
1

Purple Dawn: Dead disk forensics on Google’s
Fuchsia Operating System

Matt Jarrett 1, Sarah Morris 1
1: Centre for Electronic Warfare, Information, and Cyber, Cranfield University, Defence Academy of the United

Kingdom, SN6 8LA

Corresponding Author: DigitalForensics@Cranfield.ac.uk
Work carried out as part of MSc, Cranfield University hold Copyright.

Abstract

Fuchsia is the project name for a “modular, capability-based” operating system
currently being developed by Google. There is speculation that Fuchsia may be a
successor to the Android OS or a replacement for several other operating systems
currently supported by the organisation. This paper examines the filesystems found
in this operating system and provides a breakdown of the content and structure of
the unique volume manager and other partitions found on system. The findings
outlined in this paper should allow digital investigators to expedite their
understanding of the underlying data found on the platform. This paper also
highlights how the zxcrypt encryption subsystem may inhibit the ability of
practitioners to carry out an investigation of the MinFS partition. As Fuchsia is still in
development, these findings are reliant on there not being significant changes made
to structure of partitions examined. There remain unanswered questions regarding
the content of the BootFS disk image found in the ZIRCON partition and the
structure of entries within the Slice Allocation Table in the FVM.

Keywords

Google Fuchsia; Fuchsia Volume Manager, FVM, Zircon, ZBI, MinFS, BlobFS, Zxcrypt

Section 1: Introduction

Fuchsia the project name for an open source “modular, capability-based” (Google
Git, 2020) operating system currently being developed by Google. What is unusual
about Fuchsia is that unlike Google’s other operating systems, it does not use a
Linux kernel (Fuchsia Project, 2019a) but rather a custom microkernel called Zircon.
Such a move represents a significant investment in terms of time and effort as well
as a shift to a theoretically more secure platform (Setapa et al., 2011). As of January
2020, Google has not made an official statement regarding Fuchsia’s purpose,
although Google’s Senior Vice President for Android, Hiroshi Lockheimer, has
spoken of the “increasing number of devices that require operating systems” (Statt,
2019), such as those found within the Internet-of-Things (IoT) space, suggesting that
Fuchsia may be an alternative for these. Key personnel from the Android Project

li2106
Text Box
Forensic Science International: Digital Investigation, Volume 39, December 2021, Article number 301269
DOI:10.1016/j.fsidi.2021.301269

li2106
Text Box
Published by Elsevier. This is the Author Accepted Manuscript issued with: Creative Commons Attribution Non-Commercial No Derivatives License (CC:BY:NC:ND 4.0).
The final published version (version of record) is available online at DOI:10.1016/j.fsidi.2021.301269. Please refer to any applicable publisher terms of use.

2

team (Rahman, 2018) and former senior engineers at Apple (Li, 2019) have publicly
acknowledged that they are working on the project with the aim of bringing it to
market. The presence of ex-Android leads within the Fuchsia team has led to some
speculation that Fuchsia may be in fact a replacement for Android OS as a whole, or
at least an attempt to reduce the number of operating systems supported by the
organisation (Mark Gurman, 2018). With a wide range of potential devices being
targeted and an unknown deployment timeframe, digital investigators may soon find
themselves dealing with a range of devices utilizing an unfamiliar operating system
with unknown data partitions and storage methodologies.

The purpose of this paper is to present an initial investigation into the operating
system, and to provide the necessary supplementary material for investigators and
researchers to begin to be able to understand the disk structures utilised by Fuchsia.
This paper outlines the disk-level identifiers and data storage structures of Fuchsia’s
custom volume manager, the partitions found within this volume manager and a brief
description of their purpose within the wider operating system. Should Fuchsia see
market deployment in a similar state to its current configuration, these findings
should expedite digital investigators understanding of the underlying data and permit
extraction of useful material.

The remainder of this paper is structured as follows: Section 2 provides background
material for the operating system whilst Section 3 highlights related work. Section 4
outlines the objectives and Section 5 contains the methodology for the investigation.
In Section 6 the results of this research can be found which is followed by a
discussion in Section 7. In Section 8 areas for further investigation are highlighted
and Section 9 concludes this work.

Section 2: Background on Fuchsia

Public knowledge of Fuchsia originated from the appearance of software repositories
containing the early versions of OS in August 2016. The appearance of these
repositories was done so without official announcement, and early inspection of the
codebase indicated numerous codeword references to various devices (Barth et al.,
2019), including some not previously known about (Bradshaw, 2019). These repos
contain instructions for deploying Fuchsia onto a range of test devices from
workstations to routers (Robinson et al., 2019) with build options for both Intel
x86_64 and ARM architectures (Hockett et al., 2019). As such, if Fuchsia ever
comes to market forensic investigators may start to encounter it across a variety of
devices.

Fuchsia’s kernel, Zircon, is based on the LK microkernel (Fuchsia Project, 2019b),
and extends its functionality by introducing features more akin to traditional kernels
such as system calls and support for user space operations. The drive to utilise this
alternative kernel seems in part to stem from the desire to implement a capability-

3

based security model, where each system service and user application has only the
minimum privileges required to execute successfully (Gusmeroli, Piccione and
Rotondi, 2013). The implications of this shift in security model is that it is also
necessitates a change in the way the OS handles, regulates access to and stores
underlying user data. This has ramifications for digital forensic investigations in that
the ability for investigators to attribute which user or application has created, had
access to or modified specific sets of data may be hindered through a lack of
available filesystem metadata.

Fuchsia defines its own logical volume manager, referred to as the Fuchsia Volume
Manager (FVM) (Fuchsia Project, 2019c), which creates and serves portions of
storage (or ‘slices’) and allocates them to Fuchsia specific filesystems. FVM
maintains data regarding the allocation and virtual position of these slices within a
designated filesystem. Specific documentation on FVM is relatively high level
(Fuchsia Project, 2019d), although the codebase responsible for defining the data
structures is open source (Google Git, 2019a). The kernel for the operating system is
held within a custom container format referred to as Zircon Boot Image or ZBI
(McGrath et al., 2020). This format reportedly holds hardware specific information
and kernel command line instructions (Fuchsia Project, 2019e), although
documentation of the structure of ZBI is limited to high level descriptions and raw
codebase dumps. As such work is required to determine how this information is
represented on disk or otherwise identified.

Fuchsia defines a number of custom file systems (Fuchsia Project, 2019d) for use
within FVM. These fulfil a variety of roles within the OS; BlobFS provides a flat file
system for ‘write-once then read only’ data such as application packages for system
services (Fuchsia Project, 2019f), whilst MinFS, a simple, Unix-like filesystem
(Fuchsia Project, 2019g) provides persistent storage for user data. Given the stated
roles of these filesystems, understanding of their composition may be of significant
interest to investigators.

Fuchsia also utilises a custom, transparent disk encryption system referred to as
zxcrypt (Zircon Crypt) (Fuchsia Project, 2019h). In terms of operation this appears to
function in a similar way to dm-crypt (Device Mapper crypt) as found in the Linux
kernel (Broz, 2019), through the use of a device mapper service which decrypts read
requests and encrypts write requests to the underlying storage device. The
implications of such a system from a digital forensics perspective are obvious in that
without a method to bypass or acquisition of the keys used in the encryption,
investigators may struggle to complete an investigation.

4

Section 3: Related works

As indicated in Section 2, high-level documentation is available (Fuchsia Project,
2019i), which outlines the justification for some of the approaches taken within the
operating system as well as providing an indication as to what should be found on
disk. This however lacks detail, or a clear breakdown of the actual structures
expected to be found on the storage medium. The United States (US) National
Security Agency (NSA) has previously presented on the fundamentals of Fuchsia
(Carter, 2018) and how it handles certain data primitives. This work however did not
delve into data storage and was more focused on the security features of the kernel.
Naumann has published material highlighting the system calls utilised by the
operating system’s microkernel Zircon (Naumann, 2018), although this was to serve
the development of another operating system and was not targeted at features of
direct concern by forensic practitioners. The United Kingdom’s (UK) Defence
Science and Technology Laboratory (DSTL) wrote a bulletin providing an initial look
at the operating system with the aim of identifying issues from a forensic perspective
(DSTL, 2019). This work serves as a broad introduction to Fuchsia and discusses
many of its features, but openly stated that more work would be required to analyse
the data structures found on target devices (DSTL, 2019).

The underlying code base (Google Git, 2019a) for Fuchsia is available for inspection.
This is useful for understanding the actual implementation of the filesystems and
provides an indication as to what should be found on disk. Given MinFS appears to
take inspiration from Unix-based file systems, examination of prior work in the
examination of Unix file systems such as Ext3 (Fairbanks, Xia and Owen, 2009;
Narváez, 2007; Piper et al., 2006) and Ext4 (Fairbanks, 2012; Pomeranz, 2010) file
systems can be utilised to suggest what kind of data structures are expected to be
found. Much work has previously been carried out in the investigation of the logical
volume managers utilised for both the Linux and Windows operating systems
(Carrier, 2005a, 2005b; Prokop, 2013; Rocha, 2017) which may be used to compare
and contrast against FVM.

Section 4: Objectives

As seen in Section 3, there is a gap in understanding regarding how data is
fundamentally stored, structured and organised within the Fuchsia platform. This
includes both the partitions utilised by the operating system and the filesystems
within the custom volume manager itself. As a result, the objectives of this research
were to:

● Investigate the partitions found on Fuchsia devices and determine the unique
digital identifiers.

5

● Examine the FVM and determine what information is held regarding the
filesystems it allocates storage space to.

● Determine the role of these partitions in the context of the wider operating
system.

The first question indicated the need to determine and document the Globally Unique
IDentifiers (GUIDs) associated with Fuchsia partitions as well as the position and
layout of these partitions found. This involved the examination of the storage media
utilised by target Fuchsia devices to determine GUID Partition Table (GPT) entries
and allocation of storage space to various system partitions. The magic numbers and
other identifiers associated with each Fuchsia partition were also examined and
documented as well as significant metadata structures. The second question
focused on Fuchsia’s unique volume manager, and this research aimed to examine
and document the schema FVM utilises for the allocation of storage. This involved
the examination of the data structures for FVM and documenting how storage space
is distributed, tracked, and served to filesystems within the volume manager. The
third question was expected to be answered through examination of the content of
the data section within each partition alongside examination of the codebase and
available documentation.

Section 5: Methodology

For this examination an Ubuntu 18.04 machine was utilised as the scripts and tooling
within the Fuchsia codebase are targeted towards a Unix-development environment,
and a Debian-based distribution was specifically recommended. The source code for
the operating system was downloaded via the Fuchsia public software repository
(Fuchsia Project, 2020a), which outlined the compiling process and pre-requisites.
This involved utilising developer provided bash scripts (Fuchsia Project, 2017;
Google Git, 2015) to pull the requisite files and generate the directories for the
source code as well as install jiri, a custom tool for multiple repository development
and management (Google Git, 2019b). In addition to jiri, these scripts a new
command line tool, fx (Fuchsia Project, 2019j), for use in the building, configuration
and deployment of Fuchsia.

Fuchsia was compiled using fx with the target architecture set as ‘x64’ and the target
product as ‘core’. It was compiled using the latest public build at the time of testing,
on the 20/05/21 at 0900hrs UTC. The ‘x64’ build option was chosen as only
platforms utilizing this architecture were available for this research. The ‘core’ build
was selected as the documentation indicated that compiling the OS using other
options only appeared to affect higher-level features in the OS (Fuchsia Project,
2019j), and as such noteworthy differences to the partition data structures was not
expected. This was confirmed with preliminary testing. From this preliminary testing it
was determined that regardless of build selected, Fuchsia development builds for

6

physical devices are approximately 8.02 GiB in size with any remaining space on the
storage medium going unutilised.

Three Intel New Unit Computing (NUC) PCs were utilised as test devices for
examination. The model of Intel NUCs (BOXNUC7i5BNH) were chosen as the
developer documentation specifically stated support for this model (Fuchsia Project,
2019k) and there was a desire to minimise any potential hardware compatibility
issues during the deployment process. The test devices were built with 250-GB Non-
Volatile Memory express (NVMe) Solid State Drives (SSD) and 16-GBs of RAM.
Other platforms were investigated, for example a Google Pixelbook device, however
it was found that the deployment process left ChromeOS recovery and kernel
partitions on the system to allow users to easily rollback to a production operating
system. As such it was felt that utilising these as a target platform would be less
representative of any potential future example. Hardware compatibilities issues
prevent the successful deployment of Fuchsia onto other platforms.

QEMU-based virtual machines (VMs) were built by issuing a ‘fx emu’ command. This
process created a live boot version of Fuchsia and generated a temporary raw disk
file. Unlike the builds of Fuchsia found on the physical devices, these VMs only
utilise about 770-MiB of storage space, and the temporary files only contain the
FVM partition. These VMs were utilised as the built process did not include the
zxcrypt functionality and as such this provided a way to examine the unencrypted
content of a MinFS partition within the FVM.

The actual deployment of Fuchsia onto the physical platforms involved formatting an
external USB storage drive using the ‘fx mkzedboot’ command. This allowed the
USB drive to be used to live-boot the target platform, which would then query for a
Fuchsia development server over the local network. A listener service was run (via
the ‘fx pave’ command) which would serve the latest build of the operating system to
the querying platform. The bootloader would then ‘pave’ the target device with a
Fuchsia system image using the onboard storage.

Once booted, the Fuchsia devices presented a simple user shell akin to those found
on Unix distributions, although with reduced functionality due to the stripped-down
nature of the core build and permissions issues. Various debugging tools within this
terminal were utilised for this investigation. This included ‘gpt’ (Yip et al., 2019),
which when used with the ‘dump’ argument provided a summary of the content of the
GPT on a target system. The tool ‘fvm-check’ (Klein et al., 2019) was utilised to
provide an on-system interpretation of the content and the allocation of storage
within FVM. ‘lsblk’ (Fuchsia Project, 2020b) provided a breakdown of the allocation
of block devices viable from the user shell, whilst ‘df’ (Fuchsia Project, 2020c) was
utilised to confirm the mount points for the partitions inside FVM. Over the course of
examination, fifty files of varying sizes (1KB-100MB) with unique identifiers were
created within the writable directories prior to acquisition. Some of the larger files
were deleted prior to the creation of smaller files to determine how the OS handled

7

deleted data and reallocation of storage. This was done on both the physical and
virtual devices.

From the physical devices, images of the hard drives were taken using FTK Imager
v3.1.4.6. These images were remounted as read-only and examined in WinHex 19.0
hexadecimal editor. For the virtual machines, copies of the storage files were taken
and loaded directly into WinHex for examination. The content of the GPT header
and partition table was inspected and cross-referenced against the output of the gpt

command within the target system. Understanding of this data was facilitated utilizing
prior work (Nikkel, 2009) and allowed for the identification of the starting locations for
various partitions on disk as well as their type GUIDs.

Through the examination of the specific sections of Fuchsia’s codebase responsible
for generating the volume manager and partitions found on system, the content and
purpose of various fields within different metadata structures were identified.
Confirmation testing allowed for verification of these findings. Other elements of the
codebase for Fuchsia were inspected, for example the Software Development Kit
(SDK) (Fuchsia Project, 2019l), with the aim of determining references for suspected
static values, such as GUIDs for partition types. Confirmatory testing through
modification of these values and then inspecting how the OS description of them was
changed allowed for corroboration of this.

Section 6: Findings

6.1 Overall Disk Structure

Sector(s) Physical Offset Description

0 0 - 511 Protective MBR

1 512 - 1,023 GPT Header

2 1,024 - 1,471 GPT Entries

2 - 34 1,472 - 17,407 Unused space

34 - 16,777,249 17,408 - 8,589,951,999 FVM Partition

16,777,250 - 16,818,209 8,589,952,000 - 8,610,923,519 EFI bootloader

16,818,210 - 16,883,745 8,610,923,520 - 8,644,477,951 ZIRCON-A

16,883,746 - 16,982,049 8,644,477,952 - 8,694,809,087 ZIRCON-R

16,982,049 - 488,397,134 8,694,809,088 - 250,059,333,119 UNUSED SPACE

488,397,135 - 488,397,166 250,059,333,120 - 250,059,349,503 Backup GPT entries

488,397,167 250,059,349,504 Backup GPT header

Table 1: Partition distribution across a sample Fuchsia GPT based disk.

8

Table 1 documents the number of sectors and physical offsets allocated to each
partition found on a target device utilising the Fuchsia OS, whilst Figure 1 shows a
basic outline of their order of allocation. Several Fuchsia-unique partition type GUIDs
were identified. These have been documented in Table 2. These were initially
identified after examining the GPT header and entries. An extended list of Fuchsia-
specific GUIDs was identified through examination of the SDK (Fuchsia Project, 2019l)
and this was used to classify other GUIDs found throughout experimentation. This list
was further augmented with additional GUIDs identified for the Zircon Boot Image
format (McGrath et al., 2020). Compliance testing through physically overwriting of
these values using test partitions confirmed the EFI-name definitions.

The EFI Gigaboot partition seen in Table 1 was a FAT-32 EFI partition where a
bootloader service was operating. This service queries for a Fuchsia development
server on the local network to check for new updates. Once complete, the boot
loader loads the kernel and other boot items (kernel memory, commandline
instructions, etc) from the active Zircon partition and transfers control to the kernel
(Fuchsia Project, 2019e).

EFI Name Partition Type GUID Description

efi-system {C12A7328-F81F-11D2-BA4B-00A0C93EC93B} EFI bootloader

Fuchsia-system {606B000B-B7C7-4653-A7D5-B737332C899D} BootFS

fuchsia-data {08185F0C-892D-428A-A789-DBEEC8F55E6A} MinFS partition

crashlog0 {b25e3082-9ed3-7545-4C84-D072206CC8A0} Zircon Boot Image

fuchsia-blob {2967380E-134C-4CBB-B6DA-17E7CE1CA45D} BlobFS partition

fuchsia-fvm {41D0E340-57E3-954E-8C1E-17ECAC44CFF5} FVM partition

zircon-a {DE30CC86-1F4A-4A31-93C4-66F147D33E05} ZIRCON Kernel
image

zircon-b {23CC04DF-C278-4CE7-8471-897D1A4BCDF7} ZIRCON Kernel
disk image
secondary

zircon-r {A0E5CF57-2DEF-46BE-A80C-A2067C37CD49} Zircon recovery
kernel image

zxcrypt {00F8E85F-6DB3-E711-807A-786372797074} Zxcrypt encrypted
partition

Table 2: Partition Type GUIDs defined within the Fuchsia SDK.

Example Fuchsia Disk

MBR

GPT
Header

and
Entries

FVM
EFI

Bootloader
ZIRCON-A ZIRCON-B UNUSED

GPT
Header

and
Entries

Figure 1: Basic distribution of partitions on Fuchsia Disk

9

6.2 ZIRCON-A and ZIRCON-R Partitions

 Both the ZIRCON-A and ZIRCON-R partitions utilised the same overarching data
structure and as such only the data structures specifically found on a ZIRCON-A
partition have been documented below. As part of Fuchsia’s boot sequence, data
from this partition such as kernel images, hardware-specific information and specific
command line instructions for the kernel (Fuchsia Project, 2019e) is loaded into
memory. This information is held within custom data structures referred to as ‘boot
items’ in the Zircon Boot Image (ZBI) format. These boot items consist of a header
and payload. The first boot item within a ZIRCON partition is the ZBI Container. All
other boot items within a ZIRCON partition are held within the payload this ZBI
Container boot item. At a minimum a ZBI Kernel and ZBI Storge boot items should
always be found within this payload. This is depicted in Figure 2 alongside the order
in which these boot items should be found.

The headers of each boot item found in a ZIRCON partition is broadly similar. The
structure of this header is outlined in Figure 3. This was determined through cross-
examination of the source code (McGrath et al., 2020) with information recovered
from Fuchsia test devices. The specific header used by the ZBI Container boot item
is shown in Figure 4.

Relative
offsets 0 4 8 12

0 ZBI Type Prefix
4 Bytes

Length of Payload
uint32

ZBI Extra
4 Bytes

ZBI Flags
4 Bytes

16 Reserved(0)
4 Bytes

Reserved(1)
4 Bytes

ZBI Item Magic
4 Bytes

Payload CRC-32
4 Bytes

Figure 3: General format of boot item headers.

Example Fuchsia Disk

MBR

GPT
Header

and
Entries

FVM
EFI

Bootloader
ZIRCON-A ZIRCON-B UNUSED

GPT
Header

and
Entries

ZBI
Container
Header

ZBI Kernel
Header

ZBI Kernel
Payload

ZBI
Storage
Header

ZBI
Storage
Payload

Other
Zircon Boot

Item(s)
…

ZBI Kernel
Boot Item

ZBI Storage
Boot Item

Other
Boot Item(s)

 ZBI Container Payload

ZBI Container Boot item

Figure 2: Content of Zircon-A Partition.

10

Relative
offsets 0 4 8 12

0 ZBI Type Prefix
4 Bytes

0x42 4f 54 (BOOT)

Length of Payload
uint32

9,753,136 bytes

ZBI Extra
4 Bytes

0xE6 F7 8C 86

ZBI Flags
4 Bytes

0x00 00 01 00
16 Reserved(0)

4 Bytes
0x00 00 00 00

Reserved(1)
4 Bytes

0x00 00 00 00

ZBI Item Magic
4 Bytes

0x29 17 78 B5

Payload CRC-32
4 Bytes

0xD6 E8 87 4A

Figure 4: Format and content of an example ZBI Container boot item header.

The ‘ZBI Type Prefix’ field is populated via a static list and can be used to identify the
boot item and infer what should be found within its payload. A listing of the various
ZBI Types and their associated ZBI Type prefixes can be found in source code
(McGrath et al., 2020). As this boot item is effectively a container for all other boot
items, the length of the payload indicates the complete size (omitting the first 32-
bytes of the ZBI container header) that is utilised for the given partition. The ZBI
Extra field seen in the Container header is a static value - the last 4-bytes of SHA-
256 of the string “bootdata” represented in little endian. This value is reused by
several boot items to populate this field. The flag value shown in the header is the
version flag (0x00 00 01 00) and is seen in all headers within the Zircon partition.
Two other flags are defined within the code base; 0x01 00 00 00 which indicates the
payload is compressed, and 0x00 00 02 00, which indicates no CRC-32 of the
payload has been generated, and a placeholder value has been utilised. The ZBI
Item Magic is another static value - the last 4-bytes of a SHA-256 of the string
“bootitem”, again represented in little endian.

The ZBI Container header is followed by ZBI Kernel boot item. This boot item
contains an image of the system kernel in its payload. This is loaded into memory at
runtime by the bootloader. This boot item’s header differs from others in that it
utilises an additional two fields appended to the end. This is shown in Figure 5
below.

Relative
offsets 0 4 8 12

0 ZBI Type Prefix
4 Bytes

0x4B 52 4E 4C
(KRNL)

Length of Payload
uint32

1,979,672 bytes

ZBI Extra
4 Bytes

0x00 00 00 00

ZBI Flags
4 Bytes

0x00 00 01 00

16 Reserved(0)
4 Bytes

0x00 00 00 00

Reserved(1)
4 Bytes

0x00 00 00 00

ZBI Item Magic
4 Bytes

0x29 17 78 B5

Payload CRC-32
4 Bytes

0xD6 E8 87 4A
32 Physical Entry Point Address

uint64
1,048,696

Minimum Reserved Memory
uint64

595,816 (bytes)
Figure 5: Format and content of an example ZBI Kernel boot item header.

The last byte of the ZBI Type prefix indicates which architecture the boot item has
been built for; 0x4c or ‘L’ indicates x86_64, 0x38 or ‘8’ indicates ARM-64. The
payload length indicates the size of the compressed image in the payload. The ZBI
Kernel boot item utilises the same static value seen in the ZBI Container Header for

11

the ZBI Item Magic field. Similarly, As the CRC-32 flag (0x00 00 02 00) has not been
set, a placeholder hash value is reused. The additional two fields utilised in the
header of this boot item relate to where the kernel memory image should be loaded
into the device’s RAM at boot and the amount of additional space to reserve for use
by the kernel. The ZBI Storage boot item is found after the ZBI Kernel boot item. The
payload of this boot item contains the boot filesystem to be utilised by Fuchsia at
runtime. Figure 6 shows an example of the header.

Relative
offsets 0 4 8 12

0 ZBI Type Prefix
4 Bytes

0x42 46 53 42
(BFSB)

Length of Payload
uint32

7,773,279 bytes

ZBI Extra
uint32

 30,154,752 bytes

ZBI Flags
4 Bytes

0x01 00 03 00

16 Reserved(0)
4 Bytes

0x00 00 00 00

Reserved(1)
4 Bytes

0x00 00 00 00

ZBI Item Magic
4 Bytes

0x29 17 78 B5

Payload CRC-32
4 Bytes

0x77 19 B4 74

Figure 6: Format and content of an example ZBI Storage header.

ZBI Storage boot items utilise several different prefixes to indicate the content of the
payload; In this example, the ZBI Type prefix field indicates the presence of a
BootFS filesystem image based on the ‘BFSB’ value. At boot time the image within
the payload is uncompressed, loaded into memory, and mounted under the /boot
path on the system. An indication that the payload is compressed can be seen in the
differences between the payload length value, and the ZBI Extra field value (where
the latter indicates the true, uncompressed size).The first byte (0x01) of the ZBI
Flags field in this header indicates that the payload is compressed. Unlike the
previous headers the CRC32 flag has been set – as such a genuine CRC-32
checksum can be seen at the end of the header. As with the prior two headers, the
ZBI Item Magic field utilises the same static value.

The payload for the Storage boot item is prefixed by a header of unknown length.
Examination of Fuchsia’s source code (McGrath, 2019), indicates that the data within
the payload of this boot item contains information to be utilised for decompression of
a disk image (for example compression algorithm used). According to Fuchsia’s
documentation, the payload for this boot item should be compressed using LZ4
compression (Fuchsia Project, 2019e), however the devices examined for testing
were found to be utilising Zstandard (Zstd) compression. The compression can be
determined by examining the first four bytes of the boot item’s payload where 0x28

B5 2F FD indicates Zstd and 0x04 33 4D 18 indicates LZ4. This is followed by two
bytes of unknown purpose and then another four bytes which indicate the
uncompressed size of the image (7,773,279 bytes). This value corresponds to the
ZBI Extra value seen in the header of this boot item. Further work is required to
validate the content and structure of the disk image within the payload.

Other boot items may be found which relate to specific hardware and architectural
details or build configurations for the specific built of Fuchsia being examined. The

12

devices utilised for this research were found to have created a single additional boot
item. The on-disk representation of this boot item can be seen in Figure 7 whilst the
header is outlined in Figure 8.

Figure 7: Example Kernel Command Line Fragment boot item (header highlighted).

Relative
offsets 0 4 8 12

0 ZBI Type Prefix
4 Bytes

0x43 3D 44 4C
(CMDL)

Length of Payload
uint32

86 bytes

ZBI Extra
uint32

0x00 00 00 00

ZBI Flags
4 Bytes

0x00 00 03 00

16 Reserved(0)
4 Bytes

0x00 00 00 00

Reserved(1)
4 Bytes

0x00 00 00 00

ZBI Item Magic
4 Bytes

0x29 17 78 B5

Payload CRC-32
4 Bytes

0xE0 60 9A B6

Figure 8: Format of an example ZBI Type Command line Fragment header.

The header in Figure 8 indicates the boot item is a Command Line fragment –
instructions to be passed by the bootloader to the kernel at system start-up. These
may alter system behaviour, such as whether Address Space Layout Randomization
(ASLR) is utilised to protect system memory (Fuchsia Project, 2020d) or may contain
instructions for the kernel to subsequently pass onto userspace processes and/or the
device manager, such as whether verbose logging is utilised by the device manager
(Fuchsia Project, 2020d). The identity of this boot item can be confirmed by the ZBI
Type Prefix at the start of the header. The ZBI Extra field for this specific boot item is
not utilised, although under the ZBI Flags field the CRC-32 flag is set (0x00 00 02

00) and a legitimate CRC-32 can be found. Within the payload of this boot item,
kernel command line instructions are found in ASCII format. These instructions are
delineated by white spaces (0x20) and are null terminated.

6.3 FVM Partition

Fuchsia’s Logical Volume manager makes up the other unique partition with a GPT
entry, the general layout of which is depicted in Figure 9. FVM utilises blocks of
8,192 bytes in length and the partition starts with a superblock. The structure of this
superblock is depicted in Figure 10. These superblocks can be identified by the ‘FVM
PART’ magic identifier (in ASCII).

13

Figure 9: FVM Partition structure

Figure 10: Format and example content of the FVM superblock

Within the superblock, the slice count denotes the maximum number of chunks of
storage space that partitions within FVM can be allocated. The given size of each
slice (8-MiB in size) is hardcoded. Default development builds of Fuchsia utilise an
FVM partition of 8-GiB in length, regardless if the underlying storage device has
more space available. This appears to be a result of the build configuration used for
Fuchsia rather than a size limitation. Within the superblock, the amount of storage
space allocated to both the FVM Partition Table and the FVM Slice Allocation Table
is static regardless of the number of entries found in each. The generation number
found in the superblock is used to determine which superblock (Primary or Backup)
is the latest version. After the SHA-256 checksum, the remainder of the first block in
the partition is reserved, possibly as space for future expansion to the superblock.
Unlike LVM or LDM, the FVM does not appear to have provisions for providing
distributed storage across multiple physical disks (no pointers for other FVM
partitions, or notions of Volume Groups or Physical Volumes).

Relative
offsets 0 4 8 12

0 FVM Magic identifier
8 bytes

0x46 56 4D 20 50 41 52 54 (FVM PART)

Version
uint64

1
16 Max no, of slices

uint64
1,023 slices

size of each slice
uint64

8,388,608 bytes (8 MiB)
32 size of partition

uint64
8,289,934,592 bytes (7.72 GiB)

size of partition table
uint64

65,536 bytes (64 KiB)
48 size of allocation table

uint64
8,192 bytes (8 KiB)

Generation
uint64

158
64 Checksum (SHA-256)

32 bytes
0x36 99 6A A3 C8 63 59 17 85 D9 CE A3 70 1F F6 CD 63 92 4E EC 7B DC 9D E5

E8 D5 27 DE B8 18 67 79

80

96
Reserved

8,096 Bytes
…

8176

Example Fuchsia Disk

MBR

GPT
Header

and
Entries

FVM
EFI

Bootloader
ZIRCON-

A
ZIRCON-

B
UNUSED

GPT
Header

and Entries

FVM
Superblock

FVM
Partition

Table

FVM Slice
Allocation

table

Backup
FVM

Superblock

Backup
FVM

Partition
Table

Backup
FVM Slice
Allocation

Table
S

lice 1

S
lice 2 …

S
lice 1023

Unused
Space

14

The start of the second block within the FVM contains the FVM Partition Table,
which is made up of 64-byte entries, the first entry of which is. A breakdown of the
actual structure of the Partition Table can be seen in Figure 11. The example
Partition Type GUIDs shown in Figure 11 represent examples found on test devices
and correspond to the entries outlined in Table 2. None of the devices examined had
any flags set, although the source code indicates that a partition inactive flag (0x00

00 00 01) is defined (Klein et al., 2020).

Relative
offsets 0 4 8 12

0

…
Blank Entry

64 Bytes
0x00[64]

64 Partition Type GUID
16 Bytes

{2967380E-134C-4CBB-B6DA-17E7CE1CA45D}
80 Partition Instance GUID

16 Bytes
{8F2B2012-C9A0-184E-EB99-53E73810CFA0}

96 Number of allocated
slices
uint32

22

Flag(s)
4 Bytes

0x00 00 00 00 Partition Name
24 Bytes
“blobfs” 112

128 Partition Type GUID
16 Bytes

{08185F0C-892D-428A-A789-DBEEC8F55E6A}
144 Partition Instance GUID

16 Bytes
{883E3181-7872-8F4F-880B-958A5860DF29}

160 Number of allocated
slices
uint32

9

Flag(s)
4 Bytes

0x00 00 00 00 Partition Name
24 Bytes
“minfs” 178

Figure 11: FVM Partition Table with the first (blank) entry highlighted.

Immediately after the space allotted to the Partition Table, the Slice Allocation Table
can be found. The entries within the Allocation Table are laid out in an array, with the
position of each entry within the array indicating which slice it corresponds to on the
storage device. As with the Partition Table, the first entry in this table is blank. Each
entry is 8-bytes in length, containing one 16-bit and one 32-bit value with two bytes
of padding. The first value signals that the slice is allocated and to which partition.
The 32-bit value specifies the virtual slice identity of this entry and indicates the
offset (in terms of number of blocks) that the slice starts at within the specified
partition. As the entries are required to be 8-byte aligned, the remaining two bytes

15

within each allocated entry appear to be padding (although this has not been
confirmed).

Relative
offsets 0 4 8 12

0
Blank entry

8 bytes
0x00 00 00 00 00 00 00 00

Partition
allocation

uint16
1

Virtual slice ID
uint32

0

Padding
2 bytes
0x00 00

16 Partition
allocation

uint16
1

Virtual slice ID
uint32

64

Padding
2 bytes
0x00 00

Partition
allocation

uint16
1

Virtual slice ID
uint32

128

Padding
2 bytes
0x00 00

32 Partition
allocation

uint16
1

Virtual slice ID
uint32

192

Padding
2 bytes
0x00 00

Partition
allocation

uint16
1

Virtual slice ID
uint32

256

Padding
2 bytes
0x00 00

48
Entry for physical slice 7 …

Figure 12: First 6 entries of an example FVM Allocation Table.

The FVM Superblock, Primary Partition Table and Allocation Table take up 10 blocks
worth of space (81,920 bytes). These data structures are followed by the Backup
FVM Superblock, Secondary Partition table and Secondary Allocation table (for a
total of 81,920 bytes). These are followed by the first data slice (starting from offset
163,840). In testing, this was always allocated to the BlobFS filesystem. Using the
Fuchsia developer tool fvm-check, it was possible to confirm this (Figures 13 and
14).

Figure 13: Part 1 of fvm-check detailing metadata block sizes and starting location.

16

Figure 14: Part 2 of fvm-check detailing slice allocation.

6.3.1 BlobFS

Figure 15: Makeup of BlobFS partition in relation to FVM

The BlobFS partition is the one of two Fuchsia-unique file systems found within the
FVM. A basic representation of the content of the BlobFS partition can be seen in
Figure 15. As stated in Section 2, BlobFS is a flat file system and is mounted under
the /blob path. This filesystem comprises of a series of ‘blobs’ – immutable, custom
objects containing files and/or other components to support system services and
applications. The names of these blobs are deterministically derived from their
content (Fuchsia Project, 2020e), using Merkle Trees; a hierarchical data structure
consisting of a series of SHA-256 cryptographic hashes generated from the value of
lower level nodes within the tree (Fuchsia Project, 2019m). The lowest level ‘leaf’
nodes compute their hashes from individual data blocks utilised by the blob. This
construct continues upwards until the tree terminates with a single hash, referred to

Example FVM Partition

FVM
Superblock

FVM
Partition

Table

FVM Slice
Allocation

table

Backup
FVM

Superblock

Backup
FVM

Partition
Table

Backup
FVM Slice
Allocation

Table

Slice 1
 …

Slice
1023

Unused
Space

BlobFS Superblock

P:1 V:0

Bitmap

P:2 V:64

Inode Table

P:3 V:128

Journal

P:4 V:192

Data Slice 1

P:5 V:256

Data Slices 2-13

P: 6-17 V:257-268

P: Physical Slice Identifier
V: Virtual Slice Identifier

17

as the Merkle Root. This hash value is used to name the blob, examples of which
can be seen in Figure 16.

Figure 16: Example Content of /blob file path on Fuchsia device

By default, a single BlobFS file system is made up of at least six FVM slices which
are allocated in the order as seen in Figure 15. At least two slices are always
allocated to the data section of a BlobFS partition. BlobFS also utilises a significant
degree of virtual padding between its various data structures. This appears to be to
facilitate potential growth for the various fields and whilst this does not (initially) affect
the actual data distribution it is something that needs considering when calculating
offsets. The slices allocated to the data section do not utilise this padding and have
sequential virtual IDs. This can be seen in the physical slices 5-17 in Figure 14. As
with FVM, the first block of a BlobFS partition contains the partition’s superblock. A
breakdown of the structure of the BlobFS Superblock can be seen in Figure 17.

Figure 17: Structure and example content of the BlobFS superblock.

The magic identifiers are statically defined and can be used as indicators for the start
of the partition, although in testing representations of these identifiers were found in
text files within the MinFS partition (Section 6.3.2). Within BlobFS only two flags are
defined; 0x00 00 00 04, the FVM flag, which indicates that this BlobFS partition is a
part of an FVM partition and 0x00 00 00 01, the clean flag which at the time of writing

Relative
offsets 0 4 8 12

0 BlobFS Magic Identifier Part 1
8 Bytes

0x21 4D 69 9E 47 53 21 AC (!MižGS!¬)

BlobFS Magic Identifier Part 2
8 Bytes

0x14 D3 D3 D4 D4 00 50 98 (ÓÓÔÔ p~)
16 Version

uint32
8

Flags
uint32

4

Block size
uint32

8,192 Bytes
32 No. of Data Blocks

uint64
13,312

No. of Journal Blocks
uint64
1,024

48 No. of Inode entries
uint64

131,072

No. of blocks allocated
uint64

328
64 No. of allocated Inode entries

uint64
358

Next BlobFS Partition Location
uint64

0
80 Current Slice size

uint64
8,388,608

No. of slices in this partition
uint64

17
96 Slices Allocated

to bitmap
uint32

1

Slices allocated
to Inode table

uint32
1

Slices allocated
to Data section

uint32
1

Slices allocated to
Journal
uint32

1

18

is not used. If the FVM flag is not set, the last six entries within the superblock are
not populated.

As with FVM, BlobFS uses blocks of 8,192 bytes in length. In terms of total size, the
number of blocks allocated to the data section should equal the size of the number of
slices allocated to the same section as stated within the superblock. Similarly, the
number of Journal blocks and the number of inodes entries (64-bytes in length)
should also be consistent with the number of FVM slices (in terms of size) allocated
to each section. The null value for the location of the next BlobFS partition depicted
in Figure 17 indicates that is the last (and only) BlobFS partition. The size of slices
and the total number allocated to the partition should be consistent with the
information stored in the FVM Superblock and Allocation Table.

The slice following the BlobFS superblock contains a simple bitmap for the data
section, with each bit indicating whether a block within the data slices is free or not.
These entries start immediately from the beginning of the slice; unlike other data
structures within the Fuchsia environment, there is no padding / empty entries at the
start. The number of allocated bits should match the number of allocated data blocks
in offset 56 of the BlobFS superblock.

The third slice allocated to the BlobFS partition contains the Inode Table, which is
made up of 64-byte entries. The number of these entries should correspond to the
value defined at offset 64 within the BlobFS superblock. Unlike other data structures
within FVM, the first entry in The Inode Table is populated with a legitimate entry. A
breakdown of the structure of an example inode entry can be seen in Figure 18.

Relative
offsets 0 4 8 12

0 Flags
uint16

0000 0000
0000 0001

Version
uint16

0

Next inode containing
blob extent

uint32

Merkle root hash (SHA-256)
32 bytes

FF CA 3B 16 0B EA 2B 6B E1 A3 30 E1 C9
54 9A FB A3 0E 2B 1F 80 40 48 12 59 20

7C FC 08 E5 FB A6
16

32 Size of blob
uint64

54 bytes
48 No. of Data blocks for

this entry
uint32

1

Number of
extents
uint16

1

Reserved
uint16

0

Extent offset for
data start

uint32
32,797

Extent length
uint32

65,536 bits
(8,192 bytes)

Figure 18: Breakdown of an example BlobFS inode entry.

Each BlobFS inode entry is prefixed by one or more bitwise shifted flags (Table 3).
From the devices examined all inodes entries which referenced compressed data
utilised the Zstd compression flag rather than the LZ4. The inode entry shown
indicates it is an uncompressed blob 54-bytes in length using a total of 1 data block
(8,192 bytes) for storage. As this data is not fragmented, it is found in a single,

19

contiguous blob within the data partition, hence the single extent value at offset
017,004,980 and null value for ‘next inode’. The extent offset value indicates the data
starts at block offset 32,797 from the start of the data slice and the length of this
fragment is 65,536 bits or 8,192 bytes (i.e. one block length or 8,192 byes).

Flag Description

0000 0001 Inode is allocated

0000 0010 Data is LZ4 compressed

0000 0100 Inode is an Extent container

0000 1000 Data is Zstd Compressed

Table 3: Bitwise shifted flags used in BlobFS Inode Table.

None of the Inode tables of Fuchsia devices examined contained an inode entry
utilizing the Extent Container flag. However, the unique structure of an Extent
container entry was identified through examination of Fuchsia’s codebase. Figure 19
contains the modified entry structure Extent containers utilised. In an Extent
Container Entry, a flag of at least 0000 0000 0000 0101 must be set to indicate the
entry is both allocated and Extent Container status. The next and previous inode
values depend on whether the underlying blob data was fragmented across the data
slices (necessitating multiple entries within the Inode table). The number of these
fragments are outlined by the extent count. Up to six extent entries can be included
in a single Extent Container (for a total size of 64-bytes).

Figure 19: Breakdown of an Inode Extent Container Entry.

The Inode Table slice is followed by the Journal slice. As both BlobFS and MinFS
utilise the same journaling scheme, this has been documented separately in Section
6.3.3. The remaining slices allocated to BlobFS are used for the storage of blob data.
The first block (8,192-bytes) of this slice is empty. The allocation of this space is
utilized as per the values outlined in the Inode Table and are aligned on the block
boundaries.

Relative
offsets 0 4 8 12

0
Flags
uint16

Version
uint16

Next inode
containing blob

extent
uint32

Previous inode
containing blob

extent
uint32

Extent
count
uint16

Reserved
2 bytes

16 Extent 1 offset for
data start

uint32

Extent 1 length
(in bits)
uint32

Extent 2 offset for
data start

uint32

Extent 2 length (in
bits)

uint32

32 Extent 3 offset for
data start

uint32

Extent 3 length
(in bits)
uint32

Extent 4 offset for
data start

uint32

Extent 4 length (in
bits)

uint32

48 Extent 5 offset for
data start

uint32

Extent 5 length
(in bits)
uint32

Extent 4 offset for
data start

uint32

Extent 6 length (in
bits)

uint32

20

6.3.2 MinFS Partition

The MinFS partition is a “traditional Unix-like file system” (Fuchsia Project, 2019g).
Within an FVM partition, it is made up of at least seven slices; A breakdown of the
overall structure of the partition is shown in Figure 20.

Figure 20: Basic layout of MinFS partition.

On current development builds, the MinFS partition is encrypted by default using the
previously mentioned zxcrypt subsystem. Exploring methods for bypassing zxcrypt
encryption was out-of-scope for this research, although the presence of zxcrypt
encryption can be identified by the existence of a zxcrypt GUID at the start of the
MinFS partition (Figure 21). It was possible to build Fuchsia without zxcrypt via the
use of the QEMU virtual machines, which allowed for the generation of material used
to populate the rest of this section. The first block of an unencrypted MinFS partition
contains the partition’s superblock. A breakdown of the structure of the MinFS
superblock can be seen in Figure 22.

 Figure 21: zxcrypt encrypted MinFS superblock.

The magic identifiers are statically defined and can be used as indicators for the start
of partition, although in testing some plain text files contained representations of
these identifiers were found within the data section of this partition. The CRC-32
checksum is calculated using the content of the superblock alone. The generation
field is used to determine if the primary or backup superblock holds the latest content
and should be updated with each write. Within MinFS, only two flags are defined;
0x00 00 00 02, the FVM flag, which indicates that this MinFS partition is a part of an
FVM partition and 0x00 00 00 01, the clean flag which is currently unused. If the
FVM flag is set, there are several additional fields populated from relative offset 80
onwards. These fields indicate the number of slices allocated for the bitmaps, Inode
Table, Backup Superblock, Journal, and file data. These data structures are virtually

Example FVM Partition

FVM
Superblock

FVM
Partition

Table

FVM Slice
Allocation

table

Backup
FVM

Superblock

Backup
FVM

Partition
Table

Backup
FVM Slice
Allocation

Table

Slice 1
 …

Slice 1023

Unused
Space

MinFS superblock

P: 18 V:0

Inode
Bitmap

P:19 V:64

Data block
Bitmap

P:20 V:128

Inode table

P:21 V:192

Backup
superblock
and Journal

P:22 V:256

Journal

P:23 V:257

Data slice
1

P:24 V:320

P: Physical Slice Identifier
V: Virtual Slice Identifier

21

offset from one another by 64 slices. This allows FVM to allocate additional physical
slices on demand whilst keeping any growing data structures within MinFS logically
contiguous. Regardless of whether the FVM field is populated or not, the remainder
of the block (8,076 bytes) from offset 114 onwards is reserved by the superblock and
should be empty.

Relative
offsets 0 4 8 12

0 MinFS Magic Identifier Part 1
8 Bytes

0x21 4D 69 6E 46 53 21 00
(!MinFS!)

MinFS Magic Identifier Part 2
8 Bytes

0x04 D3 D3 D3 D3 00 50 38
(ÓÓÓÓ P8)

16
Version (major)

uint32
9

Version (minor)
uint32

0

CRC-32 checksum
uint32

0x D0 AC 8b 7A

Generation
uint32
1,472

32
Flags
uint32

2

Block size
uint32
8,192

Inode size
uint32

256

No. of data
blocks
uint32
1,024

48 No. of inode
records
uint32
32,768

No. of allocated
data blocks

uint32
100

No. of allocated
inodes
uint32

91

First block no.
of inode bitmap

uint32
65,536

64
First block no. of
data block bitmap

uint32
131,072

First block no. of
inode table

uint32
196,608

First block no. of
backup superblock

& journal
uint32

262,144

First block no.
of file data

uint32
327,680

80
FVM slice size

uint32
8,388,608

No. of slices
allocated to

MinFS
uint32

7

No. of slices
allocated to inode

bitmap
uint32

1

No. of slices
allocated data
block bitmap

uint32
1

96
No. of slices

allocated to inode
table

uint32
1

No. of slices
allocated to

backup
superblock and

journal
uint32

2

No. of slices
allocated to file

data
uint32

1

Index to first
unlinked (but
open) inode

uint32
0

112

…

Index to last
unlinked (but
open) inode.

0
Remainder of block reserved

8,076 Bytes
0x00[8076]

8,176

Figure 22: Example MinFS superblock with additional FVM fields utilised.

Following the superblock, the slices for the Inode and Data bitmaps can be found.
Both bitmaps found in MinFS use the same simple scheme used by BlobFS where
each bit represents the relative block allocation status. These are immediately
followed by the MinFS Inode Table. An example of an entry within this structure can
be seen in Figure 23. Each inode entry is 256 bytes in length and start with one of

22

two potential entry identifiers, depending on whether the inode is referencing a folder
(0x04) or file (0x08). Due to the use of an unsigned 32-bit integer for the length,
MinFS cannot support files bigger than 4GiB in size. As with Unix file systems (Hal
Pomeranz, 2009), the link count refers to the number of directory entries that
associate a specific name for the data specified (i.e. a Hard link). The timestamps
used in MinFS are recorded in the number of nanoseconds since the start of Unix
epoch.

Relative
offsets 0 4 8 12

0 Inode
Entry ID

Pt 1.
uint8
0x08

Inode entry
ID Pt. 2
3 bytes

0xEE 6F AA

Size
uint32

44 bytes

Block count
uint32

1

Link count
uint32

1

16
Creation time

(nanoseconds since Unix epoch)
uint64

Thursday, 14 November 2019 13:17:34.494

Modification time
(nanoseconds since Unix epoch)

uint64
Thursday, 14 November 2019

13:17:34.501
32

Sequence no.
uint32

0

Generation no.
uint32

0

Directory entry
count
uint32

0

Index to
previous

unlinked inode
uint32

0

48 Index to next unlinked
inode
uint32

0

Reserved /padding
12 bytes

0x00 00 00 00 00 00 00 00 00 00 00 00

60 Direct blocks
(Index of up to 16 Entries)

uint32[16] – 64 Bytes
98

124

Indirect blocks
(Index of up to 31 Entries)

uint32[31] - 124 Bytes
0

‘Doubly’ indirect
blocks

(1 Entry)
uint32

0
Figure 23: Example MinFS Inode Entry.

The sequence number should increment up each time the record is modified,
however in testing this was found to be unreliable. The Generation number
increments when the inode data is deleted. The directory entry count field is only
populated if the inode record refers to a folder, and this field indicates the number of
items within the directory entry. The next two fields relate to inode record(s) which no
longer appear in directory entries but that still exist within the Inode Table. This is
followed by 12-bytes of padding/reserved space and then an array of up to 16
individual pointers indicating the location of data on disk. Each pointer details the
physical offset (in number of blocks) from the start of the data slice to the referenced
block of data. If the data for the record is sufficiently large, MinFS has provisions for

23

a number indirect inode records and (if required) a single doubly indirect inode
record within each entry. Unlike Unix-based filesystems, MinFS does not store
information related to who the owner or which user groups can carry out read, write,
or execute operations on files and folders.

The Journal slice(s) immediately follow the Inode Table, although the first 8,192-
bytes of the first Journal slice is utilized for the backup MinFS superblock. For more
information on the Journal, refer to Section 6.3.3. After the Journal, the data
section(s) contains both directory entries and the raw data content of individual files.
These are aligned on 8,192-byte blocks with the first entry left unutilised. The first
populated blocks of the data slice contain directory entries. Examination of these
entries can facilitate the identification of the actual name and individual inodes
numbers of specific files. In Figure 24 a Directory Entry is shown, containing the
record referenced in Figure 23 as the last entry. A breakdown of the structure of this
record can be seen in Table 4.

Figure 24: Example MinFS Directory Entry with final record highlighted.

Offset Length Description Value

0 uint32 Inode number
(0 if record should be ignored)

89

4 uint32 Record length
Low: 28 bits = Length

High 4 bits = Record Flag

0x80 FF 0F 80

8 uint8 Name length 13

9 uint8 Record type:
 (0x04 = folder, 0x08 = file)

0x08

10 1-255
byte char

File/folder name
(maximum of 255 characters)

textfile1.txt

Table 4: Highlighted MinFS Directory Entry record structure.

As seen in Figure 24, both the first two records within the entry have an inode
number of ‘0x01’ due to this being the root directory of the MinFS partition. This field
is also used to indicate if a record in an entry is active; If the inodes numbers were
set to 0x00, the relevant record would be considered free and skipped over during
lookups. As such previously deleted records may be identified by inspecting these
entries. The length of these records must be a multiple of four, which results in the

24

use of null characters or characters taken from the previous record’s name for
padding and/or alignment. This can be seen in Figure 24 where the folder names
“ssh” and “r” have been padded with excess characters for alignment. As with an
item's inode, the record in a directory entry indicates whether it refers to a file or
folder. The length of these records are 28-bit numbers, with the last 4 bits of the field
being used to set flags for the record. Only one flag for directory entries is
defined, 0x08, which indicates the record is the last one in this entry. When this flag
is set, the true length of the record entry is overwritten with the maximum length of a
directory (128 blocks or 1,048,576 bytes) minus the offset from the start of the
directory entry to the start of that field. Using Figure 24/Table 4 as the example, the
offset to that field is 128-bytes which equals 1,048,448 bytes or 0x80 FF 0F in little
endian (as seen in Table 4). Using the information from the Directory Entry and the
Inode Table, it is possible to correctly attribute file content to specific files within the
data slices (Figure 25).

Figure 25: Data for referenced file in Table 4 and Figure 24.

Further examination of the data section indicated that previously deleted data may
be found in unallocated data blocks. In testing it was observed that deleted data
appeared to persist after creation of additional files, indicating that previously
allocated blocks data are not prioritised for reallocation. However, when a previously
allocated block was reutilised, any previous data within that block appeared to be
purged prior to the write operation, resulting in no data persisting in the unused
space of the newly allocated block.

6.3.3 Journaling for BlobFS and MinFS
Relative

offsets 0 4 8 12
0 Journal Info block magic identifier

8 Bytes
 0x 6C 6E 72 6A 62 6F 6C 62

(lnrjbolb)

Starting block
Uint64

340

16 Reserved
8 bytes

0x00 00 00 00 00 00 00 00

Sequence Number
8 bytes
1,274

32 CRC32 Checksum
8 bytes

0x8F B7 56 D0
Unused

Figure 26: Structure of Journal Info Block.

Both BlobFS and MinFS utilise the same schema for journaling. Both filesystems
utilise it as a log of filesystem write operations to ensure overall filesystem integrity,
in the event of a loss of power or device reboot (Fuchsia Project, 2019f) (Fuchsia
Project, 2019f). The first FVM block within the journal contains the Journal
Information block, effectively the Superblock. An example of the Journal Information

25

block can be seen in Figure 26. This block can be identified by the Journal Info block
magic identifier, as seen in the first eight bytes of the entry in Figure 26.

The starting block field indicates the first entry (in number of blocks) relative to the
start of the journal entries. The Sequence number effectively acts as a timestamp,
indicating which entry within the Journal was current when the Journal Information
Block was last updated. The entry referenced by the starting block field should
contain the same Sequence number as that found at offset 24 in the Journal
Information Block. The checksum is calculated based on the preceding 32 bytes of
the Journal Information block. Between the Journal Information Block and the
indicated current entry, historic entries can be found. These should contain
sequence number(s) of a value less than the one found in the Journal Information
block. Each entry within the Journal starts at an FVM block boundary and contains
one Journal Entry Header (first block in the entry) and one Journal Entry Commit
block (final block of the entry within the Journal). The structure of the Entry header
can be seen in Figure 27.

Relative
offsets 0 4 8 12

0 Journal entry block magic identifier
8 Bytes

 0x6C 6E 72 75 6A 61 6D 69
(lnrujami)

Sequence no.
Uint64
1,274

16 Flag
Uint64

0x00 00 00 00 00 00 00 01

Reserved
8 bytes

0x00 00 00 00 00 00 00 00
32 No. of blocks between this and commit

block
Uint64

3 Actual location of data on disk
Uint64 [679]

[Block: 196,610 | Block: 131,072 | Block: 0]
...

5,472

Flags for blocks
Uint32 [679]

[0 | 0 | 0]
…

8176

Reserved
4 Bytes
0x00 00

Figure 27: Structure of Journal Entry Header.

Whether a record is an Entry Header or Entry Commit Block can be quickly identified
by the flag value (0x1 = header, 0x2 = commit). Two other values are defined
(3=revocation, 0= unknown), however these were not seen in testing and no other
information was identified within the code base. The true location(s) on disk for the
payload as seen in Figure 27 are held in an array. This array can hold until 679
records. The subsequent Flags for block field also stores values in an array with
each value corresponding to the block in the same position within the array within the

26

field above. The only block flag defined is an escape character to indicate that the
referenced block starts with Journal entry block magic identifier. In these situations,
these values are replaced with zeros, and a Flag value of 1 is set.

The payload data of the entry can be found in the block(s) between these two blocks.
In testing, only metadata related to filesystem operations was found (different
superblock versions, inode table records, and bitmap table). Within the codebase for
Fuchsia there are indications that the Journal should be capable of storing actual file
data as well partition metadata, so it is not clear why it was not found in testing.
Following the payload of the entry, the Journal Entry commit block can be found on
an FVM block boundary. The structure of the Journal Entry Commit block is similar,
utilizing the same first four entries as a header, however the remaining fields are
instead replaced with a single CRC32 checksum of the entire journal entry except
the content of the commit block. This structure is shown in Figure 28.

Relative
offsets 0 4 8 12

0 Journal entry block magic identifier
8 Bytes

 0x6C 6E 72 75 6A 61 6D 69
(lnrujami)

Sequence no.
Uint64
1,274

16 Flag
Uint64

0x00 00 00 00 00 00 00 02

Reserved
8 bytes

0x00 00 00 00 00 00 00 00
32 CRC32 Checksum

8 bytes
0x35 45 87 06

Unused

Figure 28: Structure of Journal Entry Commit

Section 7: Discussion

Within this work the data structures found on Fuchsia storage disks were examined
and their unique identifiers were determined. The content of the superblocks for
Fuchsia partitions were found to detail key structural features including the requisite
identifiers needed for quick identification. In the case of the ZIRCON-A partition,
other unique identifiers denoting various ZBI containers within the partition were
determined. Within the FVM partition the sizes of other structures within the partition
were also found. This information alongside the GUIDs shown in Table 2 highlights
several key features found which can be identified to Fuchsia disks and begin to map
the high-level structure.

The material presented in this research is based off the default behaviour of current
development builds for Fuchsia, compiled to the core x64 specification. As such, one
of the gaps in this research is the lack of results for a platform utilising the ARM
architecture. Given there are indications that the ZBI Kernel header (Figure 5) found
within the ZIRCON partition utilises a different unique identifier based on
architecture, there may be other differences in the number of headers and types
utilised between the different architectures.

27

Key information related to the filesystems within FVM was determined through the
examination of the superblock, FVM Partition Table and FVM Slice Allocation Table.
The maximum theoretical amount of storage which may be allocated to the
filesystems within FVM and how this data is broken up was identified along with the
amount of diskspace (including number of slices) that was actively being utilised at
the time of capture. This is seen in the FVM Partition table (Figure 11) where this
information is specified in the form of a GUID, given name and a total number for
allocated slices. Lastly, much of the content of the Slice Allocation Table was
determined (Figure 12). This allows for the identification of the physical location on
disk of the slices as well as provides context to their virtual position within the
individual filesystems. With these findings, it is possible to determine the layout of
FVM partitions and examine the content of them.

The ambiguity over the ‘extra’ bytes seen in each slice entry within the FVM Slice
Allocation Table remains a possible source of confusion. Given what was seen in the
source code related to the creation of new entries (Klein et al., 2020) compared to
what was found on disk (Figure 12) and how the content of this table was
represented within fvm-check (Figure 14), it is unclear why one 16-bit, one 32-bit and
2-bytes of padding appears to be utilised for each slice entry rather than two 32-bit
values.

The data structures utilised by the partitions within FVM were examined and the
associated metadata was identified. The content of the Superblock for both BlobFS
and MinFS was found to outline key structural features for each partition. As seen in
Figures 17 and 22, the sizes and location of other data structures is clearly
documented, alongside data primitives such as the block size used within the
partition. This facilitated the mapping of the distribution of data within each partition.
It is also possible to determine what file metadata is store within each filesystem.
This is seen in the Inode records (Figures 18 and 23) and in the case of MinFS,
directory entries (Table 4). This allows for the identification of the sizes and physical
locations of referenced data on disk, and for MinFS, the creation and modification
times and file names of specific objects. As MinFS has provisions for indicating
which records should be skipped during lookups for the directory entries (Table 4),
these may be utilised to identify previously deleted file within specific directories. As
indicated in Section 6.3.2, deleted file data may be found in the unallocated blocks
within the data section for MinFS, however no data from previous utilisation was
found to persist in the slack space reallocated data blocks.

The role of the partitions in the context of the wider operating system were also
partially identified through the examination of the data slices. The content of these
slices indicates the separation of user space files from files and data for use in
system services. MinFS clearly performs the role of the former with a format similar
to that of some Unix filesystems (although it is lacking fields for storing information
regarding user ownership or group privileges within its inode entries). This allows for
the inferences that the MinFS partition may be of most interest to forensic

28

investigators when found within FVM on a Fuchsia device. In the case of BlobFS we
can see how the content of the filesystem information is represented to the user in
Figure 16, however further work is required to clarify if inspecting the content of
these blobs to verify installed applications and/or other software.

The ambiguity over the lack of data entries within the Journals for both MinFS and
BlobFS remains a source of confusion. As indicated in Section 6.3.3, the entries
found clearly indicate that the journal appears to function, so it remains unclear why
no data entries were found. In the case of MinFS this may have been a consequence
of relying on the virtual machine to see the content of the partition. Further work is
required to determine why; this may be a result of the relatively small sizes of each
partition or that the underlying codebase is not final. Despite not being an original
objective for this research, this work has highlighted how zxcrypt may pose a
significant hinderance to further research and investigations. The default usage of
zxcrypt on MinFS partitions means that the area of greatest interest to forensic
practitioners may be encrypted. There are references within the codebase for
Fuchsia that a null key is currently used (Fisher, 2019a), with comments (Fisher,
2019b) indicating an intended future reliance on using Trusted Platform Modules
(TPMs) or Trusted Execution Environments (TEE) for hardware backed key storage
and attestation. This potentially represents a significant hurdle for future
investigations as without a method to bypass or extract the keys from the TPM,
investigators may be forced to work off off-device backups or on the live system.

Section 8: Future Work

Further examination of the compressed BootFS filesystem found within the ZIRCON
partition(s) should be carried out. This may be of useful in investigating and
understanding Fuchsia’s kernel and the implementation of its security model. Further
experimentation with additional devices or alternative architectures may further
indicate what other types of headers are utilised within the ZIRCON partitions.

Analysis of the codebase and experimentation with the operating system should take
place to confirm the true purpose of the extra two bytes seen within each FVM slice
table entry. Similarly, work is required in the examination of the blobs found on
BlobFS partition with the aim of determining the content of these blobs. This could
provide further understanding of the OS as well as additional methods for
determining what software and/or system service is found on the target platform.
This would allow for a judgement to be made on their usefulness to forensic
practitioners.

Exploration of methods for mitigating or bypassing zxcrypt on MinFS data partitions
may provide crucial for further investigations. Whilst its functionality has been
documented previously (DSTL, 2019), and methods for overcoming similar
implementations on older OSs has been researched (Bell, 2018) a method
applicable for zxcrypt is not available at this time. Without a suitable approach,

29

practitioners may be denied access to the filesystem theoretically containing the
most relevant information. Finally, as Fuchsia is still in development, confirmatory
work is required to clarify whether the findings here still hold true on any eventual
production device.

Further system wide analysis is required to enable reliable extraction of data relevant
to forensic investigators. Whilst it has been determined that creation and modified
times can be attributed to specific sets of data, current research has not determined
a way to attribute this activity to specific users or system services. Additional
investigation of Fuchsia data block allocation procedure is needed to determine
viability of reliable data recovery through file carving or other means. As the OS
continues to evolve, examination and identification of system-level artifacts of
forensic relevance (system logs, users list and user applications, etc) will need to be
carried out to enable investigator to put together a more complete picture of user and
system activity.

Should Fuchsia see real-world use in the future, digital forensic tooling will need to
be developed or updated to support their analysis. Given the range of potential
devices that is provisionally being targeted by the OS, alongside the prevalence of
Google-based products across the smart device market, digital investigators lack
sufficient tooling to address this problem. As with many other digital forensic tools,
this tooling will need to be semi-automated in the indexing and categorising of data
on a target device as digital investigators are likely to lack the time to manually
analysis each individual device to the level of detail documented here.

Section 9: Conclusions

This research has identified the unique identifiers found on the disks of Fuchsia
devices and documented the various data structures utilised by the unique partitions
found on this platform. As Fuchsia is still in development, these findings are reliant
on there not being any significant changes to structure of the partitions examined.
There remain unanswered questions regarding the content of the BootFS disk image
found in the kernel partition and the structure of entries within the Slice Allocation
Table in the FVM. Questions also remain regarding the content of the blobs found
within the BlobFS filesystem and their usefulness to forensic examiners. This
research has also highlighted the potential difficulties posed to forensic
investigations due to the usage of zxcrypt. Building on the material generated by this
research and its companion piece, further exploration of the Fuchsia operating
system, such as the system services, should be possible.

30

Acknowledgements

This research was conducted as part of the award of MSc Digital Forensics on the
NCSC certified track, at Cranfield University. Cranfield University maintain copyright
over the conducted research.

Section 10: References
Barth, A., Kamar, A., Kell, B., Voydanoff, M. and Bauman, J. (2019) fuchsia / fuchsia /
master / . / zircon / system / dev / board. Available at:
https://fuchsia.googlesource.com/fuchsia/+/master/zircon/system/dev/board/ (Accessed: 23
November 2019).

Bell, P. (2018) Bruteforcing Linux Full Disk Encryption (LUKS) With Hashcat., Forensic
Focus Available at: https://articles.forensicfocus.com/2018/02/22/bruteforcing-linux-full-disk-
encryption-luks-with-hashcat/ (Accessed: 15 December 2019).

Bradshaw, K. (2019) The newly-launched Google Home Hub is ‘Astro,’ a known Fuchsia OS
test device. Available at: https://9to5google.com/2018/10/10/google-home-hub-fuchsia-os/
(Accessed: 7 July 2019).

Broz, M. (2019) dm-crypt: Linux kernel device-mapper crypto target., Gitlab Available at:
https://gitlab.com/cryptsetup/cryptsetup/-/wikis/DMCrypt (Accessed: 14 December 2019).

Carrier, B. (2005a) ‘Linux LVM and Windows LDM’, in Pearson Education, I. (ed.) File
System Forensic Analysis. Crawfordsville: Addison Wesley Professional, pp. 120–121.

Carrier, B. (2005b) ‘Volume analysis of disk spanning logical volumes’, Digital Investigation,
2(2), pp. 78–88.

Carter, S.S.& J. (2018) Security in Zephyr and Fuchsia., The Linux Foundation Available at:
https://www.youtube.com/watch?v=Jov4dTnjm2o (Accessed: 7 July 2019).

DSTL (2019) Google Fuchsia: A first look at the Fuchsia operating system., DSTL Digital
Forensics Bulletin Available at: https://mailchi.mp/ef10dc6a5a9f/digital-crime-scene-bulletin-
edition-8 (Accessed: 7 July 2019).

Fairbanks, K.D. (2012) ‘An analysis of Ext4 for digital forensics’, Proceedings of the Digital
Forensic Research Conference, DFRWS 2012 USA.

Fairbanks, K.D., Xia, Y.H. and Owen, H.L. (2009) ‘A method for historical Ext3 inode to
filename translation on honeypots’, Proceedings - International Computer Software and
Applications Conference.

Fisher, D. (2019a) fuchsia / fuchsia / refs/heads/master / . / build / images / zxcrypt.gni.
Available at:
https://fuchsia.googlesource.com/fuchsia/+/refs/heads/master/build/images/zxcrypt.gni
(Accessed: 12 January 2020).

Fisher, D. (2019b) fuchsia / fuchsia / master / . / zircon / system / ulib / zxcrypt / include /
zxcrypt / fdio-volume.h. Available at: https://fuchsia.googlesource.com/fuchsia/+log/boot-
migration/zircon/system/ulib/zxcrypt/include/zxcrypt/fdio-volume.h (Accessed: 12 June
2020).

31

Fuchsia Project (2019a) Fuchsia is not Linux. Available at: https://fuchsia.dev/fuchsia-
src/concepts#zircon_kernel (Accessed: 12 January 2020).

Fuchsia Project (2019b) Zircon and LK. Available at: https://fuchsia.dev/fuchsia-
src/concepts/kernel/zx_and_lk (Accessed: 23 November 2019).

Fuchsia Project (2019c) Filesystem Architecture. Available at: https://fuchsia.dev/fuchsia-
src/the-book/filesystems.md (Accessed: 14 July 2019).

Fuchsia Project (2019d) Filesystems. Available at: https://fuchsia.dev/fuchsia-src/the-
book/filesystems.md (Accessed: 14 July 2019).

Fuchsia Project (2019e) Zircon kernel to userspace bootstrapping (userboot). Available at:
https://fuchsia.dev/fuchsia-src/concepts/booting/userboot#boot_loader_and_kernel_startup
(Accessed: 23 November 2019).

Fuchsia Project (2019f) Blobfs: An immutable, integrity-verifying package storage filesystem.
Available at: https://fuchsia.dev/fuchsia-src/concepts/filesystems/blobfs (Accessed: 14
December 2019).

Fuchsia Project (2019g) MinFS. Available at: https://fuchsia.dev/fuchsia-
src/concepts/filesystems/minfs (Accessed: 14 December 2019).

Fuchsia Project (2019h) Zxcrypt. Available at: https://fuchsia.dev/fuchsia-
src/concepts/filesystems/zxcrypt (Accessed: 14 December 2019).

Fuchsia Project (2019i) Fuchsia Documentation. Available at: https://fuchsia.dev/fuchsia-src
(Accessed: 12 January 2020).

Fuchsia Project (2020a) Fuchsia Source. Available at: https://fuchsia.dev/fuchsia-
src/development/source_code (Accessed: 12 January 2020).

Fuchsia Project (2017) Fuchsia development environment bootstrap. Available at:
https://fuchsia.googlesource.com/fuchsia/+/master/scripts/bootstrap?format=TEXT
(Accessed: 12 January 2020).

Fuchsia Project (2019j) fx workflows. Available at: https://fuchsia.dev/fuchsia-
src/development/build/fx (Accessed: 12 January 2020).

Fuchsia Project (2019k) Install Fuchsia on a NUC. Available at: https://fuchsia.dev/fuchsia-
src/development/hardware/developing_on_nuc (Accessed: 23 November 2019).

Fuchsia Project (2020b) fuchsia / fuchsia / master / . / zircon / system / uapp / lsblk.
Available at: https://fuchsia.googlesource.com/fuchsia/+/master/zircon/system/uapp/lsblk/
(Accessed: 12 January 2020).

Fuchsia Project (2020c) fuchsia / fuchsia / master / . / zircon / system / uapp / df. Available
at: https://fuchsia.googlesource.com/fuchsia/+/master/zircon/system/uapp/df/ (Accessed: 12
January 2020).

Fuchsia Project (2019l) Fuchsia SDK. Available at: https://fuchsia.dev/fuchsia-
src/development/sdk (Accessed: 12 January 2020).

Fuchsia Project (2020d) Zircon Kernel Commandline Options. Available at:
https://fuchsia.dev/fuchsia-src/reference/kernel/kernel_cmdline (Accessed: 28 June 2020).

32

Fuchsia Project (2019m) Fuchsia Merkle Roots. Available at: https://fuchsia.dev/fuchsia-
src/concepts/storage/merkleroot (Accessed: 14 December 2019).

Fuchsia Project (2020e) Blobfs. Available at: https://fuchsia.dev/fuchsia-
src/concepts/filesystems/blobfs (Accessed: 28 June 2020).

Google Git (2020) Fuchsia. Available at: https://fuchsia.googlesource.com/fuchsia/
(Accessed: 12 January 2020).

Google Git (2019a) fuchsia / fuchsia / master / . / zircon / system. Available at:
https://fuchsia.googlesource.com/fuchsia/+/master/zircon/system (Accessed: 13 December
2019).

Google Git (2015) Jiri deployment script. Available at:
https://fuchsia.googlesource.com/jiri/+/master/scripts/bootstrap_jiri?format=TEXT (Accessed:
12 January 2020).

Google Git (2019b) Jiri. Available at: https://fuchsia.googlesource.com/jiri/ (Accessed: 12
January 2020).

Gusmeroli, S., Piccione, S. and Rotondi, D. (2013) ‘A capability-based security approach to
manage access control in the Internet of Things’, Mathematical and Computer Modelling

Hal Pomeranz (2009) Directory Link Counts and Hidden Directories., SANS Digital Forensics
and Incident Response Blog Available at: https://www.sans.org/blog/directory-link-counts-
and-hidden-directories/ (Accessed: 10 January 2020).

Hockett, J., Jurka, M., McGrath, R., Auradkar, V. and Wilkinson, C. (2019) build arguments -
base packet labels. Available at:
https://fuchsia.googlesource.com/fuchsia/+/master/docs/gen/build_arguments.md#base_pac
kage_labels (Accessed: 23 November 2019).

Klein, S., McGrath, R., Barth, A. and Brittain, B. (2019) fuchsia / fuchsia / master / . / zircon /
system / uapp / fvm-check /. Available at:
https://fuchsia.googlesource.com/fuchsia/+/master/zircon/system/uapp/fvm-check/main.cc
(Accessed: 23 November 2019).

Klein, S., Robinson, J., Landers, T., Kulakowski, G., Valentino, G., Adam, B., Green, A. and
Vikram, A. (2020) FVM Format. Available at:
https://fuchsia.googlesource.com/fuchsia/+/master/zircon/system/ulib/fvm/include/fvm/format
.h (Accessed: 16 June 2020).

Li, A. (2019) Google poaches 14-year Mac veteran from Apple to bring Fuchsia to market.
Available at: https://9to5google.com/2019/01/22/google-fuchsia-poaches-mac-veteran/
(Accessed: 23 November 2019).

Mark Gurman, M.B. (2018) Project ‘Fuchsia’: Google Is Quietly Working on a Successor to
Android., Bloomberg Available at: https://www.bloomberg.com/news/articles/2018-07-
19/google-team-is-said-to-plot-android-successor-draw-skepticism (Accessed: 7 July 2019).

McGrath, R. (2019) fuchsia / fuchsia / master / . / zircon / system / public / zircon / boot /
bootfs.h. Available at:
https://fuchsia.googlesource.com/fuchsia/+/master/zircon/system/public/zircon/boot/bootfs.h
(Accessed: 12 January 2020).

33

McGrath, R., Kalsi, G., Moradshahi, P., Voydanoff, M., Geiselbecht, T., Coyne, E., Barth, A.,
Malhotra, S., Graham, S., Kulakowski, G. and Tabaka, C. (2020) fuchsia / fuchsia / master / .
/ zircon / system / public / zircon / boot / image.h. Available at:
https://fuchsia.googlesource.com/fuchsia/+/master/zircon/system/public/zircon/boot/image.h
(Accessed: 14 June 2020).

Narváez, G. (2007) Taking advantage of Ext3 journaling file system in a forensic
investigation., SANS Institute Information Security Reading Room Available at:
https://www.sans.org/reading-room/whitepapers/forensics/advantage-ext3-journaling-file-
system-forensic-investigation-2011 (Accessed: 14 December 2019).

Naumann, S. (2018) PylotOS - an interpreted Operating System. Technische Universität
Chemnitz.

Nikkel, B.J. (2009) ‘Forensic analysis of GPT disks and GUID partition tables’, Digital
Investigation

Piper, S., Davis, M., Manes, G. and Shenoi, S. (2006) ‘Detecting hidden data in Ext2/Ext3
file systems’, IFIP International Federation for Information Processing

Pomeranz, H. (2010) Understanding EXT4 (Part 1): Extents., SANS Digital Forensics and
Incident Response Blog Available at: https://digital-
forensics.sans.org/blog/2010/12/20/digital-forensics-understanding-ext4-part-1-extents
(Accessed: 14 December 2019).

Prokop, M. (2013) ldmtool: accessing Microsoft Windows dynamic disks from Linux.
Available at: ldmtool: accessing Microsoft Windows dynamic disks from Linux (Accessed: 26
November 2019).

Rahman, M. (2018) Google’s Former Head of Android Platform Security is now working on
Fuchsia. Available at: https://www.xda-developers.com/google-head-of-android-platform-
security-fuschia/ (Accessed: 23 November 2019).

Robinson, J., Barth, A., Vongsouvanh, A., Meschkat, S., Puryear, M. and Laligand, P..
(2019) Fuchsia product definitions. Available at:
https://fuchsia.googlesource.com/fuchsia/+/refs/heads/master/products/README.md
(Accessed: 14 June 2020).

Rocha, L. (2017) Intro to Linux Forensics., Count upon Security Available at:
https://countuponsecurity.com/tag/linux-lvm-forensics/ (Accessed: 25 November 2019).

Setapa, S., Isa, M.A.M., Abdullah, N. and Manan, J.-L.A. (2011) ‘Trusted computing based
microkernel’

Statt, N. (2019) Google is starting to reveal the secrets of its experimental Fuchsia OS.
Available at: https://www.theverge.com/2019/5/9/18563521/google-fuchsia-os-android-
chrome-hiroshi-lockheimer-secrets-revealed (Accessed: 7 July 2019).

Yip, Y., Swetland, B., Kilbourn, T., Evans, D., Mattson, J., McGrath, R., Kulakowski, G.,
Klein, S., Tucker, J., Geiselbecht, T., Voydanoff, M., Todd, E., Barth, A., Auradkar, V.,
Mitchener, B., Brittain, B. and Ramachandra, P. (2019) fuchsia / fuchsia / master / . / zircon /
system / uapp / gpt. Available at: https://fuchsia.googlesource.com/fuchsia/+/boot-
migration/zircon/system/uapp/gpt/gpt.cc (Accessed: 14 June 2020).

