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The presence of uncertainties caused by unforeseen malfunctions in the actuation system 

or changes in aircraft behaviour could lead to aircraft loss of control during flight. The paper 

proposes almost model-independent control law combining recent developments in nonlinear 

control theory, data-driven methods, and sensor technologies by considering Gaussian 

Processes Adaptive augmentation for Incremental Backstepping control (IBKS) algorithm. 

IBKS uses angular accelerations and current control deflections to reduce the dependency on 

the aircraft model. However, it requires knowledge of control effectiveness. Conducted 

research shows that if the input-affine property of the IBKS is violated, e.g., in severe 

conditions with a combination of multiple failures, the IBKS can lose stability. Meanwhile, the 

GP-based estimator provides fast identification and the resultant GP-adaptive IBKS 

algorithm demonstrates improved stability and tracking performance. The performance of 

the algorithm is validated using a large transport aircraft flight dynamics model. 

I. Introduction 

During the last decades, aircraft safety significantly increased. Nevertheless, flight safety of passenger aviation in 

the presence of abnormal conditions, such as those caused by equipment failures and/or adverse environmental factors, 

is an important problem. Analysis of accident and incidence reports revealed that the main contribution to the fatal 

accidents were due to aircraft Loss of Control In-Flight and Controlled Flight Into Terrain [1]. The main reasons 

caused these accidents are pilot mistakes, technical malfunctions, or their combination. 

Recent developments in the areas of nonlinear control theory, data-driven methods and sensor technology unveiled 

the way to the derivation of flight control laws that are significantly less dependent on nominal aircraft  model data. 

Recently, great efforts have been undertaken to develop aircraft control design tools and techniques for analysis 

and improvement of safe flight [2–8]. The idea that non-conventional control strategies can prevent possible accidents 

and recover aircraft from dangerous situations stimulates researches toward fault -tolerant and adaptive flight control 

[9–12]. 

Gain-scheduling of linear feedback controllers is widely applied in commercial applications to achieve 

stabilization and satisfactory tracking performance of aircraft over a wide range of flight conditions [13,14]. In case 

of severe and unpredicted changing in aircraft behaviour such controllers cannot be used or can be used only with a 

restricted functionality.  

Nonlinear Dynamics Inversion (NDI) and Backstepping (BS) techniques have become popular control strategies 

for adaptation since they can be used for global linearization of the system dynamics and control decoupling [15–19]. 

The BS control has advantages in comparison with the NDI, namely, it is more flexible and it is based on Lyapunov 

stability theory. Later, to make the NDI and BS controls more robust and fault -tolerant an incremental-type sensor-

based form has been proposed [20,21].  

However, even in this formulation the controller still requires accurate knowledge of the control effectiveness, 

especially, if the system is not affine in control inputs because of non-linearity in actuators or due to large transport 

delays [22,23]. Additional adaptation strategies augmenting the incremental-type controllers to reduce dependency on 

an aircraft model were applied for a high-performance aircraft model in Refs. [23,24]. Regardless of the fact that IBKS 
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demonstrates robustness to some failures [25,26] estimation of the control effectiveness improves fault-tolerant 

abilities of the system [22,27–30]. 

The most well-known and popular approach for on-line identification and implementation of in-direct adaptation 

is Recursive Least Squares (RLS) method [22,24,31,32]. However, RLS even with conventional Exponential 

Forgetting factor (EF) is not designed for tracking time-varying systems. Its convergence might be slow if the EF is 

close to one, whereas the error is large if the EF is small. Tuning Functions (TF) approach was proposed as natural 

expansion of the adaptive capabilities provided by the backstepping paradigm into identification of control efficiency 

[17,22,24]. This approach takes advantages of Lyapunov function design, which allows theoretical proof of stability 

to be obtained. However, these methods might be sensitive to measurement noise and thus additional supervising 

algorithms needs to be developed to switch-off the adaptation when signal-to-noise ratio is small. For example, a  two-

layer adaptive augmentation to IBKS control law was developed in Ref. [22]. 

Neural networks, including Radial Basis Functions (RBF), are quite popular for on -line identification and adaptive 

control since they are universal approximators and can match any uncertainty (for example, see. Refs. [33–35]). RBFs 

have advantage, namely, they are linear-in-the-parameters, as opposed to multilayer perceptron neural networks. 

However, performance of former approach is significantly determined by selection of the RBF centres. Normally, 

researches preallocate a fixed quantity of Gaussian RBF centres over the presumed domain [33,36]. The system states 

must stay close to the location of the preallocated RBF centres because a Gaussian RBF output decays exponentially 

away from its centre; otherwise, the system would not be able to capture the uncertainty. 

To tackle the issues mentioned above we propose to use a Gaussian Process (GP) online identification framework 

to estimate aircraft control derivatives and perform in-direct adaptive control loop augmenting baseline IBKS 

controller. GP brings promising Bayesian paradigm to on-line identification and adaptive control by considering the 

estimation as a statistical problem [37]. Within the proposed approach GPs utilize a Bayesian framework to represent 

uncertainties as a distribution over functions. It is assumed that the uncertainty and the model follow Gaussian 

distributions, with the uncertainty being estimated using its mean and covariance function. One of the advantages of 

the proposed method is that it does not require prior assumptions about operating domain. From the provided flight 

data, GP is able to dynamically choose new kernel locations to guarantee domain coverage. Furthermore, measurement 

noise is explicitly handled, and parameters such as the centres of RBFs does not require pre-allocation. GP approach 

allows Bayesian inference to overcome shortcomings of the standard gradient based parameter update laws, e.g. lack 

of convergence guarantees and possible instabilities under noise presence [31,38]. This method was applied for design 

of direct adaptive control GP-MRAC in Refs. [39,40], where GP was used to match uncertainty to produce 

compensating control commands. In the current paper, unlike GP-MRAC, we propose to develop a GP-based 

estimation of control efficiency and then the updated values are fed to the baseline IBKS controller, which performs 

control of the aircraft. We propose a budgeted sparse GP algorithm suitable for on-line identification and adaptation. 

The developed approach is compared with EF RLS and TF in three different scenarios, when uncertainties are 

introduced in the control efficiency. 

The present paper demonstrates results from the European project INCEPTION, which was seeking the 

development of fault-tolerant Automatic Flight Control System for fixed-wing aircraft allying incremental control 

strategies, adaptive augmentation and envelope protection [41]. The proposed augmentation is designed to improve 

stability and tracking performance of the IBKS baseline controller by providing actual information about control 

effectiveness in case of uncertainty or failure.  

The paper is organized in the following way. A very brief overview of the flight dynamics and IBKS control 

strategy are given in Sections 2 and 3 correspondingly. Section 4 provides a description of the identification framework 

in general. The budgeted sparse GP algorithm is considered in Sections 5. EF RLS and TF estimation algorithms are 

presented in Section 6. Section 7 deals with a simulation results of the proposed framework. Finally, concluding 

remarks are summarized in Section 8. 

II. Flight Dynamics Model 

Equations of motions of the aircraft can be represented with kinematics and dynamics models. The kinematics of 

the aircraft is described by the attitude state vector 𝝃 = [𝜙 𝜃 𝛽]𝑇 , where 𝜙,  𝜃,  𝛽 are roll, pitch and sideslip angles.  

T = +ξ f ω
 

(1) 

where  
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𝐟𝜉 = [0  0   −
𝐴𝑥

𝑉𝑡

𝑐𝑜𝑠 𝛼 𝑠𝑖𝑛 𝛽 +
𝐴𝑦

𝑉𝑡

𝑐𝑜𝑠 𝛽 −
𝐴𝑧

𝑉𝑡

𝑠𝑖𝑛 𝛼 𝑠𝑖𝑛 𝛽 +
𝑔𝑦

𝑉𝑡

]
𝑇

 

𝑇𝜉 = [
1 𝑠𝑖𝑛 𝜙 𝑡𝑎𝑛 𝜃 𝑐𝑜𝑠 𝜙 𝑡𝑎𝑛 𝜃
0 𝑐𝑜𝑠 𝜙 − 𝑠𝑖𝑛 𝜙

𝑠𝑖𝑛 𝛼 0 − 𝑐𝑜𝑠 𝛼

] 

𝝎 = [𝑝,  𝑞,  𝑟]𝑇  is the rotational rate vector. Specific forces 𝐴𝑥 , 𝐴𝑦  and 𝐴𝑧  can be directly measured by the 

accelerometers. 𝑉𝑡  is the true airspeed, 𝛼 is the angle of attack, 𝑔𝑦  is the y-axis component of the gravitational 

acceleration calculated in the wind reference frame. 

The aircraft dynamics is represented with the state-space form for the state vector 𝒚 = [𝑉𝑡  𝑝  𝑞  𝑟 ]𝑇 composed 

of airspeed 𝑉𝑡 , roll rate p, pitch rate q and yaw rate r:  

( , )y=y f y u
 

(2) 

Control inputs 𝒖 = [𝛿𝑎𝑖𝑙𝐼𝐿
𝛿𝑎𝑖𝑙𝐼𝑅

𝛿𝑎𝑖𝑙𝑂𝐿
𝛿𝑎𝑖𝑙𝑂𝑅

𝛿𝑒𝐼𝐿
𝛿𝑒𝐼𝑅

𝛿𝑒𝑂𝐿
𝛿𝑒𝑂𝑅

𝛿𝑟𝑢
𝛿𝑟𝑙

𝛿𝑇𝐼𝐿
𝛿𝑇𝐼𝑅

𝛿𝑇𝑂𝐿
𝛿𝑇𝑂𝑅

]
𝑇
 are the inner-left, inner-

right, outer-left, and outer-right ailerons; inner-left, inner-right, outer-left, and outer-right elevators; upper and lower 

rudders; outer-left, inner-left, inner-right, and outer-right engines throttle. 

The nonlinear dynamics 𝒇𝑦 (𝒚, 𝒖) is linearized using the incremental dynamics approach for the incremental 

controller design and thus the precise description is not provided here.  

III. Incremental Backstepping 

Sensor-based technique utilizing Incremental Dynamics (ID) applied to obtain an IBKS controller, which is less 

dependent on the system model, is discussed in Refs. [42,43]. Below, we will just follow a brief description of this 

controller. Details could be found in the original papers. IBKS computes incremental commands employing 

acceleration feedback estimations to extract unmodeled flight dynamics. In the present study, we are using this 

controller as a baseline controller, which is augmented with the proposed budgeted sparse GP parameter estimator. 

A. Incremental Dynamics Model 

It is assumed here that the system dynamics is described by the following nonlinear equations:  

( ),=
x

x f x u
 

(3) 

where 𝒇𝒙: ℝ𝑛 × [0,∞) → ℝ
𝑛

 is Lipschitz continuous function, x and 𝒖 are the state and the control input vectors. 

Expanding Eq. (3) into the Taylor series around (𝒙0, 𝒖0
) corresponding to the previous time moment 𝑡0 the dynamics 

(3) can be expressed in the following form  

( ) ( )
0 0 0

, ,
( ) ( )

 
 + − + −

 

x x
f x u f x u

x x x x u u
x u  

(4) 

Assuming that the increment in state 𝛥𝒙 = 𝒙 − 𝒙0  is much smaller than the increment in both state derivative 

𝛥𝒙̇ = 𝒙̇ − 𝒙̇0 and input 𝛥𝒖 = 𝒖 − 𝒖0, the dynamics (4) can be further simplified  

0B  x u
 

(5) 

where 𝐵0 =
𝜕𝒇𝒙 (𝒙,𝒖)

𝜕𝒖
 is a  control effectiveness matrix.  

The dynamics equation in the form (5) states that the ID of the system is produced by the control input increment. 

For the implementation of such a concept, it is assumed that sampling time is small. In this case, the assumption that 

𝛥𝒙 ≪ 𝛥𝒙̇ and 𝛥𝒙 ≪ 𝛥𝒖 becomes possible for a real aircraft because the control surface deflections directly affect the 

angular accelerations, whereas the angular rates are only changed by integrating these angular accelerations. Actuators 
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are assumed to be instantaneously fast such that the demanded input increment can be achieved within the small 

sampling time. In addition, the sensors are assumed to be ideal, i.e. providing state derivative without errors.  

B. Attitude Controller 

The ID idea combined with the backstepping paradigm was utilized to design the aircraft baseline controller 

[42,43]. To increase the control robustness and simplify its implementation, both angle and rate controllers using ID 

were formulated. The general structure of the baseline controller with the revealed interaction between attitude and 

rate controllers is provided in Fig.1. 

Equations (1) and (2) constitute the system dynamics. Introducing the kinematics tracking error variable 

𝒛𝜉 = 𝝃𝑑 − 𝝃, where 𝝃𝑑  is the desired kinematics state vector, the sub-system (1) can be reformulated in terms of 𝒛𝜉 : 

d T  = − −z ξ f ω
 

(6) 

The general idea behind the backstepping is to consider the state vector 𝝎 = [𝑝  𝑞  𝑟] 𝑇  from (2) as a control input 

for 𝒛𝜉  subsystem (6). Since 𝝎 is just a  state variable and not the real control input, it is called a virtual control input. 

 

 

Fig.1 Controller structure 

For the 𝒛𝜉  subsystem a Candidate Lyapunov Function (CLF) 𝑉𝜉  is selected: 

1

2

TV  = z z
, 

(7) 

which is positive for the whole domain, excluding the origin, where it equals to zero.  

For the asymptotic convergence of the error, the CLF derivative must be strictly negative along the solutions of 

(6). Considering a positive definite matrix 𝑊𝜉 ∈ ℝ
3×3

, the CLF is strictly negative if: 

T TV W     = = −z z z z
. (8) 

The kinematics tracking error dynamics can be represented in the incremental form  

( )0 0d T = − − −z ξ ξ ω ω
. 

(9) 

Substituting the expression 𝒛̇𝜉 = −𝑊𝜉 𝒛𝜉  derived from (8), the following tracking error dynamics is obtained  
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( )0 0 0d T W  − − − + =ξ ξ ω ω z
. 

(10) 

The virtual control law 𝜈𝛼 = 𝝎 can be obtained by inversion of (10) with respect to ω 

( )1

0 0dT W    −= + + −ω z ξ ξ
, 

(11) 

since 𝑇𝜉  is invertible for the transport aircraft within the flight envelope. The control law (11) is used as a desired 

value for the virtual control input 𝝎. 

C. Rate Controller 

The difference between the dynamics of the state variable 𝒚 = [𝑉𝑡  𝝎𝑇 ]𝑇 and its desired value 𝒚𝑑 = [𝑉𝑡𝑑  𝝎𝑑
𝑇 ]𝑇is 

defined as the dynamics tracking error variable 𝒛𝑦 = 𝒚𝑑 − 𝒚. It should be noted that the airspeed is introduced as a 

state to the dynamics state vector in order to design the controller that simultaneously tracks the airspeed and angular 

rates of the aircraft. To design a control law u that ensures that 𝒛𝑦  converges to zero, the following CLF for the 

complete (𝒛𝜉 , 𝒛𝑦 )-system is formed: 

1

2

T

y y yV V
a

= + z z
, 

(12) 

where 𝑎 is a  design scale factor. Similar to design of CLF for the 𝒛𝜉  subsystem in (8), here a matrix 𝑊𝑦 ∈ ℝ
4×4

 is 

assumed to be a positive definite matrix such that  

1 1T T T

y y y y y yV V W W
a a

   = + = − −z z z z z z
, 

(13) 

Thus, the error 𝒛𝑦  converges asymptotically to zero since the derivative of the CLF 𝑉𝑦  is strictly negative for non-

zero errors. The tracking error dynamics in the incremental representation has the following form:  

𝐳̇𝑦 = 𝐲̇𝑑 − 𝐲̇0 − 𝐵0
(𝐮 − 𝐮0

). (14) 

The selection matrix 𝐶𝑦𝜔 = [𝟎3 𝐼3], which performs the mapping 𝝎 = 𝐶𝑦𝜔𝒚, is introduced. Combining the 

incremental dynamics of 𝒛𝜉  (9) and 𝒛𝑦 (14), one can obtain  

𝒛𝜉
𝑇 (𝝃̇𝑑 − 𝝃̇0 − 𝑇𝜉(𝝂𝛼 − 𝐶𝑦𝜔𝒛𝑦 − 𝝎0 ) + 𝑊𝜉 𝒛𝜉) +

1

𝑎
𝒛𝑦

𝑇 (𝒚̇𝑑 − 𝒚̇0 − 𝐵0
(𝒖 − 𝒖0

) + 𝑊𝑦 𝒛𝑦 ) = 0. (15) 

Eventually, for non-zero errors, substituting (11) into (15) and solving it with respect to u, the resultant control 

law is designed 

( )1

0 0 0( )T T

c y y d dB aC T W  

−= +  + − + −u u z y y y y
 

(16) 

To attenuate the measurement noise and increase the control robustness, 𝐵0 is multiplied by a diagonal matrix 𝛬 >
0 with elements 𝜆 𝑖𝑖 ∈ [0,1]. 

The control law in the form (16) requires inversion of the matrix 𝐵0, which is not square for the overactuated 

modern transport aircraft. To tackle this issue, Moore-Penrose Pseudo-inverse is applied [43], and 

( )
1

†

0 0 0 0

T TB B B B
−

=
 

(17) 

is used in (16) instead of 𝐵0. 
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D. Command Filter 

To avoid infeasible commands provided by the controller, a  Command Filter (CF) is added to the controller output. 

For the incremental controllers, the CF is used to constrain the input to respect the actuators dynamics and saturation.  

Taking into account the influence of the CF 𝝌 ∈ ℝ
3
 on the tracking error 𝒛𝑦  (14) the dynamics of the modifies 

tracking error 𝒛̄𝑦  is introduced [24] 

𝐳̇̄𝑦 = 𝐲̇𝑑 − 𝐲̇0 − 𝐵0
(𝐮 − 𝐮0

) − 𝛘̇ (18) 

Effect of the CF on the tracking error can be estimated by the stable linear filter [24]: 

𝛘̇ = −𝑊𝑦 𝛘 + 𝐵0
(𝐮𝐶𝐹 − 𝐮𝑐

), (19) 

where 𝒖𝐶𝐹  is the controller output after CF. 

IV. On-Line Estimation of Control Effectiveness 

Finally, the cascaded baseline controller consists of attitude and rate controllers (11) and (16). Both attitude and 

rate controllers have the similar control structure, namely, the control signal compensating the difference b etween the 

reference and measured (or estimated) state variables is added to the current value of the control input. Such a structure 

is very simple and robust to possible uncertainties. However, the precise knowledge of the control input matrices 𝑇𝜉  

and 𝐵0 is required for stable performance of the algorithm. The precise value of 𝑇𝜉  within the flight envelope can be 

easily determined because it represents the kinematic relationships. The matrix 𝐵0 specifies the control effectiveness, 

which might change during flight because of changing of environmental conditions, structural deformations, failures 

etc. Hence, an unmodeled actuator dynamics is a source of uncertainty. 

The main purpose of the adaptive augmentation for the IBKS is to compensate the effect of these uncertainties and 

to improve performance and stability of the IBKS controller. This paper introduces a GP online identification 

framework for estimating the aircraft control derivatives contained in matrix 𝐵0. Interaction of the adaptive 

augmentation with the baseline controller is demonstrated in Fig.1. The adaptive augmentation block performs in-

direct adaptation by online estimation and adjustment of the control effectiveness matrix 𝐵0 . 

An aircraft flight control system sends the same signals for all individual control surfaces, making the individual 

signals are proportional to each other and causing a high-correlation between the individual signals. If all the input 

signal forms look the same, then any algorithm trying to assign values f or the control effectiveness of each individual 

control will fail, because it is impossible to determine which of the multiple inputs, moved in the same manner, was 

responsible for changes in the aerodynamic forces and moments. Input forms that are complet ely decorrelated will 

give the most accurate control effectiveness estimates. Unfortunately, when a feedback control system is operating, 

desired input forms become distorted by the feedback control. To tackle this issue, we use a priori information through 

fixing the effectiveness of all but one of the correlated control surfaces to a priori values [32].  

Furthermore, while identifying the effectiveness of a certain control surface, the aircraft is demanded to perform 

manoeuvres with reduced coefficients in the allocation matrix 𝑊𝑠 𝐷𝑢  for all control effectors responsible for this 

motion, except the coefficient relating to the control surface under study. In such a  case, the control signal is split into 

two signals, the first one is for the control surface of which effectiveness is treated, while the second signal is for all 

other surfaces from the pool. Thus, the first signal is responsible for generating the required information for 

identification and second one is used for guaranteeing the aircraft stability. 

V. Gaussian Processes On-Line Identification and Adaptive Augmentation 

GP utilizes Bayesian paradigm for on-line identification of control efficiency and the adaptive control by 

considering the identification as a statistical problem [37]. GP is non-parametric because the “parameters” to be 

identified are functions 𝑓𝑥  of an input variable 𝑥 ∈ 𝑅𝑑 . Function 𝑓 is characterised by its statistics, namely, by the 

mean 〈𝑓〉 and the covariance, which is also called the kernel 𝐾0
(𝑥, 𝑥′) = 𝐶𝑜𝑣(𝜍, 𝜍′) [44]. The a priori assumption is 

that 𝑓 is a  Gaussian process. Indeed, according to the Central Limit Theorem any sufficiently  large set of random 

samples 𝑓𝑖 is considered to have normal distribution. Within the Bayesian framework, given a set of input -output 

observations (𝑥𝑛 , 𝜍𝑛
) (𝑛 = 1, … , 𝑁) the posterior distribution of the process 𝑓𝑥  is computed via prior and the 

likelihood. 
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Csató and Opper [37] proposed a representation of posterior means 〈𝑓𝑥
〉

𝑡  =  〈𝑓(𝑥𝑡)〉
𝑡  and the posterior covariance 

𝐾𝑡
(𝑥, 𝑥′), where t denotes the number of data points, with a finite linear combinations of kernels 𝐾0

(𝑥, 𝑥 𝑖
) evaluated 

at the training inputs 𝑥 𝑖. Using sequential projections of the posterior process on the manifold of Gaussian processes, 

approximate recursions for the effective parameters of these representations can be obtained. To avoid enormous 

growth of the size of representations the elegant algorithm for extraction of a smaller subset of input data is proposed. 

Such a subsets allows an on-line sparse representation of the posterior process, which is used to predict the GP model. 

The posterior expectations within the Bayesian approach are conventionally expressed by high -dimensional 

integrals. Obviously, this is not applicable for on-line identification. However, it was shown in [37] that the posterior 

mean and the posterior covariance of the process arbitrary inputs can be expressed as a combination of a finite set of 

parameters which depend on the training data only. To make Bayesian interference trackable on -line, the posterior is 

projected to the closest Gaussian process by a single sequential sweep through the examples. 

The posterior GP approximation with its posterior means and the posterior covariance can be estimated using the 

initial kernel 𝐾0
(𝑥, 𝑥 ′) and the likelihoods: 

〈𝑓𝑥
〉

𝑡 =  𝜶𝑡
𝑇 𝒌𝑥 

𝐾𝑡
(𝑥, 𝑥 ′) = 𝐾0

(𝑥, 𝑥 ′) + 𝒌𝑥
𝑻 𝑪𝑡𝒌𝑥′

 (20) 

where 𝒌𝑥  = [𝐾0
(𝑥1 ,𝑥), … , 𝐾0

(𝑥𝑡 ,𝑥)]𝑇 is the kernel functions, 𝜶𝑡 = [𝛼𝑡
(1), … , 𝛼𝑡

(𝑡)]𝑇 is the coefficient vector, 𝑪𝑡 =
{𝐶𝑡(𝑖𝑗)}

𝑖,𝑗=1.,𝑡 . is the coefficient matrix. It should be noted that coefficients 𝛼𝑡(𝑖) and 𝐶𝑡(𝑖𝑗) do not depend on 𝑥  and 

𝑥 ′ [37]. For the regression problems, Radial Basis Functions (RBF) are quite popular choice for kernel functions 

[4,37,39,40] 

𝐾(𝑥, 𝑥 ′) = 𝑒𝑥𝑝(
‖𝑥−𝑥′‖ 2

2 𝜎𝑥
2 ). (21) 

A. Online Learning 

The recursive update of the GP parameters in Eq. (20) can be performed via the following equations: 

𝜶𝑡+1 =  𝑇𝑡 +1
(𝜶𝑡

) + 𝑞(𝑡+1) 𝒔𝑡+1,

𝑪𝑡 = 𝑈𝑡 +1
(𝑪𝑡

) + 𝑟
(𝑡+1)

𝒔𝑡+1𝒔𝑡+1
𝑇 ,

𝒔𝑡+1 = 𝑇𝑡 +1
(𝑪𝑡 𝒌𝑡+1 ) + 𝒆𝑡+1,

 (22) 

where 𝒌𝑡+1 =  𝒌𝑥𝑡+1  and 𝒆𝑡 +1 the 𝑡 + 1-th unit vector and 𝒔𝑡+1 is introduced for clarity. Operators 𝑇𝑡 +1 and 𝑈𝑡 +1 

extend a 𝑡-dimensional vector and matrix to a 𝑡 + 1 – dimensional one by appending zeros at the end of the vector 

and to the last row and column of the matrix respectively.  

For the RBF kernel functions the 𝑞(𝑡+1) and 𝑟
(𝑡+1)

 are defined as follows 

𝑞(𝑡+1) = (ς − 𝜶𝑡
𝑇 𝒌𝑥)/𝜎𝑥

2 ,

𝑟
(𝑡 +1)

=  −1/𝜎𝑥
2,

 (23) 

where 𝜎𝑥
2 = 𝜎0

2 + 𝒌𝑥
𝑻 𝑪𝑡𝒌𝑥 + 𝑘𝑥

∗ ,  𝑘𝑥
∗ = 𝐾0

(𝑥, 𝑥). One can conclude that the dimension of the vector 𝜶 and the size of 

matrix 𝑪 increases with each data point added since 𝒆𝑡 +1 is the 𝑡 + 1-th unit vector. 

The updates in the form of Eqs. (22) has a drawback since the number of parameters increases quadratically with 

the number of training examples. An effective way of controlling the number of parameters was proposed in  Ref. [37], 

namely, sparseness within the GP framework was introduced. According to this approach, the update of the GP 

parameters is implemented without increase in the number of parameters 𝜶  and 𝑪   when, according a certain criterion, 

the error due to the approximation is not too large. 

If the new input 𝑥𝑡+1 is such that  

𝑲𝟎
(𝑥, 𝑥𝑡+1

) = ∑ 𝑒̂𝑡+1(𝑖)𝐾0
(𝑥, 𝑥 𝑖

)

𝑡

𝑖=1

 (24) 
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is true for all 𝑥 , then the update can be achieved exactly. In this case, the updated process in the form Eq. (20) is 

represented by only the first t inputs, but with “renormalised” parameters 𝜶 ̂  and 𝑪 ̂  and the update (22) is implemented 

without extending the size of the parameters 𝜶  and 𝑪  and 𝒔𝑡+1 as follows: 

𝜶̂𝑡 +1 =  𝜶𝑡 + 𝑞(𝑡+1) 𝒔̂𝑡+1 ,

𝑪𝑡 = 𝑪𝑡 + 𝑟
(𝑡+1)

𝒔̂𝑡+1𝒔̂𝑡+1
𝑇 ,

𝒔̂𝑡+1 =  𝑪𝑡𝒌𝑡+1 + 𝒆̂𝑡+1,

 (25) 

where 𝜶̂𝑡+1, 𝑪𝑡  and 𝒔̂𝑡+1 are t-th unit vectors. 

Obviously, for most kernels and inputs 𝑥𝑡+1 relationship (24) does not hold for all input x. However, the updates 

in the form of (25) might be used for approximations if 𝒆̂𝑡+1 is determined by minimising the error measure 

‖𝐾0
(∙, 𝑥𝑡+1

) − ∑ 𝑒̂𝑡+1(𝑖)𝐾0
(∙, 𝑥 𝑖

)𝒕
𝒊=𝟏

‖2, (26) 

where ‖∙‖ is a  norm in a space of functions of inputs 𝑥 . If the norm is defined via the inner product of the reproducing 

kernel Hilbert space (RKHS) generated by the kernel 𝐾0, then minimising (26), one can obtain the following 

expression  

𝒆̂𝑡+1 =  𝑲𝑡
−1𝒌𝑡+1, (27) 

where 𝑲𝑡 =  {𝐾0(𝑥 𝑖 ,𝑥𝑗)}
𝑖 ,𝑗=1,𝑡

 is the Gram matrix. In this case, the equation 

𝐾0
(𝑥, 𝑥𝑡+1

)  =  ∑ 𝑒̂𝑡+1
(𝑖)𝐾0

(∙, 𝑥 𝑖
)𝒕

𝒊=𝟏 , (28) 

gives the orthogonal projection of the function 𝐾0
(𝑥, 𝑥𝑡+1

) on the linear span of the functions 𝐾0
(𝑥,𝑥 𝑖

). 

The update rule (25) is performed when a measure of the approximation error 

𝛾𝑡 +1 = 𝑘𝑡+1
∗ − 𝒌𝑡+1

𝑇 𝑲𝑡
−1𝒌𝑡 +1 (29) 

does not exceed some tolerance level 𝜖𝑡𝑜𝑙 > 0. Here, 𝑘𝑡 +1
∗ = 𝐾0

(𝑥𝑡+1,𝑥𝑡+1
). The Eq. (29) has a geometrical 

interpretation, namely, it is a  square norm of the “residual vector” from the projection in the RKHS. Alternatively, it 

measures the “novelty” of the current input. If 𝛾𝑡 +1 is higher than a threshold value then the current input holds 

additional information as compared to the existing set of inputs, which is called “basis vector set” or BV set, and thus 

it should be added to this set. Proceeding sequentially, some of the inputs are left out and others are included in BV  

set. However, because of the projection (28) the inputs left out from BV set will still contribute to the final GP 

configuration – the one used for prediction and to measure the posterior uncertainties. But the latter inputs will not be 

stored and do not lead to an increase of the size of the parameter set [37]. 

To avoid computationally expensive inversion of the Gram matrix the recursive calculation of the inverse Gram 

matrix can be employed [37]: 

𝑄𝑡+1 = 𝑄𝑡
 + 𝛾−1(𝒆̂𝑡+1 − 𝒆𝑡 +1

)(𝒆̂𝑡+1 − 𝒆𝑡 +1
)𝑇, (30) 

where 𝒆𝑡 +1 is the 𝑡 + 1-th unit vector. All matrix inversion is excluded using this recursion relationship. The Gram 

matrix is guaranteed to be non-singular since only inputs with novel information about Gaussian process are included 

in the BV set and 𝛾𝑡 +1 > 0 guarantees non-singularity of the extended Gram matrix. 

B. Deleting a Basis Vector 

Recursive update of the GP parameters (22) is implemented while the BV set does not exceed the budget, namely, 

the maximum number of elements in BV. Thus, a pruning procedure should be introduced. When a new example is 

estimated as novel, this procedure should get rid of one of the basis vectors and replace it by the new input vector. 

Two different strategies can be applied for selection of the vector from the BV set. The first strategy supposed to add 

a novel input vector instead of the oldest basis vector [40]. The second strategy [37] proposes to replace the basis 

vector with the smallest error. The former might be preferred for a fast-varying process. However, here we will follow 

the later approach since it provides enhanced richness of the BV set.  
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The removal procedure assumes that the respective BV was added and the previous update step (25) was 

implemented. In this case 𝜶𝑡+1 has 𝑡 + 1 elements, and 𝐶𝑡+1 and 𝑄𝑡+1
  are the (𝑡 + 1) × (𝑡 + 1) matrices. If we assume 

that the last added element should be deleted the decomposition of the 𝜶𝑡+1, 𝐶𝑡+1 and 𝑄𝑡+1
  could be represented as 

follows: 

𝜶𝑡 +1 = [𝜶𝒕
𝒍

𝛼𝑟
], 𝐶𝑡+1 = [

𝐶𝑡
𝑙 𝒄𝑟

𝒄𝑟 𝑇 𝑐𝑟
], 𝑄𝑡+1 = [

𝑄𝑡
𝑙 𝒒𝑟

𝒒𝑟 𝑇 𝑞𝑟
] , (31) 

where 𝐶𝑡
𝑙 and 𝑄𝑡

𝑙 are 𝑡 × 𝑡 sub-matrices extracted from the (𝑡 + 1) × (𝑡 + 1) matrices 𝐶𝑡+1 and 𝑄𝑡+1
 . For the sake of 

simplicity, this representation is shown for the case when the last element should be removed, however, similar 

partitioning could be done for a general case. Updating equations for the element deleting case are the following: 

𝜶̂ = 𝜶𝒕
𝒍 − 𝛼 𝑟

𝒒𝑟

𝑞𝑟
,

𝐶 = 𝐶𝑡
𝑙 + 𝑐𝑟

𝒒𝑟 𝒒𝑟 𝑇

𝑞𝑟 2

𝑄 ̂ = 𝑄𝑡
𝑙 −

𝒒𝑟 𝒒𝑟 𝑇

𝑞𝑟
,

−
1

𝑞𝑟
[𝒒𝑟 𝒄𝑟 𝑇 + 𝒄𝑟 𝒒𝑟 𝑇 ] , (32) 

where 𝜶̂, 𝐶  and 𝑄 ̂ are the parameters after the deletion of the last basis vector and 𝜶𝒕
𝒍, 𝐶𝑡

𝑙, 𝑄𝑡
𝑙, 𝛼 𝑟, 𝒄𝑟 , 𝒒𝑟 , 𝑐𝑟  and 𝑞𝑟 

are taken from GP parameters before deletion.  

To decide the element of the BV set to be deleted a score measure for each element i is calculated 

𝜀𝑖 =
|𝛼𝑡+1(𝑖)|

𝑄𝑡+1(𝑖,𝑖)
. (33) 

The basis vector with minimal score (33) is deleted. This method provides deleting of a basis vector from the BV 

set with minimal loss of information. Finally, the budgeted sparse GP algorithm is summarized by Algorithm 1. 

 

Algorithm 1 Budgeted sparse GP algorithm  

0: Initialize the BV set with an empty set, maximum number of the 

set elements with d, a  tolerance with 𝜖𝑡𝑜𝑙 , 𝛂, 𝐂, 𝐐 with empty values. 

For each new measurement (𝑥𝑡+1 , 𝜍𝑡+1
) iterate 

 

1. Compute 𝒒𝑡+1, 𝒓𝑡+1, 𝑘𝑡+1
∗ , 𝒌𝑡+1, 𝒆̂𝑡+1  and 𝛾𝑡 +1. 

2. If 𝛾𝑡 +1 < 𝜖𝑡𝑜𝑙   then 

Perform a reduced update using (25). 

3. else  

Perform an update using (22). Add the current input to the BV set, 

and compute the inversed Gram matrix using (30). 

4. If | BV |>d then 

Compute scores for the BV elements via (33) find the vector 

corresponding to the lowest score, and delete it using (32). 

C. Control effectiveness estimation and IBKS adaptation loop 

Within the proposed framework the control efficiency is approximated via GP, which is characterized with its 

mean 〈𝑓𝑥
〉

  and covariance 𝐾 
(𝑥, 𝑥 ′). For smooth identification process the component of the input vector are 

normalized. The output observations are the instantaneous control efficiency values 𝜍  estimated from (5) by dividing 

the increment of state derivate 𝛥𝑥̇  by increment of control input 𝛥𝑢 

𝜍 𝑖
=

𝛥𝑥̇

𝛥𝑢
. (34) 

To avoid singularity of the estimation due to division in (34), we added additional check of the input data, namely, 
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𝛥𝑢 <  𝜖𝑢𝑡𝑜𝑙
. (35) 

Further, the estimated value of the control efficiency is supplied to the IBKS controller as a new value of a 

corresponding coefficient in 𝐵0. 

VI. Incremental Backstepping 

We compared the proposed GP augmentation for IBKS with other adaptive strategies based  on Recursive Least 

Square with exponential forgetting and Tuning functions. 

A. Recursive Least Square with Exponential Forgetting 

The effectiveness is estimated online using the Recursive Least Square (RLS) with exponential forgetting (EF), 

which is commonly used for the real-time system identification. The technique enables recursive computations of 

estimates to be carried out. The typical algorithm for EF RLS is  

ˆ ˆ ˆ( ) ( 1) ( ) ( ) ( ) ( ) ( 1) ,

( ) ( ) ( 1) ( ) ( ),

T

T

t t P t t y t t t

R t F t R t

I

t

F

t



 = − + − −
 

= − +

=

θ θ φ φ θ

φ φ

 

(36) 

where 𝜽(𝑡) ∈ 𝑅𝑛 is the estimates of the parameter vector at time step t, 𝝋(𝑡) ∈ 𝑅𝑛  is the observer data vector, 𝑦(𝑡) ∈
𝑅 is the system output vector, 𝑃(𝑡) ∈ 𝑅𝑛×𝑛  is the covariance matrix, 𝑅(𝑡) ∈ 𝑅𝑛×𝑛  is the information matrix that is 

inverse of the covariance ma trix, 𝐹(𝑡) ∈ 𝑅𝑛 ×𝑛  is the forgetting matrix, 𝜇 ∈ (0,1) is the scalar forgetting factor. 

The identification problem is stated as follows: 

𝝇 ≅ 𝑨 𝜽, (37) 

where the response variable vector is the following 

sup sup sup

0 0 0
ˆ ˆ ˆ[ (1) (1) (2) (2) ... ( ) ( ) ]ind ind ind

m s u m s u m s uy W D B y W D B y N W D B N=  −   −   − ς u u u
, 

𝛥𝑦̇𝑚
𝑖𝑛𝑑 (1) 𝛥𝑦̇𝑚

𝑖𝑛𝑑 (2)  . . .    𝛥𝑦̇𝑚
𝑖𝑛𝑑 (𝑁) is the record of derivative increment for m component of the dynamic state 

vector 𝒚, the predictor variable vector is based on the incremental signal for the control surface under study 

( ) ( ) ( )u 1 u 2 ... u
T

ind ind ind N =    A
, 

𝐷𝑢  is the allocation matrix, 𝑊𝑠  is the amplification matrix required to produce the supporting control signal 𝒖𝑠𝑢𝑝 . 

Elements of 𝑊𝑠  specify how the individual actuator signals differ from the generic one. The terms −𝑊𝑠 𝐷𝑢𝐵̂0𝒖𝑠𝑢𝑝 (𝑖)
, 

which are responsible for the subtraction of contribution from the supporting signal to the flight dynamics, are 

introduced in order to obtain the pure dynamics produced by the treated control surface.  

B. Tuning functions 

In the current section, we would like to design an adaptive augmentation to the baseline IBKS controller using the 

tuning function (TF) approach [17].  

Here, we assume that actuator failure causes degradation of the actuation effectiveness. The dynamics of the 

general tracking error dynamics 𝒛𝑔 = [𝒛𝜉
𝑇  𝒛𝑦

𝑇 ]
𝑇

∈ 𝑅7, which is measurable system state, is introduced with the 

following equations  
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( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )( ) ( )

0 0

0 00

, , ,

, , , , , ,

,g g g
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d

g

t t t t

t t B t t t t

T =

−

−

=

−

−

−

−−

z z z

z y y z u z z χ

z ξ ξ ω ω

ω u u
 

(38) 

where 𝝃̇𝑑 , 𝝃̇0, 𝒚̇, 𝒚̇𝑑  are essentially locally bounded, uniformly in t functions, 𝐵0
(𝑡)  is the effectiveness matrix, an 

unknown, linear-parameterizable, essentially locally bounded function, 𝝌̇ is influence of the CF, which is essentially 

locally bounded function, 𝒖 is the baseline control input. 𝐵̂0: ℝ4×14 × [0,∞) → ℝ
4×14

 is the estimate of 𝐵0. We assume 

that there exists an unknown parameter vector 𝜽 ∈ ℝ
𝑘
 to be estimated such that j-column 𝒃𝑗 ∈ ℝ

𝑘
 of 𝐵̂0

𝑇 can be 

represented as  

0 0 0
ˆˆ ( , )T

j j t= b ξ ,y ,u θ
, 

(39) 

where 𝛷𝑗
𝑇 (𝝃0,𝒚0, 𝒖0 , 𝑡): ℝ3×4×14 × [0,∞) → ℝ

4×𝑘
 is the regressor function. 

The estimation error is  

𝐵̃0 = 𝐵0 − 𝐵̂0. (40) 

In this case, the parameter estimation errors and its derivative are the following 

𝜽 = 𝜽 − 𝜽,  𝜽̇ = −𝜽̇. (41) 

For such a system, Lyapunov-based estimation algorithm can be designed  

𝜽̇ = −𝛤𝛷𝑗
𝑇 (𝒙0, 𝒖0 )𝒛̄𝑦 𝛥𝒖𝑗 , (42) 

where 𝛤 ∈ ℝ
+

 are positive adaptation gains, 𝛥𝒖𝑗  is jth element of 𝛥𝒖. Proof of stability could be found in [24]. 

VII. Simulation Results 

In this section, a simulation study of the ability of the discussed algorithms to tackle the failures is considered.  A 

nonlinear model of the Boeing 747 aircraft, courteously provided by the consortium partner TU Munich, is used to 

validate the designed approach. This model is a variant of the GARTEUR RECOVER benchmark simulator [7]. The 

Boeing 747 is a large, transport aircraft with four wing-mounted engines. It has a length of approximately 70 meters, 

wingspan of 60 meters, and the maximum take-off weight is greater than 300 tons. The actuation of the Boeing 747 

simulator corresponds to four ailerons, four elevators, two rudders, and four engines. 

The nominal condition from which the simulation starts is a  straight flight towards North with 340 knot of True 

Airspeed (TAS) and at an altitude of 5000 ft. The flight is developed under a low turbulence condition defined by a 

20-feet wind of 15 m/s in North direction and a turbulence intensity exceedance probability of 0.01. In the current 

research, a longitudinal motion is considered. 

The algorithms are validated in the longitudinal motion of the aircraft. It is assumed that uncertainties are in the 

effectiveness of the elevator to control pitch. Three different scenarios were considered. In the first scenario, a  control 

efficiency of the one of the elevators was reduced by half; in the second and third scenarios, nonlinear dynamics of 

the first and second order in one of the actuators, correspondingly, was added. Further explanation is provided bellow.  

For the GP identification, we had 𝑥 𝑖 =
𝑉𝑖

𝑉𝑛𝑜𝑟𝑚
, where the normalizing constant 𝑉𝑛𝑜𝑟𝑚 = 345  knot guarantees that the 

corresponding RBF centres are close to the unity. To have a proper comparison with EF RLS, we had the similar 

selection of the output data, namely,  𝜍𝑖 = 𝛥𝑦̇𝑖
𝑖𝑛𝑑 − 𝑊𝑠 𝐷𝑢 𝐵̂0𝛥𝒖𝑖 . The maximum number 𝑑  of the BV set was 3, 𝜖𝑡𝑜𝑙 =

1𝑒 − 4, 𝜖𝑢𝑡𝑜𝑙
= 1𝑒 − 4, 𝜎0

2 = 5𝑒 − 9. To obtain the appropriate overlapping between neighbouring kernels the RBF 

width is specified as follows 
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𝜎 =
0.2

4(√𝑑−1)2. (43) 

Forgetting function of EF RLS was 𝐹 = 0.9999. Adaptation gain for the TF update law was 𝛤 = 150.  

A. Two Failures and Loss of Effectiveness 

In the current section an ability of the developed controller is evaluated in a case of two failures (stuck -in-position) 

and 50% loss of effectiveness of the third elevator.  

The results are presented in Fig.2. Here it is assumed that two elevators failed before t = 0 s. For the adaptive 

algorithms, it is considered that these two failures detected and isolated also before t = 0 s, which means that 

corresponding coefficients equal to zero in the 𝐵̂0. The loss of effectiveness of one the two rest elevators simulated at 

t = 5 s. 

 

 

Fig.2 Two failures and loss of effectiveness 

On the top left subplot, estimation of the failed elevator effectiveness obtained with GP is demonstrated. One can 

see that the identification is finished within 230 s after the “failure”. At the same subplot, estimations provided by EF 

RLS and TF are also added for comparison purposes. One can see that performance of the GP is pretty similar to EF 

RLS, however, TF is much slower. It should be mentioned, that the slow estimation rate exhibited by TF is due to low 

adaptation gain and relatively small identif ication steps. They might be increased to improve the estimation rate, 

however, further increase of rate/amplitude caused loss of stability by the algorithm in other test cases. On the left 

bottom subplot, the pitch angle 𝜃 is presented, while in the bottom right figure the pitch rate q is presented. On the 

right-top subplot the real effectiveness of two working elevators, namely, inner and outer elevators, are demonstrated. 

One can see that at t=5 s the effectiveness of the inner elevator degraded (as assumed by the scenario). Effectiveness 

of the elevators failed before t=0 s is zero. 

From the obtained results one can conclude that the pure IBKS is quite robust to such type of failures, especially, 

when actuation redundancy is available. When the mismatch between the real and model control efficiency is constant, 

i.e. when the system input affine property is conserved, the IBKS is able to cancel the produced uncertainty [22,26,43]. 

Nevertheless, the developed on-line estimations of control effectiveness could improve the control quality. This 

example shows that the proposed on-line GP identification provides good tracking of the variation of the control 

effectiveness. 
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B. First order dynamics 

Following the methodology proposed in [22], we also test the ability of the algorithms to counteract the 

uncertainties when the system input affine property was broken. This section considers the presence of the first order 

unmodeled actuator dynamics. 

High level of redundancy (four elevators) allows conserving the input affine property for Boeing 747 even  for the 

case of appearance of unmodeled dynamics in one of the actuators. To simulate the conditions where the input affine 

property is not valid anymore, we assume here that two elevators failed before t = 0 s. For the adaptive algorithm, 

similar to the previous scenario, it is considered that two elevator failures were detected and isolated before t = 0 s and 

those corresponding coefficients equal to zero in 𝐵̂0. Meanwhile, for the pure IBKS, it is considered, that the algorithm 

does not have access to new information about the control effectiveness, and thus, uses initial matrix  𝐵0. At t = 150 s, 

the nonlinear unmodeled dynamics arises at one of the two working actuators as a result of a failure. It was reported 

that many known actuator failures can be simulated with the first or second order actuator dynamics [45,46]. For the 

current scenario, we assumed the first order dynamics, represented with the following equation  

( )
1

( ) 2 1F s s
−

= +
. (44) 

Comparison of behaviours of the GP-adaptive IBKS with other IBKS modification are presented in Fig.3. 

 

  

Fig.3 1-st order nonlinear dynamics 

The top-level subplot demonstrates identification of the control effectiveness implemented with GP, EF RLS and 

TF techniques. The middle and bottom subplots show the parameters of the state vector 𝜃 and 𝑞 . The first order 

actuator dynamics arose at t = 5 s has a significant effect on the performance of the IBKS algorithm, namely, weakly 

damped oscillations are observed. Before t = 150 s, the IBKS demonstrates robustness to failures for small demanded 

steps, namely, even with two failed elevators it follows the reference signal. At the same time, when at the moderate 

demanded pitch steps one can observe weakly damped oscillations in 𝜃 and 𝑞 . These oscillations are much heavily 

dumped when any of the adaptation augmentation is applied.  

The figure manifests that the on-line GP identification is significantly faster than other methods that leads to 

reduced overshoots in pitch as compared to other methods and, especially, to pure IBKS. GP is capable of relatively 

fast adaptation as compared to other considered algorithms even in case of small noise-to-signal ratio at t < 150 s. 
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C. Second order dynamics 

Degradation of the IBKS performance due to loss of the input affine property because of presence of uncertainty 

in the form of non-linear dynamics in actuators is shown in the previous section. In this simulation experiment, the 

condition is examined further, namely, presence of non-linear dynamics of the second order in one of the actuators is 

presented. Similar to the previous test case, we also assume that two elevators failed before t = 0 s; for the adaptive 

controller, it is considered that these two failures detected and isolated before t = 0 s and those corresponding 

coefficients equal to zero in 𝐵̂0. At t = 150 s at the one of the rest actuators the 2-nd order unmodeled dynamics arises 

as a result of failure: 

( )
1

2( ) 2 1F s s s
−

= + +
. 

(45) 

Shown in Fig.4 is comparison between behaviour of IBKS and Adaptive IBKS in the considered scenario. 

 

 

Fig.4 2-nd order nonlinear dynamics 

Similar to the previous figures, the transition processes of state vector 𝜃 and 𝑞  are demonstrated. From the figure, 

one can see that under the presence of 2-nd order dynamics the IBKS control suffers from the instability in the form 

of high-amplitude limit-cycle oscillations. Such a nonlinear dynamics is caused by interaction between failed and non-

failed elevators. Meantime, adaptively augmented IBKS manifests the system stability and good tracking performance. 

Three different adaptive strategies are scrutinized in Fig.5. All three algorithms provide stability. Similar to the 

previous scenario, GP demonstrates the fastest adaptation rate and thus the best tracking performance among 

considered methods because it “switch off” harmful interaction of the failed and non-failed elevator.  
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Fig.5 Comparison of different estimators: 2-nd order nonlinear dynamics 

VIII. Conclusion 

Incremental Backstepping is recently developed technique with a reduced dependency on on-board aircraft model. 

This approach uses estimates of the state derivatives and the current actuator states to linearize the flight dynamics 

with respect to current state. Our results and results of the other researchers revealed robustness of the IBKS to actuator 

failures when the system remains input affine, even for the case of multiple failures. However, as we have shown in 

the current study, in severe conditions, with a combination of multiple failures and presence of unmodelle d actuator 

dynamics, the system dynamics might loss its input affine property. Such conditions might be a case for not only 

scenarios considered in the current study but also for some others, for example, in case of partial loss of effectiveness 

and transport delays. As a result, the stability of the system cannot be guaranteed anymore and adaptive augmentation 

is required to compensate the unmodelled dynamics. 

In this research, we proposed GP based adaptive augmentation to IBKS, which uses budgeted sparse GP algorithm 

for on-line identification of control effectiveness. GP is an elegant and efficient non-parametric estimation procedure 

developed within the Bayesian paradigm. To make Bayesian interference trackable on -line, the posterior is projected 

to the closest Gaussian process by a single sequential sweep through the examples. Within the approach, the number 

of basis vectors is limited with predefined “budget” to make the algorithm computationally efficient. The input vectors 

providing the maximum information richness to the basis set, namely, having maximum scores, are selected as the 

basis vectors, while basis vectors with lowest scores are deleted from the set. 

Performance of the GP-adapted IBKS was studied in simulations of three different failure scenarios developed for 

Boeing 747 involving multiple failures with partial loss of effectiveness, unmodelled actuator dynamics of the first 

and the second orders. Our results manifested improved stability and tracking performance characteristics of the IBKS 

controller with control efficiency estimations as compared to the baseline IBKS. More precise information fed to the 

baseline controller by the estimator improved tracking performance for the case of loss of effectiveness, cancelled 

undesired oscillations observed for the IBKS in case of first order actuator dynamics and prevented from a loss of 

stability for the second-order actuator dynamics. Performance of the adaptive IBKS based on the GP estimator is 

evaluated by comparison with EF RLS and TF. For the partial loss of efficiency, GP and EF RLS demonstrated pretty 

similar results, however, for the cases of unknown nonlinear actuator dynamics, GP showed faster adaptation leading 

to improved tracking performance. It is well known that EF RLS works well, ho wever it shows less efficiency for 
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time varying process. TF algorithm demonstrated slower adaptation as a result of small adaptation gain, higher 

adaptation gains leaded to loss of stability. Additional top-level algorithms, switching-on and switching-off TF-

estimations might be applied to make possible higher adaptation gains. However, such additional structures might 

make the overall control algorithm more complex. We could conclude that GP based adaptation loop augmenting 

IBKS provides the best overall result among considered methods. 
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