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a b s t r a c t

The need for mechanical metamaterials with large strain range and lightweight properties are evidenced
to engineering applications. In this regard, novel helical structures are proposed as suitable unit cell’s
components of mechanical metamaterials. Three-dimensional helical structures composed of varying coil
numbers, defined in a cylindrical spatial domain are shape optimized through genetic algorithm in a
finite element script for conflicting objectives of minimum mass and maximum tensile range. The supe-
rior performance of the shape optimized helical structure is highlighted in terms of structural rigidity,
large deformation capability, buckling and vibrational modal analysis in compare to equivalent coil
springs of identical weight and comparable domain. Deformation mechanism is analyzed carefully to jus-
tify the improved performances of proposed structure. Tensile and compressive experimental analysis are
undertaken to validate the enhanced strain ranges. One dimensional metamaterials implementations
with various tessellation arrangements are simulated. Results show that the proposed design can effec-
tively generate lightweight substitutes of metamaterials unit cells ligaments to improve the strain range
performance. Planar and lattice metamaterial concepts employing shape optimized helical structure are
illustrated to demonstrate the possibilities of promoting lightweight structural integrities in the design of
mechanical metamaterials.

� 2022 Cranfield University. Published by Elsevier Ltd. This is an open access article under the CC BY
license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Structural engineering continuously aims to reduce the weight
of its products while improving the mechanical performances. Hel-
ical structures are frequently used in many mechanical applica-
tions, such as suspension systems, shock absorbers and large
strain elements.

The study of coil spring modelling, mainly focused on conven-
tional springs, has gone through a long process starting from early
works of Wittrick [1], who derived governing differential equations
using Timoshenko and Euler-Bernoulli beam theories. Mottershead
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[2] proposed a FE model for dynamic analysis of rods. In recent
years, FE models for curved beam elements have been studied. Tak-
tak et al. [3] proposed a two-node FE model, suitable for isotropic
helical structures, considering shear strain effects. Zhang et al. [4]
implemented a similar model based on Euler-Bernoulli theory for
dynamic analysis of slender beams, and Meier et al. [5] developed
a FE model for curved beams based on Kirchhoff theory. Little work
has been done on non-conventional coil springs of variable pitch
and radius. Chaudury and Datta [6] studied prismatic structures
of non-circular coil shape by analytical and FE methods and com-
pared their modelling with straight beam elements. Zhang et al.
[7] proposed an analytical dynamic modelling of non-
conventional helical elements based on Euler-Bernoulli beam the-
ory. Performances of helical structures have been discussed regard-
ing their buckling and vibrational modal behavior, their
deformation capabilities, and their energy absorption characteris-
tics. Becker and Cleghorn [8] first studied buckling behavior of coil
springs analytically, based on early works of Haringx, and proposed
design charts. De Crescenzo and Salvini [9] proposed a 2D buckling
model with lumped stiffness applicable to conventional and non-
conventional springs. Chaudury and Datta [6] obtained analytical
solutions for the prediction of buckling phenomena in non-
conventional springs. Initial work on dynamic behavior has been
done by Yildirim [10], who found approximate solutions for pre-
dicting vibration frequencies of helical springs. Zhou et al. [11]
studied dynamic failure of metro vehicle springs finding a clear
influence of resonance phenomena on mechanical failure. Sun
et al. [12] analyzed dynamic stiffness characteristics of automotive
suspension systems with superposition method and shock wave
theory respectively, finding a change in stiffness due to frequency
excitation. Dai et al. [13] have proposed different methodologies,
namely lumped masses, a Timoshenko beam, and a spring element,
to simulate the dynamic behavior and stiffness changes of suspen-
sion systems in multi-body vehicle dynamic simulations.

Different optimization approaches exist for improving struc-
tural performances from the lightweight perspective, topology
and shape optimization among others. In particular, shape opti-
mization aims to improve performances of a given structure, by
directly acting on parameters defining its geometry, for achieving
the desired objectives [14]. Related to spring design problems,
numerous studies have been conducted on the optimization of
helical springs, mainly directed to minimizing the weight, maxi-
mizing the stiffness or the resonance frequencies. First study by
Yokota et al. [15] formulated an optimal mass problem for a helical
spring subject to constraints such as allowable shear stress, wind-
ing number and wire sectional diameter, into a nonlinear integer
programming problem solved with GA. Xiao et al. [16] solved the
optimal mass problem employing Particle Swarm Optimization
algorithm, giving shear stress, allowable deflection, first modal fre-
quency, fatigue resistance, buckling, conditions of coil non-touch
and desired strength as constraints. Taktak et al. [17] proposed a
numerical model incorporating dynamic parameters as con-
straints, and solved it for the minimum mass and the maximum
first natural frequency of the spring, respectively, by testing differ-
ent numerical methods, such as Pattern Search, Interior Point,
Active Set and GA. Zhan et al. [18] optimized the design of compos-
ite helical structures through GA and Response Surface models.
Main limits of these works are the use of single objective optimiza-
tions, which cannot guarantee the satisfaction of other conflicting
objectives, and a generally unspecified relation between domain
and codomain of optimization. Recent works focused on multi-
objective optimization of helical structures by means of GA
method have been proposed. Zebdi et al. [19] and Ratle et al. [20]
used well-known NSGA-II Algorithm for finding Pareto Fronts of
conflicting objectives, such as minimum mass and maximum stiff-
ness, verifying their findings with experimental testing. Bai et al.
2

[21] investigated seven different GAs to determine the best prac-
tice when maximizing compressive stiffness and minimizing
weight of composite helical structures with MOEA-D and NSGA-II
ranked first and third respectively. The spring optimization studies
previously discussed aimed to improve performances of conven-
tional coils springs by acting on hyperparameters such as the num-
ber of active coils, the values of pitch and external radius or the
wire thickness. An overall uniformity of the spring geometry was
therefore maintained. Innovative shape optimization approaches
have been implemented on planar and three-dimensional truss
structures by Lim et al. [22], Jha and Dayyani [23], and Ermakova
and Dayyani [24]. Lim et al. [22] proposed topology and shape opti-
mization of a three-dimensional truss structure as a substitute of
conventional beams. Jha and Dayyani [23] optimized the Fish-
Cells metamaterial by acting on nodes defined along the unit cell
shape. Ermakova and Dayyani [24] optimized the shape of a corru-
gated skin for morphing applications, again selecting nodes in
space for the structural connections. These works implemented
GA multi-objective optimizations for finding tradeoffs between
conflicting objectives and used custom MATLAB routines for per-
forming FE analyses, then validating their code with ABAQUS and
experimental testing. However, they were limited to frame struc-
tures which can be solved directly by computing the stiffness
matrix of the system in MATLAB.

Little work has been done on general approaches for the opti-
mization of non-conventional helical structures. Current need is
to have a reliable strategy to design optimized helical structures
for variable number of coils, with improved compliance and large
strain capabilities. In this paper a novel design of three-
dimensional helical structures with variable pitches and radiuses
defined in a cylindrical spatial domain is proposed. Shape opti-
mization is performed using a multi-objective GA method for con-
flicting objectives of minimummass and maximum yielding strain.
Performances of optimized structures are compared with equal-
mass conventional coil springs of constant pitch and radius laying
in the same spatial domain. Their advantages in light of metamate-
rial applications are discussed and validated by experimental
analysis.
2. Problem formulation

A novel methodology for defining the shape of three-
dimensional helical structures composed of varying coil numbers
is proposed as shown in Fig. 1. Helical structures are discretized
through interpolation nodes expressed in cylindrical coordinates
{q; h; z}, with equal distance on the base circumference. These
interpolation nodes define the mesh of the structure and can
occupy any position in a given cylindrical domain. They are con-
nected by three-dimensional frame elements which bear exten-
sional, bending, and torsional loads to generate the continuous
curved helix wire. The q and z coordinates of these nodes are the
controlled design variables. Helical structures are optimized for
the position of such nodes, assuming a wire cross-section of circu-
lar profile with constant radius.

As to reduce dimensionality of the problem, q and z coordinates
of successive mesh nodes are obtained by evaluation of quota and
radius functions, as highlighted in Fig. 1(a, b). Controller nodes are
defined, classified as basics or non-basics. Basic Nodes (BNs) are
fixed in the design space and used for defining end conditions of
helical structures. Non-Basic Nodes (NBNs) constitute the design
variables and can be positioned inside the given design space. Con-
troller BNs and NBNs (controller design variables) determine q and
z coordinates of all the controlled mesh nodes (controlled design
variables), via interpolation and evaluation of quota and radius
functions. The multi-objective optimization problem formulated



Fig. 1. Novel conceptualization of arbitrary 3D helical shape and corresponding dimensions, relationships between fixed nodes (dark blue), optimization nodes (light blue),
and mesh nodes (red). (a) Quota function zðhÞ, (b) radius function qðhÞ, (c) cylindrical domain.
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seeks to increase performances of helical structures by optimizing
the conflicting objectives of minimum structural weight and max-
imum tensile range. Different numbers of coils and different num-
bers of NBNs for a given coil number are investigated in the
selected cylindrical domain represented in Fig. 1(c). Optimization
is performed in MATLAB using Genetic Algorithm (GA) toolbox
due to its suitedness for multi-objective optimization problems.
Finite Element (FE) analyses are performed by ABAQUS for evaluat-
ing fitness values of each individual in the population. A 3D FE
script based on thin beam elements with cubic shape functions
is, therefore, written for the implementation of the optimization
procedure.

2.1. Helical structure parametrization

Given BNs positions, the helical structure’s geometry is parame-
trized by means of controller NBNs, whose coordinates are col-
lected in the vector x!, defined in Eq. (1):

x!¼ q!; r!
n o

q
! ¼ hq1 ; z1; hq2 ; z2; . . . ; hq1

2
NNB

; z1
2NNB

� �
ð1Þ

r
! ¼ fhr1 ;q1; hr2 ;q2; � � � ; hr1

2NNB
;q1

2NNB
g

3

The vector of parameters x! is subdivided into two parts: the
quota vector q! encoding z-coordinate variability of controlled
mesh nodes, and the radius vector r! encoding q-coordinate vari-
ability. It has a length of 2NNB, where NNB is the overall number
of NBNs defined. Each element xi in x! defines each controller node
coordinate. The components of q! represent nodal coordinates in
the z� h plane, those of r! represent nodal coordinates in the
q� h plane, as highlighted in Fig. 1(a, b). Interpolation of BNs
and NBNs is performed employing piecewise cubic polynomials
to avoid overshoots guaranteeing smoothness. The interpolated
functions are evaluated every 2p=Nm rad, where Nm is the number
of mesh nodes per coil set equal to Nm ¼ 128 after a mesh sensitiv-
ity analysis, thus providing best tradeoff between high accuracy of
results and low computational time. The suitable number of NBNs
is a problem variable and different values are tested for fixed coil
numbers to understand relative influences. NBNs coordinates in
the z� h and q� h planes are constrained between selected
bounds to ensure the helical structure remains inside the given
cylindrical spatial domain, shown in Fig. 1(c).

2.2. Optimization approaches

The multi-objective optimization problem outlined in the intro-
duction of this section can be formalized as in Eq. (2):

minimize;Fðx!Þ ¼ ½f 1ðx
!Þ; f 2ðx

!Þ� ¼ ½m;1=uy� ð2Þ
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where the first objective m represents the total mass of the helical
structure, while uy in the second objective refers to the tensile dis-
placement at yielding.

The modern trend for solving multi-objective optimization
problems is by using metaheuristics approaches such as Genetic
Algorithms, Particle Swarm Optimization, Simulated Annealing
and others [25], which implement non-dominated ranking and
selection strategies to move a population of solutions towards
the Pareto Front of the problem. In the present paper MATLAB
gamultiobj() solver has been selected for easiness of implementa-
tion and for its efficiency in shape optimization-related problems
[21], which is based on an elitist version of well-known NSGA-II.
Due to the stochastic nature of GA optimization and the conse-
quent significant spread of solutions, choices of different parame-
ters are to be made for assuring correct convergence. In the
studied implementation MATLAB default hyperparameters were
used [26], except for population size P and crossover fraction cf .
A crossover fraction cf ¼ 0:3 has been selected to minimize devia-
tion for each objective and mean value of optimization results, as
demonstrated by Dayyani and Friswell [27] who solved a similar
problem. After testing population sizes of P ¼ ½50;100;200;400�
individuals, a population of P ¼ 200 was selected finding a tradeoff
between computational time and optimization effectiveness. Vec-
torization of the fitness function has been activated to parallelize
the GA scheme thus evaluating the fitness of the whole population
at once, as to improve computational performances.

Optimization runs have been performed for one to five coils
with consistent preliminary studies carried out varying the num-
ber of NBNs utilized for a fixed number of coils, with two to twelve
NBNs (equally subdivided in the two functions) considered for
each case. After parametric studies performed for different coils,
six NBNs for one and two coil optimizations and eight NBNs for
three to five coil optimizations were then selected as they maxi-
mized performances assuring shape convergence of the obtained
designs. Cylindrical domain sizes were fixed as H ¼ 40 mm and
Rmax ¼ 10 mm. The wire circular cross-sectionw is maintained con-
stant with diameter equal to 1:5mm.

Feasibility of structures in the design space is enforced through
the definition of spatial bounds and constraints Gi, collected in
Table 1. Constraint G1 sets conditions on the extreme bounds of
the quota function, permitting avoiding excessive mesh distor-
tions. Constraint G2 defines two envelopes which filter out infeasi-
ble designs with interpenetrated coils. Constraint G3 is a condition
on the derivative of the quota function, which guarantees its
monotony. Constraint G4 sets conditions on the extreme bounds
of the radius function, with limits on the minimum and maximum
radius values to avoid coil interpenetrations and cylindrical
domain exit. Constraints G5 and G6 define initial derivative values
at two ends of both functions for avoiding excessive mesh twisting,
which lead to inaccurate solutions. Numerical values of upper and
lower bounds and envelope constraints for the performed opti-
Table 1
Analytical relations of optimization bounds and spatial constraints.

Constraint Definition Description

G1 q!min � q!� q!max
Constraint nodes within spatial
domain avoiding mesh
distortions (upper and lower
bounds).

G4 r!min � r!� r!max

G2 qðhÞ � ah; qðhÞ � ahþ b Filter unfeasible designs with
interpenetrated coils and provide
end conditions.

G3 dqðhÞ
dh � a

G5 dqðhÞ
dh jh¼0;2Np ¼ a

G6 drðhÞ
dh jh¼0 ¼ 1; drðhÞdh jh¼2Np ¼ �1 Avoid excessive mesh twisting at

the two ends of the helical
structure.
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mizations, as well as corresponding applied tensile displacements,
are reported in Table 2. Applied displacements for each case have
been selected after preliminary runs to ensure good coverage of
the Pareto Fronts especially in the most central region. Moreover,
excessive displacement values can lead to severe stretching defor-
mations of lowmass geometries which can cause job abortions and
prematurely stopping the optimization run, due to the impossibil-
ity of computing fitness values.
2.3. Finite element script formulation

For computing individual fitness values through the integration
of FE analyses inside the iterative optimization procedure, a set of
MATLAB scripts has been developed and implemented in the GA
fitness function workflow. FE solving capabilities of commercial
ABAQUS/Standard software allow for a large iteration rate neces-
sary in GA for convergence. Communication between software is
enabled by data file exchange through Python scripting. A flow-
chart of the developed code is represented in Fig. 2.

Preprocessing is performed in MATLAB through elaborations of
user-defined options and GA variables. The chromosome

x!¼ q!; r!
n o

is inputted in the fitness routine and used for the

interpolation of quota and radius functions and generation of each
helical structure geometry. Data are then imported in ABAQUS
through the writing of input files, singularly for each individual
in each generation, which completely define the requested FEA.
After the analysis is submitted and the output database file is cre-
ated, requested field and history values are accessed by Python
scripts and re-imported in MATLAB to be post-processed. Vector-
ization of gamultiobj() fitness function allows for the contempo-
rary submission of multiple FE analyses, thus permitting to
parallelize all fitness evaluations in a generation. The process of
ranked scoring and reproduction is iteratively performed until a
termination criteria, related to a specified tolerance on spread of
solutions, is met [28]. Steps 8 and 9 in Fig. 2 are intended to be
repeated until satisfaction of termination criteria.

For the model definition of individual helical structures three-
node quadratic beam elements B32 have been used, which repre-
sent Timoshenko shear flexible beams. A seed of 64 elements per
coil as per Section 2.1, has been selected. Circular profile cross-
section of constant radius has been defined. Although a full opti-
mization of both geometry and material properties may be suitable
for best results, this paper is focused on geometric parameters
only. As such, Nylon PA-2200 base material is considered, mod-
elled through a linear elastic–plastic constitutive behavior with
properties extracted from literature and reported in Table 3 [29].

A standard static analysis has been defined with 1s time period
and request of 100 evenly spaced intervals for both field and his-
tory outputs, achieving clear resolution of the output time evolu-
tion maintaining computational time low. Nonlinear geometry
has been activated for dealing with large deformations. One end
of the helical structure has been encastred, while the other end
has been given an imposed displacement in the positive longitudi-
nal z-direction with displacement values reported in Table 2.
Whole model Von Mises stress field values and load point displace-
ment values have been requested at all time frames for the individ-
uation of the elastic tensile range of the helical structure, which
marks the change from the purely elastic reversible behavior to
the unreversible one characterized by permanent plastic deforma-
tions involved in the deformation process.

The mass of the structure is directly extracted from the model’s
data in the database file and is obtained from the summation of

individual masses of beam elements, f 1 x!
� �

¼PeðqA
R
dlÞe, where

q is material density, A is wire’s cross sectional area and
R
dl repre-



Table 2
Numerical values of optimization bounds and spatial constraints for the five considered cases.

Coil number
(h range)

Parameters a½mm
rad � and b½mm� Lower and upper bounds NBNs used Applied displacement [mm]

½hmin; hmax�½rad� ½zmin; zmax�½mm� ½qmin;qmax�½mm�
1 (h 2 ½0;2p�) a ¼ 5

2p ;b ¼ 35 ½1:5p4 ; 6:5p4 � ½0;40� subject to constraints G2;G3 ½2:5;10� 6 20

2 (h 2 ½0;4p�) a ¼ 7:5
4p ; b ¼ 32:5 ½3p4 ; 13p4 � 6 20

3 (h 2 ½0;6p�) a ¼ 10
6p ;b ¼ 30 ½3p4 ; 21p4 � 8 25

4 (h 2 ½0;8p�) a ¼ 12:5
8p ; b ¼ 27:5 ½3p4 ; 29p4 � 8 30

5 (h 2 ½0;10p�) a ¼ 15
10p ;b ¼ 25 ½3p4 ; 37p4 � 8 35

Fig. 2. Flowchart of the MATLAB-ABAQUS FE scripts with colour coding representing different optimization phases.

Table 3
Nylon PA-2200 elastic material properties and plastic stress–strain data [29].

Material properties

Density q 930 kg=m3

Elastic material properties
Elastic Modulus E 1130 MPa
Yield Stress ry 14:0 MPa
Ultimate Stress ru 51:6 MPa
Poisson’s Ratio m 0:3
Plastic material properties
Plastic Stress [MPa] Plastic Strain [mm/mm]
14:0;34:1;42:7; 46:7; 49:0; 50:5; 51:3; 51:6 0;0:025;0:05;0:075;0:1;0:125;0:15;0:175

G. Cimolai, I. Dayyani and Q. Qin Materials & Design 215 (2022) 110444
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sents curvilinear element length. Max stress values are obtained by
reading successive individual frames of the simulation file and
building a set of lists of stress values for each element and for each
frame. Each list is then sorted for the max stress value associated
with that frame and corresponding displacement value, obtaining

the second objective as f 2 x!
� �

¼ 1=uð Þs¼14MPa, which represents

the inverse of the displacement of the load point at the yielding
value, thus indicating the reversible elastic range to be maximized
by the optimization procedure.

As to reduce differences in the order of magnitude between
conflicting objectives, thus improving performances and stability
of the optimization scheme, the GA variables and objective func-
tion values have been normalized using Eq. (3) and (4) [30]:

xni ¼
xi � xu

i
þxl

i
2

� �
xu
i
�xl

i
2

; i ¼ 1; � � � ;2NNB; xi; xui ; x
l
i 2 R ð3Þ

where the generic xi belongs to GA chromosome vector of design
variables x!, xni represents the normalized value of xi, and xli and
xui represents lower and upper bounds for each variable xi,

f nj x!
� �

¼ f jð x!Þ=f jðxavg��!Þ; j ¼ 1;2 ð4Þ

where xavg
��! ¼ xu

!
þxl
!

2

 !
is the average vector of the lower and upper

bounds defined in Table 2 for each considered case, and f nj x!
� �

rep-

resents normalized value of f jð x!Þ.
Computations have been performed on a system equipped with

an 8-core Intel i7-9700 3.00 GHz processor with 32 GB RAM, with
runtimes between 9 h and 13 h for each run, depending on the
numbers of coils analyzed and NBNs used. All simulations con-
verged in �100 generations with termination criteria related to
the spread of solutions being less than the default tolerance value.
Fig. 3. Pareto Fronts (blue) for different number of coils. (a) One coil, (b) two coils, (c) th
(green and red) and best compromise solutions (yellow) highlighted, and corresponding

6

3. Shape optimization results

Five sets of Pareto Fronts were obtained for one to five coils as
illustrated in Fig. 3. Selecting the best compromise point from each
Pareto Front, coordinates of an ideal reference point Pref are identi-
fied by choosing the minimum value of each objective from the
solution set, Pref ¼ ðmmin;1=u

y
minÞ. The point in the Pareto Front

with the minimum euclidean distance from the reference point
in the normalized solution space is selected from the set of normal-
ized non-dominated results. Fig. 3 shows the reference point posi-
tion indicated with a black dot, best mass with green dot, best
tensile range with red dot and best compromise solution with yel-
low dot, respectively. Each point Fð x!Þ in the non-normalized Par-
eto Fronts collected represents a non-dominated solution of the
multi-objective optimization problem outlined in Section 2.2 and
is associated with a unique helical structure geometry.

As it can be noticed from the coordinates of the reference points
associated with the various sets, Pareto Fronts are globally moving
towards solutions with higher mass and higher tensile range capa-
bility for increasing number of coils (i.e. solutions with higher m
and lower 1=uy). Best mass solutions tend to be regular in shape
with a nearly constant pitch, and radius values approaching the
lower bounds in Table 2. Best tensile range and best compromise
solutions tend to a teardrop shape with a higher value of radius
near the center of the helical structure to minimize shear stress
magnitude, and lower radius values near the two ends for main-
taining the mass low.

As to highlight superior performances of optimized geometries
with respect to conventional coil springs a comparison has been
made. Conventional geometries with uniform pitch and radius
were selected having equal mass to the best compromise solution
for each case considered. Tensile and compressive simulations
have been performed for retrieving the correspondent displace-
ments at yielding, with results collected in Table 4. An increment
in both displacement values is noticed for increasing number of
coils, with optimized geometries consistently outperforming their
ree coils, (d) four coils, (e) five coils. Reference points (black), dominant objectives
geometries.



Table 4
Comparison between optimized geometries and equal-mass conventional spring structures for different number of coils.

1 Coil 2 Coils 3 Coils 4 Coils 5 Coils

Best compromise geometry

Mass value [g] 0.097 g 0.125 g 0.153 g 0.193 g 0.245 g
Tensile range value [mm] 5.00 mm 8.72 mm 11.76 mm 15.60 mm 20.16 mm
Compressive range value [mm] 5.80 mm 10.71 mm 14.36 mm 18.08 mm 17.04 mm
Buckling load [N] 3.5419 N 2.4423 N 1.8673 N 1.4434 N 1.1827 N
First modal frequency [Hz] 0.36774 Hz 0.23724 Hz 0.19068 Hz 0.15165 Hz 0.15916 Hz
Equal-mass conventional geometry

Mass value [g] 0.097 g 0.125 g 0.153 g 0.193 g 0.245 g
Tensile range value [mm] 4.32 mm 6.50 mm 7.91 mm 10.67 mm 14.95 mm
Compressive range value [mm] 4.84 mm 7.32 mm 8.75 mm 11.31 mm 15.78 mm
Buckling load [N] 3.6329 N 2.4524 N 2.1010 N 1.6872 N 1.3113 N
First modal frequency [Hz] 0.39814 Hz 0.30884 Hz 0.30652 Hz 0.25041 Hz 0.19604 Hz
Improvement % in tensile range 13.6% 25.5% 32.7% 31.6% 25.8%
Improvement % in compressive range 16.6% 31.7% 39.1% 37.4% 29.6%
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conventional counterparts. It should be mentioned how, for the
five coils case, contact between coils was reached during compres-
sion, for the optimized geometry, at a stress level lower than yield-
ing value. This justifies the lower compressive range of five coils
optimized structure compared to the four coils one. Performance
improvements are expressed computing the percentage increment
of displacement obtained by optimized geometries with respect to
equal-mass conventional ones:

Improvement % ¼ Uy
optimized�Uy

conventional

Uy
optimized

.

Moreover, linear perturbation analyses were conducted on indi-
vidual helical structures for one to five coils optimized and conven-
tional geometries, with results collected in Table 4. Visualization of
buckling and modal shapes are collected in Fig. A1 and Fig. A2 of
Appendix A. From buckling analysis, it is noteworthy how lower
buckling loads were obtained for optimized structures compared
to their conventional counterparts, with maximum difference
being 14.45% for the four coils cases. A general transition from
torsion-dominated to bending-dominated modes is reported for
increasing coil numbers, associated with a progressive diminishing
of critical loads, with 66.60% and 63.90% overall differences
between one and five coils for optimized and conventional geome-
tries respectively. Modal analyses consistently evidenced lower
eigenvalues and lower first natural frequencies for optimized
geometries compared to their conventional counterparts, with
maximum frequency difference of 39.44% for the four coils case.
Additionally, progressive diminishing of eigenvalues and frequen-
cies between one and five coils were reported, with 56.72% and
50.76% differences in frequency for optimized and conventional
geometries respectively. Compared to conventional geometries,
optimized structures show more complex modes due to coupling
effects because of the non-uniform mass distribution, while con-
ventional geometries tend to exhibit simpler mode shapes mainly
associated with lateral bending. It is evidenced here that it is
nonetheless possible to adapt the optimization algorithm itself to
optimize other different objectives, for example maximize the crit-
ical buckling load, or the first natural frequency to improve the
dynamic performances of the helical structures for specific applica-
tions. It is stated here that this will obviously produce potentially
7

different designs, for example with a better ability to control den-
sification in compression thus harnessing the instability phenom-
ena if the critical buckling load is to be maximized. As the
ultimate scope of the paper is to design large strain mechanical
metamaterials, maximization of critical buckling load or other
objectives have not been considered.

Considering the geometrical constraints of both the cylindrical
domain size and wire thickness it is estimated that twenty-six is
the maximum number of coils that can be defined without the
occurrence of interpenetration. As for computational limitations
and considering the descending trend of improvements between
three and five coils, three coils optimized helical structure is
selected as the best-obtained result with 32.7% and 39.1% improve-
ments in tensile and compressive elastic ranges. It will be therefore
considered for successive simulations and discussions, as well as
for experimental validations.
4. Discussion of results

4.1. Tensile and compressive deformation mechanism

As previously highlighted, an explanation of the improved
mechanical performances achieved by optimized geometries is
obtained considering the elastic deformation mechanism involved,
shown in Fig. 4. In Fig. 4(a) tensile simulations at yielding point for
shape optimized three coils and equivalent conventional geometry
are displayed. In the optimized structure shear stresses are mainly
acting on the large central turn, resulting in a higher compliance
compared to the equal-mass conventional geometry, whereas
shear stresses in the conventional geometry influence a larger por-
tion of the structure. In other words, the smaller radius of coils
results in more regions of yielded stress. Compressive simulations
conducted on the same geometries demonstrated the presence of a
similar deformation mechanism as shown in Fig. 4(b). High com-
pliance of optimized structure is due to deformability of its central
coil and less regions with yielded stress, which accounts for the
improved elastic performances in compression. As similar results
held for the four other coils cases, it can be concluded that the per-



Fig. 4. Deformation mechanism and stress distribution for three coils shape optimized and conventional structures. (a, b) Tensile and compressive simulations at yielding on
three coils geometries. (c, d) Von Mises stress distribution along curvilinear element length for different tensile and compressive displacements.
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formed optimization has exalted overall compliance by acting
mainly on the radius profiles of the structures.

Fig. 4(c) presents the stress distributions along the curvilinear
element length, for both optimized and conventional three coils
geometries with varying tensile displacements applied. It can be
noticed the presence of lower stresses acting on the optimized
geometry structure (solid lines) compared to the conventional
one (dashed lines). The optimized geometry presents lower
stressed ends even at higher displacements; however, the conven-
tional geometry has an oscillating trend of high stress for regions
near the structure center. Similar considerations held for the com-
pressive cases, Fig. 4(d), where higher oscillation amplitude is
noticed for the conventional geometry. From analysis of Fig. 4(c,
d), maximum stresses of 9.03 MPa and 8.73 MPa are acting on opti-
mized geometry in tension and compression, while the conven-
tional structure reaches yielding stress of 14 MPa in both cases.
These are 35.5% and 37.6% lower than yielding stress, confirming
superior structural performances considerations, for example the
possibility of an improved fatigue life of optimized geometries
when subjected to cyclic low-stress loading conditions.

Further discussions of the geometric differences between opti-
mized and conventional springs are presented in Appendix B.
Moreover, large tensile deformations conducted beyond yielding
8

strain highlighted the presence of two plastic deformation mecha-
nisms, better described in Appendix C for the three coils cases.

4.2. Stiffness computation

In Fig. 5 plots of reaction force vs elastic displacement are
shown for tensile and compressive cases. One to five coils opti-
mized (solid lines) and conventional (dashed lines) geometries
are collected. A general trend of diminished stiffness and improved
compliance between conventional and optimized structures can be
noticed. This results in lower reaction forces and higher deforma-
bility of the optimized geometries.

Since the characteristic curves of the springs are not linear, the
values of stiffness defined as ratios between reaction force and dis-
placement are locally changing. However, for comparison purposes,
and considering the low curvatures involved, calculations have been
performed by taking the ratio between the reaction force [N] and the

displacement [mm] at yielding, i.e. Kmean ¼ Reaction Force
Displacement

� �
Y

N
mm

� �
.

Results from such calculation are collected and shown in Fig. 5 where
mean stiffness values are reported for considered cases, confirming
previous observations. In particular, differences in stiffness of 60.9%
and 66.7% are reported for the three coils cases between optimized
and conventional geometries, for tension and compression respec-



Fig. 5. Tensile and compressive elastic curves for optimized and conventional geometries.
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tively. Since modal frequencies are proportional to
ffiffiffiffiffiffiffiffiffiffi
k=m

p
, with k and

m being the stiffness andmass of the structure, as lower stiffness val-
ues were consistently observed for the optimized geometries com-
pared to their conventional counterparts, it descends how lower
natural frequencies were already expected for the optimized geome-
tries, as confirmed from results in Table 4 and Appendix A. Also, due
to the increase in mass and decrease in stiffness for increasing num-
ber of coils, the general trend of diminishing frequency on both opti-
mized and conventional geometries was also expected.
4.3. Influence of material properties on optimization results

To understand the influence of different material behaviors on
the optimization procedure, further optimization runs have been
performed on the three coils structure. In particular, Polylactic Acid
PLA (modelled with linear elastic–plastic behavior, as it was
already the case for Nylon PA-2200 from Section 2), Aluminum
70–75 T6 (modelled with Johnson-Cook behavior) and Ethylene-
Propylene Diene Monomer EPDM (modelled with hyperelastic
Ogden behavior with n = 3) were selected as base materials, and
subsequent optimization results compared with those obtained
using Nylon PA-2200. Elastic and plastic stress–strain data for
PLA, as well as Johnson-Cook plasticity constants for Aluminum
70–75 T6 and material law parameters for EPDM are reported in
Appendix D. Best compromise geometries were selected with the
approach in Section 3 and collected in Fig. 6. In particular, for the
optimization with EPDM the maximum stress correspondent to
100% strain of a conventional helical structure with linear quota
function and constant radius functions median between the lower
and upper bounds (equal to 0.137 MPa) has been selected for the
computation of the second objective.
9

From the analysis of the optimization results, it can easily be
noticed how similar geometries were obtained for all considered
cases, Fig. 6(a), with a deformable central coil that bear shear stres-
ses acting on the structure during its elastic deformation. Figure E
in Appendix E confirms this trend, as GA tends to position NBNs
near the same locations, with maximum radius values near the
upper bounds for all cases: 9.84 mm for PA-2200, 9.92 mm for
PLA, 9.44 mm for EPDM and 9.87 mm for Aluminum. In Fig. 6(b)
plots of reaction force vs displacement are displayed for the four
geometries obtained. In particular, the reaction force for each case
has been normalized to the Young’s Modulus of the base material
used (with values reported on the table inside Fig. 6(b)), confirm-
ing the similarities between different geometries. Moreover, the
similar mechanical behavior of PA-2200 and PLA is evidenced, as
well as the different behavior of Aluminum and EPDM. Although
optimized structures present similar geometric characteristics for
varying material properties, the displacement values at yielding
obtained are generally different. In particular, higher values are
associated with softer polymer materials. Moreover, considering
the confirmed presence of under stressed ends, it should be men-
tioned how optimized choice of material properties is possible.
This can be better performed by selecting different material prop-
erties for different regions of the structure body, thus potentially
improving the obtainment of the selected conflicting objectives,
further optimizing the design, but it is outside the scopes of the
present paper.
5. Tessellation study of optimized helical structures for
metamaterial applications

In this section, 1D metamaterial implementations with different
tessellation numbers and arrangements are simulated to highlight



Fig. 6. Influence of material properties on shape optimization results. (a) Tensile deformations at yielding for optimized geometries with different materials, (b)
corresponding tensile elastic curves and mean stiffness values.
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superior performances in terms of static tensile and compressive
stiffness as well as buckling and modal performances. Due to the
large number of simulations performed only results for three coils
tessellations will be presented, with the consideration that similar
results held for other cases. In successive studies which are outside
the scopes of the present paper complex 2D and 3D metamaterial
implementations will be investigated, where different unit cells
shapes will be designed. Planar and solid lattice structures demon-
strating exceptionally large strain and energy absorption capacity,
ZPR behavior and anisotropic properties, will be developed and
numerically and experimentally investigated from the static,
dynamic and impact point of view. In particular, to better under-
stand the influence of shape optimization on unit cell design,
advanced optimization techniques can be used for lowering the
computational cost of optimizing whole unit cells instead of single
members only, as it was the case for the results presented in this
work. In fact, the computational cost of optimizing unit cells
instead of single members depends largely on the number of beam
elements inside these unit cells, and as such it mainly scales with
the number of nodes in the geometry which needs to be solved.
Nonetheless, if the optimization is to be conducted contemporary
on different helical structures inside the same unit cell, the number
of variables in the GA chromosome can easily become extremely
high due to the further expansion of the design space, which will
greatly negatively affect the overall optimization efficiency in
terms of necessary population size and number of needed
generations.
5.1. Tessellation arrangement study for metamaterial implementation

Since end conditions of individual helical structures have been
defined through constraints G5 and G6 presented in Table 1, Sec-
tion 2.2, tangency at both ends of each structure is preserved. Serial
connection is therefore possible and linear tessellations can be
defined, with various unit cells represented in Fig. 7. In Fig. 7(a-
10
d) four different unit cells, namely hABi, hADi, hCBi, hCDi, are
defined which combine linear couples of A, B, C, D components
with A being the optimized three coils structure, B, C and D its
180� rotations around z-, x- and y-axes respectively. They repre-
sent possible linear connections obtained by use of individual rota-
tions, preserving tangency between successive ends. Another type
of arrangement can be obtained using point-symmetry, Fig. 7(e, f),
which restitutes hAA0i and hA0Ai unit cells, A’ being the point-
symmetric of A with respect to the connection point. It is notewor-
thy how while chirality is preserved for the rotation-based unit
cells, the same is not verified for the symmetry-based ones which
present a change of coil orientation in the middle. A third possible
arrangement makes use of connector beam elements of variable
length n. In this case, the unit cell is defined by a single helical
structure plus two half connectors aligned with the longitudinal
axis. Static analyses on all tessellation arrangements demonstrated
how effects of tessellation geometry are negligible. As for ease of
manufacturing, in the present paper only hAA0i unit cell arrange-
ment is considered.

5.2. Homogenization study of effective Young’s Modulus

As tessellation size has significant influence on the structural
behaviour of metamaterials, homogenization study needs to be
performed to retrieve tessellation numbers demonstrating inde-
pendency from these effects. In particular, the variation of effective
Young’s Moduli were considered with results presented in Fig. 8.
Effective Young’s Modulus of optimized helical structure in the
longitudinal loading direction, Ezz, can be defined as
EZZ ¼ rZ

eZ
¼ FZL

pR2dz
, where FZ , dZ , L and R refer to reaction force, imposed

displacement, length and maximum coil radius respectively. To
compute effective Young’s Moduli, six tessellation numbers were
considered from one to eleven unit cells in hAA0i configuration
and tested for tensile and compressive loading. For the ABAQUS
implementation of tessellation arrangements tie constraints have



Fig. 8. Convergence of effective Ezz of the helical structure with increasing number of unit cell repetitions for three coils optimized geometry in hAA0i configuration.

Fig. 7. Seven potential unit cell arrangements obtained with couples of three coils optimized helical structures.
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been defined, to link successive instances together fixing adjacent
nodes. Quadratic beam elements B32 were defined for all models,
consistent with Section 2.3, selecting mesh densities correspon-
dent to 128 nodes per coil and using Nylon PA-2200 material, with
properties in Table 3 of Section 2.3. For both types of simulations
the first node of each tessellation (z ¼ 0 mm) has been encastred,
while the last has been given an imposed displacement in the lon-
gitudinal direction.

Results for homogenization study are illustrated in Fig. 8, which
shows that Young’s Moduli of optimized helical structures, both in
tension and compression, are significantly smaller than original
constructing material (1130 MPa for Nylon PA-2200). Furthermore,
the effective Ezz of the structure changes with more cell repetitions
being applied until a critical point at five repetitions is reached. It is
noticeable how the tensile Young’s Modulus diminishes with
increasing tessellation size, while the compressive one increases.
Moreover, compressive stiffness values are always lower than the
respective tensile ones. In the tensile simulations all considered
11
tessellations reached yielding at strains approximately constant
and near the value of yielding strain of the original constituent
helical structure (29.4% strain). In the compressive cases instead,
the effects of buckling were predominant with a consistent dimin-
ishing of compressive range for increasing tessellation size.

5.3. Linear perturbation analyses

Buckling analysis of optimized structures is beneficial for their
engineering applications as it permits to quantify their static per-
formances. In this section, buckling characteristics of such struc-
tures are studied considering effect of tessellation size, which
ranges from one to eleven unit cells. To minimize the complexity
of the analysis, beam elements were used in accordance with Sec-
tion 2 and Section 5.2. Regarding boundary conditions, the first
node of each tessellation (z ¼ 0 mm) has been given fixity condi-
tions, while the last node (z ¼ n	 80 mm, with n equal to the
number of unit cells involved) has been given a concentrated 1 N



G. Cimolai, I. Dayyani and Q. Qin Materials & Design 215 (2022) 110444
unit load in the negative z-direction. Table 5 presents buckling
loads and mode shape representations, from lateral view, of the
analyzed geometries. The trend of buckling loads shows a nonlin-
ear decrease as tessellation numbers increase. In particular, buck-
ling load of 5.28E-3 N for eleven unit cell tessellation is almost
61 times smaller than the 0.322 N of single unit cell arrangement.
Moreover, buckling loads have been also normalized to the corre-
sponding tessellation structural weight for better representation,
confirming the nonlinear decreasing trend. Mode shapes are all
characterized by pure bending behaviour, along the principal axis
of inertia.

Free vibration study permits retrieving fundamental dynamic
characteristics of optimized structures as function of tessellation size.
Tessellation sizes selected are set to be the same as from previous
buckling studies. Fixed-fixed boundary conditions have been consid-
ered for all models, with both the first node of each tessellation
(z ¼ 0 mm) and the last one (z ¼ n	 80mm, with n equal to the
number of unit cells involved) encastred. Table 5 presents first natu-
ral frequency and mode shapes representations, from lateral view, of
the analyzed geometries. The trend of natural frequencies shows a
nonlinear decrease as tessellation numbers increase. In particular,
natural frequency of 7.57E-4 Hz for eleven unit cell tessellation is
almost 119 times smaller than the 9.04E-2 Hz of single unit cell
arrangement. Mode shapes are all characterized by pure bending
behaviour, along the principal axis of inertia, although pointing in
opposite direction for three and five unit cell tessellations only.

Results and trends similar to those presented in Table 5 were
retrieved for other coil geometries, not shown here for conciseness
of reporting. It descends then how optimized geometries perform
better than conventional ones from the static point of view, showing
higher tensile and compressive ranges both in single form, unit cell
and tessellation arrangements. This improves the elastic deformabil-
ity of the overall structure and its stability when employed for meta-
material applications. It should be mentioned, nonetheless, how
greater deformability comes at the expense of diminished stiffness
and critical load and how the natural frequencies were thoroughly
affected. Such considerations are important when implementing
optimized structures in dynamic environments.
6. Experimental validation

6.1. Manufacturing

Quantifying errors between simulation models and physical
structures, in this section three coils geometries were selected
Table 5
Linear perturbation analyses for varying tessellation size.

Linear perturbation analyses on chosen tessellations

Buckling analyses

Tessellation
size

Critical load
[N]

Normalized critical load to
weight [N/g]

Buckling mode s

1 0.322 1.054

3 6.97e-02 0.076

5 2.54e-02 0.017

7 1.30e-02 0.006

9 7.89e-03 0.003

11 5.28e-03 0.002
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for 3D printing and testing. They were modelled by 3D solid struc-
tures using CATIA where a single unit cell was built with a serial
connection of two helical structures in hAA0i configuration, as
shown in Fig. 7(e). Clamping blocks were added at both ends for
fixing the sample to the test machine reproducing encastred
boundary conditions as considered in the optimization procedure.
To eliminate boundary effects, two short connector elements were
added on both ends of the structure avoiding unrealistic stress con-
centrations at clamping blocks attachments. CAD models revealed
the complex curvatures with narrow angles involved in the central
region of the samples. Moreover, considering limitations on print-
ing and testing area all sizes of the samples with respect to the
numerical models presented in Section 3 were doubled. The man-
ufactured helical structure had a length of 80 mm with 3 mm wire
thickness diameter. Considering the clamping blocks and connec-
tors lengths of 25 mm and 5 mm on both ends, the total length
of manufactured samples was 220 m, allowing 3D printing in a sin-
gle process. Experimental samples, shown in Fig. 10(a), were man-
ufactured by Selective Laser Sintering (SLS) using a sPro140 3D
printer, printing the fully solid model in 0.1 mm high layers of
PA-12 material.

6.2. Material characterization of Nylon PA-12

Material characterization of PA-12 was conducted for consis-
tency of results. Five dog-bone tensile test samples were manufac-
tured using a sPro140 3D printer (Protolabs) and then tested in
accordance with ASTM D638-14 standard [32]. Tests were per-
formed using an Instron 5965 test machine equipped with a 5kN
load cell. The stress–strain curves for the dog-bone samples were
obtained, from which average values of elastic properties and plas-
tic stress–strain data were calculated and are reported in Fig. 9(b).

6.3. Structural tensile and compressive tests

Four samples were tested for both tensile and compressive
loadings, two for three coils optimized geometry and two for three
coils conventional springs. The experimental setup shown in
Fig. 10(b), includes the test sample installed on the Instron 5965
test machine with a 5kN load cell and the data acquisition system.
A Nikon D7000 DSLR camera was used to capture videos during the
tests, from which images were extracted at significant frames. The
load–displacement curves were recorded for a constant rate of
2 mm/min until failure in the tensile cases, or contact/buckling
onset in the compressive cases with 15 Hz data record frequency.
Modal analyses

hape First natural
frequency [Hz]

First mode shape

9.04e-02

1.01e-02

3.65e-03

1.87e-03

1.13E-03

7.57e-04



Fig. 9. Material characterization of Nylon PA-12. (a) Stress–strain data from test machine, (b) averaged material properties.

Fig. 10. Manufacturing and experimental testing. (a) 3D printed test samples, with dimensions highlighted; (b) experimental setup, test machine with data acquisition and
image recording systems.
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6.4. Experimental results and discussion

The recorded load–deflection data for tensile and compressive
cases are plotted and compared with numerical results in Fig. 11
(a, b). In the GA-based optimization procedure presented in Sec-
tion 2, thin beam elements were used for modelling helical struc-
tures achieving a large iteration rate necessary in GA for
convergence. However, errors might be present in the analysis of
the structure due to limitations of the beam-based approach. Stress
concentration effects due to narrow curvatures are in fact
neglected in beam models and governing equations have small
accuracy for lower aspect ratios. For these reasons, the experimen-
tal procedure was replicated with 3D solid FE models generated in
ABAQUS/Standard, using material properties from Section 6.1,
fixed boundary conditions on the lower clamping box end and
imposed displacement on the upper one as described in Section 6.2.
Solid quadratic 3D elements C3D10 were used with very fine mesh.
It can be noticed that a very good correlation was achieved
13
between numerical and experimental results. A general underesti-
mation of stiffness is present in the numerical results especially in
the elastic range.

Fig. 11(a) shows average errors of 9.57% and 2.79% for opti-
mized helical structure and conventional spring in tension, respec-
tively. Fig. 11(b) shows maximum errors of 18.34% and 18.98% for
optimized helical structure and conventional spring in compres-
sion. The higher errors in compressive loadings are mainly due to
analysis limitations of complex curvatures with more sensitive
mechanism of deformations. The obtained stiffnesses are nonethe-
less in the same order of magnitude with a very good correlation,
hence the procedure can be considered validated.

Figs. 12 and 13 show a comparison of deformation mechanism
in experimental results and numerical simulations. The corre-
sponding frames in tensile and compressive experimental videos
were selected based on simulations increments at yielding dis-
placements as well as buckling and contact occurrence, respec-
tively. The comparison shows identical mechanisms of



Fig. 11. Results obtained from experimental analyses and comparison with numerical simulations. (a) Tensile test ; (b) compressive test (buckling and coil contact occurrence
indicated).

Fig. 12. Comparison between experimental and numerical analyses for conventional three coils geometry. (a) Tensile analysis, (b) compressive analysis.
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deformations in both experiments and simulations, highlighting
further the validation of numerical results. Comparing the perfor-
mances of optimized helical structure with conventional spring,
analyses show how the optimized structure presents 15.2% more
strain at yielding, correspondent to a 31.05% improvement of ten-
sile yielding strain. This is particularly significant as it agrees very
well with the GA results presented in Section 3, where 32.70%
improvement was recorded for the three coils case. Moreover,
while the conventional structure is subjected to elastic buckling
14
in the form of lateral bending if subjected to compressive loading,
the optimized structure presents 24.6% more strain reaching then
contact between coils without the occurrence of buckling, which
is correspondent to a 56.64% improvement. This confirms the
already noticed improvements in compressive range and stability
obtained by optimized geometries, Section 5.2. The GA procedure
can be considered validated and effective offering significant
potential in lightweight performance improvements.



Fig. 13. Comparison between experimental and numerical analyses for shape optimized three coils geometry. (a) Tensile analysis, (b) compressive analysis.
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7. Conclusion

In this paper, a novel method for designing 3D helical structures
was proposed through definition of two functions controlling the
geometry evolution of the structure. Three-dimensional helical
structures were shape optimized by means of GA multi-objective
optimization technique to achieve minimum mass and maximum
elastic strain range. An advanced FE code in 3D space combining
capabilities of commercial ABAQUS software inside MATLAB GA
toolbox was developed.

Best compromise solutions among five sets of Pareto Fronts
were selected by taking the point in the Pareto Optimal Set with
the minimum Euclidean distance from a reference point. The anal-
ysis of best compromise solutions highlighted the superior perfor-
mances of optimized structures in terms of compliance
capabilities. The novel helical structure with three coils demon-
strated the best mechanical performance with a maximum of
32.7% and 39.1% higher tensile and compressive ranges respec-
tively, compared to equal-mass conventional coil springs at yield-
ing. Also, the deformation mechanism of three coils structure
evidenced 35.5% and 37.6% lower stresses in tension and compres-
sion respectively, demonstrating significant potential to improve
the fatigue life of helical structures. Testing of different material
behaviors demonstrated the independence of optimized shape
from original constitutive materials, with Nylon PA-2200, Polylac-
tic Acid PLA (linear elastic–plastic model), Ethylene-Propylene
Diene Monomer EPDM (hyperelastic Ogden model), and Aluminum
70–75 T6 (Johnson-Cook model) tested.

1D mechanical metamaterial applications were proposed with
seven different unit cell arrangements. Homogenization study
was conducted in tensile and compressive simulations to demon-
15
strate the independence of mechanical behavior from tessellation
numbers. Further FE simulations were performed to investigate
linear perturbation behaviors of optimized helical structures for
varying tessellation size. The results showed diminishing trend
for both buckling load and modal frequencies for higher tessella-
tion numbers.

Moreover, tensile and compression experiments were con-
ducted on 3D printed unit cell samples made of Nylon PA-12 mate-
rial. High fidelity FE analyses with fine-meshed models
demonstrated a very good correlation with experimental data.
The experimental results also highlighted significant elastic
improvements of 31.1% in tensile strain range and 56.6% in com-
pressive strain ranges.

In a successive work, currently under development, complex 2D
and 3D lattice metamaterials will be modelled, manufactured and
studied. In particular, planar and solid tessellations will be tested
for different loading conditions to investigate their anisotropic
properties and assess the presence of Zero Poisson’s Ratio (ZPR)
behavior. Moreover, impact and crashworthiness performances
will be addressed in light of aerospace and automotive applica-
tions. It is highlighted here how careful attention will be given
on manufacturability, optimization techniques and effects of
defects.

In fact, to carefully address the lattice metamaterial behavior
and potentially improve its mechanical performances, the pro-
posed helical structures design can be incorporated in microscale
and then studied with more complex optimization schemes. A
range of modern literature addresses the topics at hand, such as
the controllability of mechanical properties through the insertion
of controlled defects and vacancies in the metamaterials’ structure
[33,34,35,36]. In such works, architected defects effects are
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addressed through complex FE modeling and advanced optimiza-
tion techniques such as Bayesian Optimization. The use of con-
trolled placed defects - which for the topics at hand can be
represented by missing helical structures inside specific unit cells
- permits to increase the strain energy capacity of the structure,
allowing localized buckling of lattice members to happen on speci-
fic unit cells. Apart from Bayesian Optimization, other optimization
techniques may be addressed for the design of architected meta-
materials, such as deep learning based ones as well as topology
optimization.
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Appendix A

See Fig. A1, Fig. A2

Appendix B

In Fig. B1(a), quota and radius functions are shown for the three
coils optimized and conventional cases. It is noticeable how, while
the conventional geometry is defined by linear zðhÞ and constant
qðhÞ laws, the optimized one tends to sigmoidal zðhÞ and gaussian
Fig. A1. Buckling analyses on helical structures with first critica
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qðhÞ ones, highlighting the presence of the large central turn. Max-
imum radius of optimized geometry, equal to 9.84 mm, is
approaching the 10 mm upper bound, compared to the 4.81 mm
radius of equivalent-mass conventional spring. Associated coordi-
nates of NBNs are reported in Fig. B1(b).
Appendix C

Large tensile deformations conducted beyond yielding strain
highlighted the presence of two plastic deformation mechanisms,
as shown in Fig. C1 for both optimized and conventional three coils
structures. Mechanism I, indicating displacements between points
(1a), (1b) and (2a), (2b), is characterized by coils bending due to
shear stresses acting along the wire with high compliance and
low reaction forces, and is influent at strains below 100% (yielding
strain being 29.4% and 19.8% for three coils optimized and conven-
tional geometries). A transition zone between 100% and 125%
strain is noticed. Mechanism II is characterized by tensile stretch-
ing of the structure, with low compliance and high reaction forces,
points (3a), (3b) and (4a), (4b), until ultimate stress and conse-
quent breakage is reached (slightly above 150% strain for three
coils optimized and conventional geometries). Also indicated by
the dashed lines in Fig. C1, the yielding strains. The obtained char-
acteristic curves are typical of compliant structures and are usually
referred to as J-shape curves. They pose great interest in biomedical
applications due to their similarity with human tissues mechanical
properties.
l buckling loads [N] and buckling mode shapes indication.



Fig. B1. Results from GA optimization process. (a) Quota and radius functions for optimized and conventional three coils geometries, (b) correspondent NBNs coordinates.

Fig. A2. Modal analyses on helical structures with first eigenvalue, associated resonance frequency [Hz] and mode shapes indication.
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Fig. C1. Reaction force vs tensile displacement curves and plastic deformation mechanisms involved for three coils geometries.
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Appendix D

See Table D1, Table D2, Table D3
Table D1
Polylactic Acid (PLA) elastic material properties and plastic stress–strain data [23].

Mechanical properties

Density q 1250 kg=m3

Elastic material properties
Elastic Modulus E 1700 MPa
Yield Stress ry 22:0 MPa
Ultimate Stress ru 43:5 MPa
Poisson’s Ratio m 0:36
Plastic material properties
Plastic Stress [MPa] Plastic Strain [mm/mm]
22:0;22:2;25:7;29:5;33:0;36:6;40:1;43:5 0;0:016;0:02;0:025;0:03;0:035;0:04;0:045

Table D2
Johnson-Cook plasticity constants for Aluminum 70–
75 T6 [31].

Physical properties

Density q 2810 kg=m3

Elastic material properties
Elastic Modulus E 71:7 GPa
Yield Stress ry 473 MPa
Poisson’s Ratio m 0:33
Johnson-Cook plastic properties
A, B, n 473 MPa; ;210 MPa; ;0:3813

Table D3
Ogden material parameters (n = 3) for Ethylene-Propylene Diene Monomer EPDM
[37].

i li ai

1 0:994929240 3:36255675
2 0:060157293 9:76206145
3 0:077564639 �4:61426912

Fig. E1. Results from GA optimization process showing quota and radius functions
for optimized three coils geometries for varying material properties.
Appendix E

See Fig. E1
18
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