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Abstract—Driver’s emotion recognition is vital to improving
driving safety, comfort, and acceptance of intelligent vehicles.
This paper presents a cognitive-feature-augmented driver emo-
tion detection method which is based on emotional cognitive
process theory and deep networks. Different from the traditional
methods, both the driver’s facial expression and cognitive process
characteristics (age, gender, and driving age) were used as the
inputs of the proposed model. Convolutional techniques were
adopted to construct the model for drivers emotion detection
simultaneously considering the drivers facial expression and cog-
nitive process characteristics. A driver’s emotion data collection
was carried out to validate the performance of the proposed
method. The collected dataset consists of 40 drivers’ frontal facial
videos, their cognitive process characteristics and self-reported
assessments on driver emotions. Another two deep networks
were also used to compare recognition performance. The results
prove that proposed method can achieve well detection results
for different databases on the discrete emotion model and
dimensional emotion model, respectively.

Index Terms—Driver emotion, Human-machine interaction,
Affective computing, Smart cockpit, Facial expression

I. INTRODUCTION

W ITH the advancement of artificial intelligence and com-

puting systems, intelligent vehicles applications have

been growing rapidly worldwide. Together with the develop-

ment of communication technologies, extensively emerging

technologies have been developed to connect with vehicles,

pedestrians, infrastructures and clouds in the transportation

Wenbo Li, Guanzhong Zeng, Juncheng Zhang and Gang Guo are
with the College of Mechanical and Vehicle Engineering, Chongqing
University, Chongqing, 400044, China (e-mail: liwenbocqu@foxmail.com,
guanzhong@cqu.edu.cn, zhangjuncheng@cqu.edu.cnguogang@cqu.edu.cn).

Yan Xu is with the Department of Mechanical Engineering, Univer-
sity of Science and Technology Beijing, 100083, Beijing, China. (e-mail:
b20160225@xs.ustb.edu.cn).

Yang Xing is with the Department of Aerospace, Transport, and Man-
ufacturing, Cranfield University, Cranfield, MK43 0AL, UK. (e-mail:
Yang.X@cranfield.ac.uk).

Rui Zhou is with the Department of Research and Development, Waytous
Inc., Shenzhen, China. (e-mail: rui.zhou@waytous.com).

Yu Shen is with the School of Artifitical Intelligence, University of Chinese
Academy of Science, Beijing 100049, China (e-mail: shenyu2015@ia.ac.cn).

Dongpu Cao is with the Department of Mechanical and Mechatronics
Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada. (e-
mail: dongpu.cao@uwaterloo.ca).

Fei-Yue Wang is with the State Key Laboratory of Management and Control
for Complex System, Institute of Automation, Chinese Academy of Sciences,
Beijing 100190, China (e-mail: feiyue@ieee.org).
† These authors contributed equally
*Corresponding author

network [1], [2]. Thus, intelligent vehicles have become

multi-intelligence mobile terminal that carries rich functions

and services [3]. This multi-intelligence mobile terminal will

bring about tremendous changes in the interaction system of

automotive smart cockpits. The automotive smart cockpit is

an intelligent service system equipped with intelligent and

connected in-vehicle products or technologies with the ability

of insight, understanding, and meeting user needs in the

application scenarios to achieve safe, efficient, comfortable,

and pleasant human-machine interaction (HMI) experience.

The development of the smart cockpit will expand and deepen

the scope of HMI between humans and vehicles, resulting in

new human-vehicle interaction problems that challenge safety,

comfort, and driver’s acceptance [4]. Among the problems,

emotion-aware human-vehicle interactions are urgently needed

to be addressed for improvement [5].

Driver’s emotion recognition and regulation are the main

topics for emotion-aware human-vehicle interactions [6]. Pre-

vious studies have shown that emotion recognition and reg-

ulation systems can be used to understand and regulate the

emotional state of the driver to enhance the safety, comfort,

and acceptance of driving [6], [7]. The emergence of intelligent

cockpit HMI technology brings new thoughts to solve the

emotional disorder problems of the drivers. Drivers’ emotions

can be recognized and regulated in various ways by the

emotion-aware HMI of the smart cockpit, based on which the

safety and comfort of driving can be improved. As the first

step for the development of the emotion-aware HMI system,

precise driver emotion recognition is of great significance to

realize the above improvement [4].

Driver emotion recognition is usually carried out by analyz-

ing the driver’s emotional expression. The emotions of humans

can be expressed in forms including behavioral expressions

and physiological changes. Up to present, various behavioral

measurements [8], [9], physiological signal measurements

[10], [11], or self-reported scales [4], [12] have been applied

to driver emotions recognition. Considering the significant

impact of the interference and intrusion on the emotional

expression and real emotion experience, the application of

non-invasive, non-contact, continuous measurement methods

during the study of driver emotions is essential [4], [13].

Therefore, in this study, the facial expressions of the driver

are adopted as the main information to recognize the drivers

emotion.

At the same time, driving is a complicated cognitive process

li2106
Text Box
IEEE Transactions on Computational Social Systems, Volume 9, Number 3, June 2022, pp. 667-678DOI:10.1109/TCSS.2021.3127935

li2106
Text Box
© 20XX IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works



2

Fig. 1: Illustration of the framework of CogEmoNet model

requiring dynamical responses to the driving task which oc-

cupies a great quantity of cognition and requires the cognitive

appraisal to trigger emotional responses [7], [14], [15], [16].

The driver’s facial expression may be suppressed due to

the influence of the driving task. In addition, the impact of

the cognitive process is closely related to the driver’s age,

gender, and driving experience [4]. Based on this, the facial

expressions and cognitive process of the driver should be

considered during the study of the drivers emotion recognition

under the dynamic driving scenario.

To resolve the limitation introduced above, this study

proposed a model based on facial expression and cognitive

process for driver emotion recognition of smart cockpit. Fig. 1

shows the structure of the cognitive-feature-augmented driver

emotion recognition network (CogEmoNet) model.

The main contributions of the study can be concluded as

follows:

• A cognitive-feature-augmented recognition model of

driver emotions named CogEmoNet is proposed. This

model is proposed and implemented by combining emo-

tion generation process theory and deep learning al-

gorithms. CogEmoNet recognizes driver emotions by

simultaneously considering the drivers facial expression

and cognitive process characteristics (age, gender, and

driving age).

• This study conducted driver’s emotion data collec-

tion. The collected driver’s emotional facial expression

(DEFE+) dataset is composed of frontal facial videos,

cognitive process characteristics, and subjective ratings

on emotions of 40 drivers. The cognitive process char-

acteristics include the information of age, driving age,

and gender. The subjective ratings include the informa-

tion of valence, arousal, dominance, and seven emotion

categories.

• The effectiveness of the proposed CogEmoNet driver

emotion recognition framework was evaluated on DEFE+

dataset. It was also evaluated using leave-one-out cross-

validation on other publicly available and widely used

CK+ and DEAP databases. Furthermore, a comparison

between the CogEmoNet and state-of-the-art models is

performed to prove that the CogEmoNet performs signif-

icantly well in driver emotions recognition.

The structure of this paper is as follows: related works

about emotion recognition are summarized in Section II. The

proposed CogEmoNet is introduced in detail in Section III.

Section IV introduces the process of data collection of DEFE+.

The experiment results of CogEmoNet are analyzed in Section

V. The conclusion are in Section VI.

II. RELATED RESEARCH

A. Emotion Classification

To describe human emotions, psychological researchers

have proposed discrete emotion theory and dimensional emo-

tion theory to classify emotions [17]. At present, the most

acknowledged discrete emotion model is the basic emotion

model proposed by Ekman [18]. Other emotions were regarded

as combinations of these basic emotions. Dimension emotion

theory points out that psychological dimensions including

valence, arousal, dominance. can be combined to accurately

express human emotion. Specifically, whether a person feels

positive or negative, whether a person feels bored or excited,

and whether a person feels submissive or empowered are

measured by the dimension of valence, arousal, and dominance

respectively [19], [20].

The widely used discrete emotion method can intuitively

reflect the emotions, but only several limited emotions are

included. The dimensional emotion method has the advantage

of high practicability and context-sensitive, but is less intuitive

and requires a more complex process of labeling the data, [17].

In this paper, with the help of the differential emotion scale

(DES) [21] and the self-assessment model (SAM) [22], the

discrete emotion method and dimensional emotion method are

combined.

B. Emotional Cognitive Process

According to the cognitive theory [29], an emotional re-

sponse begins with an cognitive appraisal of the personal

significance of a situation. This cognitive appraisal further

leads to the emotional response, including subjective experi-

ence, physiological change and behaviour response [18], [30].

Therefore, the cognitive process and emotional expression are
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TABLE I: A summary of representative studies of deep-learning-based facial expression detection methods

Author Emotions Network Datasets

Liang et al. [23] 7 emotions CNN, LSTM CK+, Oulu-CASIA, MMI
Li et al. [24] 7 emotions CNN CK+, JAFFE
Ivan, Gogi et al. [25] 7 emotions LBF-NN CK+, MMI, JAFFE, SFEW
Wang et al. [26] 8 emotions CNN FERPlusAffectNet, SFEW, RAF-DB
Wang et al. [27] 7 emotions SVM Jaffe, CK+, BU-3DFE
Liu et al. [28] 7 emotions CNN, LSTM CK+, Oulu-CASIA, MMI, AffectNet, AFEW

both essential for driver’s emotion recognition. The human

information processing stage model [31], as shown in Fig.

2, is used to analyze the psychological processes while the

subjects are interacting with the system and performing tasks.

A series of processing stages or mental operations, which

typically (but not always) characterize the information flow

as humans perform tasks, can be described by the model.

Fig. 2: The model of human information processing stages

[31]

Consider as an example of a driver who is afraid of a

traffic accident while driving. As shown on the left side of

Fig. 2, events in the environment are processed by the senses,

namely sight, sound, etc., and may be stored in the short-term

sensory store (STSS) briefly. Perception involves determining

the meaning of the sensory signals or events, and such meaning

comes from past experience (cautious when encountering

traffic accidents), stored in the long-term memory, including

facts, images, and the running pattern of the world. There are

two ways in which the information may be processed after

perception. In the first way, the response is executed after the

stages of response selection and execution, which is related to

the muscles and the way the brain controls them. Compared

with the first way, in which reactions may not always get

triggered immediately by perception and the understanding

of the situation, in the second way, the state of event is

temporarily retained by the driver, using working memory, and

more information, namely approaching vehicles or possible

police cars, etc. is obtained as the driver is scanning the road

ahead at the same time. Note that attention is an important

part of most information processing.

We describe the process after perception and before re-

sponse execution as the “cognitive process”. Combining the

human information processing stage model and emotion-

related theories, the process of human emotion generation

can be divided into four stages, namely perception, cognition,

expression, and feeling. Perception includes events that occur

in the current environment that humans perceive. It is obtained

by our sensory organs, including visual information, auditory

information, tactile information, etc., and all the perceived

content is used as cognitive input. The cognitive process

mainly includes four components: attention resources, long-

term memory, working memory cognition, and response se-

lection, which can be summarized as three important stages

of attention, memory, and decision. Attention can filter some

unimportant information, so that our limited cognitive re-

sources can be used to process main tasks, and then combined

with long-term memory and working memory to select and

execute the response. Expression includes facial expressions,

behavioral actions, speech, and physiological reactions, and

finally, produce corresponding emotional feelings. This study

employed deep networks to simulate the process of human

cognitive information processing, so that intelligent vehicles

can recognize driver emotions in the way of the human

cognitive processing, to build a computational model for driver

emotion recognition.

C. Facial Expressions-based Emotion Recognition

Convolutional neural network (CNN) and recurrent neural

network (RNN) have been applied to facial emotion recog-

nition in recent years due to the advancement of computing

power and deep learning algorithms. CNN is suitable for

parallel computing, which can directly extract deep features

from the input image, and directly carry out the recognition

task without manual feature construction, and no longer rely

on expert experience and data processing techniques. Most

methods based on deep learning use CNN to detect action

unit (AU) directly. For example, Breuer and Kimmel [32]

verified the emotion detection ability of various facial emotion

recognition networks through CNN visualization technology.

Jung et al. [33] used a dual-stream network to extract tem-

poral appearance features and temporal geometry features to

improve facial expression recognition ability.

In addition to CNN being directly used for facial feature

extraction, many methods begin to combined CNN and long

short-term memory (LSTM) to recognize facial emotions in

video sequences since RNN or LSTM is more suitable for

constructing temporal features. The hybrid CNN-LSTM model

is flexible because LSTM supports input or output of fixed

and unfixed length. For example, Kim et al. [34] used the

beginning, peak, and end of facial expression to represent the

expression state by using CNN to extract spatial features and

LSTM to learn temporal features and combining with spatial

and temporal features to recognize facial emotions. Chu et al.

[35] predicted 12 AUs of each video frame through the hybrid

CNN-LSTM model. Hasani and Mahoor [36] proposed a 3D

perception ResNet model to emphasize different facial regions.
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Liang et al. [23] achieved excellent performance through joint

learning of facial expressions and temporal dynamics. Li et

al. [24] proposed a new data augmentation method for the

small amount of emotional facial expression dataset, using

face cropping and rotation to improve network accuracy. Ivan,

Gogi et al. [25] optimized facial expression recognition by

concatenating sparse facial expression binary features; Wang

and Peng et al. [26] proposed a new region attention network

and region bias loss to improve the recognition robustness of

facial occlusion and pose changes; Wang and Li et al. [27] pro-

posed a new facial expression representation method to reflect

the characteristics of local expression, texture, appearance, and

shape; Liu et al. [28] proposed a metric learning framework

with a siamese cascaded structure. Some representative works

among various methods based on CNN or hybrid CNN-LSTM

are shown in Table I. In this paper, to simplify the realization

of the theoretical model, we used CNN as the component

to build CogEmoNet. Besides, the CNN-LSTM method was

employed to compare the performance of CogEmoNet.

III. MODEL DESCRIPTION

The CogEmoNet model is a driver emotion recognition

model based on facial expression and cognitive process, it

further modeled the feature extraction stage. The model takes

the temporal driver’s facial expression images and cognitive

process characteristics (age, gender, and driving age) as input

and finally outputs the recognition results for the discrete emo-

tion model (anger, sadness, fear, disgust, surprise, happiness,

neutral) and dimensional emotion model (arousal, valence,

dominance) to recognize the driver’s emotions.

A. Overall framework of the CogEmoNet model

The computational model for driver emotion recognition

based on the facial expression and emotional cognitive process

proposed in this paper mainly includes three stages of atten-

tion, memory, and decision. Correspondingly, CogEmoNet is

divided into three modules: attention, memory, and decision,

as shown in Fig. 1. The first module is the attention module,

which realizes the emphasis and filtering of input information.

The module’s input is temporal facial expression images,

using CNN as the basic feature extractor and obtaining more

discriminative features by adding spatial and channel attention.

The second module is the memory module. In order to gener-

ate memory information representing the driver’s experience

and the current scene to help the final decision, the memory

module separately constructs the driver’s long-term memory

and working memory, composed of multi-layer perceptrons

(MLP) and exponentially weighted moving average operations

(EWMA). Driver’s cognitive process characteristics (age, gen-

der, and driving experience) are used to generate long-term

memory features, an EWMA of the temporal facial features

output by the attention module to generate working memory

features. Finally, the third module is the decision module,

which uses the fully connected layer (FC) to combine the

features extracted by the attention module and memory module

to detect the driver’s emotions.

Fig. 3: The basic block of attention module:

CBAM ResBlock [37]

One of the inputs of CogEmoNet is processed temporal

image frames. Face landmarks on the original image are pro-

cessed, then face alignment operation is conducted to crop and

resize the image to target size so that the center of the driver’s

eyes and the mouth is kept at a fixed position the image.

Next, the processed images are input into the attention module,

which is a CNN with channel and spatial attention, without

the FC and classification layer. Finally, the deep features

extracted by the attention module and the driver’s cognitive

process characteristics are sent to the memory module together.

The memory module is divided into long-term and short-term

memory, simulated by MLP and EWMA, respectively. The

input of MLP is the driver’s cognitive process characteristics,

which are used to construct the driver’s specific long-term

memory characteristics. The input of EWMA is the driver’s

facial features extracted from all frame images, which reflects

the changing trend of the driver’s facial features and is used

to represent the driver’s working memory features. Notably,

besides the output features of MLP and EWMA, the driver’s

facial features output by the attention module are also added

to the decision module, a FC with a classification/regression

function to detect the driver’s emotions on the input video.

B. Attention Module

This study used the widely used ResNet [38] to extract

facial features and spatial channel attention convolutional

block attention module (CBAM) [37] to weight the features

according to their importance (as shown in Fig. 3), thereby

improving the models representation ability. The study inte-

grated the CBAM module into ResNet34, which was removed

the decision layer, as the calculation model of the attention

module. The calculation process is as follows:

f i
AM = FAM (f i

input), i ∈ [0, k − 1] (1)

Which, FAM is the function of attention module, f i
input, i ∈

[0, k − 1] is the i-th input image, k is the number of video

frames, f i
AM is the facial feature vector of the driver in the

i-th frame.

The facial feature vector extracted by the attention module

will be input to the memory module and averaged on the

channel and then input to the decision module.

C. Memory Module

The memory module is composed of two parts, as shown

in Fig. 4. Part of it is implemented by a MLP, which inputs

the drivers cognitive characteristics, including age, gender,



5

Fig. 4: Memory Module

and driving age, and outputs driver-specific cognitive char-

acteristics, which represents the drivers long-term memory

characteristics; the other part of it is realized by EWMA. The

input is the temporal facial features output by the attention

module. After EWMA processing is performed channel by

channel according to the time sequence, the output represents

the driver’s working memory characteristics of the current

video sequence. Finally, the memory module receives two

independent inputs and generates two independent outputs, and

finally combines the long-term memory features and working

memory features as the driver’s complete memory features.

The calculation process is as follows:

fMLP = FMLP (fgender, fage, fdriving age) (2)

fEWMA = FEWMA(f
0

AM , ..., fk
AM ) (3)

fMM = concat(fMLP , fEWMA) (4)

Which fgender, fage, fdriving age represent the drivers gen-

der, age and driving age, respectively, FMLP is the function

of the multilayer perceptron, FEWMA is the exponentially

weighted movement average functions, fMLP , fEWMA, fMM

correspond to the drivers long-term memory characteristics,

working memory characteristics, and completed memory char-

acteristics, respectively.

D. Decision Module

The decision module is implemented by the FC as a

“classifier/regressor” in the entire model. According to the

human information processing stage model, the input of re-

sponse selection includes attention and the output of memory

cognition. Therefore, the input of the decision module is the

combination of the output of the attention module and the

memory module, as shown in Fig. 1.

E. Loss Function

Different loss functions are used for different emotion

recognition tasks. Cross entropy (CE) [39], F1 [40], mean

square error (MSE) [41], and consistency correlation co-

efficient (CCC) [34] loss function are applied to optimize

accuracy (Acc), F1 score, MSE, and CCC respectively. The

corresponding formulas are listed below.

LCE loss = −
1

N

N∑

i=1

log(
ehyi

∑C

j=1
ehj

) (5)

LF1 loss = 1− 2×
Precision×Recall

Precision+Recall
(6)

LMSE loss =
1

N

N∑

i=1

M∑

t=1

(Iit)
2 (7)

LCCC loss = 1−
2Sc

S2 + Ŝ2 + (ȳ − ¯̂y)2
(8)

Where xi is the input feature of the i−th sample in the final

classification layer, yi ∈ {1, 2, ..., C} and ŷi ∈ {1, 2, ..., C}
are corresponding true label and predict label of the i − th

sample respectively, ȳ and ¯̂y is their corresponding average.

S, Ŝ, and Sc is the variance and covariance of yi and ŷi.

h = (h1, h2, ..., hC)
T is output of the network, namely the

recognition of the i− th sample, C is the number of classes.

IV. DATA COLLECTION

To verify the effectiveness of CogEmoNet model, a dataset

including drivers facial expressions and cognitive process char-

acteristics needs to be collected. In this section, we collected

the DEFE+.

A. Ethics Statement

The video-audio clips’ content shown to the participants and

the whole experimental procedure were approved by the Ethics

Committee of Chongqing University Cancer Hospital, China.

Participants and data from participants were treated according

to the Declaration of Helsinki.

B. Stimulus Selection

The emotions of the driver need to be induced by the

appropriate stimulus in order to collect the emotion data.

Video-audio clips have been proved to be reliable to elicit the

emotions of the driver [3], [4]. In this paper, forty-two clips

were manually selected, referring to the methods of previous

research [4]. Participants were recruited to rate these clips

subjectively, based on which seven clips were selected.

1) Participants: We recruited fifty participants with driving

experience for more than one year from Chongqing University,

9 of whom are female and the rest are male. All the par-

ticipants have valid driver’s licenses. The age of participants

ranges from 21 to 32. Their driving age ranges from 1 to 10

years. The average age and average driving age are 25.3 and

3.5 respectively. The standard deviations of age and driving

age are 2.6 and 2.2 respectively. Agreement to participate in

the study was signed by all fifty participants.
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Fig. 5: Overall data collection setup. (a) visual face camera, (b) video-audio stimulus display, (c) data collection setup, (d)

driver facial expression recording, (e) driver cognitive process characteristics data collecting and his/her self-reported emotion

2) Materials and Procedure: Subjective annotation was

achieved via SAM and DES. The level of arousal, valence, and

dominance was indicated with non-verbal graphical represen-

tations by SAM. DES was used to assess personal emotions

[42]. The effectiveness of SAM was proved in a previous study

[22]. In this paper, 9-point scales (1 = not at all, 9 = extremely)

[21] of SAM [22] and DES were adopted to evaluate the

intensity of each self-reported emotional dimension.

The clips were rated via a subjective emotion assessment

experiment. A set of instructions was provided to each of the

participants to explain the definition of SAM and DES before

the experiment. Two questionnaires were finished by each of

the participants according to their true feelings after watching

each clip. Forty-two clips were randomly displayed. For each

clip, 50 assessments were collected.

3) Selection Results: Both results of SAM and DES were

used to pick out the most effective seven clips. In the process

of analyzing the data of SAM, in order to elicit the emotions

with the maximum strength, the average score of each clip

was calculated, and the clip with the highest average score and

small variation was selected. The normalized score of valence,

arousal, and dominance of each clip was clustered with the K-

means method, thus the emotion clusters were identified based

on SAM data [3], [4]. Besides, the hit rate, intensity value, and

success index was defined according to DES result to select

the clips which were effective to induce the emotions of the

driver [3], [4]. The selection results of SAM and DES were

analyzed to be consistent. Seven clips were selected. Table II

shows the contents of the clips.

C. Facial Expression and Cognitive Data Collection

1) Participants: We recruited forty Chinese participants

with driving experience for more than one year, 9 of whom are

female and the rest are male. All the participants have valid

driver’s licenses. The age of participants ranges from 19 to 55.

Their driving age ranges from 1 to 32 years. The average age

and average driving age are 28.03 and 5.58 respectively. The

standard deviations of age and driving age are 9.24 and 6.02

respectively. The experiment was carried out in Chongqing.

TABLE II: The content and duration of selected clips for

driver emotion induction

Target
emotion

Content
Duration

(sec)

Anger
The driver is driving on the road and intentionally
jammed by other cars

30

Sadness
The driver heard the latest report of the
earthquake broadcast on the radio while driving

63

Fear Serious traffic accidents on the road 59

Disgust
The driver noticed that the rear passenger’s
slippers put his feet on the co-pilot’s position

57

Surprise
The traffic police investigated a van with
more than 50 people in it

94

Happiness
A collection of various modified vehicles
driving on the road

79

Neutral
The driver drives on wide city roads with
nothing happened

48

All participants had normal or corrected to normal vision and

normal hearing ability.

2) Apparatus and Driving Scenarios: The driving ex-

periments were implemented in a driving simulator with

illumination-controlled (RDS2000). A screen was adopted, in

which the clips were displayed. The resolution ratio of the

screen is 1, 280×1, 024 and the refresh rate is 60Hz. The video

data was collected with a Pro Webcam C920 (Logitech), of

which the resolution is 1, 920×1, 080 pixels as the visual face

camera, the frame rate of which is 30 fps. The self-reported

emotion and the cognitive process characteristics data, namely

age, gender, and driving experience of the participants was

collected with an iPad (Apple). The overall setup of data

collection is shown in Fig. 5.

Two driving scenarios on highways, as shown in Fig. 6 for

practice and formal experiment respectively, were realized in

the simulator. The reason for setting these two scenarios is

to minimize the impacts of complex driving conditions on

the driver’s emotion experience and their facial expressions

[43]. Both scenarios were highways with four lanes, two for

one direction and another two for the opposite direction. The

length of the practice and formal experiment highway was 8km

and 3km respectively. The participants were asked to drive

in the right lane. To make the participants familiar with the
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Fig. 6: Illustrations of driving scenarios: (a) emotion driving,

(b) familiarization driving

equipment, they were asked to drive on the practice highway

and controlling the speed at 80km/h, 50km/h, and 100km/h at

different times. During the formal experiment, the participants

were required to control the speed at 80km/h all the time until

they finish the experiment.

3) Data Collection Protocol: Before the experiment, a set

of instructions was taught to each participant to explain the

experimental protocol and details of the self-reported emotion

scale. After a ten-minute familiarization driving followed by a

short break, seven emotion drivings, namely angry driving,

sad driving, fear driving, disgust driving, surprise driving,

happy driving and neutral driving were started in random order

with a three-minute break between each emotional driving.

The corresponding emotion of each emotional driving was

induced with the selected clip at the beginning of the emotional

driving. The self-evaluated emotion level was reported in

the form of SAM and DES by the participants when each

emotional driving was finished. The faces of the participants

were continuously recorded by the camera during each emo-

tional driving. After the entire experiment, each participant

filled out a questionnaire to collect their cognitive process

characteristics data (age, gender, and driving age). In sum,

each participant drove seven times in the highway simulation

scene with the data recording. Therefore, for 40 participants,

280 times driving were finished with data collection. Each

participant took about 90 minutes to complete the entire

process of data collection. The average time of the whole data

collection section of one participant was 945s. Each participant

took about 90 minutes to complete the entire process of data

collection.

D. Target Emotion Induction Success Check

The DES of each participant was used as the ground truth

to verify whether the target emotion was generated by the

participant during the emotional driving. The self-reported

emotion would be selected as the ground truth when it was

not consistent with the target emotion.

It was shown in the results that for each of the emotional

drivings, namely angry, sad, fear, disgust, surprise, happy, and

neutral driving, 34, 38, 36, 25, 34, 36, and 37 participants

were successfully induced into the target emotion, respectively.

240 participants were successfully induced in total. Notably,

in DEFE+ dataset, we removed the facial expression and

cognitive data that was not successfully induced.

V. EXPERIMENTAL SETUP AND RESULTS

Based on the above models and datasets, a driver emotion

recognition algorithm based on cognitive process theory and

facial expressions can be realized. The performance advan-

tages of CogEmoNet were verified on different datasets and

different evaluation metrics.

A. Datasets Used

Since the facial expression datasets with video sequences are

generally small, To improve the feature extraction ability and

expression recognition performance of the attention module,

the MS-Celeb-1M dataset [44] was used to pre-train the

attention module. In addition, the CogEmoNet proposed in

this paper can be used to identify discrete emotions and

dimensional emotions, and the DEFE+ dataset collected in

section IV covered the truth labels of discrete emotions and

dimensional emotions, in order to verify the universality of

CogEmoNet, The performance verification of CogEmoNet

with different evaluation metrics was also carried out on the

CK+ [45] dataset with discrete emotion labels and the DEAP

[46] dataset with dimensional emotion labels. A sample of

each dataset was shown in Fig. 7.

DEFE+: The DEFE+ dataset covered the facial expres-

sion in the driving scenario and the driver’s cognitive pro-

cess characteristics. According to six basic emotions and

neutral emotion and arousal-valence-dominance dimensional

emotions, 240 video sequences were successfully induced by

40 participants and labeled. The 15s facial expression video

sequence after driving was edited as the most effective data [4].

Due to various postures, lighting, and occlusion (glasses), face

detection and alignment in a driving scenario was challenging.

The resolution of the image was 640 × 480.

CK+: Almost 600 video sequences of 123 participants were

included in CK+. The ages of participants, most of whom were

women, range from 18 to 30. 327 video sequences of 118

people were labeled with seven emotion labels. The emotion

classification results of the discrete models were compared

using CK+ as one of the datasets. The resolution of the image

was 640 × 480 and 640 × 490.

DEAP: The physiological signals of 32 participants (pe-

ripheral physiological information, electroencephalogram, and

frontal facial data of 22 participants) were included in DEAP.

After watching each of forty stimuli chooses to induce a
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Fig. 7: Sample images of each dataset and data

pre-processing setps

certain emotion respectively, the real emotions of each partic-

ipant were evaluated by themselves from arousal, dominance,

valence, liking, and familiarity. The score of the first three

dimensions range from 1 to 9, and the other two dimensions

range from 1 to 5. The bigger the number, the stronger

the emotion. During the experiment, the facial videos of

twenty-two participants were recorded, which were adopted

to compare the results of dimensional emotion models. There

were a total of 880 facial video sequences. The resolution of

the image was 720 × 576.

B. Data Pre-processing

1) Facial Expression Sequence Data: All the experimental

datasets compared in this paper contain face video sequences.

Due to different image collecting methods, the input image

had complex illumination conditions and large head postures.

In addition, the distance, focal length, etc. made the size and

position of the face in the entire image uncertain. In order

to ensure the consistency of face size, position, and image

quality, a series of pre-processing operations were applied to

the input images.

Data pre-processing mainly included landmarks detection,

face alignment, geometry normalization, and brightness nor-

malization of the face image, as shown in Fig. 8. Face

alignment was applied to get the face image with the correct

face position. Geometric normalization was used to obtain

standardized face images with the same size and facial area.

Brightness normalization improved the quality of the image

and made the image more suitable for human observation and

computer processing and recognition.

First, multi-task cascade convolution network (MTCNN)

was used to detect the 68 landmarks of the face [47]. The angle

of two lines, namely the central line of two eyes and horizontal

line, is used to rotate the image to align face; then, based on

the distance a between two eyes’ center, and the distance b

between the mouth center and the center of two eyes, crops

the driver’s face image to width 2a and height 2b, and then

resizes to 112×112 pixels, as shown in Fig. 8. Geometric

normalization made the same facial landmarks approximately

located at the same region. At the same time, this process

discarded the background details and facial regions such as

ears and forehead that were not related to facial expressions

[48], because these regions did not represent the specific

information of facial expressions [49]. To reduce the change

of the image signal caused by the change of illumination, the

brightness of the cropped face image was normalized.

Previous studies confirmed that facial expressions usually

last for 0.5 to 4 seconds [50], and we may sample at least

two frames of images per second to capture changes in facial

expressions. Therefore, for DEFE+ dataset (each video has a

duration of 15 seconds), we collected a total of 30 frames.

Meanwhile, to keep the model input consistent, the CK+ and

DEAP datasets were also sampled to 30 frames. Notably,

because the CK+ dataset provided video sequences with an

indefinite number of frames, for video sequences with less

than 30 frames, we used up-sampling to 30 frames, and for

video sequences with more than 30 frames, we used down-

sampling to 30 frames.

Fig. 8: Facial geometric normalization

2) Cognitive Characteristics Data: The pre-processing of

driving cognitive characteristics data in DEFE+ was only used

to generate the driver’s long-term memory features. Among

them, gender was binarized, and driving age and age were

standardized with 0 mean and 1 variance.

For the CK+ and DEAP datasets without driver cognitive

characteristics, we manually marked the gender of the current

sample. The age and driving age were set to 0 and no

additional data pre-processing was required.

C. Experiment Details and Evaluation Metrics

1) Experiment details: This model was implemented using

the open-source platform PyTorch. The model was trained

and tested on a server equipped with NVIDIA Tesla V100

GPU. CogEmoNet used Stochastic Gradient Descent (SGD)

optimizer with Nesterov momentum of 0.9, the batch size was

64, and the learning rate decay strategy was stochastic gradient

descent with warm restarts (SGDR) [51]. For CK+, DEAP, and

DEFE+ datasets, the initial learning rate was 0.05, 0.005, and

0.0005 respectively. The model training was executed for 30,

60, and 30 epochs respectively with the warm restart of 5

epochs.

The dataset used in this paper were constructed based

on 10-fold person-independence cross-validation to ensure

that the tasks were independent of each other. Ten subsets

were constructed as in several previous works [35]. The final

experimental result was the average result of 10-fold cross-

validation.

2) Evaluation metrics: The Basic discrete emotion model

includes seven emotions (anger, sadness, happiness, neutral,

fear, disgust, surprise), therefore, the recognition of discrete

emotions was a multi-classification task, and Acc was the most
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commonly used evaluation index in classification tasks. To

deal with the category imbalance in CK+ and DEFE+, F1 score

was added as a supplementary evaluation index of discrete

emotion.

The dimensional emotion model includes three dimensions:

arousal, valence and dominance, and the recognition of the

dimensional emotion model was a regression task. The MSE

was the most commonly used evaluation index in regression

tasks. Since the CCC was also often employed to assess

the effectiveness of emotion recognition, recognition results

of dimensional emotion on DEAP and DEFE+ will were

analyzed from the aspects of MSE and CCC. MSE was

used to measure the overall mean deviation between the true

value θ and its estimate θ̂. Notably, the smaller the MSE,

the better of the model performance. CCC was a commonly

used metrics in dimensional emotion recognition, and it was

used to measure the consistency between the real emotion

and the predicted emotion. The value of CCC ranges from

-1(completely inconsistent) to 1(completely consistent). The

formula of CCC is given below.

ρ̂c =
2Sc

S2 + Ŝ2 + (ȳ − ¯̂y)2
(9)

D. Experimental Result

All methods in this paper used a fixed number of expression

frames. The model structure of the baseline method was

CBAM ResNet34, which averages the recognition results of

all expression frames in the video sequence as the recog-

nition result of the video. Besides, the hybrid CNN-LSTM

model was the commonly used method for facial expression

detection, so the hybrid CNN-LSTM model was also used as

the comparison method of the models proposed in this paper.

The hybrid CNN-LSTM model employed CBAM ResNet34

to extract spatial features of facial expressions, and LSTM to

extract temporal features from the spatial features to predict

emotions.

TABLE III: Recognition results in comparison of discrete

emotion model on CK+ and DEFE+ datasets

Models
CK+ DEFE+

Acc F1 score Acc F1 score

Baseline 0.851 0.819 0.295 0.256
CNN-LSTM 0.882 0.837 0.324 0.298

CogEmoNet (Our) 0.907 0.882 0.351 0.327

1) Discrete Emotion Model: The experimental results of

discrete emotion on CK+ and DEFE+ were shown in Table.

III. The higher the Acc and F1 score, the better the perfor-

mance. We present the Acc and F1 score of discrete emotion

recognition in Fig. 9(a) and Fig. 9(b) respectively. Table. III

demonstrates that the results of CogEmoNet are better than

baseline and CNN-LSTM methods, and performs best on

CK+ and DEFE+. On CK+, the CogEmoNet Acc (90.7%)

is 5.6% and 2.5% higher than the baseline (85.1%) and

hybrid CNN-LSTM (88.2%) respectively. The CogEmoNet F1

score (88.2%) is 6.3% and 4.5% higher than the baseline

(81.9%) and hybrid CNN-LSTM (83.7%) respectively. On

DEFE+, the CogEmoNet Acc (35.1%) is 5.6% and 2.7%

Fig. 9: Acc and F1 score of discrete emotion model

higher than the baseline (29.5%) and hybrid CNN-LSTM

(32.4%) respectively. The CogEmoNet F1 score (32.7%) is

7.1% and 2.9% higher than the baseline (25.6%) and hybrid

CNN-LSTM (29.8%) respectively. The effectiveness of our

proposed CogEmoNet in discrete emotion recognition was

proved.

TABLE IV: Recognition results in comparison of

dimensional emotion model on DEAP and DEFE+ datasets

Models
DEAP DEFE+

MSE CCC MSE CCC

Baseline 8.447 0.117 9.902 0.155
CNN-LSTM 4.739 0.140 5.802 0.204

CogEmoNet (Our) 3.654 0.181 4.220 0.221

2) Dimensional Emotion Model: The experimental results

of dimensional emotion on DEAP and DEFE+ were shown

in Table. IV. The lower the MSE and the higher the CCC,

the better the performance. We present the MSE and CCC

of dimensional emotion recognition in Fig. 10(a) and Fig.

10(b) respectively. Table. IV shows that the results of Co-

gEmoNet are better than baseline and CNN-LSTM methods,

and performs best on DEAP and DEFE+. On DEAP, the

CogEmoNet MSE (3.654) is 4.793 and 1.085 less than the

baseline (8.447) and hybrid CNN-LSTM (4.739) respectively.

The CogEmoNet CCC (0.181) is 0.064 and 0.041 higher than

the baseline (0.117) and hybrid CNN-LSTM (0.140) respec-

tively. On DEFE+, the CogEmoNet MSE (4.220) is 5.682 and

1.582 less than the baseline (9.902) and hybrid CNN-LSTM

(5.802) respectively. The CogEmoNet CCC (0.221) is 0.066
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Fig. 10: MSE and CCC of dimensional emotion model

and 0.017 higher than the baseline (0.155) and hybrid CNN-

LSTM (0.204) respectively. The effectiveness of our proposed

CogEmoNet in dimensional emotion recognition was verified.

Table III and Table IV demonstrate the experiment results

for all the performance metrics. The tables show that the

CogEmoNet recognition framework is capable to achieve

well detection results on different datasets. we also find that

compared with the CK+, the recognition results obtained on

DEFE+ and DEAP are lower. Obviously, the data in the CK+

contain a wide range of variations, for example, including

participants from different nationalities. At the same time,

posed or spontaneously induced may lead to the difference,

most of the CK+ data are posed by the participants, while

the DEFE+ and DEAP data are spontaneously induced. More-

over, the facial expression of the driver may be suppressed

due to the driving tasks, which may be the reason for the

difference between DEFE+ and DEAP recognition results.

Furthermore, The performance of the CogEmoNet model on

the CK+ dataset is not good enough in comparison with

previous studies [23] [28]. This is mainly caused by different

data processing methods and sampling methods. This study

uses a fixed number of expression frames instead of peak

expression frames for training and uses a person-independent

sampling method for verification. These processes all increase

the difficulty of model learning.

VI. CONCLUSION

In this paper, we proposed a cognitive-feature-augmented

model to detect driver emotion based on facial expression and

cognitive process characteristics. This model was proposed and

implemented by combining emotion generation process theory

and deep learning algorithms. CogEmoNet recognized driver

emotions by simultaneously considering the drivers facial

expression and cognitive process characteristics. To verify

the performance of the CogEmoNet, This paper conducted

driver’s emotion data collection. The collected dataset included

frontal facial videos from 40 drivers, their cognitive process

characteristics, and subjective ratings on driver emotions.

CBAM ResNet34 and CNN-LSTM were also used to compare

detection performance. The results show that the CogEmoNet

detection architecture is capable of achieving well detection

results for different databases on discrete emotion model and

dimensional emotion model, respectively.
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