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Abstract
This paper proposes a diagnostic technique that can predict component degradation for a number of complex systems.
It improves and clarifies the capabilities of a previously proposed diagnostic approach, by identifying the degradation
severity of the examined components, and uses a 3D Principal Component Analysis approach to provide an explanation
for the observed diagnostic accuracy. The diagnostic results are then used, in a systematic way, to influence maintenance
decisions. Having been developed for the Auxiliary Power Unit (APU), the flexibility and power of the diagnostic metho-
dology is shown by applying it to a completely new system, the Environmental Control System (ECS). A major conclu-
sion of this work is that the proposed diagnostic approach is able to correctly predict the health state of two aircraft
systems, and potentially many more, even in cases where different fault combinations result in similar fault patterns.
Based on the engineering simulation approach verified here, a diagnostic methodology suitable from aircraft conception
to retirement is proposed.
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Introduction

According to the analysis by Saxon and Weber,1 main-
tenance costs contribute significantly to the overall
operating cost of an airline, and as the International
Air Transport Association (IATA)2 reports,
Maintenance Repair and Overhaul (MRO) represents a
$76B/year market. Accurate identification of system
and component health states enable optimization of an
airline’s maintenance plan, which finally results in
increased asset availability and reduced cost.3

Therefore, diagnostic techniques, that can correctly
identify the system and component health states, are
helpful for airlines and maintenance organizations. As
the major drivers of aircraft maintenance are the
Auxiliary Power Unit (APU)4 and the Environmental
Control System (ECS)5 these systems are analyzed in
this paper.

This paper proposes a diagnostic technique that can
predict component degradation for any complex sys-
tem. It builds on previous work on detecting APU
faults in the presence of other degraded components.
The development of the diagnostic methods in this
work considers the fact that degradation builds-up in
all system components from the moment they are

installed on the aircraft, and consequently all compo-
nents can be subject to a certain degree of degradation.
Therefore, the most critical challenge from a maintai-
ner’s point of view is the correct identification of each
component’s degradation level. This is in order to
promptly replace components that are approaching the
end of their lives, while avoiding unnecessary replace-
ment of components with minimal degradation (over-
maintenance).

The aim of this work is to design a diagnostic meth-
odology that is able to identify the degradation level of
the examined components and correlate them with
appropriate maintenance action. In order to achieve
this, a traffic light-based system is adopted to define
three different fault severity regions, each one of them
associated with a different maintenance action.
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Following that, two different diagnostic approaches are
compared on the APU system in order to establish a
robust methodology. The approach that demonstrated
the best performance on the APU case study is applied
on a new system, in this case the ECS.

Finally, challenges that can be encountered when
applying the proposed approach in ‘‘real-world’’ condi-
tions are discussed and a diagnostic methodology suit-
able for use with an aircraft throughout its life cycle is
proposed. The most prominent implementation issues
addressed are:

� In some cases only limited data is available to train
and test the diagnostic algorithm. For this reason,
the proposed technique was evaluated with sparse
datasets.

� The definition of the thresholds of the different
severity levels heavily depends on field data.
Therefore, the proposed fault severity regions that
are proposed throughout this paper are based on
data from the public domain literature and the
authors’ experience. End-users with access to the
relevant field data can define their own thresholds
and associate them with the relevant maintenance
actions.

Based on the success of the proposed diagnostic
approach on two different systems, the main character-
istics of this methodology are generalized and, by con-
sidering the implementation challenges, a through-life
diagnostic approach to maintenance is proposed. This
approach, which is based on the Condition-Based
Maintenance (CBM) philosophy, can be applied to any
complex system that consists of multiple sub-systems
with replaceable components including control loops
and is structured to serve both new and legacy designs.
The proposed through-life diagnostic approach con-
stantly re-defines the thresholds of the severity regions
based on field data in order to create the most suitable
thresholds specifically tailored for each system.

Background of APU diagnostics

The APU is a system installed in all commercial aircraft
and its purpose is to provide bleed air and electric
power to other aircraft systems. Skliros et al.6 describe
the principle of operation of a Boeing 747 APU and
discuss its performance characteristics under various
operating conditions. The APU belongs to the broader
category of Gas Turbine (GT) engines, for which a
large variety of diagnostic techniques have been devel-
oped. Li7 and Tahan et al.8 present the most important
model-based diagnostic approaches for GT systems,
and Bettocchi et al.9,10 discuss the most representative
data-driven diagnostic techniques.

Since the APU is a major contributor to aircraft
maintenance, a number of research studies discuss diag-
nostic approaches specifically for APU systems. Some
of the most representative approaches are mentioned

below. Gorinevsky et al.11 developed a model-based
methodology to diagnose faults in APU components
during start-up and steady state operation. Also,
Vianna et al.12 used a classification tree to diagnose
excessive bleed, inlet blockage and fuel filter blockage
faults of an APU, by monitoring field data (Exhaust
Gas Temperature (EGT), bleed pressure, and fuel
flow). Pascoal et al.13 trained neural networks to pre-
dict the changes in basic APU performance parameters
(bleed mass flow, compressor efficiency, turbine effi-
ciency), based on data produced by a simulation model.
Finally, in the work conducted by Guralnik et al.14 the
probabilities of various APU faults were calculated by
integrating the results of component-level diagnostic
algorithms based on the Dempster-Shafer fusion rules.

A full literature review in APU and GT health moni-
toring methods15 shows that most diagnostic studies
consider only the GT sub-system, while the ancillary
sub-systems (e.g. fuel system, control system, and
electric system) are ignored. However, as has been
discussed by Skliros et al.15 faults in the ancillary sub-
systems can result in global changes in the system’s
performance, and for this reason it is important to
consider all sub-systems when conducting health moni-
toring studies.

Background of ECS diagnostics

The ECS is a system installed in all commercial aircraft
with the purpose of providing conditioned air to the
passenger cabin, by processing bleed air (from the
engines or the APU) through a series of mechanical
components. The principle of operation of a Boeing
737-800 ECS is presented in the work conducted by
Jennions et al.16 in which a simulation model for the
ECS is developed and its performance characteristics
are explored for various boundary conditions.

Most ECS diagnostic studies discuss single compo-
nent faults, and diagnostic studies for heat exchanger
fouling dominate the public domain literature. A diag-
nostic study for heat exchanger fouling has been
conducted by Najjar et al.17 In this approach, a physics-
based model was used to generate the necessary data,
and based on the most relevant sensor suite, machine
learning algorithms were trained to diagnose heat
exchanger fouling. Also, Shang and Liu18 proposed a
technique that is able to diagnose heat exchanger fouling
by monitoring the changes in the Temperature Control
Valve’s (TCV) position. Finally, Shah et al.19 using a
state space model of the heat exchanger were able to
predict changes in the performance characteristics via
the Extended Kalman Filter (EKF).

However, as has been discussed by Jennions,20 the
ECS control system masks the effects of component
degradation, and hence the correct identification of the
system health state requires system-level, rather than
component-level analysis. Despite the fact that system-
level analyses are necessary for the accurate identifica-
tion of the system health state, they are rarely available
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in the public domain literature. Najjar et al.17 discuss
heat exchanger fouling faults by taking into account
the operation of the entire ECS system. An important
observation in the study by Najjar et al.17 is the fact
that degradation is considered only in the heat exchan-
ger, while all other components are assumed to be free
from degradation. However, as will be discussed in the
rest of this paper, in order to accurately diagnose the
system health state, and proceed to corrective actions,
simultaneous existence of degradation in all compo-
nents should be considered.

As regards system-level diagnostic studies that con-
sider the simultaneous existence of multiple faults, Liu
et al.21 developed a diagnostic technique that is able to
diagnose multiple faults in an ECS. This is done by a
Bayesian network, which is constructed based on first
principles, expert knowledge, and maintenance data
and is designed to detect faults in the following compo-
nents: heat exchanger, air cycle machine, temperature
control valve and ram air actuator. Finally, Hare
et al.22 trained multiple neural networks in order to dif-
ferentiate between heat exchanger, air cycle machine,
and sensor faults. An interesting aspect of their
approach is that a dedicated neural network was
trained to recognize the health state of each examined
component. Furthermore, each neural network was
trained to recognize the healthy state of its correspond-
ing component, while another component can be
degraded. This training methodology significantly
increased the accuracy of the diagnostic results when
compared with the classical training approach, that
under the healthy state, all components are healthy.
The training methodology used in the work by Hare
et al.22 has motivated the diagnostic approach pre-
sented in this paper.

Scope of the present work

The main observation coming out of the literature sur-
vey on APU, GT, and ECS diagnostic studies, is the
fact that most diagnostic approaches are based on the
‘‘single fault’’ hypothesis, which means that the diag-
nostic analyses assume that only one component can be
degraded. However, in real systems, all components
start to degrade from the moment the system is installed
on the aircraft, and consequently degradation is to be
expected in all components simultaneously. For this
reason, in order to accurately assess the system health
state, the diagnostic algorithms should consider the
simultaneous existence of multiple component degrada-
tion, at different severity levels.

Even though the simultaneous existence of multiple
faults is frequently observed in industry, the relevant
literature is limited. The most important diagnostic
studies discussing the simultaneous existence of multi-
ple faults (relevant to the systems examined in this
paper) have been applied mostly on GT engines while
only a few papers consider multiple faults in ECS sys-
tems. A representative study discussing multiple fault

diagnostics for a GT system has been conducted by
Sadough Vanini et al.23 and in this work, the research-
ers tested the ability of a parallel bank of autoassocia-
tive neural networks to detect the simultaneous
existence of component and sensor faults. The results
showed that the proposed approach is able to detect
the simultaneous existence of a sensor and a compo-
nent fault, however, this technique was not tested for
simultaneous faults in different components. Joly
et al.24 proposed a technique that can diagnose five sin-
gle component faults and three double component
faults in a turbofan engine by training a neural network
for each fault combination that is examined. The pro-
posed technique was able to correctly predict the single
and double faults tested, however a disadvantage of
this technique is that the responses of the diagnostic
algorithms are limited to the fault combinations consid-
ered during training. Therefore, in order to identify all
possible fault combinations, that can appear in a real
engine, the classifier must consider many target classes,
and this might reduce its ability to define accurate deci-
sion boundaries. Lee et al.25 developed a technique that
is able to diagnose sensor and component faults (both
single and multiple) using a hierarchical Bayesian net-
work. The proposed approach was able to predict a
compressor fault and a fuel flow sensor bias, however,
this technique should be further tested under multiple
faults. Furthermore, Sampath and Singh26 have pro-
posed a technique that combines neural networks with
genetic algorithms to diagnose multiple faults in a GT.
This approach leveraged both the high accuracy offered
by the genetic algorithms and the fast response of
neural networks. The proposed technique was able to
successfully diagnose a sensor fault as well as single
and multiple component faults (in no more than two
components). However, the classification approach
used in this paper would require an excessive number
of target classes in order to diagnose the simultaneous
existence of sensor and component faults (more than
two), which could impact the predictions’ accuracy.
Finally, Guralnik et al.14 used Dempster-Shafer (D-S)
theory to integrate the results of independent single-
fault diagnostic algorithms in order to calculate the
probability of simultaneous multiple faults in an APU
system.

As regards the ECS, the most notable studies dis-
cussing multiple faults include Hare et al.22 who used
neural networks to identify the simultaneous existence
of heat exchanger, air cycle machine, and sensor faults.
Also, as described previously, Liu et al.21 developed a
Bayesian network capable of diagnose simultaneous
faults in four components. Finally, Palmer et al.27

developed a technique that is able to diagnose air cycle
machine degradation, pipe corrosion, and degradation
in the temperature control valve. Under the latter
approach, a state space model of the ECS was devel-
oped and the target faults are diagnosed by analyzing
the residual of the system outputs between the healthy
and faulty conditions. Finally, diagnostic studies based
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on multi-component degradation have also been
applied in other systems such as the fuel system. The
most representative study for the fuel system has been
conducted by Lin et al.28 in which a Bayesian network
was used to identify the component degradation
severity.

The current authors, in their previous work,15 con-
ducted a diagnostic analysis for a Boeing 747 APU that
considered simultaneous faults in the Compressor,
Turbine, Load Control Valve (LCV), Fuel Metering
Valve (FMV), and Electric Generator. The healthy and
faulty data were generated by a simulation model that
was calibrated against experimental data. By assessing
the model’s sensitivity for various fault cases, it was
seen that different fault combinations result in similar
fault patterns. Therefore, for each component under
examination, an individual classification algorithm was
trained to recognize its healthy and faulty state, while
other components could be either healthy or faulty. The
most important element in the design of the diagnostic
classifiers relied on the fact that for each examined com-
ponent four different scenarios were considered to label
the datasets that corresponded to the healthy and the
faulty cases. For example, the data that corresponded
to the healthy case were generated by simulations in
which the examined component was always healthy,
while the other components were subject to various
degradation levels. The same methodology was adopted
to generate the datasets that correspond to the faulty
case. Finally, when evaluated against test datasets, the
proposed diagnostic technique was able to predict com-
ponent faults (without considering fault severity levels),
even for test cases that caused similar changes to the
system’s performance. Based on the aforementioned
background, the aim of this work is to clarify and
improve the capabilities of the diagnostic approach pre-
viously proposed,15 by identifying the degradation
severity of the examined components, and discuss how
diagnostic results influence maintenance decisions. In
the rest of this paper the methodology that will be used
to generate training and testing datasets as well as the
design and structure if the diagnostic classifiers will be
thoroughly discussed.

Furthermore, the current work postulates that the
proposed diagnostic methodology can be applied to
any complex system, and for this reason, the case stud-
ies for the APU and the ECS are considered. The objec-
tives of this work are:

� To enhance the authors previous work on APU
diagnostics15 by:

� creating a diagnostic framework that is able to diag-
nose the degradation severity level of the examined
component.

� comparing the performance of two different diag-
nostic approaches.

� discussing the implementation challenges of the
proposed techniques in ‘‘real world’’ applications.

� To take the diagnostic approach with the best per-
formance in the APU case studies and apply it
(without modification) to a new system, the ECS.

� Given a successful outcome to the above, propose a
diagnostic methodology that could live with the air-
craft, supporting maintenance activity, through its
life.

At this point it should be mentioned that, even
though this work is motivated by the authors’ previous
work,15 the methods used to carry out the diagnostic
analysis are thoroughly explained in this paper and
consequently this paper is a self-contained piece of
work. Namely, the fault modes considered in this anal-
ysis are detailed in Section 2, while in Section 3 all
aspects of the diagnostic analysis are explicitly dis-
cussed. Especially as regards the diagnostic analysis,
the objectives of the analysis are clearly stated and a
comparison of two different approaches is conducted.
For each diagnostic approach, the training, validation,
and testing strategy are detailed, and the conclusions of
this comparative study are discussed. Thereafter, based
on the finding of the APU diagnostic analysis as pre-
sented in Section 3, the same methodology is applied
on the ECS, in order to evaluate the ability of the pro-
posed methodology to successfully detect the health
state of a different system (Section 4). Finally, consider-
ing the outputs of the APU and ECS diagnostic analy-
sis, Section 5 suggests a generic framework for
Condition-Based Maintenance for aircraft systems.

In conclusion, it should be highlighted that the design
of the overall diagnostic framework aims to optimize
maintenance actions and this association is discussed
throughout the paper. The importance of associating
the diagnostic outputs with maintenance decisions is
necessary since component replacement depends on
their degradation level. In general, components should
be replaced when they suffer from high severity degra-
dation, in order to avoid system faults, while they
should remain in the system when they are subject to
low severity degradation. Therefore, the identification
of the component degradation level determines the rele-
vant maintenance decisions, which in turn modifies the
overall maintenance plan of an organization.

Fault simulations and diagnostic
framework

The necessary data to conduct the APU and the ECS
diagnostic analyses are generated by models that are
able to simulate these systems under healthy and faulty
conditions. In this section, the fault simulation metho-
dology is detailed, and the overall diagnostic frame-
work is defined. As regards the faults considered in this
work, these are selected based on the most typical fault
modes mentioned in the public domain literature.
Initially, the APU fault simulations are discussed, and
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following that, the ECS fault simulations are presented.
The diagnostic framework is designed in order to
inform the operators of the most appropriate mainte-
nance actions, based on the component degradation
severity level. The diagnostic analysis in this paper is
based on the hypothesis that all components start to
degrade from the moment the system starts operation,
and for this reason, low severity degradation should be
acceptable. Furthermore, the outputs of the diagnostic
analysis are defined in such a way, in order to inform
the operators whether maintenance should be carried
out immediately, or components should be replaced
during the next available maintenance slot.

On this basis a traffic-light taxonomy system can be
defined, that associates component fault severity with a
maintenance action, as:

� Low Severity (Green): No maintenance action is
necessary.

� Medium Severity (Amber): A maintenance action
(for the corresponding component) should be car-
ried out the next time the aircraft is grounded for
maintenance for any scheduled or unscheduled
inspection. It is not usually required to ground the
aircraft when medium severity degradation is
detected.

� High Severity (Red): High risk of system malfunc-
tion. The system should be shut down and mainte-
nance should be carried out immediately.

Levels for these categories are given below and dis-
cussed, for the APU and the ECS respectively.

APU component faults

Tables 1 and 2 present the fault severity classes for the
APU components (compressor, turbine, and LCV). In
the rest of this section the methodology followed to
select these fault modes and the threshold selection
between the different fault classes is detailed.

APU performance data, that are used in this paper,
are generated by the Boeing 747 APU simulation

model discussed in Skliros et al.15 Figure 1 presents the
schematic diagram of the APU model, along with its
inputs and outputs. The model’s output, which may be
considered to come from virtual sensors, constitute the
symptom vector, that will be used as an input in the
diagnostic algorithms. For the purposes of this analy-
sis, the simulated data correspond to ambient tempera-
ture 293�K, while the APU is stationary at sea level.
The bleed mass flow is defined as fraction of the inlet
mass flow, and for this case study the bleed mass flow
is 28% of the inlet mass flow (for the given environ-
mental conditions this equals to 3 kg/s). Finally, the
electric power produced by the electric generator is
25 kW.

The diagnostic analysis conducted in Skliros et al.15

revealed that faults in the Compressor, Turbine, and
Load Control Valve (LCV) always cause similar
changes to the system’s performance and for this rea-
son, these components will be further examined in this
analysis. Each of the examined components can develop
a number of different fault modes depending on the
changes in their characteristics. In order to identify the
failure mechanism for each fault and their typical sever-
ity levels, information from the public domain literature
is sought.

As regards the compressor, deformation of the sur-
face and geometry of its blades change this compo-
nent’s characteristics (mass flow rate, pressure ratio,
and isentropic efficiency). As has been reported by
Kurz and Brun,29 a compressor fault typical changes all
component characteristics, however, depending on the
nature of the fault mode, some characteristics might
have a stronger change compared to the others. For
example, increased tip clearance has been reported by
Graf et al.30 to strongly affect all compressor character-
istics, while fouling or erosion faults result in a much
stronger reduction in the mass flow and isentropic effi-
ciency compared to the pressure ratio, as reported by
Igie et al.31 and Zwebek and Pilidis.32 An area that
requires further research is a more precise correlation
between the changes in the component characteristics
and the fault severity level, since very limited work has

Table 1. Compressor and turbine degradation severity regions.

Component Low severity Medium severity High severity

Compressor Mass flow decrease: 0%–1% Mass flow decrease: 1.01%–4% Mass flow decrease: 4.01%–5%
Efficiency decrease: 0%–0.5% Efficiency decrease: 0.505%–2% Efficiency decrease: 2.005%–2.5%

Turbine Mass flow decrease: 0%–1% Mass flow decrease: 1.01%–4% Mass flow decrease: 4.01%–5%
Efficiency decrease: 0%–0.5% Efficiency decrease: 0.505%–2% Efficiency decrease: 2.05%–2.5%

Table 2. LCV fault classes.

Component Valve healthy Valve blocked

LCV Mass flow decrease: 0% Mass flow decrease: 0.01%–5%
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been published on this issue. For the purposes of this
work, the fault considered in the compressor emulates a
fouling condition as described by Zwebek and Pilidis.32

The fault simulations in this paper consider reduction
in the mass flow rate (up to 5%) and decrease in the
isentropic efficiency (up to 2.5%), while the pressure
ratio characteristic remains unaffected. The simulations
carried out consider 500 partitions of the mass flow and
efficiency with proportional changes for these charac-
teristics. So, for example, if the mass flow rate is
reduced by 1%, this corresponds to a reduction in effi-
ciency by 0.5%.

As regards the turbine, similarly to the compressor,
faults in this component are generated from changes in
its blades surface and geometry. A turbine fault nor-
mally affects all turbine characteristics (mass flow rate
and efficiency). However, depending on the existing
fault mode, one of the turbine characteristics can have
a much stronger influence than the other. For example,
Boyle33 and Kurz et al.34 report that the surface rough-
ness and fouling cause a much stronger reduction in
efficiency compared to the mass flow rate. In this
paper, there is emulated a turbine fouling condition as
reported by Zwebek and Pilidis.32 This condition results
in a decrease in both the mass flow capacity (up to 5%)
and the efficiency (up to 2.5%). Also, similarly with the
compressor, it is assumed that the turbine’s mass flow
rate characteristic and the efficiency characteristic pres-
ent linear changes to each other and with the same
number of partitions, as in the compressor case.

Finally, the LCV is a pneumatically operated valve
and as reported by Shang and Liu35 and Daigle and
Goebel,36 the most typical fault mode developed in this
component is a malfunction of the valve’s actuator, due
to degraded springs or excessive piston friction. Under
the influence of these faults, the valve cannot be con-
trolled properly and consequently this results in devia-
tions of the provided bleed mass flow compared to the
operator’s commands. For the purposes of this applica-
tion, the LCV fault mode emulates a condition that the
valve is stuck and provides less bleed flow compared to
the operator’s command.

As mentioned in the Section 1, the aim of this work
is to assess the ability of the proposed diagnostic
approaches to identify the health state of the examined
components. In order to compare the different diagnos-
tic approaches, the emulated component faults should
create similar changes on the system’s performance.
Thus, by taking into account the compressor and tur-
bine faults, the LCV fault emulates a valve blockage
that results in a reduction in the bleed mass flow up to
5% from its nominal value, which is a similar with the
changes caused by the compressor and turbine degra-
dation. Based on the fault modes defined above, the
challenge to correctly diagnose the health state of the
APU components can be seen by observing Figure 2.
In this figure, it is seen that three different fault combi-
nations result in similar changes on the system’s perfor-
mance. Thus, the diagnostic algorithms should be able
to identify each component’s degradation

Figure 1. APU simulation model schematic.15
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characteristics and define decision boundaries that can
accurately separate the different target classes.

ECS component faults

Table 3 shows the fault severity classes for the ECS
components (Primary Heat Exchanger (PHX),
Secondary Heat Exchanger (SHX), and Air Cycle
Machine – Turbine (ACM-TUR)). In a similar way to
the APU above, the methodology followed to select
these fault modes and the threshold selection between
the different fault classes is now detailed.

Performance data for the ECS is generated from a
physics-based model that is able to simulate a Boeing
737-800 ECS under healthy and faulty conditions. This
model has been developed by Jennions et al.16 and its
sensitivity under component faults has been assessed by
Jennions.20 Similarly to the APU, the ECS model cal-
culates the airflow parameters (pressure, temperature,
and mass flow) through its components, based on given
boundary conditions. For the purposes of this paper
the generated data correspond to an aircraft flying at
8534.4m (28,000 ft) with a speed of 0.78 Mach, while
the ambient temperature is 232�K and the ambient
pressure is 33 kPa. Virtual sensors measure the air flow

parameters at various stations across the ECS, as
shown in schematic diagram in Figure 3.

According to Liu et al.21 the most frequent ECS
faults appear in the Primary or Secondary Heat
Exchangers (PHX – SHX), the TCV, and the ram air
door actuator an the ACM. Furthermore, as it has
been reported by industry experts, the ACM is the most
frequently replaced component. For this reason, the
diagnostic analysis in this work considers faults in the
PHX, SHX, and ACM.

Heat exchangers transfer energy from the bleed to
the ram airflow, and their performance depends on the
material characteristics. As reported by many operators
and researchers,17–19 the most frequent fault mode in
heat exchangers is accumulations of foreign particles
on their walls (fouling). As Wright et al.37 report, the
most significant contributors to heat exchanger fouling
are air pollutants generated by the emissions of ground
vehicles. Fouling affects heat exchangers performance
by:

� Reducing the component’s effectiveness17

� Reducing the mass flow rate37

� Increasing the pressure drop across the
component19

Figure 2. Examples of different APU fault cases that have similar fault patterns.

Table 3. ECS degradation severity regions.

Component Low severity Medium severity High severity

Primary heat exchanger Efficiency decrease: 0%–25% Efficiency decrease: 25%–50% Efficiency decrease: 50%–75%
Secondary heat exchanger Efficiency decrease: 0%–25% Efficiency decrease: 25%–50% Efficiency decrease: 50%–75%
Air cycle machine (turbine
degradation)

Efficiency decrease: 0%–1% Efficiency decrease: 1.1%–4% Efficiency decrease: 4.1%–5%
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The level to which the component’s characteristics are
affected depends on the severity of the fault and the
type of accumulated foreign particles. The fault simula-
tions conducted in this paper, are based on the hypoth-
esis that fouling affects the component’s effectiveness
disproportionately to the mass flow rate and the pres-
sure drop characteristics. Therefore, the PHX and
SHX faults are emulated by reducing the component
effectiveness while keeping the other characteristics
unaffected.

As regards the ACM, this is a module that consists
of a compressor and a turbine that rotate on a common
shaft. However, a fault in either the compressor or tur-
bine results in replacement of the entire ACM module.
For the purposes of this work, it is assumed that degra-
dation develops in the turbine. However, ACM turbine
fault data are missing from the public domain litera-
ture. For this reason, relevant APU turbine fault data
will be used for the fault simulation. This is based on
the fact that both APU turbine and ACM turbine are
essentially the same component, and even though they
belong in a different system, it can be reasonably
assumed that their fault characteristics are similar.
Degradation in the turbine is caused by changes in the
geometry of its blades; the degradation effect on this
component’s characteristics having been discussed in
Section 2.1. In the ECS case study, turbine’s degrada-
tion replicates a fault mode that causes significant
reduction in the efficiency compared to the mass flow
rate, and for this reason the turbine faults are emulated
by decreasing the component’s efficiency while the
mass flow rate characteristic remains unaffected.

In order to define the maximum simulated level of
degradation in the PHX, SHX, and ACM, information
from the public domain literature and maintenance

manuals were sought. As regards the PHX and SHX
degradation levels, information from the aircraft main-
tenance manuals were leveraged. The aim of this analy-
sis is to diagnose component degradation without
having functional system failure. Functional failure
exists in cases where the cabin target temperature can-
not be achieved, or in-built temperature switches are
triggered. More specifically, the Boeing 737-800 ECS
has three inbuilt temperature switches that monitor the
temperature at the compressor outlet (COMo), turbine
inlet (TURi), and pack outlet (PO). These switches trig-
ger an automatic system shutdown if the temperature
in their corresponding locations rises above predefined
thresholds, in order to protect the system from cata-
strophic damage. Also, as mentioned above, in all
simulated cases the ECS was able to achieve the cabin
target temperature (Pack Outlet – PO).

The maximum degradation limits for these compo-
nents are defined by running simulations for various
degradation severities and ensuring that the thresholds
of the inbuilt switches are never exceeded. The initial
estimates for the component degradation in the fault
simulations are based on the hypothesis that heat
exchangers can sustain much higher degradation sever-
ity, compared to turbines. Moreover, since fault simu-
lation studies for ACM turbines are missing from the
public domain literature, typical degradation levels that
correspond to a GT turbine (Section 2.1) are used for
the ACM turbine. By taking into account the thresh-
olds of the inbuilt switches, the target temperature and
the simulation results, the maximum simulated decrease
in the PHX and SHX effectiveness is set up to 50%
and the maximum reduction in the turbine’s efficiency
at 5%. Figure 4 shows the temperature profile across
the ECS for:

Figure 3. ECS simulation model schematic.20
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� the case where all components are healthy.
� the case where all components have the maximum

degradation level.

In this figure, even under the highest degradation sever-
ity, the thresholds of the temperature switches are not
exceeded, and the target temperature (PO) is achieved.

Furthermore, Figure 5 shows the changes imposed
on the symptom vector by different fault combinations
within the defined boundaries. In this figure, the vari-
ous degradation levels (Low-L, Medium-M, or High-
H) are imposed on the PHX, SHX, and ACM degrada-
tion (in this order). For example, the orange case (L H
L) corresponds to a condition where the degradation in
the PHX is Low, in the SHX is High and in the ACM
is Low. It can be seen that different degradation

conditions result in similar changes in the system’s per-
formance; thus, the diagnosis of these components is a
challenging task.

Connection of the degradation severity regions with
maintenance decisions

The definition of the appropriate thresholds, between
the degradation severity classes, is an important issue
that heavily affects maintenance action. Their precise
identification requires empirical knowledge of the sys-
tem under examination as well as data that monitors
how quickly degradation grows in each component.
Major considerations that were taken into account in
order to define the thresholds between the different
fault severity classes in this work are:

Figure 4. ECS temperature profile comparing the healthy and worst-case fault scenario superimposing the temperature switches.

Figure 5. ECS fault combinations.
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� Typical levels of degradation (as reported by the
public domain literature)

� Engineering judgment that takes into account the
maintenance decision that corresponds to each
severity region.

Based on the corresponding maintenance actions for
each fault severity region, identification of the
‘‘Medium’’ severity class can be considered as the most
useful, since it informs the operator that a component
should be replaced soon by taking into account the air-
craft operational availability and the scheduled mainte-
nance periods. If ‘‘Medium’’ degradation is detected on
a component, then the aircraft can continue its opera-
tion and the ‘‘Medium’’ degraded component can be
replaced when the aircraft is grounded for another
scheduled or unscheduled maintenance activity. Thus,
this approach optimizes the aircraft’s availability by
maximizing component useful life, while protecting the
system from unexpected faults.

The ‘‘High’’ severity class corresponds to a condition
that a component is very close to failure and therefore
the operator is advised to perform maintenance imme-
diately. Finally, the ‘‘Low’’ severity class corresponds to
a situation under which the system is ‘‘almost healthy,’’
and for this reason no maintenance action is advised.
Precise identification of the ‘‘Low’’ degradation regions
reduces unnecessary component replacement and conse-
quently protects the system from over-maintenance. The
necessary data to accurately define the thresholds for

the fault severity classes is not known to the authors,
and for this reason, the focus of this analysis is to assess
the ability of the proposed diagnostic techniques to cor-
rectly differentiate between the different fault severity
regions. This can, however, be changed by a knowledge-
able user who is able to define more realistic thresholds.

APU diagnostic analysis

Diagnostic framework: Two approaches

As stated in the beginning of this paper, the target of
this analysis is to develop diagnostic techniques that
can identify the degradation severity level of the exam-
ined components, based on the hypothesis that degra-
dation can develop simultaneously in all components.
In this paper, two different diagnostic approaches are
compared, and their advantages and limitations are dis-
cussed. Under the first approach (Figure 6(a)), for each
component under investigation, a classification algo-
rithm is used to identify the corresponding component’s
health state. In respect to the multiple fault diagnosis
framework, the training strategy adopted aims to create
classifiers that are able to identify the degradation
severity level of their corresponding component by tak-
ing into account that the other components can have
various degradation levels. For this reason, the training
scenarios for each APU and the ECS component fol-
lows the generic example in Table 4. The data used to
train ‘‘Component 1’’ classifier are labeled Low,
Medium, or High, depending on the degradation level

Figure 6. Diagnostic approaches: (a) first diagnostic approaches and (b) second diagnostic approaches.
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of the examined component (in this e.g. ‘‘Component
1’’), while considering that other components are sub-
ject to various levels of degradation. In order to achieve
this, the data are organized as shown in Table 4.
Namely, in each row of Table 4, the degradation level
of ‘‘Component 1’’ does not change (Low, Medium, or
High), and the nine different scenarios present all possi-
ble fault combinations that can be generated while the
health state of Components 2 and 3 are subject to Low,
Medium, and High degradation. For example, in the
‘‘Medium’’ row, ‘‘Component 1’’ is under medium
severity degradation for all nine scenarios, while
Components 2 and 3 are subject to different fault com-
binations. In this way the methodology allows genera-
tion of labeled datasets for each component health
state, by taking into account the fact that the other sys-
tem components can be under various degradation
levels.

As regards the APU, that is analyzed in this section,
six different training scenarios are considered for the
compressor and turbine and nine training scenarios are
considered for the LCV. Each training scenario, for the
compressor and turbine, includes 150 randomly selected
cases while each training scenario for the LCV incudes
100 cases. In total each training dataset includes 900
training cases.

The aim of this work is not to design a new classifi-
cation algorithm that can define the decision boundary
more precisely compared to the state-of-the-art.
Instead, the ultimate target of this analysis is to evalu-
ate the two diagnostic approaches proposed above,
evaluate their effectiveness (correctly diagnosing the
system health state), and investigate their applicability
to a different system (the ECS). For this reason, in
order to select the most appropriate algorithm for each
component’s classifier, the most commonly used classi-
fication algorithms are compared and the algorithm
that shows the best performance is selected. This means
that, depending on the characteristics of each compo-
nent training dataset, a different algorithm can be used.

In order to select the most appropriate classifier
for each examined component, the MATLAB
Classification Learner Toolbox38 was leveraged. This
tool allows quick training, validation, and testing to

the most commonly used classification algorithms. For
each examined component, the training dataset was
used to train and validate all available algorithms in
MATLAB’s toolbox and the classifier that showed the
best accuracy at the validation stage is selected. The
accuracy of each classifier is calculated by using the 10-
fold cross validation method. Under this validation
method, the training dataset is separated in subsets,
each subset consisting of 10 training cases. Following
that, the algorithm is trained repeatedly, and under
each training cycle, a subset that is not considered for
training is used to validate the classification results.
This process continues until all subsets have been used
to validate the trained algorithm. Finally the accuracy
is defined by calculating the ratio of correct predictions
against all prediction during the validation stage. By
following this training methodology, the SVM using a
linear kernel function was selected as the compressor
classifier (98.4% accuracy during the validation stage),
the SVM using a cubic kernel function was chosen as
the turbine classifier (98% accuracy during the valida-
tion stage), and the logistic regression was selected as
the LCV classifier (99.8% accuracy during the valida-
tion stage).

In some cases, a single classifier may prove beneficial
in a service environment to remove the necessity to
maintain more than one algorithm. For this reason, a
second diagnostic approach (Figure 6(b)), that consists
of a multi-class classifier that assigns a probability
score to the 18 possible fault combinations (Table 5), is
also tested. Each one of the 18 possible health states
includes 50 randomly selected cases (in total 900 train-
ing cases). In order to select the most appropriate algo-
rithm, similarly to the first approach, all available
multi-class classifiers in Matlab are tested, and the
algorithm with the highest accuracy, for each compo-
nent, is selected. Finally, the SVM classifier was cho-
sen. The probability scores that are assigned to each
classification output correspond to the posterior prob-
abilities for each class and are calculated by minimizing
the Kullback-Leibler (KL) divergence between the
expected and observed probabilities. The KL diver-
gence measures the similarity between prior probability
distribution (expected probabilities) and the posteriori

Table 4. Generic example of the training scenarios for one component.

Training scenarios for ‘‘Component 1’’

Scenario 1 Scenario 2 . Scenario 8 Scenario 9

Low Component 1: Low Component 1: Low . Component 1: Low Component 1: Low
Component 2: Low Component 2: Low Component 2: High Component 2: High
Component 3: Low Component 3: Med Component 3: Med Component 3: High

Medium Component 1: Med Component 1: Med . Component 1: Med Component 1: Med
Component 2: Low Component 2: Low Component 2: High Component 2: High
Component 3: Low Component 3: Med Component 3: Med Component 3: High

High Component 1: High Component 1: High . Component 1: High Component 1: High
Component 2: Low Component 2: Low Component 2: High Component 2: High
Component 3: Low Component 3: Med Component 3: Med Component 3: High
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probability distribution (observed probabilities). By
minimizing the KL divergence between the expected
and observed probability scores of the possible health
states, the posterior probabilities for each test case are
calculated. The equations used to calculate the KL
divergence as well as iterative method used to minimize
the KL divergence are provided in the relevant Matlab
documentation.39

The testing dataset, which is used to test the APU
classifiers includes 50 test cases randomly generated,
which remain within the component degradation
boundaries and are not the same as the training cases.
The classification results for both diagnostic
approaches are presented via confusion matrices which
compare the simulated health state (vertical axis), with
the predicted health state (horizontal axis) for each
examined component. The elements in the main diago-
nal (green) represent correct classification, while false
positives (cases diagnosed as faulty but actually
healthy) and false negatives (cases diagnosed as healthy
but actually faulty) are shown in rose and blue,
respectively.

View of the training data

In order to visualize the different fault classes and assess
their level of separation, a PCA on the training dataset
for both diagnostic approaches are conducted. Figures
7 and 8 present the first three principal components for
the first and second diagnostic approach respectively.
By observing Figure 7, it can be seen that the different
classes have a relatively good separation for all compo-
nent classifiers. There exist small regions of overlap in
the vicinity of the boundaries of the different classes. As
will be seen in the rest of this section, the data points
within the overlapping regions are the most challenging
to diagnose and might result in misclassifications. In

Figure 7. PCA for the first diagnostic approach using dense training data: (a) compressor health state, (b) turbine health state, and
(c) LCV health state.

Table 5. APU fault combinations.

Case Compressor Turbine LCV

1 Low Low Healthy
2 Low Low Blocked
3 Low Medium Healthy
4 Low Medium Blocked
5 Low High Healthy
6 Low High Blocked
7 Medium Low Healthy
8 Medium Low Blocked
9 Medium Medium Healthy
10 Medium Medium Blocked
11 Medium High Healthy
12 Medium High Blocked
13 High Low Healthy
14 High Low Blocked
15 High Medium Healthy
16 High Medium Blocked
17 High High Healthy
18 High High Blocked
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the PCA graph for the second diagnostic approach
(Figure 8) there exist more overlapping regions, which
can be explained by the fact that the same dataset is
categorized in more target classes.

As discussed in the rest of this paper, methods that
can be adopted to define more accurate decision bound-
aries are the following:

� simplification of the classification problem by
reducing the number of target classes. (This is
shown in Section 3.3 in which the results of the first
and the second diagnostic approach are compared.)

� training the classification algorithms considering
more examples. (In section 5.1 sparser data are
used to train the classifiers in the first diagnostic
approach.)

Results/analysis

The results of the first diagnostic approach (Figure 9)
show that this technique can correctly predict the com-
ponent health state for all test cases, apart from one
false negative in the turbine classifier. The turbine mis-
classified case corresponds to a condition in which the
degradation level of the compressor is at the upper
boundary of the medium severity region, the turbine
degradation level is at the lower boundary of the
medium severity class and the LCV is blocked 3.7%
(Figure 10). Under these health conditions, the classi-
fier that is responsible to recognize the turbine’s health
state, erroneously predicted the turbine degradation
level ‘‘Low,’’ while it is ‘‘Medium.’’ This false negative
result informs the maintainers that no maintenance
action is necessary for the turbine, even though its

Figure 9. Diagnostic result of the first approach using test datasets: (a) compressor (SVM), (b) turbine (SVM), and (c) LCV (logistic
regression).

Figure 8. PCA for the second diagnostic approach.
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degradation level has increased up to a level that main-
tenance should be carried out. However, by taking into
account the PCA analysis (Figure 7), that showed
regions of overlap at the boundaries of the different
fault classes, and the fact that different fault cases
result in similar fault patterns (Figure 2), the classifica-
tion results of this diagnostic approach are able to cor-
rectly define the relevant decision boundaries and
diagnose the component health state quite accurately.

The results of the second diagnostic approach
(Figure 11) have more false positives and false negatives
(compared to the first approach). The misclassified
cases correspond to health conditions that are close to
the boundaries of the relevant fault severity classes,
similarly to the misclassification observed in the first
approach. These results are not unexpected, due to the
higher rate of overlapping classes that exist in the corre-
sponding PCA graph (Figure 8). By observing the
probability scores of the correctly and erroneously clas-
sified test cases, it is seen that the misclassified cases

correspond to probability scores below 63%, while the
predictions that correspond to a probability score
above 63% are always correct. The fact that each pre-
dicted health state is associated with a probability
score, can be more helpful as regards the corresponding
maintenance decisions. For example, if the diagnostic
classifier output corresponds to a high probability score
(above 63%) the relevant maintenance actions can be
trusted and carried out without further investigation,
however predictions that correspond to low probability
scores (below 63%) would suggest further diagnostic
testing.

By comparing the results of the diagnostic
approaches described in this section, it can be observed
that the first approach is able to predict more accu-
rately the component health state. In the first diagnos-
tic approach, the degradation level of each component
is determined by an individual classifier, thus each clas-
sifier is required to solve a classification problem that
has three (compressor and turbine) or two (LCV) target

Figure 10. Turbine misclassification under the first diagnostic approach using training datasets.

Figure 11. Diagnostic result of the second approach using test datasets: (a) compressor, (b) turbine, and (c) LCV.
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classes. This situation, as seen in the corresponding
results, allowed simple classifiers to define accurate
decision boundaries for the target classes. In compari-
son, in the second diagnostic approach the classifica-
tion output is the solution of an 18-class problem. As
observed in the diagnostic results presented above, as
the number of classification targets increase, the ability
of simple classification algorithms to define correct
decision boundaries reduces.

A conclusion from this analysis, is that the accuracy
of the diagnostic classifiers depends on the number of
the target classes. This means that in order to increase
the correct predictions, the relevant classification prob-
lem should be simplified, a simplification, the authors
suggest, to be based on engineering judgment.

Application of the proposed diagnostic
approach to another system: ECS case
study

This section investigates the capability of the diagnostic
technique that showed the best performance in the
APU case studies (Figure 6(a)), to provide accurate
diagnostic predictions when applied on a different sys-
tem (the ECS). As detailed in Section 2, the ECS com-
ponents that are considered in this analysis are the
PHX, SHX, and ACM (turbine degradation), and their

severity levels are presented in Table 3. Similarly, to the
APU analysis, training of the ECS component classi-
fiers is based on the training strategy presented in Table
4. For each scenario, there are generated 108 training
cases (108 3 9=972 training cases in total for each
classifier), and in order to select the classification algo-
rithm for each component, the classifiers in MATLAB
classification learner are compared, and the algorithm
with the highest accuracy is selected. Finally, for both
the PHX and the SHX, an SVM classifier with a cubic
kernel function was selected (99.8% and 97.9% accu-
racy during the validation stage, respectively), and for
the ACM, an SVM classifier with a quadratic kernel
function was selected (94.5% accuracy during the vali-
dation stage).

In order to obtain a better insight of the component
training datasets, a PCA is conducted for each one of
them. The scatter plots of the first three principal com-
ponents (Figure 12) show good separation among the
different fault classes. By considering the separation of
the different target classes and the diagnostic results, as
in the APU case study, it is expected that the ECS clas-
sification algorithms will also be able to correctly pre-
dict the component health states.

The datasets used to test the ECS component classi-
fiers were generated independently from the training
datasets, while remaining within their corresponding

Figure 12. PCA for the training datasets of the ECS components: (a) PHX health state, (b) SHX health state, and (c) ACM health
state.
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degradation boundaries. The test results showed that,
for all test cases, the component classifiers are able to
correctly predict the component’s health state. In order
to demonstrate the ability of the classification algo-
rithms to correctly differentiate between the compo-
nent’s health states, even in cases where the different
fault combinations impose similar changes on the sys-
tems performance, the cases presented in Figure 5 are
used as a representative example;

� Fault combination 1: PHX – Low, SHX – Low,
ACM – High

� Fault combination 2: PHX – Low, SHX – Medium,
ACM – High

� Fault combination 3: PHX – Low, SHX – High,
ACM – Low

� Fault combination 4: PHX – Medium, SHX – Low,
ACM – High

� Fault combination 5: PHX – Medium, SHX –
High, ACM – Low

� Fault combination 6: PHX – High, SHX – Low,
ACM – Medium

� Fault combination 7: PHX – High, SHX –
Medium, ACM – Medium

For each fault combination there were generated 36
test cases with different severity levels, so in total there
are used 252 different test cases. Similarly to the APU
case study, the test data for the ECS classifiers was gen-
erated independently from the training data whilst
remaining within the components fault severity bound-
aries. The confusion matrices in Figure 13 show that
the component classifiers are able to correctly identify
the component health states for all test cases.

The fact that the proposed diagnostic approach is
able to correctly predict the component health states
for two different complex system (the APU and the
ECS), shows that it can be essentially applied to any
complex system. The ability of this approach to provide
accurate predictions relies on the training strategy used,
under which the classification algorithms are trained to
recognize each component’s degradation by taking into
account that the other components can have various

degradation levels, so, training is conducted on the sys-
tem-level, rather than on the component-level.
Furthermore, as it has been already mentioned in
Section 3, by using independent classifiers for each
examined component, the classification problem is sim-
plified to a three-class problem, so simple classification
algorithms are able to define correct decision
boundaries.

By concluding this section, it is highlighted that the
data visualization by the 3-D PCA provides confidence
to the diagnostic results for both the APU and the
ECS. More specifically, the training data visualization
by PCA for the APU example, provides clear indication
of separation between the severity bands and hence pro-
vides confidence in the classifier’s response. However,
two-dimensional projection of the features for the ECS
example shows higher levels of overlap between differ-
ent bands of severity. At first sight this may seem coun-
terintuitive, as the corresponding classifier still seems to
provide diagnostic accuracy to an acceptable level.
Despite only providing an additional 0.5% to the
retained variability, when projecting in three-dimen-
sions, separation between severity bands becomes easier
to observe. Given that PCA projection is essentially a
linear representation of the underlying data-structure it
is clear that there is a level of system non-linearity that
the data-driven classifier is able to learn from the data
and hence why separation between different severity
bands is not necessarily easy to observe using linear
techniques.

Through life diagnostic approach to
maintenance

The results of the diagnostic analysis for the APU and
the ECS have shown that the first diagnostic approach
(Figure 6(a)) is able to correctly predict the component
health states in both systems. The successful application
of this approach on real systems depends on the avail-
ability of field data, which are necessary to train the
classification algorithms robustly and define the thresh-
olds between the different fault classes. However, in
some cases, either because the examined systems do not

Figure 13. Example of test results of ECS components classifiers: (a) PHX (SVM), (b) SHX (SVM), and (c) ACM (SVM).
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have many in-build sensors (legacy systems), or because
new designs are considered, only sparse datasets are
available. In order to investigate how severely the diag-
nostic results are affected by sparse training data, the
first part of this section investigates the sensitivity of
the proposed diagnostic approach on sparse data. In
the second section the findings of the diagnostic analy-
sis are generalized and a Through Life Diagnostic
Approach (TLDA) for new and legacy systems is pro-
posed. The overall aim of the TLDA is to contribute
toward Condition Based Maintenance (CBM), which is
a maintenance strategy that optimizes maintenance
plans and results in optimum asset management.40

Implementation challenges

This section aims to discuss challenges that can arise
when implementing the discussed diagnostic approach
in real systems. A frequent problem that exists in indus-
try, is related with the availability of field data used to
train diagnostic algorithms. Therefore, it is necessary to
assess the sensitivity of the discussed diagnostic
approaches to the density of the training datasets. The
analysis in this section aims to investigate how severely
the diagnostic results are affected when trained on
datasets containing sparse data, and how maintenance
decisions are influenced. In order to examine this, the
first diagnostic approach (Figure 6(a)) is considered,
only for the APU case study. The classification algo-
rithms are trained using data that correspond to the
scenarios in Table 4, however, under this analysis, the
training cases for each scenario are reduced.

To examine the effect of sparse data each compres-
sor and turbine scenario in Table 4 now includes 30
training cases and each LCV scenario includes 20 train-
ing cases. So, each training dataset includes 180 training
cases in total. The diagnostic results based on sparse
training data are presented in the confusion matrix in
Figure 14, and as expected, the predictions based on
sparse training datasets deteriorate compared to the
predictions of the same diagnostic approach trained on
more densely populated datasets (Figure 9). The false

positive and false negative results correspond to cases
in which the degradation severity of the misclassified
components is close to the boundary of the correspond-
ing regions, similar to the example presented in Figure
10. This phenomenon is attributed to the fact that the
sparse data used to train the diagnostic classifiers are
not able to represent the target classes as well as the
training datasets, and consequently the definition of the
relevant decision boundaries is less precise.

Nevertheless, it is observed that in most cases, the
classifiers are able to correctly predict the component
health states, which means that in some cases, the
results based on sparse training data can be useful for
maintenance decisions. More specifically, the LCV clas-
sifier is always able to correctly predict the LCV health
state. Thus, the predictions for this component can be
always trusted. Furthermore, it is observed that both
the compressor and turbine classifiers predict correctly
the ‘‘High’’ severity degradation for their respective
components. This means that these algorithms can pro-
tect the components from a severe degradation and
inform the operator for a possible system’s fault.
However, both the compressor and turbine classifiers
might result in unnecessary component replacements or
confuse a ‘‘Medium’’ degraded component with a
‘‘Low’’ degraded one. Thus, depending on the risk
assessment of each operation, a maintenance decision
can be made.

There is an interim solution to the dilemma articu-
lated above, the lack of large field datasets, and it is
very much the approach suggested by this work. A
healthy simulation can be calibrated from test data
(field or experimental) and because it is based on phy-
sics, the simulation can be trusted to act rationally
when faults are inserted.15 These simulations and their
accompanying diagnostics serve as the working system
as new data arrives from the field. As this new data
arrives and is examined the simulations are further vali-
dated or can be adjusted to accommodate the new
information. In this way the best predictive knowledge
is always used.

Figure 14. Diagnostic test result of the first approach (sparse training datasets): (a) compressor (SVM), (b) turbine (SVM), and LCV
(logistic regression).
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At this point it should be highlighted that the avail-
ability of field data discussed above, is not the only
issue that might exist when applying the proposed diag-
nostic methodology on real systems. A number of dif-
ferent implementation challenges might be relevant for
other cases, depending on the number of interdepen-
dent components, or the characteristics of the examined
fault modes (static or dynamic). For example, in some
systems due to the fact that many components are
strongly interdependent, the application of the pro-
posed approach might result at an unmanageable num-
ber of components that should be simultaneously
examined. In such cases, a potential solution is the cate-
gorization of the components in appropriate subgroups
and following that, application of the proposed diag-
nostic methodology to each subgroup. Also, in cases
that require timeseries analysis due to dynamic fault
modes (e.g. valve fluctuation), the proposed approach
requires modifications in order to take into account the
dynamic nature of the fault. A potential approach for
dynamic fault detection is to breakdown the timeseries
data in multiple partitions, in order to capture different
phases of the dynamics, and thereafter, apply the diag-
nostic methodology as many times as the selected
partitions.

Nevertheless, since the architecture of the proposed
diagnostic methodology is based on system-
independent features, this method can be potentially
applied to many different systems (not only the APU
and the ECS) subject to appropriate modifications. To
this end, in the next section, an approach to Condition

Based Maintenance considering the diagnostic metho-
dology discussed in this paper is presented.

Through-life diagnostic methodology

Condition Based Maintenance has been seen as the
next paradigm in maintenance action40 for a number of
years. It involves closely monitoring aircraft compo-
nents and triggering maintenance depending on their
condition, rather than performing scheduled mainte-
nance, which is seen as overly intrusive and expensive
to operate. Now that the diagnostic approach has been
shown to work on two major aircraft systems, that is,
APU and ECS, it is appropriate to consider a metho-
dology that could be used throughout the life of the air-
craft in support of CBM.

Figure 15 shows how the current diagnostic
approach could be built into a process for maintenance.
Starting with a new aircraft, physics-based simulations
(like those shown previously for the APU and ECS) can
be built from design concepts and data. Component
degradation can be built into these models by consider-
ing previous aircraft systems and their faults. While this
system cannot be totally verified, as no complete air-
craft is available for testing at this point, it can be cali-
brated with component test data and any other
available information, such as that from previous air-
craft. Note that this option is not possible for a data
driven approach.

Upon Entry Into Service (EIS) these simulations and
diagnostics, sometimes called digital twins, are the best

Figure 15. Process for through life maintenance using current diagnostic methodology.
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approximation as to system and component life that
exist. They can be continuously updated through the
aircraft’s life by using the monitored data from instru-
mented components. Note that this is only possible
because of the approach used, that is, that all compo-
nents can degrade, rather than the classical approach of
assuming all other components are healthy. Assessing
the degradation level against the set maintenance
thresholds is continuously performed, with levels being
adjusted from engineering judgment. When mainte-
nance is performed the information can be used to
adjust the diagnostic limits and monitoring continued.

Concluding remarks

The overall goal of this work has been to propose a
methodology that is able to diagnose faults in the pres-
ence of other degraded components, using physics-
based simulation models. The proposed diagnostic
methodology was demonstrated on the APU and then
applied successfully to the ECS, adding further cre-
dence to the method. The success of the proposed diag-
nostic method relies on the architecture of the
diagnostic approach (a dedicated classifier for each
examined component) and the training strategy (multi-
ple scenarios considering multiple component faults
simultaneously). Moreover, the confidence in the diag-
nostic results is also supported by the fact that the data
visualization by 3-D PCA shows clear separation
between the target classes. The classifiers were able to
identify very accurately the non-linearities in the train-
ing data and could define correct decision boundaries.
The diagnostic framework allows a ‘‘traffic light’’ sys-
tem (green, amber, red) for maintenance to be devel-
oped. The association between the component
degradation severity and a potential maintenance activ-
ity was outlined and discussed.

Also, in Section 5.1 there is discussed a typical imple-
mentation challenge of the proposed methodology and
the corresponding analysis concluded that the approach
does not work with sparse data, a shortcoming that can
be remedied with simulated data. Finally it is men-
tioned that since each case study might encapsulate dif-
ferent implementation challenges, careful evaluation of
the specific characteristics of the examined system
should be conducted and appropriate modification to
the diagnostic methodology might be necessary to
achieve successful diagnostics.

Furthermore, based on the findings of the diagnostic
analysis on the APU and ECS, a through life CBM
maintenance paradigm, applicable to new or legacy
designs, is proposed. The application of the CBM
approach can lead in optimized maintenance strategies
and consequently increased asset availability.

Finally, in order to enhance the proposed approach
to CBM, aspects that will be explored in future work is
the enhancement the proposed diagnostic methodology
by considering more implementation challenges (e.g.

how a large number of components can be managed,
and how the methodology can be applied under
dynamic faults). Also, further analysis can be carried
out on issues related to sensors uncertainty. This can
define the sensor characteristics that should be installed
on the systems in order to allow accurate fault detec-
tion. Finally, another interesting challenge is the identi-
fication of the minimum number of sensors that are
required to detect a predefined number of fault modes.
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Appendix

Notations

Abbreviations

ACM Air cycle machine
APU Auxiliary power unit
CBM Condition-based maintenance
CHX Condenser
COM Compressor
D-S Dempster-Shafer
ECS Environmental control system
EGT Exhaust gas temperature
EIS Entry into service
EKF Extended Kalman filter
ETC Electronic turbine control
FMV Fuel metering valve
GT Gas turbine
HPWS High pressure water separator
IATA International Air Transport Association
LCV Load control valve
MRO Maintenance repair and overhaul
PHX Primary heat exchanger
PV Pack valve

RHX Regenerative heat exchanger
SHX Secondary heat exchanger
SVM Support vector machine
TLDA Through life diagnostic approach
TCV Temperature control valve
TUR Turbine

Latin symbols

f Frequency
_m Mass flow
N Rotational speed
p Pressure
S ETC signal
T Temperature
V Voltage

Greek symbols

D Difference

Subscripts

bl Bleed
ci Cold inlet
co Cold outlet
com Compressor
f Fuel
hi Hot inlet
ho Hot outlet
I Inlet
in Inlet
o Outlet
out Output
tur Turbine
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