clustered regularly interspaced short palindromic repeats (CRISPR)-based methods [7]; Reproduced with permission. Copyright 2020, BioRxiv. (d)
Schematic illustration of concentrations of the IgG and IgM antibodies in individuals once infected with SARS-CoV-2: IgM antibodies are first to appear in serum
samples and are detectable as early as 3 days after infection. The concentration of IgM peaks between 2 and 3 weeks. IgG antibodies come after IgM but last longer.
They peak after 2 weeks [49]; (e) Schematic detection mechanisms of IgG and IgM based on lateral flow immunoassays and enzyme-linked immunosorbent assays.
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[20–24], making even more difficult to control. The major symptoms of
infected patients include neurological and respiratory diseases, such as
fever, pain in the muscles and tiredness, cough and shortness of breath
[25–27]. Unfortunately, these symptoms are not specific for the diagnosis
of the infection [28].

In the past few months, numerous scientific teams and companies
have reported methods for COVID-19 detection [29–33]. In terms of their
working principle, the major diagnostics methods include:
immunoassay-based methods for detection of antibodies in blood serums
[34–37] and nucleic acid testing (NAT) for direct determination of the
virus in nasal/throat swabs (Fig. 1b) [38,39]. The characteristics of some
frequently used NAT methods and immunoassay-based methods are
summarized in Table 1. Thanks to the advantages of robust and sensitive
assay, NAT has gained tremendous development with the technical
innovation in molecular biology and biomedical engineering, and
currently it is a gold standard for COVID-19 diagnosis [40,41]. They can
identify and detect trace amounts of the specific viral genomic sequence
with various amplification, e.g. reverse transcript -polymerase chain re-
action (RT-PCR). In terms of the mechanism underlying the routes for
identifying and amplifying the targeted nucleic acids, three methods are
currently adopted, including thermo-cycling-based amplification,
2

isothermal amplification methods and CRISPR-based methods (Fig. 1c)
[42–44]. NAT is generally very sensitive, but it needs a central laboratory
and well-trained technical to operate experiments and interpret the data.
Alternatively, immunoassays can provide the information concerning
any active viral infections as well as past exposures [45]. The basic
mechanism of immunoassay was to detect the specific antibodies against
SARS-CoV-2 produced by the immune response in blood serums [46],
particularly immunoglobulin M (IgM) and immunoglobulin G (IgG) [47].
As a result, detecting the existence of IgG and IgM antibodies against
SARS-CoV-2 is a feasible way to indicate infection [48]. Furthermore,
due to the reason that there are a large portion of the population that
have been vaccinated, it is important to distinguish between actual
infection and vaccination. According to the suggestions of China Food
and Drug Administration (CFDA), a combination test of IgM antibodies
against the S protein and the N protein can help. Specifically, the people
who has a positive IgM antibody test against the S protein needs to take
an extra test against the N protein. If both tests were positive, it means
that the antibodies are induced from an actual infection. Otherwise, the
antibodies are induced from vaccination. Usually, SARS-CoV-2 triggered
antibodies could be detected as early as on the 3rd day and decrease
gradually as immune responses go on in patients’ body. The antibodies



Table 1
Summary of the characteristics of some NAT methods and immunoassay-based methods.

Detection Method Timing Sensitivity Cost Advantages Disadvantages

Nucleic-acid Testing
Methods

RT-qPCR 2–3 h High High Wide detection range; High throughput Relatively higher cost; False-negative
results

RT-LAMP 0.5–1 h High Medium Easy opreation; Isothermal Amplification False-positive results
RPA 10–20

min
High High Ultra-fast speed; Isothermal amplification

(37 �C)
Lower flexibility in the kit formulation

NEAR 15–30
min

High Low Fast amplification speed; Isothermal
amplification

False-positive results with short primers

RCA 4 h High Low Simple reaction mechanism; Isothermal
amplification;

Complex sample preparation;

CRISPR-based 0.5–1 h High High High efficiency, High Specificity, and
precision

Potential aerosol contamination

Immunoassay-based
Methods

LFI 10 min Low Low Easy opreation and detection; Low cost Qualitative dtection; False-positive
Chemliuminescence 0.5–1 h Medium Low High-throughput; Good accuracy Multiple opeation steps, Higher

instrumentation requirements
Electrochemistry 10–30

min
Medium Low Fast quantitative detection High requirements for reaction conditions

FET 10–30
min

Medium Low Fast quantitativedetection; Easy operation
and integration

High requirements for reaction conditions
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generally become undetectable in about two weeks (Fig. 1d) [49].
Typically, IgM antibodies appear in the serum samples in an earlier stage
than IgG does. To date, a wide variety of immunoassays have been
developed to detect SARS-CoV-2 antibodies, including enzyme-linked
immunosorbent assay, chemiluminescent immunoassay [50] and even
a lateral flow immunoassay (Fig. 1e) [51]. Compared with NAT, these
immunoassays can provide more convenient and rapid detection of
SARS-CoV-2 antibodies in human serum or blood without needing
biosafety laboratories, which can also be suitable for the epidemiological
of COVID-19.

Clinically, chest computed tomography (CT) [52,53] and trans-
mission electron microscopy (TEM) [54] also assist in the evaluation and
diagnosis of the symptomatic patients. Nevertheless, these instruments
are unaffordable in most undeveloped countries. So far, noticeable re-
views about SARS-CoV-2 have been provided, with special focus on the
origin [55,56], transmission [57,58], clinical features [59–61], and even
treatment methods [62–64]. However, a timely review comprehensively
summarizing the advancements of rapid diagnostics platforms for
point-of-care testing (POCT) of SARS-CoV-2 remains open, especially for
those with improved performance by involving micro and nanotechnol-
ogies. In this review, we summarize the emerging micro-/nano-scale
biomedical devices applied for detecting SARS-CoV-2 in the last two
years, which can provide a fast turn-around and sample-to-answer assay.
In particular, those micro-nano devices may provide a point-of-care
testing and home diagnosis to release the burden of central hospital
[65]. We hope this review offers an insight on the methodologies used in
developing advanced devices for point-of-care detection of COVID-19
and inspires novel diagnostic technologies in clinical trials in the future.

2. Detection mechanism of SARS-CoV-2

2.1. Nucleic acid testing

Polymerase chain reaction (PCR) offers ultra-high sensitivities and
sequence specificities in medical and biological applications, including
DNA sequencing [66], functional genes analysis [67] and infectious
diseases identification [68]. Especially during the current period, a great
number of efforts have been made to improve the performances of PCR
systems, which have boosted the whole market. With an additional
reverse transcription (RT) process that transfers RNA into complemen-
tary DNA (cDNA) strands, RT-PCR can be used for direct detection of
RNA-viruses [69]. In the past few years, RT-PCR has achieved a consid-
erable achievement that speeded up its practical applications. Basically, a
standard RT-PCR test takes about 3 h from RNA extraction to the final
3

amplification (Fig. 1c) [70]. It uses specific primer sets to hybridize and
amplify the target genomic sequence [71]. With the designed primers, it
is possible to test the presence of SARS-CoV-2 with a real-time PCR in-
strument in a Biosafety Level II Laboratory [38]. However, as the
gold-standard method, RT-qPCR requires central laboratory and skilled
person to operate and interpret the data. The time-consuming and
high-cost facts of the thermal-cycling instruments limit their applications
in most of on-site, point-of-care circumstances [72]. Moreover, the
dependence on the specialized reagents further limits its universally
available in those resource-limited regions [73]. Presently, the existing
regents and enzymes for the PCR reactions typically require specific
refrigeration for storage and transport [74]. As a result, the reagents and
medical professionals may be easily constrained in those low and
middle-income countries during the pandemic. To improve the testing
capabilities in remote locations or at the point-of-care applications, more
attention should be given to the innovations of low-cost and stable re-
agents for PCR with the consideration of room-temperature stable re-
agents [26,75].

In most scenarios where the expensive thermal cycling instruments
are not affordable, isothermal amplification methods, including loop-
mediated isothermal amplification (LAMP) [40], recombinase polymer-
ase amplification (RPA) [76], nicking enzyme amplification reaction
(NEAR) [77] and rolling circle amplification (RCA) [78] have been
developed for the point-of-care testing of SARS-CoV-2. These isothermal
amplification methods, conducted with a fixed temperature [79], are
independent of expensive thermal cycling units that a PCR amplification
needs. Each of these methods has its unique strategy or mechanism to
initiate and recycle a new round of dsDNA separation, extension and
synthesis (Fig. 2). Among them, LAMP and RPA are initiated by a DNA
target while NEAR enables direct RNA identification and amplification
[40]. In addition to the above advantages, there are also actually known
issues for isothermal amplification such as nonspecific or non-template
amplification.

Reverse transcription loop-mediated isothermal amplification (RT-
LAMP) is one of the most common isothermal methods for RNA-based
pathogen diagnosis [80,81], which consists of a reverse transcriptase
process and a one-step amplification reaction where RNA plays a part as
the final template (Fig. 2a). It can recognize and amplify a specific nucleic
acid fragment at a constant temperature (60–65 �C) in less than 1 h with
high sensitivity by utilizing a set of four to six primers and a
strand-displacement polymerase [82]. The stem-loop DNAs as the final
products include multiple inverted repeats of the target and exhibit a
cauliflower-like appearance. In comparison with the real-time RT-PCR
assay, a single protocol-based LAMP is a more straightforward method



Fig. 2. The working principle of some isothermal amplifications for the detection of COVID-19. (a) LAMP: utilize a set of four to six specially designed primers
and a strand-displacement polymerase to recognize and amplify a specific nucleic acid fragment. (b) RPA: two opposing DNA primers designed to be complementary to
the target sequence of interest and three enzymes are used during amplification. (c) NEAR: based on polymerase extension plus a single-strand cutting event, can be
used to detect RNAs directly. (d) RCA: a short DNA or RNA primer is amplified to form a long single stranded DNA or RNA using a circular DNA template and special
DNA or RNA polymerases; (e) CRISPR-based methods for COVID-19 detection. Conventional RNA extraction can be used as an input to the assay, which is visualized
by a fluorescent reader.
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that can fade the dependence on thermocycler as well as energy con-
sumption [83]. The RT-LAMP results from viral RNA amplification are
usually read out colorimetrically or fluorescently, by adding colorimetric
pH indicators or fluorescence dyes [84].

In addition, LAMP could also be integrated with sequencing in-
frastructures [85]. Up to now, LAMP assay kits have already been
commercially available. Davidson et al. used paper based-strategy and
RT-LAMP to develop an instant device, which visually detected
SARS-CoV-2 in saliva in 60 min, with a detection limit of up to 200
copies/μl [86]. However, it does not show absolute superiorities over
PCR in clinical scenarios due to the fact that there are limited suitable
devices which can do sample processing and RNA extraction on-site [80].
Moreover, there are four to six primers used during LAMP reactions, as a
result, the primers need to be strictly designed to avoid potential
cross-interactions. Moreover, LAMP may cause false positive detection of
samples as well as the carry-over contaminations.

Compared with LAMP, RPA is a relatively new isothermal amplifi-
cation method reported firstly in 2006 [87]. However, it has experienced
an exponential growth in terms of popularity and applications due to the
advantages of fast reaction speed and high sensitivity [88]. During
amplification, recombinases are combined with primers to form
protein-DNA complexes that can bind specifically to the target genes,
initiating chain exchange reactions and DNA replications. It is capable of
amplifying as low as 1–10 DNA target copies within 10 min with minimal
sample preparation [89]. The amplification is under control from a
specific combination of enzymes and proteins below 37 �C (Fig. 2b). With
a reverse transcription process, RT-RPA based assays could be easily
4

adapted for detecting SARS-CoV-2 [90,91]. The developed assay pro-
duced 100% diagnostic sensitivity and specificity with a total run time
between 15 and 20 min when compared to RT-qPCR (n ¼ 20), indicating
a viable alternative detection method [76]. Thomas et al. developed an
RPA-LF based on test strips that detected 35.4 copies/μl of SARS-COV-2
cDNA nucleocapsid (N) gene [91]. However, the prices of RPA kits are
relatively high, which limits its clinical applications. Moreover, the
flexibility in the kit formulation, as well as the application, are highly
limited compared to other isothermal methods [92].

NEAR belongs to the family of isothermal amplification detection
methods, which is mainly used for detection of short oligonucleotide
sequences [40]. With the help of a DNA polymerase, the primer will
extend in the presence of a target template (Fig. 2c). The extended primer
will be cut by the nicking endonuclease, releasing the short oligonucle-
otides due to insufficiently stable duplex under 55 �C. Subsequently, the
primers are regenerated and undergo another round of extension and
cleavage. Based on the NEAR isothermal amplification technique, a rapid
detector called ID NOW has been manufactured by Abbott. Co (Chicago,
IL, USA) and authorized [93,94].

RCA is an efficient isothermal enzymatic process that simulates the
rolling circle replication process of natural microbial circular DNA
(Fig. 2d) [33,95]. With a DNA polymerase, a single primer can trigger the
strand displacement synthesis along the circular DNA template to achieve
isothermal linear amplification. Owing to its isothermal nature, it is an
ideal method with a simple and efficient process. Up to now, RCA-based
detection systems or platforms have been successfully applied to test
various types of targets [96]. Typically, in a circle-to-circle amplification



Table 2
The clinical significance of IgM/IgG serological test results. (”þ” means “Posi-
tive”, “-” means “Negative”).

Test Results Clinical Significance

IgG IgM RT-
qPCR

þ - - Patient may have had a past infection, and has recovered
þ - þ Patient may be in the late or recurrent stage of infection
þ þ - Patient may be in the revovery stage of an infection, or the

RT-qPCR result may be false-negative
þ þ þ Patient is in active phase of infection
- - þ Patient may be in the window period of infection
- þ - Patient may be in the early stage of infection. RT-qPCR

result may be false-negative
- þ þ Patient may be in the early stage of infection.
- - - Healthy person

Y. Wang et al. Medicine in Novel Technology and Devices 14 (2022) 100116
process, amplicons of the first round RCA will be converted into multiple
circles by monomerization (endonuclease digestion) and ligation. Sub-
sequently, newly formed circles will act as templates for the following
round RCA, thus reaching an ultra-low limit of detection [97]. To further
improve the efficiency of amplification, some exponential or quadratic
amplification formats are developed and combined with RCA-based ap-
proaches. As a result, it will achieve a detection limit up to
sub-femtomolar level [98]. Moreover, it significantly simplifies the
operation without the dependence on the time-consuming and
labor-intensive operations. Tian et al. reported a typically RCA-based
amplification method for quick and ultra-sensitive detection of
SARS-CoV-2, achieving a limit of detection of 0.4 fM [78]. Generally, the
amplification template for RCA is required to be circular DNA or a linear
DNA circularized firstly. In addition, the results of RCA do not have ideal
quality control goals up to now, which greatly limit their wide
applications.

CRISPR/Cas-based nucleic acid detection technologies were recently
developed for COVID-19 detection [99], by using a unique group of
Cas-nucleases, which demonstrated noticeable advantages of sensitivity,
specificity, rapidity and simplicity for detection (Fig. 2e). By using
extracted nucleic acids as input, both CRISPR Cas13-and Cas12-based
assays have been developed for SARS-CoV-2 detection [100]. Cas12, as
an RNA guided DNase, can cleave ssDNA indiscriminately upon binding
its target sequence [101]. In normal conditions, it will be combined with
isothermal amplification to achieve high detection sensitivity and spec-
ificity. Broughton et al. proposed a CRISPR-Cas12-based assay, which
performed RT-LAMP at 62 �C for 20–30 min followed by Cas12 detection
at 37 �C for 10 min of predefined coronavirus sequences and visualized
on a lateral flow strip [102]. Other isothermal amplification methods,
such as recombinase aided amplification (RAA) have also been used to
amplify the extracted RNAs before a CRISPR/Cas12a reaction. When
SARS-CoV-2 presents in the system, a quenched green fluorescent
molecule labelled ssDNA reporter will be cleaved by Cas12a, resulting in
the motivation of green fluorescence, which can be observed directly
with a naked eye under 485 nm light [103].

In comparison, Cas13a is a non-specific RNase that remains inactive
until it binds its programmed RNA target [104]. Cas13a-based detection
is highly programmable and specific, as it relies on complementary based
pairing between the target RNA and the CRISPR RNA sequence [105]. A
CRISPR-Cas13a-based tool named SHERLOCK (Specific High-sensitivity
Enzymatic Reporter unLOCKing) was recently designed by Feng Zhang
group specifically for SARS-CoV-2 diagnosis. This protocol involves an
RPA and T7 transcription, followed with method Cas13-mediated
collateral cleavage of a single-stranded RNA reporter. Combining with
colorimetric or fluorescent readouts, the assay enabled detection of 10
copies/μL of synthetic RNA [106]. In the pursuit of less time and
labor-intensive, Arizti-Sanz et al. finalize detection by combining
isothermal amplification, T7 transcription and Cas13-based detection
into a single step. Compared to the two-step assay, this single-step
SHERLOCK assay could diagnose SARS-CoV-2 with reduced
sample-to-answer time and equal sensitivity with optimized conditions
[107]. Zhang et al. combined RPA with SHERLOCK to detect the S gene
and Orf1ab gene of SARS-COV-2 [108].

The CRISPR-based molecular diagnostics has great potential towards
POCT, quantitation and digital analysis of SARS-CoV-2 with detection
sensitivity comparable to real-time RT-PCR assay. If coupled with lateral
flow readouts, they will be an attractive option for easy, at-home testing
scenarios. However, as newly-emerged methods, more efforts should be
taken to guarantee its accuracy and prevent the issues of aerosol
contamination and false positive rate in clinical trials.

2.2. Immunoassays

Serological testing of antibodies is another common method for
detection of COVID-19. Compared to nucleic acid methods, it offers ad-
vantageous turn-around time, throughput and workload [109,110].
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Although a wide range of doctors and experts have marked that the re-
sults from immunological methods may not be considered for the final
diagnosis since they only indicate the previous infection, it does not
mean that the IgM/IgG serological tests are useless since the immune
status of individuals is still important to be acknowledged by the doctors
in the following step of treatment (Table 2) [111]. The clinical inter-
pretation of all possible scenarios that can be encountered when testing a
patient with both RT-qPCR and IgM/IgG immunoassay are illustrated in
Table .2. Based on the current knowledge about the rise and fall of
SARS-CoV-2, the correlation of IgM level and IgG level varies during the
initial time of infection, the onset of symptoms and recovery phase. The
key takeaway is that the results of nucleic-acid tests and IgM/IgG sero-
logical tests do not necessarily need to agree [49]. A disagreement be-
tween the two tests, if any, can often be traced to the after-infection time
points at which the tests were performed. Since the exact time of infec-
tion is often unknown, combining these two testing can further improve
the accuracy of COVID-19 diagnosis [112,113].

Enzyme-linked immunosorbent assay (ELISA) is one of the most
widely used methods for the detection of protein-based biomarkers [114,
115]. Briefly, the ELISA for total antibodies detection is developed based
on double-antigens sandwich immunoassay, using mammalian
cell-expressed recombinant antigens contained the receptor binding
domain (RBD) of the spike protein of SARS-CoV-2 as the immobilized and
HRP-conjugated antigen. According to statistics, compared with a single
PCR test, the positive detection rate is significantly increased from 51.9%
to 98.6% by combining the PCR with the ELISA assay for each patient
[116]. Srivatsa et al. used aptamer-functionalized gold nanoparticles to
identify SARS-CoV-2 spike proteins, limit of detection can up to 3540
genome copies/μl [117]. However, the cross-reactivity and low anti-
bodies titers are among common factors that limited the detection effi-
cacy of ELISA. It is also critical to executing the procedures of serial
washings and incubation with reagents in ELISA to reduce the back-
ground noise and amplify the signal. In clinical, their results are used as
an assistant to diagnose the infection.

Usually, the timing of requests for serological assays and the inter-
pretation of antibody results are pre-requisites of crucial importance in
their efficacy [118]. Combining with chemiluminescence and the
immunoreactions, chemiluminescent immunoassay (CLIA) can quanti-
tatively determine the concentrations of corresponding antigens or an-
tibodies through the intensity of luminescence with high sensitivity and
specificity [119]. Based on automatic platforms, CLIA enables high
throughput detection, making an outstanding contribution to the early
screening. Lyu et al. used ABEI/Co2þ dual-functionalized magnetic
beads to perform rapid CLIA detection of SARS-CoV-2 nucleocapsid
protein (NP) [120].

Compared with ELISA and CLIA, lateral flow immunoassay (LFI) en-
ables direct test without extraction, which made it well fit for the large-
scope, on-site screening [121]. LFI typically contain sample pad, conju-
gation pad, nitrocellulose membrane, test line, control line and plastic
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cassette [122]. The mechanism of LFI is based on the hydration and
transport of reagents as the specimen across the strip via chromato-
graphic lateral flow. If anti-SARS-CoV-2 IgG and IgM antibodies present
in the sample, they will be bound by the corresponding antigen labelled
gold colorimetric reagent fixed on the conjugate pad. With samples
continuing to travel up the strip, the IgM antibodies are bound on the M
(IgM) line, and the IgG are bound to the G (IgG) line, presenting a
reddish-purple line at the test zone [112]. During the performance of all
valid tests, a control line will appear whether the sample is positive or
negative, demonstrating the fluid has migrated adequately through the
device. In normal conditions, the detection takes at most 15min to obtain
results with one drop of various specimens such as sera, plasma of venous
blood and finger stick blood. Chen et al. developed a LFIA strip based on
SERS for anti-SARS-COV-2 IgM and IgG [123]. However, when the
concentration of antibodies is none or at a low level, there is a risk of
missed detection by the false negative results.

3. Micro/nano devices for point-of-care testing of SARS-CoV-2

Recent advances in microfluidic technology and nanotechnology
have brought us closer than ever to the realization of simple yet highly
sensitive and specific devices that could be used in complicated envi-
ronments without central lab. Based on either nucleic acid testing or
immunoassay, the micro/nano devices significantly enrich the toolset of
POCT of SARS-CoV-2, which have the potential to rapidly diagnose
pathogens or antibodies and efficiently monitor the infection trans-
mission by self-tests even at home. They can act as a bridge between
laboratory-based testing and home detection. Presently, more and more
these devices are transformed by the companies as promising platforms
for COVID-19 detection. Especially those miniaturized devices, which
integrated all the steps (nucleic acid extraction, amplification and
detection) by fluidic manipulation, are conducive to complex real-time
diagnosis. Moreover, the introduction of nanomaterials could also
significantly increase the detection sensitivity of immunoassays. In this
section, we summarize the very recent progresses on the micro/nano
technologies in the field of POCT, hoping to provide useful information
and insight for the further researches in the area.

3.1. Micro/nano devices for nucleic acid testing

In a typical diagnostic test, there are two types of inaccuracy,
including the false-negative result (FNR) and the false-positive result
(FPR) [124,125]. Statistically, RT-PCR assay based on nasal or oropha-
ryngeal swabs could produce up to 30% FNR in the clinical diagnosis of
COVID-19 [126–128]. On the standpoint of the clinical stage of the dis-
ease and different anatomic sites in the virus-carriers, sampling strategy
has a close relationship with the inconsistency of viral load which
resulted in the high FNR [39]. In a traditional sampling process, regular
swabs can only provide limited physical interactions with mucosal tis-
sues. As a result, only superficial tissues could be collected, which are
also readily contaminated by food and drink, resulting in a low sampling
efficacy [128]. Chen et al. reported a microneedle-based oropharyngeal
swab for effective and precise viral sampling. Based on the soft-tissue
penetration capability of these microneedles (MNs), there would be a
significant increase in sample depth (Fig. 3a). In addition, the MNs are
modified with antibodies, which will further assist in SARS-CoV-2
collection through chemical bonding [128]. Once the preparation pro-
cess can be simplified, the proposed novel swab will act as a promising
candidate for diverse oral or respiratory diseases sampling in the future.
However, it is also worth noting that medical staffs will be in close
contact with the suspected COVID-19 patients during sampling, leading
to a high risk of cross-infection. In addition, the swabs themselves are
potential source of infection [129]. To solve this problem, a miniature
robot consisted of an active 2-degree of freedom (DOF) end-effector was
proposed to assist nasopharyngeal swab collection remotely. The suc-
cessful working of the miniature robot has already been verified on a pig
6

nose. Subsequent works will focus on pursuing ethical approval for
in-vivo tests. The captured nasal or oropharyngeal swabs will then be
subjected to a series of standard procedures for the subsequent lysis and
enrichment. Effective DNA extraction and enrichment is the premise of
accurate detection [130]. However, this process not only relies on
enhanced-biosafety lab, but also requires skilled personnel and manda-
tory instruments. Manual operation procedures may raise issues, such as
artificial variants or biased data. Followed with sample preparation, a
variety of nucleic-acid based methods, ranging from PCR-based methods
to some isothermal amplification methods, are available to the diagnosis
of infectious diseases. From sample preparation to the assay protocol, it
usually requires a few hours [131]. To meet the diagnostic demands of
the infectious pathogens, especially in those resource-limited settings,
there is an urgent need for portable and integratedmicrofluidic platforms
or micro/nano devices that can provide fast, accurate and even multiplex
diagnosis at the point-of-care [132].

Generally, traditional PCR instruments are practical obstacles for
wide use in POCT scenarios due to the reason that they are more
expensive and bigger in size [28]. They rely heavily on external electric
powers to realize quick increase or decrease of the temperature. Owing to
their greatly reduced size, micro/nano devices possess many unique
properties compared to macro-scale devices, which opens a new
perspective for field testing based on PCR. They require less reagents
during amplification and have higher heat transfer efficiency. Moreover,
the improved portability makes them an ideal choice for point-of-care
diagnosis of COVID-19 [133,134]. Shi et al. reported a miniaturized,
portable and battery-powered heater with functions of thermo-cycled
control and passive continuous-flow control as the platform for PCR re-
actions (Fig. 3b). Integrated with a 3D microreactor, the system can be
used for multiplexed detection of clinical-level DNA targets with more
convenience [28]. Microfluidic systems are also well suited for highly
automated processes. Recently, a microfluidic device integrated with
functions of sample treatment, one step RT-PCR and direct fluorescence
detection was developed and verified with influenza-A viruses (Fig. 3c).
The device enabled automatic sample lysis and enrichment by using
glycan-coated magnetic beads, whose capture rates could be 50% [135].
The sealed microfluidic device, with all reagents pre-loaded, could be
adapted to detect SARS-CoV-2 easily. Another factor that limits the
widespread use of PCR is the detection time. Under normal conditions, a
standard PCR procedure takes at least 45 min. Based on microfluidic
devices, a compact, high-speed reciprocal flow RT-qPCR system, Gene-
SoC®, has become available for specific gene amplification and detection
within 15 min [136] (Fig. 3d). The system has one heater for the RT
reaction and two heaters for thermal cycling, with two micro-blowers at
each flow ends for the high-speed shuttle of the PCR solution. It can
achieve a limit of detection (LOD) of 1.0 � 101 copies/reaction with the
use of a single disposable tip per analysis. Although it has some disad-
vantages, such as requiring the simplification and refinement of the RNA
extraction procedure, it has been demonstrated with some clinical sam-
ples that it could be used for the rapid and low-throughput selection of
patients with COVID-19.

In addition to PCR-based methods, micro/nano biomedical devices
that utilize isothermal nucleic acid amplification methods have also been
investigated. Due to the isothermal amplification does not need a thermal
cycling, it's much easier to be engineered with micro and nano device,
e.g. coupling with microfluidics technology [137,138]. Recent re-
searchers have developed a range of microfluidic devices with different
structures for detection of bacterial and viral pathogens, which enable
multiplexed detection of different targets with corresponding primer sets
deposited in each channel (Fig. 4a, Fig. 4b) [139–141]. In general,
compared to thermal cycling-based amplification methods, the
isothermal amplification methods can usually provide lower cost, faster
reaction speed, less specialized equipment and easy readout [79]. They
can be combined with the application of various fully enclosed
micro-structured devices, with less energy consumption to maintain a
constant temperature [142]. These features greatly simplify isothermal



Fig. 3. Micro/nano devices for nucleic acid testing. (a) A microneedle-based oropharyngeal swab for effective and precise viral sampling during COVID-19
detection [128]; Reproduced with permission. Copyright 2020, Elsevier. (b) A miniaturized and portable PCR platform run on batteries for multiplexed detection
of clinical-level of DNA tartets. [28]; Reproduced with permission; Copyright 2020, Nature publishing group. (c) An integrated microfluidic device with functions of
sample treatment, one step RT-PCR and direct fluorescence detection. The deteiled components included: 1) Wash buffer chamber, 2) Microvalve, 3) Consecutive
micropumps, 4) Open-type micromixer, 5) Waste outlet, 6) RT-PCR reagent chamber, 7) Air inlet/outlet, 8) RT-PCR reagent chamber, 9) Overflow chamber [135];
Reproduced with permission. Copyright 2020, Royal Society of Chemistry. (d) A compact, reciprocal flow PCR system, GeneSoC®, with one heater for the reverse
transcriptase reaction and two heaters for thermal cycling, can be used for specific gene amplification and fluorescence detection based on PCR in a very short time
(within 15 min) [136]. Reproduced with permission. Copyright 2020, Elsevier.
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amplification implementation in POCT platforms. Compared with those
microfluidic chips based on PCR, these devices enhance their applica-
bility for rapid detection with less requirements for instruments during
amplification. The isothermal amplification can be triggered on a ther-
mostatic heating plate or even within a thermos [143], which is very
promising to provide a sample-in-result-out solution for the in-filed
testing of SARS-CoV-2. By using a smartphone, the fluorescence emis-
sion generated by the dyes based on the device during amplification can
be monitored in real-time [144]. The image analysis could also provide
quantitative results on the time at which amplification occurred (Fig. 4c).
Yang et al. reported a simple yet efficient isothermal amplification
platform containing a custom-fabricated detector and a multiplexed
microwell array chip to perform the RT-LAMP assay within 25 min
(Fig. 4d). The platform integrated functions of sample preparation,
isothermal amplification. The results could be read with naked eyes
directly [145]. The system has been successfully used to detect 130 real
clinical samples.

In resource-limited settings, the lack of the required infrastructure
and facilities for pathogens detection will lead to infected people either
not being detected or, if identified, being diagnosed at a sufficiently late
stage. With developments in paper-based microfluidic devices, some
paper-based platforms based on isothermal amplification methods have
been proposed for their low cost [146]. An additional feature of
paper-based devices, especially for detection of infectious pathogens is
7

that they are readily disposable, which prevents the potentials of
cross-infection. Xu et al. reported a microfluidic origami-paper-based
device for multiplexed detection of malaria from whole blood by using
LAMP (Fig. 4e) [147]. All the required steps, including nucleic acid
extraction, isothermal amplification and visual detection were integrated
into the device for POCT application. Tang et al. proposed another fully
functioned paper-based device (Fig. 4f). The device allowed on-chip
dried reagent storage and equipment-free isothermal amplification,
which further promoted their potential applications in remote settings
[148]. Nguyen et al. created a sliding-paper device that combines LAMP
with dopamine to detect SARS-COV-2 DNA in 25 min with a detection
limit of 104 ng/μl [81].

ID NOW was launched initially in 2014 as an advanced molecular
diagnostic platform for the detection of influenza A&B, streptococcus A
and respiratory syncytial viruses. As to the detection of SARS-CoV-2, two
primers targeting at the RdRp gene are used to trigger the amplification.
Combined with fluorescence detection, it allows you to make effective
clinical decisions sooner. It can enable detection of positive samples
within 5 min and negative ones in 13 min (Fig. 4g) [93,149,150]. Due to
the characteristics of smaller size and faster reaction speed, it has already
been distributed to numerous medical centers and non-traditional places
where the testee can get detection results in several minutes. However,
the sensitive and specificity of the system are highly reliable on the
nicking enzyme and modified primers. The disintegration difference of



Fig. 4. Micro/nano devices based on isothermal amplification methods for point-of-care testing applicaitons. (a) A microfluidic device using LAMP for sample-
in-result-out detection of infectious pathogens [141]; Reproduced with permission. Copyright 2020, Royal Society of Chemistry. (b) A centrifugal direct microfluidic
chip based on RPA for multiplexed and sensitive detection of pathogenic bacteria [139]; Reproduced with permission. Copyright 2020, Royal Society of Chemistry. (c)
Workflow of a point-of-care multiplexed microfluidic device integrated with a smartphone for detecting live virus from nasal swab media [144]; Reproduced with
permission. Copyright 2020, Royal Society of Chemistry. (d) A low-cost isothermal amplification platform with multiplexed microwell array biochip for rapid and
visualized detection of SARS-CoV-2 [145]; Reproduced with permission. Copyright 2020, AAAS. (e) A microfluidic origami-paper-based device based on LAMP for
low-cost and multiplexed detection of malaria [147]; Reproduced with permission. Copyright 2020, Wiley-VCH. (f) A paper-based device with functions of nucleic acid
extraction, isothermal amplification and visual detection [148]; Reproduced with permission. Copyright 2020, Royal Society of Chemistry. (g) ID NOW instrument for
point-of-care testing of SARS-CoV-2 [93].
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the enzyme will lead to different amplification efficiency, which will
affect the accuracy and repeatability of the results ultimately.

3.2. Micro/nano devices for immunoassays

In addition to nucleic-acid tests, micro/nano technologies have also
been extensively investigated for developing immunoassay-based POCT
platforms. Presently, commercial products of IgM only and IgM-IgG
combined LFI tests have been developed by a couple of In Vitro Diag-
nostic (IVD) companies [51]. These simple yet robust point-of-care LFI
can simultaneously detect IgM and IgG antibodies of the test at different
infection stages [151–153]. However, traditional colloidal gold-based
LFI is usually limited to relatively low sensitivity and incapable of
quantification measurement [154]. With the aid of nano technologies,
the LFI assays enable more sensitive and rapid detection. Wang et al.
reported a LFI assay based on a selenium nanoparticle-modified SAR-
S-CoV-2 nucleoprotein to be with high sensitivity and detection speed
(Fig. 5a) [155]. The assay enabled simultaneous detection of IgG and IgM
in human serum with a limit of detection of 5 ng/mL and 20 ng/mL,
respectively, within 10 min. To get more quantitative results, Chen et al.
reported another LFI assay for detection of IgG in human serum based on
a recombinant nucleocapsid phosphoprotein and lanthanide-doped
polystyrene nanoparticles (LNPs) as a fluorescent reporter [156]. Once
the functionalized LNPs were captured at the control or test zone, they
would produce a bright fluorescence whose excitation and emission
wavelengths are 365 nm and 615 nm, respectively. The proposed assay
can improve from semiquantitative to accurate quantification by using
official IgG standard. Based on microfluidic devices, a novel
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smartphone-based POCT analyzer with microchannel capillary flow
assay platform was developed for quantitation analysis of malaria
biomarker (Fig. 5b) [157]. The novel analyzer integrated the ultra-high
sensitivity of chemiluminescent detection, the high reaction kinetics of
the microfluidic spiral chambers design and the data processing capa-
bilities of smartphone, reaching a limit of detection (LOD) of 8 ng/mL for
malaria. The terminal results derived from the positive and negative
controls to decrease the risk of false diagnosis. Furthermore, the quan-
titative platform could easily be adapted for the detection of IgM and IgG.
Essentially, the test results from this category of methods cannot confirm
the existence of the target virus. Instead, it provides a piece of immu-
nological evidence for physicians to make the correct diagnosis along
with other tests, as well as establish a treatment strategy.

Rapid and early identification of infectious pathogens allows for
effective implementation of disease prevention and treatment measures.
Based on micro/nano technologies and the principle of immunoassay,
some POCT platforms are constructed directly for detection of infectious
pathogens waiving nucleic acid amplifications. Integrating the detection
devices into wearables can expand opportunities for long-term and
noninvasive monitoring of infections [158,159]. Xue et al. reported an
intelligent wearable face mask integrated with a flexible immunosensor
for highly sensitive screening of exhaled coronavirus aerosols. In addi-
tion, some other kinds of on-site detection devices, such as the electro-
chemical biosensors, allow detection of multiple kinds of molecules,
including antigens and antibodies with high sensitivity and specificity
[160–163]. Yakoh et al. reported a paper-based electrochemical
biosensor for label-free detection of SARS-CoV-2 antibodies without the
specific requirements of antibodies [164]. With optical assistance,



Fig. 5. Micro/nano devices based on immunoassays for point-of-care testing applicaitons. (a) A highly sensitibe lateral flow immunoassay for detection of IgM
and IgG using a selenium nanoparticle-modified SARS-CoV-2 nucleoprotein as the capture antibody [155]; Reproduced with permission. Copyright 2020, Royal
Society of Chemistry. (b) A smartphone-based POCT analyzer with microchannel capillary flow assay platform for quantitative detection of malaria [157]; Reproduced
with permission. Copyright 2020, Nature publishing group. (c) A diagnostic fidget spinner device as a versatile bacterial infection diagnostic platform for low-resource
settings [166]; Reproduced with permission. Copyright 2020, Nature Publishing Group. (d) An immunofluorescence microdevice integrated with ZnO nanorods for
highly sensitive detection of AIV [168]; Reproduced with permission. Copyright 2020, Weiley-VCH.
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Mohammad et al. designed an electro-optofluidic chip that detected
target SARS-CoV-2 RNAs without amplification, the detection limits up
to 104-109 copies/ml for swab samples [165]. A custom-made fidget
spinner that rapidly concentrated pathogens in 1 mL samples of undi-
luted urine by more than 100-fold for the on-device colorimetric detec-
tion of bacterial load and pathogen identification was designed and
fabricated (Fig. 5c) [166]. The device enabled on-site detection of
infection with naked eyes within 50 min in urine samples from 39 pa-
tients suspected of having a urinary tract infection. Although the device is
aimed to detect urinary tract infection (UTI) in their original report, we
believe it will be a good, inexpensive handheld point-of-care device for
the rapid concentration and detection of SARS-CoV-2 in low-resource,
undeveloped countries. The use of nanomaterials or nanostructures
could efficiently increase the sensitivity to meet the detection re-
quirements. By using graphene sheets to modify the field-effect transistor
(FET), Park et al. reported an ultra-sensitive sensor for detection of
SARS-CoV-2 in clinical samples [167]. The limit of detection of the
graphene modified FET sensor could be up to 1 fg/mL. Yu et al. reported
an immunofluorescence microdevice integrated with ZnO nanorods for
highly sensitive detection of avian influenza virus (AIV) [168]. The
unique properties of ZnO nanorods boost the LOD of the device to an
ultra-low level, which can be approximate 22 times more sensitive than
conventional ELISA (Fig. 5d).

4. Summary and perspectives

The pandemic of COVID-19 has caused wide-scope outcomes to most
low- and middle-income countries where the infrastructure and core-
facilities for early detection are insufficient. This review provides a
comprehensive summary of micro/nano biomedical devices, as well as
two main categories of technologies for the rapid diagnosis of COVID-19
(including nucleic acid-based methods and immunoassays) and their
working principles and targets of the virus. Among these is an
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immunochromatographic assay that is more applicable to primary
screening in these areas. Immunoassay offers advantages such as direct
detection of the serum/plasma and whole blood specimens without
additional processing steps and expensive equipment. In comparison,
nucleic acid-basedmethods are more accurate for diagnosis of COVID-19.
A series of isothermal amplification techniques based on LAMP, RPA and
NEAR, which do not rely on expensive thermal-cycling instruments, have
shown their advantages in low-cost and simple-operations. However,
after more than 20 years' development, there are still few instruments or
devices based on these isothermal amplification methos that have been
widely used on themarket. A lot of optimization works need to be done to
avoid problems such as false-positive results. Moreover, CRISPR-based
techniques enable promising sensitivity and ultralow detection limit
down to a few viral RNA copies, showing an emerging methodology for
diagnosis. Clinicians may make a choice of selections in terms of their
local circumstances. However, it's necessary to take into account of both
the advantages and disadvantages of each method may be more effective
and affordable in most area.

Meanwhile, it is worth noting that the false negative rate from single
testing by even gold standard assay (RT-PCR) is relatively high in the
clinical diagnosis of COVID-19, according to previous statistics. Further
researches are still needed under the current circumstances. Till now,
clinical-recognized high-throughput testing is unavailable with the in-
fections continue to emerge, there is an urgent call for the development
of multiplexed, high-throughput POCT platforms for on-site detection.
The capability of early and rapid diagnosis will facilitate the chance of
patients obtaining proper medical treatment, decrease the risk of medical
staff infection, support therapeutic drug delivery systems. In addition, the
instruments that can be used for screening a variety of viruses simulta-
neously should be further developed and prepared for the future
contingencies.
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