
Citation: Perk, B.E.; Inalhan, G. Safe

Motion Planning and Learning for

Unmanned Aerial Systems. Aerospace

2022, 9, 56. https://doi.org/

10.3390/aerospace9020056

Academic Editor: Joost Ellerbroek

Received: 21 December 2021

Accepted: 17 January 2022

Published: 22 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

aerospace

Article

Safe Motion Planning and Learning for Unmanned
Aerial Systems
Baris Eren Perk 1,* and Gokhan Inalhan 1,2

1 Faculty of Aeronautics and Astronautics, Istanbul Technical University, Istanbul 34469, Turkey
2 School of Aerospace, Transport & Manufacturing, Cranfield University, Bedfordshire MK43 0AL, UK;

inalhan@cranfield.ac.uk
* Correspondence: perkb@itu.edu.tr

Abstract: To control unmanned aerial systems, we rarely have a perfect system model. Safe and
aggressive planning is also challenging for nonlinear and under-actuated systems. Expert pilots,
however, demonstrate maneuvers that are deemed at the edge of plane envelope. Inspired by
biological systems, in this paper, we introduce a framework that leverages methods in the field of
control theory and reinforcement learning to generate feasible, possibly aggressive, trajectories. For
the control policies, Dynamic Movement Primitives (DMPs) imitate pilot-induced primitives, and
DMPs are combined in parallel to generate trajectories to reach original or different goal points. The
stability properties of DMPs and their overall systems are analyzed using contraction theory. For
reinforcement learning, Policy Improvement with Path Integrals (PI2) was used for the maneuvers.
The results in this paper show that PI2 updated policies are a feasible and parallel combination
of different updated primitives transfer the learning in the contraction regions. Our proposed
methodology can be used to imitate, reshape, and improve feasible, possibly aggressive, maneuvers.
In addition, we can exploit trajectories generated by optimization methods, such as Model Predictive
Control (MPC), and a library of maneuvers can be instantly generated. For application, 3-DOF
(degrees of freedom) Helicopter and 2D-UAV (unmanned aerial vehicle) models are utilized to
demonstrate the main results.

Keywords: UAV; artificial intelligence; contraction theory; nonlinear control; primitives; reinforce-
ment learning; imitation learning; maneuvers

1. Introduction

Unmanned aerial systems have gained significant importance in the last few decades.
Inherently, they are more agile and more suitable for working in dangerous areas in com-
parison with manned systems. Accordingly, optimization and learning techniques are
employed in their applications to increase the number of UAV types and extend their
operation range. In [1], centralized path planning based on reinforcement learning is imple-
mented in a combat aerial vehicle fleet in order to avoid enemy defense systems. To localize
radio frequency emitting targets in the operation area, multiple UAVs were deployed in [2]
using Particle Filter and Extended Kalman Filter algorithms and vision-based detection.
For the design optimization and mathematical modeling of unmanned aerial vehicles,
a nonlinear lifting line method is proposed in [3]. This new modeling methodology is
applied on the Aerospace Research Center (ARC) UAV in order to demonstrate that faster
and cheaper prototyping is possible for future UAV models.

Despite enormous advancements in learning and optimization research, generating
safe and aggressive movements is a rather hard problem for engineers to solve. Actuator
saturation and nonlinear and nonholonomic dynamics are key issues. Most of the appli-
cations of UAVs, such as agriculture, intelligence, surveillance, and reconnaissance, only
require trimmed flight. However, humans, as well as animals, are experts in generating

Aerospace 2022, 9, 56. https://doi.org/10.3390/aerospace9020056 https://www.mdpi.com/journal/aerospace

https://doi.org/10.3390/aerospace9020056
https://doi.org/10.3390/aerospace9020056
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/aerospace
https://www.mdpi.com
https://orcid.org/0000-0002-4490-8358
https://doi.org/10.3390/aerospace9020056
https://www.mdpi.com/journal/aerospace
https://www.mdpi.com/article/10.3390/aerospace9020056?type=check_update&version=1

Aerospace 2022, 9, 56 2 of 19

seemingly hard but stable trajectories despite environmental and dynamic challenges.
In acrobatic maneuvers, expert pilots demonstrate maneuvers that are deemed at the edge
of the flight envelope.

To generate feasible maneuvers, on the other hand, pilot-executed trajectories are used
in [4] to develop nonlinear dynamic models of helicopters. Using this model, intuitive
control strategies derived from pilot behaviors are demonstrated in a hardware-in-the-loop
simulation environment. Multiple expert executed flight demonstrations are also used
in [5] to generate a desired trajectory. Additionally, a receding horizon differential dynamic
programming controller is employed for a local model of the helicopter, which is learned
from previous flight demonstrations. In [6,7], optimization methods are first employed
and then performance is enhanced iteratively through experimentation. In recent years,
nonlinear controller designs [8–11] have also been employed to generate safe maneuvers.
For safe path planning [12–15], on the other hand, cost functions are utilized to minimize the
flight envelope. Under these approaches, however, conservative maneuvers are generated
in comparison with pilot-induced trajectories.

In general, choosing an optimization/learning methodology is only one aspect of
the problem. In many scenarios, it is crucial to guarantee the safety of the system while
learning desired behaviors. As a possible solution, Lyapunov-based methods [16–18] were
proposed to solve reinforcement learning problems. However, there is no common rule for
finding a suitable Lyapunov function and using Lyapunov functions; if any such function
exists, it does not necessarily result in aggressive maneuvers.

For optimization problems, the stability of the receding horizon scheme can be guar-
anteed by adding a terminal cost function consisting of a Control Lyapunov Function (CLF)
or by applying a sufficient prediction horizon without a terminal cost function, where
a general cost function qualifies as Lyapunov function [19]. In [20], Nonlinear Model
Predictive Control is applied to a nonholonomic mobile robot with a kinematic model
for path following. The stability of the system is guaranteed by appropriately choosing a
prediction horizon [21]. As shown in [20], the maneuvers were carefully selected to find
the prediction horizon. Similar to reinforcement learning applications, finding a CLF in
optimal control problems is not an easy task, and CLF eliminates other possible, may be
more effective, solutions. Therefore, such methods lead to conservative solutions in order
to guarantee stability.

For biological systems, on the other hand, one can naively guess that learning is
achieved by following two sequential steps. First, the movement is imitated, and, next,
the imitated behavior is improved through trial and error. It was observed in humans
pilots that maneuvers performed with remote helicopters are often repeatable [4]. Each
specific maneuver type is predictable in its own sequencing and duration, which suggests a
primitive structure. In animals, experiments also show that kittens that have been exposed
to adult cats retrieve food much faster in comparison to the control group [22]. Moreover,
experiments on monkeys [23,24] also suggest that movements follow a virtual trajectory,
which is independent of initial conditions and closely related to feedback control. This
finding is also supported by other experiments conducted on frogs [25,26].

The most interesting discovery in the experiments concerning frogs was that the
fields generated by activation on the spinal cord follow a principle vectorial summation.
Simultaneous stimulation of two different areas of the spinal cord resembles the vectorial
summation of the separate activation of each of these areas (See Figure 1) [27]. Generally, it
is found that simultaneous stimulation fields and vectorial summations were similar in 87%
of the experiments. As mentioned in [28], the vector summation of force fields suggests
that nonlinear forms of interactions among neurons and between neurons and muscles is
more or less eliminated. With few force fields stored in the spinal cord, one may represent
motor primitives using the superposition of spinal fields:

D(q, q̇, q̈) = u
K

∑
i=1

αiρi(q, q̇, q̈), (1)

Aerospace 2022, 9, 56 3 of 19

where D and u represent system dynamics and force, respectively. In this equation, force
fields (ρi) are weighted by scalar and positive coefficients, (αi). In [28], it is also suggested
that these spinal fields are selected using supraspinal signals by evaluating how much each
field contributes to the overall field.

Figure 1. Costimulation fields (&) and summation fields (+) of (A) and (B) [27].

As a result, this study is focused on learning about and improving feasible trajectories
inspired by biological systems. We introduce a framework that leverages methods in the
field of control theory and reinforcement learning. We show that we are in the stable
flight regime. In practice, inner-loop nonlinear controllers can mainly be used to avoid
unmodeled dynamics and disturbances. For primitive structures, DMPs [29] are selected
to imitate such primitives of motion. In DMPs, the kinematic trajectories (i.e., positions,
velocities, and accelerations) of the motion are generated and converted to motor commands
using feedforward controllers, probably by an inverse dynamic model and stabilized by
feedback controllers. It is assumed that other non-linearities shall be handled by the
controller at the motor execution phase. Detailed definitions of the DMPs can be found in
Appendix A. In our study, movement primitives are also combined in parallel to generate
feasible trajectories to reach original or different goal points.

Instead of constructing Lyapunov functions for stability, we applied contraction anal-
ysis [30] for DMPs, as well as for the reinforcement learning. In general, contraction is a
form of stability where all trajectories with different initial conditions contract into a single
trajectory. As mentioned in the discussion of previous experiments above, this form of
stability is also implied in the structure of virtual trajectories. Additionally, we believe
that contraction analysis should be studied for learning, as it was hypothesized in [31] that
humans generate stable trajectories so that perturbations have less effect and require little
correction; as a result, humans exploit contraction regions.

For reinforcement learning, PI2 [32] is used. In PI2, trajectories are updated using
stochastic Hamilton–Jacobi–Bellman (HJB) equations and direct policies are learned by
approximating a path integral, in which the statistical inference problem is solved using
sample roll-outs. Only one open parameter, exploration noise, is required in this learning

Aerospace 2022, 9, 56 4 of 19

method, and updates are not limited by numerical instabilities, since neither matrix inver-
sions nor gradient learning rates are needed. As a result, it is shown that the performance of
PI2 is significantly better than that of gradient-based policy learning, and it can be applied
in high-dimensional problems [32].

Although, there are successful studies using pilot-induced trajectories for UAVs, our
goal in this research is to design a stable biologically inspired framework, which can be
used to imitate and regenerate feasible, possibly aggressive, trajectories. The parallel
combination of dynamic movement primitives coupled with reinforcement learning is
firstly introduced for motion planning, and contraction analysis is used for the stability
analysis. In general, the contribution of this paper is three-fold. First, while DMPs with
contraction analysis [33] and PI2 with DMPs [32] have been studied before, our proposed
methodology in Section 2 encompasses all three methods to generate biologically inspired,
feasible and possibly aggressive maneuvers. Second, DMPs are combined in parallel to
guarantee stability. Third, it is shown that PI2 updated policies are feasible and parallel
combination of different updated primitives transfer the learning in contraction regions.

The remainder of the paper is structured as follows. In Section 2, we introduce the
methodology and make several remarks for our study. First, DMP can be directly used in
controller design, where additional feedback controllers as proposed in [34] are not required.
Second, offline learning can be performed using feasible trajectories. Third, having library
of motion primitives, one can combine primitives instantly in order to generate feasible
trajectories in volatile environments. In Section 3 we demonstrate our results on 3-DOF
helicopter and 2D UAV models.

2. Methodology

As mentioned in Section 1, our approach mainly encompasses the methods listed below:

• Contraction Theory.
• Dynamic Movement Primitives.
• PI2 Reinforcement Learning Algorithm.

In our methodology, firstly, maneuvers generated by human operators or optimization
programs such as MPC are imitated by DMPs. These primitives are then combined in
parallel in such a way that the resultant primitive is also contracting. Subsequently, PI2 is
applied to improve the performance of the combined primitive. For the methodology, we
will analyze the compatibility and applicability of these methods and theories below.

2.1. Contraction Analysis of Systems with DMPs

For a system defined below

ẋ = f (x, t), (2)

the system is contracting [30], if the infinitesimal displacement at a fixed time:

δẋ =
∂ f (x, t)

∂x
δx, (3)

decays over time. Therefore, the Jacobian ∂ f
∂x should be a negative definite in that region.

Similar to linearizing the system at equilibrium points, we can use Jacobian to study
the convergence of trajectories irrespective of initial conditions. This requirement, however,
is a sufficient, but not a necessary, condition. One can define δz = Θδx, where Θ is a square
matrix, and length is defined δzTδz = δxT Mδx, where M is a metric. Hence, the negative
definitiveness of a general Jacobian, F = (Θ̇ + Θ ∂ f

∂x)Θ
−1, is a necessary and sufficient

condition for the system to contract [30].
In [33], it is demonstrated that discrete DMPs contract in hierarchy. As DMPs are

learned from feasible trajectories, our goal is to study the stability of the system. In other

Aerospace 2022, 9, 56 5 of 19

words, we aim to find out if the overall system will contract to the desired trajectories. For
the analysis, the system differential equation can be defined in the following form:

ẋ = f (x) + B(x)u (4)

Then, virtual displacement dynamics is defined as:

δẋ(t) =
∂(f (x) + B(x)u)

∂x
δx + B(x)δu(t). (5)

In a scalar case where Bu = − f (xre f) + Kp(xre f − x), the virtual displacement dynam-
ics is reformulated as:

δẋ(t) =
∂
(

f (x)− Kpx
)

∂x
δx +

∂
(

Kpxre f − f (xre f)
)

∂xre f
δxre f . (6)

If the reference system is contracting, its effect will be bounded and will decay [30]
as δxre f → 0, and the system will contract in hierarchy with a proper choice of Kp, so that
∂(f (x)−Kpx)

∂x is uniformly negative. This is analogous to pole placement in linear control
theory. Overall, if the system is designed to contract and a particular solution of the system
is xre f , the system will converge to the reference trajectory. In general, the stability of these
derived feasible trajectories can be studied using several methods in contraction theory, as
summarized in Appendix B.

For DMPs, let’s assume the standard manipulator equation [35]:

q̈ = H(q)−1(C(q, q̇)q̇ + g(q) + u) (7)

u = −g(q) + Kp(qd − q) + Kd(q̇d − q̇) (8)

q̈d = D(qd, q̇d), (9)

where H(q) is a positive definite inertia matrix, C represents the Coriolis and centripetal
forces, g is the force of gravity, q is the joint angle, and u is forces/torques. D also stands for
the DMP equations. Since DMP is contracting, its effect on Equation (7) will be bounded,
and DMP will act as an exponential decaying disturbance to the original system. As a
result, the system contracts to a particular solution with appropriate choices of K.

For the combination of primitives defined in Appendix B, let’s again take the standard
manipulator equation with DMPs. If any two or more primitives are contracting, then
the linear combination of the reference system in the system dynamics is also contracting
such that:

q̈ = H(q)−1(C(q, q̇)q̇− Kpq− Kd q̇ +
n

∑
i=1

αi(Kpqdi
+ Kd q̇di

), (10)

where ∑n
i=1 αi = 1. It is important to note that, if there is no singularity, any combination of

these torques will be within the limits of the torque constraints.
We can combine primitives for the same or different goals as shown in Figure 2.

In both approaches, the areas in between primitives are reachable. It is possible to combine
primitives that generate trajectories that pass through these areas.

One can observe that the combination of system differential equations necessitates the
combination of primitives. As a result, only the controlled section of differential equations is
modified in Equation (10). Since DMP weights are designed linearly, a simple combination
of weights is enough to achieve the desired results. In addition, primitives can also be
combined serially. It was shown in [33] that obstacle avoidance maneuvers can be divided
into primitives. For this type of combination, it is also possible to modify DMPs using their
own parameters.

Aerospace 2022, 9, 56 6 of 19

Figure 2. Primitive Combinations.

2.2. Using Reinforcement Learning with Contraction Analysis

In the last few decades, Reinforcement learning has attracted attention as a learning
method for studying movement planning and control [36]. Reinforcement learning is a
concept that is based on trial and error, typically the constant evaluation of performance in
a surrounding environment is also required. In general, reinforcement learning requires an
unambiguous representation of states and actions, as well as a scalar reward function.

Reinforcement learning is simple in its form, but it is mostly regarded as impractical
due to the curse of dimensionality. Since value function approaches remain problematic in
high dimensions, direct policy learning is utilized as an alternative method. Even for direct
policy learning, however, numerical issues and the handling of different parameters still
need to be addressed.

To compensate for such issues, a new methodology of probabilistic learning was
derived on the basis of stochastic optimal control and path integrals. Policy Improvement
with Path Integrals (PI2) [32] connects between value function approximation using the
stochastic HJB equations and direct policy learning by approximating a path integral, that is,
by solving a statistical inference problem from sample roll-outs. The resulting algorithm is
numerically robust, and only one parameter, exploration noise, is needed for its application.

Such methodology was first applied in stochastic optimal control. For optimal control,
the cost functions are defined as:

R(τi) = ωtN +
∫ tN

ti

rtdt (11)

rt = r(xt, ut, t) = qt +
1
2

uT
t Rut, (12)

where ωtN = ω(xtN) is a terminal cost at time tN , and rt denotes the immediate cost at time
t. Moreover, q(t) and R represent the immediate cost at time t and the semi-definite weight
matrix of control cost, respectively.

For a general system,

ẋt = f(xt, t) + G(xt)(ut + εt) = ft + Gt(ut + εt), (13)

we aimed to find a control input, ut, which minimized the value function:

V(xti) = Vti = min
uti :tN

Eτi [R(τi)], (14)

Aerospace 2022, 9, 56 7 of 19

where Eτi is (τi) for all trajectories. The stochastic HJB equation [37,38] for the optimal
control problem is shown below:

−∂tVt = min
u

(rt + (∇xVt)
T + Ft +

1
2

trace((∇xxVt)GtΣεGT
t)), (15)

where Ft = f(xt, t) + G(xt)ut.
In [32], optimal control is studied extensively. Subsequently, their study was extended

to reinforcement learning, in which a system model is not used. In their approach, the
desired state is taken as an input, as action is viewed as any input to the control system.
For such a control structure:

q̈ = H(q)−1(−C(q, q̇)− v(q)) + H(q)−1u (16)

u = Kp(qd − q) + KD(q̇d − q̇) (17)

q̈d = G(qd, q̇d)(θ + εti). (18)

Here, Equation (18) generates the desired trajectories. Since only the controlled differ-
ential equation is used in path integral formulation, only Equation (18) is needed to apply
reinforcement learning. Uncontrolled sections of the system dynamics are not required.

Applying the PI2 algorithm to the controlled section of DMPs, the equations of the
algorithm [32] are formulated below:

S(τi,k) = ωtN ,k + ΣN−1
j=i qtj ,k +

1
2

ΣN−1
j=i+1(θ + Mtj ,kεtj ,k)

TR(θ + Mtj ,kεtj ,k) (19)

Mtj ,k =
R−1gtj ,kgT

tj ,k

gT
tj ,k

R−1gtj ,k
(20)

P(τi,k) =
e−

1
λ Sτi,k

ΣK
k=1e−

1
λ Sτi,k

(21)

δθti = ΣK
k=1[P(τi,k)Mti ,kεti ,k] (22)

δθj =
ΣN−1

i=0 (N − i)wj,ti [δθti]j

ΣN−1
i=0 (N − i)wj,ti

(23)

θ(new) = θ(old) + δθ (24)

Under this setup, Equation (19) computes the cost function at each time step, i, for
each trial, k, in the epoch. Equation (20) represents the projection matrix onto the gj,k,
i.e., the basis function from the system dynamics, under the metric R−1. Equation (21)
determined the probability of each trial. We can simply infer from P(τi,k) that lower cost
trajectories have higher probabilities. Equation (22) determines the parameter update at
each time step. It can easily be seen that trajectories with lower cost contribute more to the
parameter update. Equation (23) averages the parameter update, δθti , of each time step.
Finally, Equation (24) updates the old parameter.

Using this formulation, we aim to understand the stability aspect of the system, and
whether the system contracts from the initial conditions. It was already shown in [33]
that discrete DMPs contract. Using hierarchical and other properties of contraction theory,
our goal is to find contracting regions for the system setup. One may again find that the
probability distribution of P(τi,k) serves as a tool for the parallel combination of inputs
while updating the desired trajectories. If each roll-out is contracting, we can conclude that
the updated trajectories will also be contracting. This is analogous to creating an envelope
as shown in Figure 2. We can use controllers, such as the one defined in Equation (44), in
order to generate contracting trajectories and apply them to reinforcement learning.

Aerospace 2022, 9, 56 8 of 19

Moreover, each learned DMP is combined in order to generate a new primitive with a
different goal point. Such combination is shown below:

ẏd =α1(f (g1, yt, zt) + gθ1) + · · ·+ αn(f (gn, yt, zt) + gθn)

= f (
n

∑
i=1

αigi, yt, zt) + g
n

∑
i=1

αiθi,
(25)

where ∑n
i=1 αi = 1 and αi > 0. Since the new primitive is contracting, we can further

continue learning using PI2 updates for this primitive. In the PI2 learning algorithm
(Equation (22)), we see that each parameter, θti ’s, for K roll-outs is updated as shown below:

δθti = ΣK
k=1[P(τi,k)Mti ,kεti ,k]. (26)

Here, probability of the negative cost function is used to weight only the open param-
eter, i.e., the exploration noise ε. We assume that the system is contracting with feasible
DMPs. Thus, the system always reaches a goal point at the end of the trajectory, and the cost
function ωtN ,k in S(τi,k) can safely beignored. We also assume that q’s will contract to the
desired trajectory qd’s. Therefore, in a contracting region, we define q’s as a combination of
θ and ε’s, which the only parameters to be used in the cost function S(τi,k) as shown below:

S(τi,k) = ΣN−1
j=i qdj ,k +

1
2

ΣN−1
j=i+1(θ + Mtj ,kεtj ,k)

TR(θ + Mtj ,kεtj ,k). (27)

At each update sequence in a contraction region, the primitive updates are weighted
with θs. For the combination of primitives (Equation (25)), on the other hand, updates are
weighted with αs and θs, and the probability functions are taken as the average of the proba-
bility functions of separate primitives, if we assume that we use the same exploration noise,
ε, for all primitives. Similarly, when we update primitives separately and combine them,
we also average the probability functions. As a result, the learning curve of a combined
primitive would be improved even further as the primitive learning process continues.

2.3. Remarks

Generally, contraction analysis yields simpler results which can be directly applied
to systems/methodologies. In this section, we make a few application remarks, in which
contraction analysis is used in combination with DMPs and possible learning methods.

2.3.1. DMP as a Controller

DMPs were originally used in a combination of feedback and feedforward controllers.
However, it can be deduced from contraction analysis that one can directly use a DMP in a
controller. Consider a system:

ẋ = f (x) + bu, (28)

where we learn DMPs, and a controller, u, can be generated as u = ẋd− f (xd)
b . In the closed

loop system, particular solution of the system is x = xd. Since DMPs are contracting, and the
DMP parameters act as PD terms for the overall system, contraction to movement primitives
is guaranteed. This controller can be regarded as a system with added virtual springs and
dampers, and the path-to-goal point is modified by the basis functions and weights.

2.3.2. Offline Learning

A combination of primitives can be optimized offline without a need for the system
model. For example, two primitives for the same goal point can be combined offline, where
the weights, αs, used for the combination are added to 1, such that ∑n

i=1 αi = 1, where
α > 0. As shown in Section 2.1, a combined primitive is contracting, given that the original
primitives are contracting. Using this setup, one can optimize the combination of the

Aerospace 2022, 9, 56 9 of 19

weights in order to improve the performance of the resultant primitive. Subsequently,
reinforcement learning can be applied to reshape the primitive again.

2.3.3. Maneuver Library

As defined in Appendix A, DMPs that we used are point attractors. In other words,
the system converges to a goal state or equilibrium point. In real life, however, planning
requires a change of maneuvers, and we require behaviors where transitions between
primitives are needed. Using a controller that guarantees contraction, smooth transitions
between primitives can be achieved. Therefore, a library of feasible trajectories must be
stored, and we can exploit them in planning. We can create such library by learning feasible
trajectories and generate more using the proposed methodology.

3. Application
3.1. The Combination of Primitives for a 3-DOF Helicopter

We used a simplified model derived from a Quanser Helicopter (see Figure 3) in our
study. The helicopter is an under-actuated and minimum-phase system with two propellers
at the end of its arm. Two DC motors are mounted below the propellers to create the
forces which drive propellers. The motors’ axes are parallel and their thrust is vertical to
the propellers. There are three degrees of freedom: pitch (the vertical movement of the
propellers), roll (the circular movement around the axis of the propellers), and travel (the
movement around the vertical base) in contrast with conventional helicopters, which have
six degrees of freedom.

Figure 3. 3-DOF Quanser Helicopter [39].

In the model shown below (see details in [40]), the origin of the coordinate system is
at the bearing and slip-ring assembly. The combinations of actuators form the collective
(Tcol = TL + TR) and cyclic (Tcyc = TL − TR) forces, and they are used as inputs in the
system. The pitch and roll motions are controlled by collective and cyclic thrust, respectively.
The motion in the travel angle is controlled by the components of thrust. A positive roll
results in a positive change of angle.

α̈ =
−Mglα

Jyy
sin(α + α0) +

L
Jyy

cos(φ)Tcol (29)

γ̈ =
L
Jzz

cos(α) sin(φ)Tcol −
lh
Jzz

(TL − TR) sin(α) sin(φ) (30)

φ̈ =
lh
Jxx

Tcyc −
mglφ

Jxx
sin(φ) (31)

Aerospace 2022, 9, 56 10 of 19

For such a system, feedback linearization (see details in [41]) is used. Control in-
puts are:

Tcyc =
Vφ − c3 sin(φ)

c2
(32)

Tcol =
Vα − c0 sin(α + α0)

c1 cos(α)
, (33)

where V is the equivalent input, which can be calculated such that Vα = α̈d − 2λα(α̇ −
α̇d) − λ2

α(α − αd). For the system model described above, aggressive maneuvers mim-
icking human-operator-generated maneuvers are designed to elevate the pitch angle, α,
from −5.7◦ to 13.7◦ and 20.3◦ for a possible obstacle-avoidance problem. To reach a goal
point between primitives, as shown in in Figure 2, primitives are combined in parallel using
proper choices of α. Such a maneuver is followed by a 3-DOF Helicopter (see Figure 4).
Here, the reference pitch angle reaches 16.7◦.

0 1 2 3 4 5 6 7 8

Time(sec)

-50

0

50

100

150

200

250

300

A
n

g
le

(d
e

g
)

Travel

Travel reference

Pitch

Pitch reference

Figure 4. Tracking of pitch (α) and travel (γ) angles of a combined primitive.

3.2. MPC Application of Contraction Theory for DMPs

In application, a simple kinematics model will be used to characterize the planar
motion of a UAV (see Figure 5). Although there are no dynamics involved, the model is
still available to demonstrate nonholonomic motion. Model equations are shown below:ẋ

ẏ
β̇

 =

cos(β(t)) 0
sin(β(t)) 0

0 1

[v(t)
w(t)

]
(34)

In this 2D model, x and y define the location of the UAV, and β is the heading angle.
The controller inputs v and w represent the air and angular speed of the UAV, respectively.

Aerospace 2022, 9, 56 11 of 19

Figure 5. 2D Kinematics Model.

The problem can be reformulated as:ẋ
ẏ
β̇

 = g1(q)v + g2(q)w =

cos(β(t))
sin(β(t))

0

v +

0
0
1

w. (35)

The linearized system of the above kinematics cannot be controlled locally since
the information of the nonlinear model is lost in system linearization. However, for the
nonlinear system, the following result implies that the system is controllable:

rank[g1 g2 [g1 g2]] = 3, (36)

where [g1 g2] is the Lie bracket of vectors g1 and g2.
For the model, the desired commands are:

vd(t) = ±
√

ẋ2
d(t) + ẏ2

d(t) (37)

wd(t) =
ÿd(t)ẋd(t)− ẍd(t)ẏd(t)

ẋ2
d(t) + ẏ2

d(t)
, (38)

where wd(t) is the differentiation of β = atan2(ẏ, ẋ). Using DMPs, the trajectories can be
extracted for each state, and controllers can be generated thereafter.

In practice, we will derive feasible trajectories by combining contracting primitives
(i.e., DMPs). Our system in Equation (34) can be written with desired inputs:

ẋ = vd cos(β) (39)

ẏ = vd sin(β) (40)

β̇ = wd. (41)

In this setup, β is contracting as wd is contracting. Additionally, x and y are contract-
ing, since the components of the system equations are contracting. Moreover, DMPs are
extracted from feasible trajectories. Hence, we assume that the system is contracting in the
close vicinity of the derived trajectories. These primitives can be combined such that:

ẋ = α1B(x)ud1 + · · ·+ αnB(x)udn = B(x)(
n

∑
i=1

αiudi
), (42)

Aerospace 2022, 9, 56 12 of 19

where ∑n
i=1 αi = 1 and αi > 0. We can infer from Equations (37) and (38) that any parallel-

combined primitive will be within the controller limits of the system. From construction of
DMP formulas, we can find that the equilibrium point will be ∑n

i=1 αigi for DMPs.
For such a system, it is also possible to use feedback linearization. For input–output

linearization [42], we define an output vector, η = (x, y), and differentiate the output vector
two times in order to find input, thus:

η̈ = ξ̇

[
cos(β) −ξ sin(β)
sin(β) ξ cos(β)

][
a
w

]
, (43)

where an integrator with a state ξ = v is added. Defining the system as:[
a
w

]
=

[
cos(β) −ξ sin(β)
sin(β) ξ cos(β)

]−1[u1
u2

]
, (44)

one should note that the resulting controller has a singularity point where ξ = v = 0.

u1 = ẍd(t) + kp1(xd(t)− x) + kd1(ẋd(t)− ẋ) (45)

u2 = ÿd(t) + kp2(yd(t)− y) + kd2(ẏd(t)− ẏ) (46)

Through the construction of the DMP formulas, the system will converge to a weighted
desired location, ∑n

i=1 αigi, if the desired end points, (gis), are different.
In practice, the flight maneuver defined for (x, y, β) starts from the origin, (0, 0, 0),

and ends at specified goal point (1.5, 1.5, 0). Firstly, the MPC application [43] using the
CasADi [44] optimization tool is used to generate trajectories (Figure 6).

-0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Figure 6. Flight maneuver where * and . denote prediction horizon and UAV (red: current posture;
green: desired posture), respectively.

Then, the DMP is used to imitate each primitive (see Figure 7).

Aerospace 2022, 9, 56 13 of 19

Figure 7. DMP internals for x-axis.

For parallel combinations, two primitives, as shown in Figure 8, with goal points
(1, 1, 0) and (1.5, 1.5, 0) are combined using a weighting parameter, αi, to generate a primi-
tive with a goal point (1.25, 1.25, 0).

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

x

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

y

Primitive 1

Primitive 2

Combined

Figure 8. Combination of DMPs.

Finally, MPC is once again used to follow the combined feasible trajectory (See Figure 9).

Aerospace 2022, 9, 56 14 of 19

-0.5 0 0.5 1 1.5 2

-0.5

0

0.5

1

1.5

2

Figure 9. MPC to follow a new trajectory where � denotes the UAV.

3.3. The Application of Contraction Theory in Reinforcement Learning (PI2)

For application, the PI2 reinforcement learning software [45] is used for a system with
a kinematics model defined in Equation (34). For an initial primitive of a flight maneuver
with an end point (1.5, 1.5, 0), the DMP imitated the trajectories generated by the MPC
algorithm [43]. A total of 100 updates and 10 basis functions/weights was applied. For each
update, 10 trials were used. We applied importance sampling in which the five best trials
from the previous update were rerun in the next update. The cost function is:

J =
1
2

ẋTẋQ +
1
2

wTwR + rT , (47)

where x and w are the velocity state vector and weights, respectively. The constants
Q = 1000, and R = 1 are used for penalization. The terminal cost is shown as rT . The re-
sulting trajectory for x and y is shown in Figure 10.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

x

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

y

car trajectory

Figure 10. Flight maneuver where goal point is (1.5, 1.5).

Aerospace 2022, 9, 56 15 of 19

We can also imitate and learn a primitive for a goal point, (1, 1), using same process.
Learning curves for both primitives are shown in Figure 11. After training for both primi-
tives, the primitives were then combined in parallel as defined in Equation (25) in order to
generate a stable trajectory, which has a goal point (1.25, 1.25). We observe that learning is
transferred in the combined primitive (see Figure 12).

0 100 200 300 400 500 600

Number of rollouts for end point (1.5,1.5)

4

5

6

7

8

9

10

11

12

13

14

C
o
s
t

106

0 100 200 300 400 500 600

Number of rollouts for end point (1,1)

3

4

5

6

7

8

9

10

11

12

C
o
s
t

106

Figure 11. Learning curves for flight maneuver primitives.

0 100 200 300 400 500 600

Number of rollouts for end point (1.25,1.25)

0.5

1

1.5

2

2.5

3

3.5

4

C
o

s
t

106

Figure 12. Learning curve for a combined primitive.

4. Conclusions

Our aim in this paper was to propose a framework that combined several methods to
generate maneuvers inspired by biological experiments. In our methodology, stability is
addressed with contraction theory, and reinforcement learning is used to improve maneu-
vers in contraction regions. Our main results are demonstrated on 3-DOF-helicopter and
2D-UAV models. We believe that learning in contraction regions is a key aspect for achiev-
ing stable trajectories. Our approach exploits such contracting regions using a combination
of primitives. It is shown that trajectories updated by reinforcement learning are feasible,
and learning is transferred in contraction regions. It is also possible to employ several other
methods, as discussed in our paper, to study the contraction regions around trajectories.

As a part of our future research, we aim to apply this methodology to actual flight
platforms. We will focus particularly on scenario-based problems, such as obstacle avoid-
ance, in which serial and parallel combinations of different primitives will be deployed
using a maneuver library.

Aerospace 2022, 9, 56 16 of 19

Author Contributions: Conceptualization: B.E.P. and G.I.; methodology: B.E.P. and G.I.; software,
B.E.P.; validation: B.E.P. and G.I.; investigation: B.E.P. and G.I.; resources: B.E.P. and G.I.; writing–
original draft preparation: B.E.P.; writing–review and editing: B.E.P. and G.I.; visualization: B.E.P.
and G.I.; supervision: G.I.; project administration: B.E.P. and G.I. All authors have read and agreed to
the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

In DMPs [34], the goal is to reach an attractor state. A trajectory is generated where
transient states of the system are learned by the combination of weights and basis functions.
The DMP for a discrete movement can be summarized as follows:

τż = αz(βz(g− y)− z) (A1)

τẏ = z + f , (A2)

where y, ẏ, and ÿ represent the desired trajectory; αz and βz are time constants; τ is a
temporal scaling factor; and g is the desired goal state. Additionally, a second-order
dynamic system can be introduced:

τv̇ = α(βz(g− x)− v) (A3)

τẋ = v. (A4)

From this setup, it can be shown that system will converge to an attractor point g,
when the f -function is assumed to be 0. In DMP, a nonlinear function f is modified in order
to learn the desired trajectories between the start and end points.

In Equation (A2), f is a linear combination Gaussian weighting kernels such that:

f (x, v, g) = ∑N
i=1 Ψiwiv

∑N
i=1 Ψi

, (A5)

where:
Ψi = exp{−hi(x/g− ci)

2}, (A6)

and hi, ci, and wi represent the bandwidth, the center of the Gaussian kernels, and the
weights, respectively.

Appendix B

In general, the stability of the feasible trajectories can be studied using several methods
summarized below.

Appendix B.1. Basic Contraction Properties and Matrix Measures

In basic contraction theory, the Jacobian, ∂ f
∂x , should be a uniformly negative definite

for system to contract. In other words:

∃β > 0, ∀x, ∀t ≥ 0,
1
2

(
∂ f
∂x

+
∂ f T

∂x

)
≤ βI < 0. (A7)

Aerospace 2022, 9, 56 17 of 19

In [46], this result is extended by matrix measures [47]:

µ(A) = lim
x→0+

‖I + tA‖ − ‖I‖
t

, (A8)

where Equation (A7) corresponds to µ2(A). Matrix measures were used to study the reach-
ability analysis. Furthermore, the Toolbox for Interval Reachability Analysis (TIRA) [48],
a MATLAB library that gathers several methods for reachability analysis, is proposed.
Following the contraction/growth bound method in TIRA, a state vector is partitioned into
components to study reachability.

Appendix B.2. Generalized Contraction Analysis Using Metrics

δz = Θδx is defined to derive generalized contraction theory [30]. For a system such
as those represeented in Equations (4) and (5), a dual metric W(x) = M(x)−1 = (ΘTΘ)−1

is calculated using the sum of squares [49], and differential control is constructed as
δu = −K(x)δx, with K = 1

2 ρB′W−1 [50].

Appendix B.3. Global Metrics Derived Using Linearization

At equilibrium, one can linearize the system in the form of ẋ = f (x), and the resulting
equation can be defined as ẋ = A(x, t)x. As mentioned in [30], a coordinate transformation,
z = Θx, (Θ is constant) can be formulated for a Jordan form, thus:

ż = ΘAΘ−1z = Λz. (A9)

As a result, a generalized Jacobian becomes F = Λ. This is due to the fact that the
system in the equilibrium point, A, should have negative eigenvalues. Therefore, the
existence of θ is guaranteed, and one can apply this metric to find the region of contraction.

Appendix B.4. Combination of Primitives

For the contracting systems defined below:

ẋ1 = f1(x1, t), . . . ẋn = fn(xn, t), (A10)

one can combine their virtual dynamics, as proposed in [30], with positive αs such that:

α1(t)δ̇x1 + . . . + αn(t)δ̇xn, (A11)

and the combined system will also contract. It is possible to use this methodology to
combine primitives. For an identical system, different primitives are defined below:

ẋ1 = f (x1, t) + K(x1 − xre f1)

...

ẋn = f (xn, t) + K(xn − xre fn).

If the system is combined such that αs are positive and ∑n
i=1 αi = 1, then the particular

solutions of each system will contract to the reference trajectory. In other words, the
parallel combined system will contract to the linear combination of a reference system,
since ∑n

i=1 αi f (x) = f (x) represents the same system.

References
1. Yuksek, B.; Demirezen, U.; Inalhan, G.; Tsourdos, A. Cooperative Planning for an Unmanned Combat Aerial Vehicle Fleet Using

Reinforcement Learning. J. Aerosp. Inf. Syst. 2021, 18, 739–750. [CrossRef]
2. Herekoglu, O.; Hasanzade, M.; Saldiran, E.; Cetin, A.; Ozgur, I.; Kucukoglu, A.; Ustun, M.; Yuksek, B.; Yeniceri, R.;

Koyuncu, E.; et al. Flight Testing of a Multiple UAV RF Emission and Vision Based Target Localization Method. In Proceedings
of the AIAA Scitech 2019 Forum, San Diego, CA, USA, 7–11 January 2019. [CrossRef]

http://doi.org/10.2514/1.I010961
http://dx.doi.org/10.2514/6.2019-1570

Aerospace 2022, 9, 56 18 of 19

3. Karali, H.; İnalhan, G.; Demirezen, M.; Yükselen, M. A new nonlinear lifting line method for aerodynamic analysis and deep
learning modeling of small unmanned aerial vehicles. Int. J. Micro Air Veh. 2021, 13. [CrossRef]

4. Gavrilets, V.; Frazzoli, E.; Mettler, B.; Piedmonte, M.; Feron, E. Aggressive Maneuvering of Small Autonomous Helicopters:
A Human Centered Approach. Int. J. Robot. 2001, 20, 795–807. [CrossRef]

5. Coates, A.; Abbeel, P.; Ng, A. Learning for Control from Multiple Demonstrations. In Proceedings of the 25th International
Conference on Machine Learning, Helsinki, Finland, 5–9 July 2008; pp. 144–151.

6. Lupashin, S.; Schöllig, A.; Sherback, M.; D’Andrea, R. A simple learning strategy for high-speed quadrocopter multi-flips.
In Proceedings of the 2010 IEEE International Conference on Robotics and Automation, Anchorage, AL, USA, 3–8 May 2010;
pp. 1642–1648.

7. Levin, J.; Paranjabe, A.; Nahon, M. Agile maneuvering with a small fixed-wing unmanned aerial vehicle. Robot. Auton. Syst.
2019, 116, 148–161. [CrossRef]

8. Guerrero-Sánchez, M.; Hernández-González, O.; Valencia-Palomo, G.; López-Estrada, F.; Rodríguez-Mata, A.; Garrido, J. Filtered
Observer-Based IDA-PBC Control for Trajectory Tracking of a Quadrotor. IEEE Access 2021, 9, 114821–114835. [CrossRef]

9. Xiao, J. Trajectory planning of quadrotor using sliding mode control with extended state observer. Meas. Control 2020,
53, 1300–1308. [CrossRef]

10. Almakhles, D. Robust Backstepping Sliding Mode Control for a Quadrotor Trajectory Tracking Application. IEEE Access 2020,
8, 5515–5525. [CrossRef]

11. Yuksek, B.; Inalhan, G. Reinforcement learning based closed-loop reference model adaptive flight control system design. Int. J.
Adapt. Control. Signal Process. 2021, 35, 420–440. [CrossRef]

12. Phung, M.; Ha, Q. Safety-enhanced UAV path planning with spherical vector-based particle swarm optimization. Appl. Soft
Comput. 2021, 107, 107376. [CrossRef]

13. Li, Y.; Liu, C. Efficient and Safe Motion Planning for Quadrotors Based on Unconstrained Quadratic Programming. Robotica 2021,
39, 317–333. [CrossRef]

14. Lee, K.; Choi, D.; Kim, D., Potential Fields-Aided Motion Planning for Quadcopters in Three-Dimensional Dynamic Environments.
In Proceedings of the AIAA Scitech 2021 Forum, Nashville, TN, USA, 11–15 January 2021.

15. Zhang, X.; Shen, H.; Xie, G.; Lu, H.; Tian, B. Decentralized motion planning for multi quadrotor with obstacle and collision
avoidance. Int. J. Intell. Robot. Appl. 2021, 5, 176–185. [CrossRef]

16. Chow, Y.; Nachum, O.; Duenez-Guzman, E. A Lyapunov-based approachto safe reinforcement learning. In Proceedings of the
NIPS 2018, Montréal, QC, Canada, 3–8 December 2018; pp. 8103–8112.

17. Wenqi, C.; Zhang, B. Lyapunov-regularized reinforcement learning for power system transient stability. arXiv 2021, arXiv:2103.03869.
18. Perkins, T.; Barto, A. Lyapunov design for safe reinforcement learning. J. Mach. Learn. Res. 2002, 3, 803–832.
19. Jadbabaie, A.; Hauser, J. On the stability of receding horizon control with a general terminal cost. IEEE Trans. Autom. Control

2005, 50, 674–678. [CrossRef]
20. Mehrez, M.; Worthmann, K.; Mann, G.; Gosine, R.; Faulwasser, T. Predictive path following of mobile robots without terminal

stabilizing constraints. In Proceedings of the 20th IFAC World Congress, Toulouse, France, 11–17 July 2017; pp. 10268–10273.
21. Grüne, L.; Pannek, J.; Seehafer, M.; Worthmann, K. Analysis of unconstrained nonlinear MPC schemes with varying control

horizon. SIAM J. Control. Optim. 2010, 48, 4938–4962. [CrossRef]
22. Galef, B. Imititaion in Animals: History, Definition and Interpretation of Data from the Psychological Laboratory. In Comparative

Social Learning; Psychology Press: Hove, UK, 1988; pp. 3–28.
23. Polit, A.; Bizzi, E. Characteristic of Motor Programs Underlying Arm Movements in Monkeys. J. Neurophsiology 1979, 42, 183–194.

[CrossRef]
24. Bizzi, E.; Mussa-Ivaldi, F.; Hogan, N. Regulation of multi-joint arm posture and movement. Prog. Brain Res. 1986, 64, 345–351.
25. Mussa-Ivaldi, F.; Giszter, S.F.; Bizzi, E. Motor Space Coding in the Central Nervous System. Cold Spring Harb. Symp. Quant. Biol.

1990, 55, 827–835. [CrossRef]
26. Bizzi, E.; Mussa-Ivaldi, F.; Giszter, S. Computations underlying the execution of movement: A biological perpective. Science 1991,

253, 287–291. [CrossRef]
27. Mussa-Ivaldi, F.A.; Giszter, S.F.; Bizzi, E. Linear combinations of primitives in vertebrate motor control. Proc. Natl. Acad. Sci. USA

1994, 91, 7534–7538. [CrossRef]
28. Mussa-Ivaldi, F.A.; Bizzi, E. Motor learning through the Combination of Primitives. Philos. Trans. R. Soc. B Biol. Sci. 2000,

355, 1755–1769. [CrossRef] [PubMed]
29. Schaal, S.; Mohajerian, P.; Ijspeert, A. Dynamics systems vs. optimal control—A unifying view. Prog. Brain Res. 2007, 165, 425–445.

[PubMed]
30. Lohmiller, J.S.W. On Contraction Analysis for Nonlinear Systems. Automatica 1998, 34, 683–686. [CrossRef]
31. Bazzi, S.; Ebert, J.; Hogan, N.; Sternad, D. Stability and predictability in human control of complex objects. Chaos Interdiscip. J.

Nonlinear Sci. 2018, 28, 103103. [CrossRef]
32. Theodorou, E.; Buchli, J.; Schaal, S. A generalized path integral controlapproach to reinforcement learning. J. Mach. Learn. Res.

2010, 11, 3137–3181.
33. Perk, B.E.; Slotine, J.J.E. Motion primitives for robotic flight control. arXiv 2006, arXiv:cs/0609140v2.

http://dx.doi.org/10.1177/17568293211016817
http://dx.doi.org/10.1177/02783640122068100
http://dx.doi.org/10.1016/j.robot.2019.03.004
http://dx.doi.org/10.1109/ACCESS.2021.3104798
http://dx.doi.org/10.1177/0020294020927419
http://dx.doi.org/10.1109/ACCESS.2019.2962722
http://dx.doi.org/10.1002/acs.3181
http://dx.doi.org/10.1016/j.asoc.2021.107376
http://dx.doi.org/10.1017/S0263574720000387
http://dx.doi.org/10.1007/s41315-021-00183-2
http://dx.doi.org/10.1109/TAC.2005.846597
http://dx.doi.org/10.1137/090758696
http://dx.doi.org/10.1152/jn.1979.42.1.183
http://dx.doi.org/10.1101/SQB.1990.055.01.078
http://dx.doi.org/10.1126/science.1857964
http://dx.doi.org/10.1073/pnas.91.16.7534
http://dx.doi.org/10.1098/rstb.2000.0733
http://www.ncbi.nlm.nih.gov/pubmed/11205339
http://www.ncbi.nlm.nih.gov/pubmed/17925262
http://dx.doi.org/10.1016/S0005-1098(98)00019-3
http://dx.doi.org/10.1063/1.5042090

Aerospace 2022, 9, 56 19 of 19

34. Ijspeert, A.; Nakanishi, J.; Schaal, S. Learning attractor landscapes for learning motor primitives. In Advances in Neural Information
Processing Systems 15; MIT Press: Cambridge, MA, USA, 2003; pp. 1547–1554.

35. Slotine, J.; Li, W. Applied Nonlinear Control; Prentice-Hall: Hoboken, NJ, USA, 1991.
36. Suttojn, R.; Barto, A. Reinforcement Learning; MIT Press: Cambridge, MA, USA, 1998.
37. Stengel, R. Optimal Control and Estimation; Dover Books on Advanced Mathematics; Dover Publications: New York, NY,

USA, 1994.
38. Fleming, W.; Soner, H. Controlled Markov Processes and Viscosity Solutions. In Applications of Mathematics, 2nd ed.; Springer:

New York, NY, USA, 2006.
39. Available online: https://www.quanser.com (accessed 20 January 2022).
40. Ishutkina, M. Design and Implimentation of a Supervisory Safety Controller for a 3DOF Helicopter. Master’s Thesis, Mas-

sachusetts Institute of Technology, Cambridge, MA, USA, 2004.
41. Perk, B.E. Control Primitives for Fast Helicopter Maneuvers. Master’s Thesis, Massachusetts Institute of Technology, Cambridge,

MA, USA, 2006.
42. Luca, A.; Oriola, G.; Vendittelli, M. Control of wheeled mobile robots: An experimental overview. In Ramsete; Nicosia, S., Sicil, B.,

Bicchi, A., Valigi, P., Eds.; Springer: Berlin, Germany, 2001; Volume 270, pp. 181–226.
43. Mehrez, M. Github. MPC and MHE Implementation in MATLAB Using Casadi. Available online: https://github.com/MMehrez

(accessed 20 January 2022).
44. Andersson, J.; Gillis, J.; Horn, G.; Rawlings, J.; Dieh, M. CasADi: A Software Framework for Nonlinear Optimization and Optimal

Control. Math. Program. Comput. 2019, 11, 1–36. [CrossRef]
45. Theodorou, E.; Buchli, J.; Schaal, S. Path Integral Reinforcement (PI2) Learning Software. Available online: http://www-clmc.

usc.edu/Resources/Software (accessed 20 January 2022).
46. Maidens, J.; Arcak, M. Reachability analysis of nonlinear systems using matrix measures. IEEE Trans. Automat. Control 2015,

60, 265–270. [CrossRef]
47. Desoer, C.; Vidyasagar, M. Feedback Systems: Input-Output Properties; Society for Industrial and Applied Mathematics: Philadelphia,

PA, USA, 2009.
48. Meyer, P.; Davenport, A.; Arcak, M. TIRA: Toolbox for interval reachability analysis. arXiv 2019, arXiv:1902.05204.
49. Aylward, E.; Parrilo, P.; Slotine, J. Stability and robustness analysis of nonlinear systems via contraction metrics and SOS

programming. Automatica 2008, 48, 2163–2170. [CrossRef]
50. Manchester, I.; Tang, J.; Slotine, J. Unifying robot trajectory tracking with control contraction metrics. In Robotics Research;

Springer: Cham, Switzerland, 2018; pp. 403–418.

https://www.quanser.com
https://github.com/MMehrez
http://dx.doi.org/10.1007/s12532-018-0139-4
http://www-clmc.usc.edu/Resources/Software
http://www-clmc.usc.edu/Resources/Software
http://dx.doi.org/10.1109/TAC.2014.2325635
http://dx.doi.org/10.1016/j.automatica.2007.12.012

Cranfield University

CERES https://dspace.lib.cranfield.ac.uk

School of Aerospace, Transport and Manufacturing (SATM) Staff publications (SATM)

2022-01-22

Safe motion planning and learning for

unmanned aerial systems

Perk, Baris Eren

MDPI

Perk BE, Inalhan G. (2022) Safe motion planning and learning for unmanned aerial systems,

Aerospace, Volume 9, Issue 2, January 2022, Article number 56

https://doi.org/10.3390/aerospace9020056

Downloaded from Cranfield Library Services E-Repository

