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Abstract  

Fuchsia is the project name for a “modular, capability-based” operating system 
currently being developed by Google. There is speculation that Fuchsia may be a 
successor to the Android OS or a replacement for several other operating systems 
currently supported by the organisation. This paper examines the filesystems found 
in this operating system and provides a breakdown of the content and structure of 
the unique volume manager and other partitions found on system. The findings 
outlined in this paper should allow digital investigators to expedite their 
understanding of the underlying data found on the platform. This paper also 
highlights how the zxcrypt encryption subsystem may inhibit the ability of 
practitioners to carry out an investigation of the MinFS partition. As Fuchsia is still in 
development, these findings are reliant on there not being significant changes made 
to structure of partitions examined. There remain unanswered questions regarding 
the content of the BootFS disk image found in the ZIRCON partition and the 
structure of entries within the Slice Allocation Table in the FVM. 
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Section 1: Introduction 

Fuchsia the project name for an open source “modular, capability-based” (Google 
Git, 2020) operating system currently being developed by Google. What is unusual 
about Fuchsia is that unlike Google’s other operating systems, it does not use a 
Linux kernel (Fuchsia Project, 2019a) but rather a custom microkernel called Zircon. 
Such a move represents a significant investment in terms of time and effort as well 
as a shift to a theoretically more secure platform (Setapa et al., 2011). As of January 
2020, Google has not made an official statement regarding Fuchsia’s purpose, 
although Google’s Senior Vice President for Android, Hiroshi Lockheimer, has 
spoken of the “increasing number of devices that require operating systems” (Statt, 
2019), such as those found within the Internet-of-Things (IoT) space, suggesting that 
Fuchsia may be an alternative for these. Key personnel from the Android Project 

li2106
Text Box
Forensic Science International: Digital Investigation, Volume 39, December 2021, Article number 301269
DOI:10.1016/j.fsidi.2021.301269


li2106
Text Box
Published by Elsevier. This is the Author Accepted Manuscript issued with: Creative Commons Attribution Non-Commercial No Derivatives License (CC:BY:NC:ND 4.0).  
The final published version (version of record) is available online at DOI:10.1016/j.fsidi.2021.301269. Please refer to any applicable publisher terms of use.




2 

team (Rahman, 2018) and former senior engineers at Apple (Li, 2019) have publicly 
acknowledged that they are working on the project with the aim of bringing it to 
market. The presence of ex-Android leads within the Fuchsia team has led to some 
speculation that Fuchsia may be in fact a replacement for Android OS as a whole, or 
at least an attempt to reduce the number of operating systems supported by the 
organisation (Mark Gurman, 2018). With a wide range of potential devices being 
targeted and an unknown deployment timeframe, digital investigators may soon find 
themselves dealing with a range of devices utilizing an unfamiliar operating system 
with unknown data partitions and storage methodologies.  

The purpose of this paper is to present an initial investigation into the operating 
system, and to provide the necessary supplementary material for investigators and 
researchers to begin to be able to understand the disk structures utilised by Fuchsia. 
This paper outlines the disk-level identifiers and data storage structures of Fuchsia’s 
custom volume manager, the partitions found within this volume manager and a brief 
description of their purpose within the wider operating system. Should Fuchsia see 
market deployment in a similar state to its current configuration, these findings 
should expedite digital investigators understanding of the underlying data and permit 
extraction of useful material.     

The remainder of this paper is structured as follows: Section 2 provides background 
material for the operating system whilst Section 3 highlights related work. Section 4 
outlines the objectives and Section 5 contains the methodology for the investigation. 
In Section 6 the results of this research can be found which is followed by a 
discussion in Section 7. In Section 8 areas for further investigation are highlighted 
and Section 9 concludes this work. 

Section 2: Background on Fuchsia 

Public knowledge of Fuchsia originated from the appearance of software repositories 
containing the early versions of OS in August 2016. The appearance of these 
repositories was done so without official announcement, and early inspection of the 
codebase indicated numerous codeword references to various devices (Barth et al., 
2019), including some not previously known about (Bradshaw, 2019). These repos 
contain instructions for deploying Fuchsia onto a range of test devices from 
workstations to routers (Robinson et al., 2019) with build options for both Intel 
x86_64 and ARM architectures (Hockett et al., 2019). As such, if Fuchsia ever 
comes to market forensic investigators may start to encounter it across a variety of 
devices.  

Fuchsia’s kernel, Zircon, is based on the LK microkernel (Fuchsia Project, 2019b), 
and extends its functionality by introducing features more akin to traditional kernels 
such as system calls and support for user space operations. The drive to utilise this 
alternative kernel seems in part to stem from the desire to implement a capability-
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based security model, where each system service and user application has only the 
minimum privileges required to execute successfully (Gusmeroli, Piccione and 
Rotondi, 2013). The implications of this shift in security model is that it is also 
necessitates a change in the way the OS handles, regulates access to and stores 
underlying user data. This has ramifications for digital forensic investigations in that 
the ability for investigators to attribute which user or application has created, had 
access to or modified specific sets of data may be hindered through a lack of 
available filesystem metadata. 

Fuchsia defines its own logical volume manager, referred to as the Fuchsia Volume 
Manager (FVM) (Fuchsia Project, 2019c), which creates and serves portions of 
storage (or ‘slices’) and allocates them to Fuchsia specific filesystems. FVM 
maintains data regarding the allocation and virtual position of these slices within a 
designated filesystem. Specific documentation on FVM is relatively high level 
(Fuchsia Project, 2019d), although the codebase responsible for defining the data 
structures is open source (Google Git, 2019a). The kernel for the operating system is 
held within a custom container format referred to as Zircon Boot Image or ZBI 
(McGrath et al., 2020). This format reportedly holds hardware specific information 
and kernel command line instructions (Fuchsia Project, 2019e), although 
documentation of the structure of ZBI is limited to high level descriptions and raw 
codebase dumps. As such work is required to determine how this information is 
represented on disk or otherwise identified. 

Fuchsia defines a number of custom file systems (Fuchsia Project, 2019d) for use 
within FVM. These fulfil a variety of roles within the OS; BlobFS provides a flat file 
system for ‘write-once then read only’ data such as application packages for system 
services (Fuchsia Project, 2019f), whilst  MinFS, a simple, Unix-like filesystem 
(Fuchsia Project, 2019g) provides persistent storage for user data. Given the stated 
roles of these filesystems, understanding of their composition may be of significant 
interest to investigators.   

Fuchsia also utilises a custom, transparent disk encryption system referred to as 
zxcrypt (Zircon Crypt) (Fuchsia Project, 2019h). In terms of operation this appears to 
function in a similar way to dm-crypt (Device Mapper crypt) as found in the Linux 
kernel (Broz, 2019), through the use of a device mapper service which decrypts read 
requests and encrypts write requests to the underlying storage device. The 
implications of such a system from a digital forensics perspective are obvious in that 
without a method to bypass or acquisition of the keys used in the encryption, 
investigators may struggle to complete an investigation. 
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Section 3: Related works 

As indicated in Section 2, high-level documentation is available (Fuchsia Project, 
2019i), which outlines the justification for some of the approaches taken within the 
operating system as well as providing an indication as to what should be found on 
disk. This however lacks detail, or a clear breakdown of the actual structures 
expected to be found on the storage medium. The United States (US) National 
Security Agency (NSA) has previously presented on the fundamentals of Fuchsia 
(Carter, 2018) and how it handles certain data primitives. This work however did not 
delve into data storage and was more focused on the security features of the kernel. 
Naumann has published material highlighting the system calls utilised by the 
operating system’s microkernel Zircon (Naumann, 2018), although this was to serve 
the development of another operating system and was not targeted at features of 
direct concern by forensic practitioners. The United Kingdom’s (UK) Defence 
Science and Technology Laboratory (DSTL) wrote a bulletin providing an initial look 
at the operating system with the aim of identifying issues from a forensic perspective 
(DSTL, 2019). This work serves as a broad introduction to Fuchsia and discusses 
many of its features, but openly stated that more work would be required to analyse 
the data structures found on target devices (DSTL, 2019). 

The underlying code base (Google Git, 2019a) for Fuchsia is available for inspection. 
This is useful for understanding the actual implementation of the filesystems and 
provides an indication as to what should be found on disk. Given MinFS appears to 
take inspiration from Unix-based file systems, examination of prior work in the 
examination of Unix file systems such as Ext3 (Fairbanks, Xia and Owen, 2009; 
Narváez, 2007; Piper et al., 2006) and Ext4 (Fairbanks, 2012; Pomeranz, 2010) file 
systems can be utilised to suggest what kind of data structures are expected to be 
found. Much work has previously been carried out in the investigation of the logical 
volume managers utilised for both the Linux and Windows operating systems 
(Carrier, 2005a, 2005b; Prokop, 2013; Rocha, 2017) which may be used to compare 
and contrast against FVM. 

Section 4: Objectives 

As seen in Section 3, there is a gap in understanding regarding how data is 
fundamentally stored, structured and organised within the Fuchsia platform. This 
includes both the partitions utilised by the operating system and the filesystems 
within the custom volume manager itself. As a result, the objectives of this research 
were to: 

● Investigate the partitions found on Fuchsia devices and determine the unique 
digital identifiers. 
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● Examine the FVM and determine what information is held regarding the 
filesystems it allocates storage space to. 

● Determine the role of these partitions in the context of the wider operating 
system. 

The first question indicated the need to determine and document the Globally Unique 
IDentifiers (GUIDs) associated with Fuchsia partitions as well as the position and 
layout of these partitions found. This involved the examination of the storage media 
utilised by target Fuchsia devices to determine GUID Partition Table (GPT) entries 
and allocation of storage space to various system partitions. The magic numbers and 
other identifiers associated with each Fuchsia partition were also examined and 
documented as well as significant metadata structures. The second question 
focused on Fuchsia’s unique volume manager, and this research aimed to examine 
and document the schema FVM utilises for the allocation of storage. This involved 
the examination of the data structures for FVM and documenting how storage space 
is distributed, tracked, and served to filesystems within the volume manager. The 
third question was expected to be answered through examination of the content of 
the data section within each partition alongside examination of the codebase and 
available documentation.  

Section 5: Methodology 

For this examination an Ubuntu 18.04 machine was utilised as the scripts and tooling 
within the Fuchsia codebase are targeted towards a Unix-development environment, 
and a Debian-based distribution was specifically recommended. The source code for 
the operating system was downloaded via the Fuchsia public software repository 
(Fuchsia Project, 2020a), which outlined the compiling process and pre-requisites. 
This involved utilising developer provided bash scripts (Fuchsia Project, 2017; 
Google Git, 2015) to pull the requisite files and generate the directories for the 
source code as well as install jiri, a custom tool for multiple repository development 
and management (Google Git, 2019b). In addition to jiri, these scripts a new 
command line tool, fx (Fuchsia Project, 2019j), for use in the building, configuration 
and deployment of Fuchsia.  

Fuchsia was compiled using fx with the target architecture set as ‘x64’ and the target 
product as ‘core’. It was compiled using the latest public build at the time of testing, 
on the 20/05/21 at 0900hrs UTC. The ‘x64’ build option was chosen as only 
platforms utilizing this architecture were available for this research. The ‘core’ build 
was selected as the documentation indicated that compiling the OS using other 
options only appeared to affect higher-level features in the OS (Fuchsia Project, 
2019j), and as such noteworthy differences to the partition data structures was not 
expected. This was confirmed with preliminary testing. From this preliminary testing it 
was determined that regardless of build selected, Fuchsia development builds for 



6 

physical devices are approximately 8.02 GiB in size with any remaining space on the 
storage medium going unutilised.   

Three Intel New Unit Computing (NUC) PCs were utilised as test devices for 
examination. The model of Intel NUCs (BOXNUC7i5BNH) were chosen as the 
developer documentation specifically stated support for this model (Fuchsia Project, 
2019k) and there was a desire to minimise any potential hardware compatibility 
issues during the deployment process. The test devices were built with 250-GB Non-
Volatile Memory express (NVMe) Solid State Drives (SSD) and 16-GBs of RAM. 
Other platforms were investigated, for example a Google Pixelbook device, however 
it was found that the deployment process left ChromeOS recovery and kernel 
partitions on the system to allow users to easily rollback to a production operating 
system. As such it was felt that utilising these as a target platform would be less 
representative of any potential future example. Hardware compatibilities issues 
prevent the successful deployment of Fuchsia onto other platforms. 

QEMU-based virtual machines (VMs) were built by issuing a ‘fx emu’ command. This 
process created a live boot version of Fuchsia and generated a temporary raw disk 
file. Unlike the builds of Fuchsia  found on the physical devices, these VMs only 
utilise about 770-MiB of storage space, and  the temporary files only contain the 
FVM partition. These VMs were utilised as the built process did not include the 
zxcrypt functionality and as such this provided a way to examine the unencrypted 
content of a MinFS partition within the FVM. 

The actual deployment of Fuchsia onto the physical platforms involved formatting an 
external USB storage drive using the ‘fx mkzedboot’ command. This allowed the 
USB drive to be used to live-boot the target platform, which would then query for a 
Fuchsia development server over the local network. A listener service was run (via 
the ‘fx pave’ command) which would serve the latest build of the operating system to 
the querying platform. The bootloader would then ‘pave’ the target device with a 
Fuchsia system image using the onboard storage. 

Once booted, the Fuchsia devices presented a simple user shell akin to those found 
on Unix distributions, although with reduced functionality due to the stripped-down 
nature of the core build and permissions issues. Various debugging tools within this 
terminal were utilised for this investigation. This included ‘gpt’ (Yip et al., 2019), 
which when used with the ‘dump’ argument provided a summary of the content of the 
GPT on a target system. The tool ‘fvm-check’ (Klein et al., 2019) was utilised to 
provide an on-system interpretation of the content and the allocation of storage 
within FVM. ‘lsblk’ (Fuchsia Project, 2020b) provided a breakdown of the allocation 
of block devices viable from the user shell, whilst ‘df’ (Fuchsia Project, 2020c) was 
utilised to confirm the mount points for the partitions inside FVM. Over the course of 
examination, fifty files of varying sizes (1KB-100MB) with unique identifiers were 
created within the writable directories prior to acquisition. Some of the larger files 
were deleted prior to the creation of smaller files to determine how the OS handled 
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deleted data and reallocation of storage. This was done on both the physical and 
virtual devices. 

From the physical devices, images of the hard drives were taken using FTK Imager 
v3.1.4.6. These images were remounted as read-only and examined in WinHex 19.0 
hexadecimal editor. For the virtual machines, copies of the storage files were taken 
and loaded directly into WinHex for examination.  The content of the GPT header 
and partition table was inspected and cross-referenced against the output of the gpt

command within the target system. Understanding of this data was facilitated utilizing 
prior work (Nikkel, 2009) and allowed for the identification of the starting locations for 
various partitions on disk as well as their type GUIDs.  

Through the examination of the specific sections of Fuchsia’s codebase responsible 
for generating the volume manager and partitions found on system, the content and 
purpose of various fields within different metadata structures were identified. 
Confirmation testing allowed for verification of these findings. Other elements of the 
codebase for Fuchsia were inspected, for example the Software Development Kit 
(SDK) (Fuchsia Project, 2019l), with the aim of determining references for suspected 
static values, such as GUIDs for partition types. Confirmatory testing through 
modification of these values and then inspecting how the OS description of them was 
changed allowed for corroboration of this. 

Section 6: Findings  

6.1 Overall Disk Structure 

Sector(s) Physical Offset Description

0 0 - 511 Protective MBR 

1 512 - 1,023 GPT Header 

2 1,024 - 1,471 GPT Entries 

2 - 34 1,472 - 17,407 Unused space 

34 - 16,777,249 17,408 - 8,589,951,999 FVM Partition 

16,777,250 - 16,818,209 8,589,952,000 - 8,610,923,519 EFI bootloader 

16,818,210 - 16,883,745 8,610,923,520 - 8,644,477,951 ZIRCON-A 

16,883,746 - 16,982,049 8,644,477,952 - 8,694,809,087 ZIRCON-R 

16,982,049 - 488,397,134 8,694,809,088 - 250,059,333,119 UNUSED SPACE 

488,397,135 - 488,397,166 250,059,333,120 - 250,059,349,503 Backup GPT entries 

488,397,167 250,059,349,504 Backup GPT header 

Table 1: Partition distribution across a sample Fuchsia GPT based disk. 
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Table 1 documents the number of sectors and physical offsets allocated to each 
partition found on a target device utilising the Fuchsia OS, whilst Figure 1 shows a 
basic outline of their order of allocation. Several Fuchsia-unique partition type GUIDs 
were identified. These have been documented in Table 2. These were initially 
identified after examining the GPT header and entries. An extended list of Fuchsia-
specific GUIDs was identified through examination of the SDK (Fuchsia Project, 2019l) 
and this was used to classify other GUIDs found throughout experimentation. This list 
was further augmented with additional GUIDs identified for the Zircon Boot Image 
format (McGrath et al., 2020). Compliance testing through physically overwriting of 
these values using test partitions confirmed the EFI-name definitions. 

The EFI Gigaboot partition seen in Table 1 was a FAT-32 EFI partition where a 
bootloader service was operating. This service queries for a Fuchsia development 
server on the local network to check for new updates. Once complete, the boot 
loader loads the kernel and other boot items (kernel memory, commandline 
instructions, etc) from the active Zircon partition and transfers control to the kernel 
(Fuchsia Project, 2019e). 

EFI Name Partition Type GUID Description

efi-system {C12A7328-F81F-11D2-BA4B-00A0C93EC93B} EFI bootloader 

Fuchsia-system {606B000B-B7C7-4653-A7D5-B737332C899D} BootFS  

fuchsia-data {08185F0C-892D-428A-A789-DBEEC8F55E6A} MinFS partition 

crashlog0 {b25e3082-9ed3-7545-4C84-D072206CC8A0} Zircon Boot Image 

fuchsia-blob {2967380E-134C-4CBB-B6DA-17E7CE1CA45D} BlobFS partition  

fuchsia-fvm {41D0E340-57E3-954E-8C1E-17ECAC44CFF5} FVM partition 

zircon-a {DE30CC86-1F4A-4A31-93C4-66F147D33E05} ZIRCON Kernel 
image 

zircon-b {23CC04DF-C278-4CE7-8471-897D1A4BCDF7} ZIRCON Kernel 
disk image 
secondary 

zircon-r {A0E5CF57-2DEF-46BE-A80C-A2067C37CD49} Zircon recovery 
kernel image 

zxcrypt {00F8E85F-6DB3-E711-807A-786372797074} Zxcrypt encrypted 
partition 

Table 2: Partition Type GUIDs defined within the Fuchsia SDK. 

Example Fuchsia Disk

MBR

GPT 
Header 

and 
Entries

FVM
EFI 

Bootloader
ZIRCON-A ZIRCON-B UNUSED

GPT 
Header 

and 
Entries

Figure 1: Basic distribution of partitions on Fuchsia Disk
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6.2 ZIRCON-A and ZIRCON-R Partitions 

 Both the ZIRCON-A and ZIRCON-R partitions utilised the same overarching data 
structure and as such only the data structures specifically found on a ZIRCON-A 
partition have been documented below. As part of Fuchsia’s boot sequence, data 
from this partition such as kernel images, hardware-specific information and specific 
command line instructions for the kernel (Fuchsia Project, 2019e) is loaded into 
memory. This information is held within custom data structures referred to as ‘boot 
items’ in the Zircon Boot Image (ZBI) format. These boot items consist of a header 
and payload. The first boot item within a ZIRCON partition is the ZBI Container. All 
other boot items within a ZIRCON partition are held within the payload this ZBI 
Container boot item. At a minimum a ZBI Kernel and ZBI Storge boot items should 
always be found within this payload. This is depicted in Figure 2 alongside the order 
in which these boot items should be found.

The headers of each boot item found in a ZIRCON partition is broadly similar. The 
structure of this header is outlined in Figure 3. This was determined through cross-
examination of the source code (McGrath et al., 2020) with information recovered 
from Fuchsia test devices. The specific header used by the ZBI Container boot item 
is shown in Figure 4.

Relative 
offsets 0 4 8 12 

0 ZBI Type Prefix 
4 Bytes 

Length of Payload
uint32 

ZBI Extra 
4 Bytes 

ZBI Flags 
4 Bytes 

16 Reserved(0) 
4 Bytes 

Reserved(1) 
4 Bytes 

ZBI Item Magic 
4 Bytes 

Payload CRC-32 
4 Bytes 

Figure 3: General format of boot item headers. 

Example Fuchsia Disk 

MBR

GPT 
Header 

and 
Entries

FVM
EFI 

Bootloader
ZIRCON-A ZIRCON-B UNUSED

GPT 
Header 

and 
Entries

ZBI 
Container 
Header

ZBI Kernel 
Header 

ZBI Kernel 
Payload 

ZBI 
Storage 
Header

ZBI 
Storage 
Payload

Other 
Zircon Boot 

Item(s)
… 

ZBI Kernel 
Boot Item 

ZBI Storage 
Boot Item 

Other 
Boot Item(s) 

   ZBI Container Payload 

ZBI Container Boot item 

Figure 2: Content of Zircon-A Partition.
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Relative 
offsets 0 4 8 12

0 ZBI Type Prefix 
4 Bytes 

0x42 4f 54 (BOOT) 

Length of Payload
uint32 

9,753,136 bytes

ZBI Extra 
4 Bytes 

0xE6 F7 8C 86

ZBI Flags 
4 Bytes 

0x00 00 01 00
16 Reserved(0) 

4 Bytes 
0x00 00 00 00

Reserved(1) 
4 Bytes 

0x00 00 00 00

ZBI Item Magic 
4 Bytes 

0x29 17 78 B5

Payload CRC-32 
4 Bytes 

0xD6 E8 87 4A

Figure 4: Format and content of an example ZBI Container boot item header.

The ‘ZBI Type Prefix’ field is populated via a static list and can be used to identify the 
boot item and infer what should be found within its payload. A listing of the various 
ZBI Types and their associated ZBI Type prefixes can be found in source code 
(McGrath et al., 2020). As this boot item is effectively a container for all other boot 
items, the length of the payload indicates the complete size (omitting the first 32-
bytes of the ZBI container header) that is utilised for the given partition. The ZBI 
Extra field seen in the Container header is a static value - the last 4-bytes of SHA-
256 of the string “bootdata” represented in little endian. This value is reused by 
several boot items to populate this field. The flag value shown in the header is the 
version flag (0x00 00 01 00) and is seen in all headers within the Zircon partition. 
Two other flags are defined within the code base; 0x01 00 00 00 which indicates the 
payload is compressed, and 0x00 00 02 00, which indicates no CRC-32 of the 
payload has been generated, and a placeholder value has been utilised. The ZBI 
Item Magic is another static value - the last 4-bytes of a SHA-256 of the string 
“bootitem”, again represented in little endian.  

The ZBI Container header is followed by ZBI Kernel boot item. This boot item 
contains an image of the system kernel in its payload. This is loaded into memory at 
runtime by the bootloader. This boot item’s header differs from others in that it 
utilises an additional two fields appended to the end. This is shown in Figure 5 
below. 

Relative 
offsets 0 4 8 12 

0 ZBI Type Prefix 
4 Bytes 

0x4B 52 4E 4C 
(KRNL) 

Length of Payload
uint32 

1,979,672 bytes

ZBI Extra 
4 Bytes 

0x00 00 00 00

ZBI Flags 
4 Bytes 

0x00 00 01 00

16 Reserved(0) 
4 Bytes 

0x00 00 00 00

Reserved(1) 
4 Bytes 

0x00 00 00 00

ZBI Item Magic 
4 Bytes 

0x29 17 78 B5

Payload CRC-32 
4 Bytes 

0xD6 E8 87 4A
32 Physical Entry Point Address 

uint64 
1,048,696 

Minimum Reserved Memory 
uint64 

595,816 (bytes) 
Figure 5: Format and content of an example ZBI Kernel boot item header.

The last byte of the ZBI Type prefix indicates which architecture the boot item has 
been built for; 0x4c or ‘L’ indicates x86_64, 0x38 or ‘8’ indicates ARM-64. The 
payload length indicates the size of the compressed image in the payload. The ZBI 
Kernel boot item utilises the same static value seen in the ZBI Container Header for 



11 

the ZBI Item Magic field. Similarly, As the CRC-32 flag (0x00 00 02 00) has not been 
set, a placeholder hash value is reused. The additional two fields utilised in the 
header of this boot item relate to where the kernel memory image should be loaded 
into the device’s RAM at boot and the amount of additional space to reserve for use 
by the kernel. The ZBI Storage boot item is found after the ZBI Kernel boot item. The 
payload of this boot item contains the boot filesystem to be utilised by Fuchsia at 
runtime. Figure 6 shows an example of the header.

Relative 
offsets 0 4 8 12 

0 ZBI Type Prefix 
4 Bytes 

0x42 46 53 42 
(BFSB) 

Length of Payload
uint32 

7,773,279 bytes

ZBI Extra 
uint32 

 30,154,752 bytes

ZBI Flags 
4 Bytes 

0x01 00 03 00

16 Reserved(0) 
4 Bytes 

0x00 00 00 00

Reserved(1) 
4 Bytes 

0x00 00 00 00

ZBI Item Magic 
4 Bytes 

0x29 17 78 B5

Payload CRC-32 
4 Bytes 

0x77 19 B4 74

Figure 6: Format and content of an example ZBI Storage header. 

ZBI Storage boot items utilise several different prefixes to indicate the content of the 
payload; In this example, the ZBI Type prefix field indicates the presence of a 
BootFS filesystem image based on the ‘BFSB’ value. At boot time the image within 
the payload is uncompressed, loaded into memory,  and mounted under the /boot 
path on the system. An indication that the payload is compressed can be seen in the 
differences between the payload length value, and the ZBI Extra field value (where 
the latter indicates the true, uncompressed size).The first byte (0x01) of the ZBI 
Flags field in this header indicates that the payload is compressed. Unlike the 
previous headers the CRC32 flag has been set – as such a  genuine CRC-32 
checksum can be seen at the end of the header. As with the prior two headers, the 
ZBI Item Magic field utilises the same static value. 

The payload for the Storage boot item is prefixed by a header of unknown length. 
Examination of Fuchsia’s source code (McGrath, 2019), indicates that the data within 
the payload of this boot item contains information to be utilised for decompression of 
a disk image (for example compression algorithm used). According to Fuchsia’s 
documentation, the payload for this boot item should be compressed using LZ4 
compression (Fuchsia Project, 2019e), however the devices examined for testing 
were found to be utilising Zstandard (Zstd) compression. The compression can be 
determined by examining the first four bytes of the boot item’s payload where 0x28 

B5 2F FD indicates Zstd and 0x04 33 4D 18 indicates LZ4. This is followed by two 
bytes of unknown purpose and then another four bytes which indicate the 
uncompressed size of the image (7,773,279 bytes). This value corresponds to the 
ZBI Extra value seen in the header of this boot item. Further work is required to 
validate the content and structure of the disk image within the payload.

Other boot items may be found which relate to specific hardware and architectural 
details or build configurations for the specific built of Fuchsia being examined. The 
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devices utilised for this research were found to have created a single additional boot 
item. The on-disk representation of this boot item can be seen in Figure 7 whilst the 
header is outlined in Figure 8. 

Figure 7: Example Kernel Command Line Fragment boot item (header highlighted). 

Relative 
offsets 0 4 8 12 

0 ZBI Type Prefix 
4 Bytes 

0x43 3D 44 4C 
(CMDL)  

Length of Payload
uint32 

86 bytes

ZBI Extra 
uint32 

0x00 00 00 00

ZBI Flags 
4 Bytes 

0x00 00 03 00

16 Reserved(0) 
4 Bytes 

0x00 00 00 00

Reserved(1) 
4 Bytes 

0x00 00 00 00

ZBI Item Magic 
4 Bytes 

0x29 17 78 B5

Payload CRC-32 
4 Bytes 

0xE0 60 9A B6

Figure 8: Format of an example ZBI Type Command line Fragment header.

The header in Figure 8 indicates the boot item is a Command Line fragment – 
instructions to be passed by the bootloader to the kernel at system start-up. These 
may alter system behaviour, such as whether Address Space Layout Randomization 
(ASLR) is utilised to protect system memory (Fuchsia Project, 2020d) or may contain 
instructions for the kernel to subsequently pass onto userspace processes and/or the 
device manager, such as whether verbose logging is utilised by the device manager 
(Fuchsia Project, 2020d). The identity of this boot item can be confirmed by the ZBI 
Type Prefix at the start of the header. The ZBI Extra field for this specific boot item is 
not utilised, although under the ZBI Flags field the CRC-32 flag is set (0x00 00 02 

00) and a legitimate CRC-32 can be found. Within the payload of this boot item, 
kernel command line instructions are found in ASCII format. These instructions are 
delineated by white spaces (0x20) and are null terminated. 

6.3 FVM Partition 

Fuchsia’s Logical Volume manager makes up the other unique partition with a GPT 
entry, the general layout of which is depicted in Figure 9. FVM utilises blocks of 
8,192 bytes in length and the partition starts with a superblock. The structure of this 
superblock is depicted in Figure 10. These superblocks can be identified by the ‘FVM 
PART’ magic identifier (in ASCII). 
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Figure 9: FVM Partition structure

Figure 10: Format and example content of the FVM superblock 

Within the superblock, the slice count denotes the maximum number of chunks of 
storage space that partitions within FVM can be allocated. The given size of each 
slice (8-MiB in size) is hardcoded. Default development builds of Fuchsia utilise an 
FVM partition of 8-GiB in length, regardless if the underlying storage device has 
more space available. This appears to be a result of the build configuration used for 
Fuchsia rather than a size limitation. Within the superblock, the amount of storage 
space allocated to both the FVM Partition Table and the FVM Slice Allocation Table 
is static regardless of the number of entries found in each. The generation number 
found in the superblock is used to determine which superblock (Primary or Backup) 
is the latest version. After the SHA-256 checksum, the remainder of the first block in 
the partition is reserved, possibly as space for future expansion to the superblock. 
Unlike LVM or LDM, the FVM does not appear to have provisions for providing 
distributed storage across multiple physical disks (no pointers for other FVM 
partitions, or notions of Volume Groups or Physical Volumes). 
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The start of the second block within the FVM contains the FVM Partition Table, 
which is made up of 64-byte entries, the first entry of which is. A breakdown of the 
actual structure of the Partition Table can be seen in Figure 11. The example 
Partition Type GUIDs shown in Figure 11 represent examples found on test devices 
and correspond to the entries outlined in Table 2. None of the devices examined had 
any flags set, although the source code indicates that a partition inactive flag (0x00 

00 00 01) is defined (Klein et al., 2020). 

Relative 
offsets 0 4 8 12 

0

…
Blank Entry 

64 Bytes 
0x00[64] 

64 Partition Type GUID 
16 Bytes 

{2967380E-134C-4CBB-B6DA-17E7CE1CA45D} 
80 Partition Instance GUID 

16 Bytes 
{8F2B2012-C9A0-184E-EB99-53E73810CFA0} 

96 Number of allocated 
slices 
uint32 

22

Flag(s) 
4 Bytes 

0x00 00 00 00 Partition Name 
24 Bytes 
“blobfs” 112

128 Partition Type GUID 
16 Bytes 

{08185F0C-892D-428A-A789-DBEEC8F55E6A} 
144 Partition Instance GUID 

16 Bytes 
{883E3181-7872-8F4F-880B-958A5860DF29} 

160 Number of allocated 
slices 
uint32 

9 

Flag(s) 
4 Bytes 

0x00 00 00 00 Partition Name 
24 Bytes 
“minfs” 178

Figure 11: FVM Partition Table with the first (blank) entry highlighted. 

Immediately after the space allotted to the Partition Table, the Slice Allocation Table 
can be found. The entries within the Allocation Table are laid out in an array, with the 
position of each entry within the array indicating which slice it corresponds to on the 
storage device. As with the Partition Table, the first entry in this table is blank. Each 
entry is 8-bytes in length, containing one 16-bit and one 32-bit value with two bytes 
of padding. The first value signals that the slice is allocated and to which partition. 
The 32-bit value specifies the virtual slice identity of this entry and indicates the 
offset (in terms of number of blocks) that the slice starts at within the specified 
partition. As the entries are required to be 8-byte aligned, the remaining two bytes 
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within each allocated entry appear to be padding (although this has not been 
confirmed).  

Relative 
offsets 0 4 8 12 

0
Blank entry 

8 bytes 
0x00 00 00 00 00 00 00 00

Partition 
allocation

uint16 
1

Virtual slice ID
uint32 

0 

Padding 
2 bytes 
0x00 00 

16 Partition 
allocation

uint16 
1 

Virtual slice ID 
uint32 

64 

Padding 
2 bytes 
0x00 00

Partition 
allocation

uint16 
1 

Virtual slice ID
uint32 

128 

Padding 
2 bytes 
0x00 00

32 Partition 
allocation

uint16 
1 

Virtual slice ID 
uint32 

192 

Padding 
2 bytes 
0x00 00

Partition 
allocation

uint16 
1 

Virtual slice ID
uint32 

256

Padding 
2 bytes 
0x00 00

48
Entry for physical slice 7 … 

Figure 12: First 6 entries of an example FVM Allocation Table. 

The FVM Superblock, Primary Partition Table and Allocation Table take up 10 blocks 
worth of space (81,920 bytes). These data structures are followed by the Backup 
FVM Superblock, Secondary Partition table and Secondary Allocation table (for a 
total of 81,920 bytes). These are followed by the first data slice (starting from offset 
163,840). In testing, this was always allocated to the BlobFS filesystem. Using the 
Fuchsia developer tool fvm-check, it was possible to confirm this (Figures 13 and 
14).

Figure 13: Part 1 of fvm-check detailing metadata block sizes and starting location. 
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Figure 14:  Part 2 of fvm-check detailing slice allocation.  

6.3.1 BlobFS  

Figure 15: Makeup of BlobFS partition in relation to FVM

The BlobFS partition is the one of two Fuchsia-unique file systems found within the 
FVM. A basic representation of the content  of the BlobFS partition can be seen in 
Figure 15. As stated in Section 2, BlobFS is a flat file system and is mounted under 
the /blob path. This filesystem comprises of a series of ‘blobs’ –  immutable, custom 
objects containing files and/or other components to support system services and 
applications. The names of these blobs are deterministically derived from their 
content (Fuchsia Project, 2020e), using Merkle Trees; a hierarchical data structure 
consisting of a series of SHA-256 cryptographic hashes generated from the value of 
lower level nodes within the tree (Fuchsia Project, 2019m). The lowest level ‘leaf’ 
nodes compute their hashes from individual data blocks utilised by the blob. This 
construct continues upwards until the tree terminates with a single hash, referred to 
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as the Merkle Root. This hash value is used to name the blob, examples of which 
can be seen in Figure 16.  

Figure 16: Example Content of /blob file path on Fuchsia device 

By default, a single BlobFS file system is made up of at least six FVM slices which 
are allocated in the order as seen in Figure 15. At least two slices are always 
allocated to the data section of a BlobFS partition. BlobFS also utilises a significant 
degree of virtual padding between its various data structures. This appears to be to 
facilitate potential growth for the various fields and whilst this does not (initially) affect 
the actual data distribution it is something that needs considering when calculating 
offsets. The slices allocated to the data section do not utilise this padding and have 
sequential virtual IDs. This can be seen in the physical slices 5-17 in Figure 14.  As 
with FVM, the first block of a BlobFS partition contains the partition’s superblock. A 
breakdown of the structure of the BlobFS Superblock can be seen in Figure 17. 

Figure 17: Structure and example content of the BlobFS superblock. 

The magic identifiers are statically defined and can be used as indicators for the start 
of the partition, although in testing representations of these identifiers were found in 
text files within the MinFS partition (Section 6.3.2). Within BlobFS only two flags are 
defined; 0x00 00 00 04, the FVM flag, which indicates that this BlobFS partition is a 
part of an FVM partition and 0x00 00 00 01, the clean flag which at the time of writing 
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uint32
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uint32 
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uint64 
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uint64 
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48 No. of Inode entries 
uint64

131,072
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uint64 
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uint64 
358

Next BlobFS Partition Location 
uint64 

0
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uint64 
8,388,608
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uint64 
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1
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is not used. If the FVM flag is not set, the last six entries within the superblock are 
not populated.  

As with FVM, BlobFS uses blocks of 8,192 bytes in length. In terms of total size, the 
number of blocks allocated to the data section should equal the size of the number of 
slices allocated to the same section as stated within the superblock. Similarly, the 
number of Journal blocks and the number of inodes entries (64-bytes in length) 
should also be consistent with the number of FVM slices (in terms of size) allocated 
to each section. The null value for the location of the next BlobFS partition depicted 
in Figure 17 indicates that is the last (and only) BlobFS partition. The size of slices 
and the total number allocated to the partition should be consistent with the 
information stored in the FVM Superblock and Allocation Table.  

The slice following the BlobFS superblock contains a simple bitmap for the data 
section, with each bit indicating whether a block within the data slices is free or not. 
These entries start immediately from the beginning of the slice; unlike other data 
structures within the Fuchsia environment, there is no padding / empty entries at the 
start. The number of allocated bits should match the number of allocated data blocks 
in offset 56 of the BlobFS superblock. 

The third slice allocated to the BlobFS partition contains the Inode Table, which is 
made up of 64-byte entries. The number of these entries should correspond to the 
value defined at offset 64 within the BlobFS superblock. Unlike other data structures 
within FVM, the first entry in The Inode Table is populated with a legitimate entry. A 
breakdown of the structure of an example inode entry can be seen in Figure 18. 

Relative 
offsets 0 4 8 12 

0 Flags 
uint16 

0000 0000
0000 0001

Version
uint16 

0 

Next inode containing 
blob extent 

uint32 

Merkle root hash (SHA-256) 
32 bytes 

FF CA 3B 16 0B EA 2B 6B E1 A3 30 E1 C9 
54 9A FB A3 0E 2B 1F 80 40 48 12 59 20 

7C FC 08 E5 FB A6
16

32 Size of blob 
uint64 

54 bytes
48 No. of Data blocks for 

this entry 
uint32 

1

Number of 
extents 
uint16 

1 

Reserved
uint16 

0

Extent offset for 
data start 

uint32 
32,797

Extent length 
uint32 

65,536 bits  
(8,192 bytes)

Figure 18: Breakdown of an example BlobFS inode entry. 

Each BlobFS inode entry is prefixed by one or more bitwise shifted flags (Table 3). 
From the devices examined all inodes entries which referenced compressed data 
utilised the Zstd compression flag rather than the LZ4. The inode entry shown 
indicates it is an uncompressed blob 54-bytes in length using a total of 1 data block 
(8,192 bytes) for storage. As this data is not fragmented, it is found in a single, 
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contiguous blob within the data partition, hence the single extent value at offset 
017,004,980 and null value for ‘next inode’. The extent offset value indicates the data 
starts at block offset 32,797 from the start of the data slice and the length of this 
fragment is 65,536 bits or 8,192 bytes (i.e. one block length or 8,192 byes).

Flag Description

0000 0001 Inode is allocated 

0000 0010 Data is LZ4 compressed 

0000 0100 Inode is an Extent container

0000 1000 Data is Zstd Compressed 

Table 3: Bitwise shifted flags used in BlobFS Inode Table.

None of the Inode tables of Fuchsia devices examined contained an inode entry 
utilizing the Extent Container flag. However, the unique structure of an Extent 
container entry was identified through examination of Fuchsia’s codebase. Figure 19 
contains the modified entry structure Extent containers utilised. In an Extent 
Container Entry, a flag of at least 0000 0000 0000 0101 must be set to indicate the 
entry is both allocated and Extent Container status. The next and previous inode 
values depend on whether the underlying blob data was fragmented across the data 
slices (necessitating multiple entries within the Inode table). The number of these 
fragments are outlined by the extent count. Up to six extent entries can be included 
in a single Extent Container (for a total size of 64-bytes).  

Figure 19: Breakdown of an Inode Extent Container Entry. 

The Inode Table slice is followed by the Journal slice. As both BlobFS and MinFS 
utilise the same journaling scheme, this has been documented separately in Section 
6.3.3. The remaining slices allocated to BlobFS are used for the storage of blob data. 
The first block (8,192-bytes) of this slice is empty. The allocation of this space is 
utilized as per the values outlined in the Inode Table and are aligned on the block 
boundaries. 
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6.3.2 MinFS Partition 

The MinFS partition is a “traditional Unix-like file system” (Fuchsia Project, 2019g). 
Within an FVM partition, it is made up of at least seven slices; A breakdown of the 
overall structure of the partition is shown in Figure 20. 

Figure 20: Basic layout of MinFS partition. 

On current development builds, the MinFS partition is encrypted by default using the 
previously mentioned zxcrypt subsystem. Exploring methods for bypassing zxcrypt 
encryption was out-of-scope for this research, although the presence of zxcrypt 
encryption can be identified by the existence of a zxcrypt GUID at the start of the 
MinFS partition (Figure 21). It was possible to build Fuchsia without zxcrypt via the 
use of the QEMU virtual machines, which allowed for the generation of material used 
to populate the rest of this section. The first block of an unencrypted MinFS partition 
contains the partition’s superblock. A breakdown of the structure of the MinFS 
superblock can be seen in Figure 22. 

 Figure 21: zxcrypt encrypted MinFS superblock.

The magic identifiers are statically defined and can be used as indicators for the start 
of partition, although in testing some plain text files contained representations of 
these identifiers were found within the data section of this partition. The CRC-32 
checksum is calculated using the content of the superblock alone. The generation 
field is used to determine if the primary or backup superblock holds the latest content 
and should be updated with each write. Within MinFS, only two flags are defined; 
0x00 00 00 02, the FVM flag, which indicates that this MinFS partition is a part of an 
FVM partition and 0x00 00 00 01, the clean flag which is currently unused. If the 
FVM flag is set, there are several additional fields populated from relative offset 80 
onwards. These fields indicate the number of slices allocated for the bitmaps, Inode 
Table, Backup Superblock, Journal, and file data. These data structures are virtually 
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offset from one another by 64 slices. This allows FVM to allocate additional physical 
slices on demand whilst keeping any growing data structures within MinFS logically 
contiguous. Regardless of whether the FVM field is populated or not, the remainder 
of the block (8,076 bytes) from offset 114 onwards is reserved by the superblock and 
should be empty. 

Relative 
offsets 0 4 8 12 

0 MinFS Magic Identifier Part 1 
8 Bytes
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256
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…

Index to last 
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0 
Remainder of block reserved 

8,076 Bytes 
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8,176

Figure 22: Example MinFS superblock with additional FVM fields utilised. 

Following the superblock, the slices for the Inode and Data bitmaps can be found. 
Both bitmaps found in MinFS use the same simple scheme used by BlobFS where 
each bit represents the relative block allocation status. These are immediately 
followed by the MinFS Inode Table. An example of an entry within this structure can 
be seen in Figure 23. Each inode entry is 256 bytes in length and start with one of 
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two potential entry identifiers, depending on whether the inode is referencing a folder 
(0x04) or file (0x08). Due to the use of an unsigned 32-bit integer for the length, 
MinFS cannot support files bigger than 4GiB in size. As with Unix file systems (Hal 
Pomeranz, 2009), the link count refers to the number of directory entries that 
associate a specific name for the data specified (i.e. a Hard link). The timestamps 
used in MinFS are recorded in the number of nanoseconds since the start of Unix 
epoch.  
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0 
Figure 23: Example MinFS Inode Entry.

The sequence number should increment up each time the record is modified, 
however in testing this was found to be unreliable. The Generation number 
increments when the inode data is deleted. The directory entry count field is only 
populated if the inode record refers to a folder, and this field indicates the number of 
items within the directory entry. The next two fields relate to inode record(s) which no 
longer appear in directory entries but that still exist within the Inode Table. This is 
followed by 12-bytes of padding/reserved space and then an array of up to 16 
individual pointers indicating the location of data on disk. Each pointer details the 
physical offset (in number of blocks) from the start of the data slice to the referenced 
block of data. If the data for the record is sufficiently large, MinFS has provisions for 
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a number indirect inode records and (if required) a single doubly indirect inode 
record within each entry. Unlike Unix-based filesystems, MinFS does not store 
information related to who the owner or which user groups can carry out read, write, 
or execute operations on files and folders. 

The Journal slice(s) immediately follow the Inode Table, although the first 8,192-
bytes of the first Journal slice is utilized for the backup MinFS superblock. For more 
information on the Journal, refer to Section 6.3.3. After the Journal, the data 
section(s)  contains both directory entries and the raw data content of individual files. 
These are aligned on 8,192-byte blocks with the first entry left unutilised. The first 
populated blocks of the data slice contain directory entries. Examination of these 
entries can facilitate the identification of the actual name and individual inodes 
numbers of specific files. In Figure 24 a Directory Entry is shown, containing the 
record referenced in Figure 23 as the last entry. A breakdown of the structure of this 
record can be seen in Table 4. 

Figure 24: Example MinFS Directory Entry with final record highlighted.

Offset Length Description Value

0 uint32 Inode number 
(0 if record should be ignored)

89 

4 uint32 Record length 
Low: 28 bits = Length 

High 4 bits = Record Flag 

0x80 FF 0F 80

8 uint8 Name length 13 

9 uint8 Record type: 
 (0x04 = folder, 0x08 = file) 

0x08 

10 1-255 
byte char

File/folder name 
(maximum of 255 characters) 

textfile1.txt 

Table 4: Highlighted MinFS Directory Entry record structure.

As seen in Figure 24, both the first two records within the entry have an inode 
number of ‘0x01’ due to this being the root directory of the MinFS partition. This field 
is also used to indicate if a record in an entry is active; If the inodes numbers were 
set to 0x00, the relevant record would be considered free and skipped over during 
lookups. As such previously deleted records may be identified by inspecting these 
entries. The length of these records must be a multiple of four, which results in the 



24 

use of null characters or characters taken from the previous record’s name for 
padding and/or alignment. This can be seen in Figure 24 where the folder names 
“ssh” and “r” have been padded with excess characters for alignment. As with an 
item's inode, the record in a directory entry indicates whether it refers to a file or 
folder. The length of these records are 28-bit numbers, with the last 4 bits of the field 
being used to set flags for the record. Only one flag for directory entries is 
defined, 0x08, which indicates the record is the last one in this entry. When this flag 
is set, the true length of the record entry is overwritten with the maximum length of a 
directory (128 blocks or 1,048,576 bytes) minus the offset from the start of the 
directory entry to the start of that field. Using Figure 24/Table 4 as the example, the 
offset to that field is 128-bytes which equals 1,048,448 bytes or 0x80 FF 0F in little 
endian (as seen in Table 4). Using the information from the Directory Entry and the 
Inode Table, it is possible to correctly attribute file content to specific files within the 
data slices (Figure 25).  

Figure 25: Data for referenced file in Table 4 and Figure 24. 

Further examination of the data section indicated that previously deleted data may 
be found in unallocated data blocks. In testing it was observed that deleted data 
appeared to persist after creation of additional files, indicating that previously 
allocated blocks data are not prioritised for reallocation. However, when a previously 
allocated block was reutilised, any previous data within that block appeared to be 
purged prior to the write operation, resulting in no data persisting in the unused 
space of the newly allocated block.  

6.3.3 Journaling for BlobFS and MinFS 
Relative 

offsets 0 4 8 12 
0 Journal Info block magic identifier 

8 Bytes 
  0x 6C 6E 72 6A 62 6F 6C 62 

(lnrjbolb)

Starting block 
Uint64 

340

16 Reserved 
8 bytes 

0x00 00 00 00 00 00 00 00

Sequence Number 
8 bytes 
1,274

32 CRC32 Checksum 
8 bytes 

0x8F B7 56 D0
Unused 

Figure 26: Structure of Journal Info Block. 

Both BlobFS and MinFS utilise the same schema for journaling. Both filesystems 
utilise it as a log of filesystem write operations to ensure overall filesystem integrity, 
in the event of a loss of power or device reboot (Fuchsia Project, 2019f) (Fuchsia 
Project, 2019f). The first FVM block within the journal contains the Journal 
Information block, effectively the Superblock. An example of the Journal Information 
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block can be seen in Figure 26. This block can be identified by the Journal Info block 
magic identifier, as seen in the first eight bytes of the entry in Figure 26. 

The starting block field indicates the first entry (in number of blocks) relative to the 
start of the journal entries. The Sequence number effectively acts as a timestamp, 
indicating which entry within the Journal was current when the Journal Information 
Block was last updated. The entry referenced by the starting block field should 
contain the same Sequence number as that found at offset 24 in the Journal 
Information Block. The checksum is calculated based on the preceding 32 bytes of 
the Journal Information block. Between the Journal Information Block and the 
indicated current entry, historic entries can be found. These should contain 
sequence number(s) of a value less than the one found in the Journal Information 
block. Each entry within the Journal starts at an FVM block boundary and contains 
one Journal Entry Header (first block in the entry) and one Journal Entry Commit 
block (final block of the entry within the Journal). The structure of the Entry header 
can be seen in Figure 27. 

Relative 
offsets 0 4 8 12 

0 Journal entry block magic identifier   
8 Bytes 

  0x6C 6E 72 75 6A 61 6D 69 
(lnrujami)

Sequence no. 
Uint64 
1,274

16 Flag 
Uint64 

0x00 00 00 00 00 00 00 01

Reserved 
8 bytes 

0x00 00 00 00 00 00 00 00
32 No. of blocks between this and commit 

block 
Uint64 

3 Actual location of data on disk 
Uint64 [679] 

[Block: 196,610 | Block: 131,072 | Block: 0]
...

5,472

Flags for blocks 
Uint32 [679]

[0 | 0 | 0]
…

8176

Reserved 
4 Bytes 
0x00 00 

Figure 27: Structure of Journal Entry Header. 

Whether a record is an Entry Header or Entry Commit Block can be quickly identified 
by the flag value (0x1 = header, 0x2 = commit). Two other values are defined 
(3=revocation, 0= unknown), however these were not seen in testing and no other 
information was identified within the code base. The true location(s) on disk for the 
payload as seen in Figure 27 are held in an array. This array can hold until 679 
records. The subsequent Flags for block field also stores values in an array with 
each value corresponding to the block in the same position within the array within the 
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field above. The only block flag defined is an escape character to indicate that the 
referenced block starts with Journal entry block magic identifier. In these situations, 
these values are replaced with zeros, and a Flag value of 1 is set.  

The payload data of the entry can be found in the block(s) between these two blocks. 
In testing, only metadata related to filesystem operations was found (different 
superblock versions, inode table records, and bitmap table). Within the codebase for 
Fuchsia there are indications that the Journal should be capable of storing actual file 
data as well partition metadata, so it is not clear why it was not found in testing. 
Following the payload of the entry, the Journal Entry commit block can be found on 
an FVM block boundary. The structure of the Journal Entry Commit block is similar, 
utilizing the same first four entries as a header, however the remaining fields are 
instead replaced with a single CRC32 checksum of the entire journal entry except 
the content of the commit block. This structure is shown in Figure 28.  

Relative 
offsets 0 4 8 12

0 Journal entry block magic identifier   
8 Bytes 

  0x6C 6E 72 75 6A 61 6D 69 
(lnrujami)

Sequence no. 
Uint64 
1,274

16 Flag 
Uint64 

0x00 00 00 00 00 00 00 02

Reserved 
8 bytes 

0x00 00 00 00 00 00 00 00
32 CRC32 Checksum 

8 bytes 
0x35 45 87 06

Unused 

Figure 28: Structure of Journal Entry Commit 

Section 7: Discussion  

Within this work the data structures found on Fuchsia storage disks were examined 
and their unique identifiers were determined. The content of the superblocks for 
Fuchsia partitions were found to detail key structural features including the requisite 
identifiers needed for quick identification. In the case of the ZIRCON-A partition, 
other unique identifiers denoting various ZBI containers within the partition were 
determined. Within the FVM partition the sizes of other structures within the partition 
were also found. This information alongside the GUIDs shown in Table 2 highlights 
several key features found which can be identified to Fuchsia disks and begin to map 
the high-level structure.  

The material presented in this research is based off the default behaviour of current 
development builds for Fuchsia, compiled to the core x64 specification. As such, one 
of the gaps in this research is the lack of results for a platform utilising the ARM 
architecture. Given there are indications that the ZBI Kernel header (Figure 5) found 
within the ZIRCON partition utilises a different unique identifier based on 
architecture, there may be other differences in the number of headers and types 
utilised between the different architectures. 
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Key information related to the filesystems within FVM was determined through the 
examination of the superblock, FVM Partition Table and FVM Slice Allocation Table. 
The maximum theoretical amount of storage which may be allocated to the 
filesystems within FVM and how this data is broken up was identified along with the 
amount of diskspace (including number of slices) that was actively being utilised at 
the time of capture. This is seen in the FVM Partition table (Figure 11) where this 
information is specified in the form of a GUID, given name and a total number for 
allocated slices. Lastly, much of the content of the Slice Allocation Table was 
determined (Figure 12). This allows for the identification of the physical location on 
disk of the slices as well as provides context to their virtual position within the 
individual filesystems. With these findings, it is possible to determine the layout of 
FVM partitions and examine the content of them. 

The ambiguity over the ‘extra’ bytes seen in each slice entry within the FVM Slice 
Allocation Table remains a possible source of confusion. Given what was seen in the 
source code related to the creation of new entries (Klein et al., 2020) compared to 
what was found on disk (Figure 12) and how the content of this table was 
represented within fvm-check (Figure 14), it is unclear why one 16-bit, one 32-bit and 
2-bytes of padding appears to be utilised for each slice entry rather than two 32-bit 
values.  

The data structures utilised by the partitions within FVM were examined and the 
associated metadata was identified. The content of the Superblock for both BlobFS 
and MinFS was found to outline key structural features for each partition. As seen in 
Figures 17 and 22, the sizes and location of other data structures is clearly 
documented, alongside data primitives such as the block size used within the 
partition. This facilitated the mapping of the distribution of data within each partition. 
It is also possible to determine what file metadata is store within each filesystem. 
This is seen in the Inode records (Figures 18 and 23) and in the case of MinFS, 
directory entries (Table 4). This allows for the identification of the sizes and physical 
locations of referenced data on disk, and for MinFS, the creation and modification 
times and file names of specific objects. As MinFS has provisions for indicating 
which records should be skipped during lookups for the directory entries (Table 4), 
these may be utilised to identify previously deleted file within specific directories. As 
indicated in Section 6.3.2, deleted file data may be found in the unallocated blocks 
within the data section for MinFS, however no data from previous utilisation was 
found to persist in the slack space reallocated data blocks. 

The role of the partitions in the context of the wider operating system were also 
partially identified through the examination of the data slices. The content of these 
slices indicates the separation of user space files from files and data for use in 
system services. MinFS clearly performs the role of the former with a format similar 
to that of some Unix filesystems (although it is lacking fields for storing information 
regarding user ownership or group privileges within its inode entries). This allows for 
the inferences that the MinFS partition may be of most interest to forensic 
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investigators when found within FVM on a Fuchsia device. In the case of BlobFS we 
can see how the content of the filesystem information is represented to the user in 
Figure 16, however further work is required to clarify if inspecting the content of 
these blobs to verify installed applications and/or other software. 

The ambiguity over the lack of data entries within the Journals for both MinFS and 
BlobFS remains a source of confusion. As indicated in Section 6.3.3, the entries 
found clearly indicate that the journal appears to function, so it remains unclear why 
no data entries were found. In the case of MinFS this may have been a consequence 
of relying on the virtual machine to see the content of the partition. Further work is 
required to determine why; this may be a result of the relatively small sizes of each 
partition or that the underlying codebase is not final. Despite not being an original 
objective for this research, this work has highlighted how zxcrypt may pose a 
significant hinderance to further research and investigations. The default usage of 
zxcrypt on MinFS partitions means that the area of greatest interest to forensic 
practitioners may be encrypted. There are references within the codebase for 
Fuchsia that a null key is currently used (Fisher, 2019a),  with comments (Fisher, 
2019b) indicating an intended future reliance on using Trusted Platform Modules 
(TPMs) or Trusted Execution Environments (TEE) for hardware backed key storage 
and attestation. This potentially represents a significant hurdle for future 
investigations as without a method to bypass or extract the keys from the TPM, 
investigators may be forced to work off off-device backups or on the live system. 

Section 8: Future Work 

Further examination of the compressed BootFS filesystem found within the ZIRCON 
partition(s) should be carried out. This may be of useful in investigating and 
understanding Fuchsia’s kernel and the implementation of its security model. Further 
experimentation with additional devices or alternative architectures may further 
indicate what other types of headers are utilised within the ZIRCON partitions. 

Analysis of the codebase and experimentation with the operating system should take 
place to confirm the true purpose of the extra two bytes seen within each FVM slice 
table entry. Similarly, work is required in the examination of the blobs found on 
BlobFS partition with the aim of  determining the content of these blobs. This could 
provide further understanding of the OS as well as additional methods for 
determining what software and/or system service is found on the target platform. 
This would allow for a judgement to be made on their usefulness to forensic 
practitioners.  

Exploration of methods for mitigating or bypassing zxcrypt on MinFS data partitions 
may provide crucial for further investigations. Whilst its functionality has been 
documented previously (DSTL, 2019), and methods for overcoming similar 
implementations on older OSs has been researched (Bell, 2018) a method 
applicable for zxcrypt is not available at this time. Without a suitable approach, 
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practitioners may be denied access to the filesystem theoretically containing the 
most relevant information. Finally, as Fuchsia is still in development, confirmatory 
work is required to clarify whether the findings here still hold true on any eventual 
production device. 

Further system wide analysis is required to enable reliable extraction of data relevant 
to forensic investigators. Whilst it has been determined that creation and modified 
times can be attributed to specific sets of data, current research has not determined 
a way to attribute this activity to specific users or system services. Additional 
investigation of Fuchsia data block allocation procedure is needed to determine 
viability of reliable data recovery through file carving or other means. As the OS 
continues to evolve, examination and identification of system-level artifacts of 
forensic relevance (system logs, users list and user applications, etc)  will need to be 
carried out to enable investigator to put together a more complete picture of user and 
system activity. 

Should Fuchsia see real-world use in the future, digital forensic tooling will need to 
be developed or updated to support their analysis. Given the range of potential 
devices that is provisionally being targeted by the OS, alongside the prevalence of 
Google-based products across the smart device market, digital investigators lack 
sufficient tooling to address this problem. As with many other digital forensic tools, 
this tooling will need to be semi-automated in the indexing and categorising of data 
on a target device as digital investigators are likely to lack the time to manually 
analysis each individual device to the level of detail documented here.  

Section 9: Conclusions 

This research has identified the unique identifiers found on the disks of Fuchsia 
devices and documented the various data structures utilised by the unique partitions 
found on this platform. As Fuchsia is still in development, these findings are reliant 
on there not being any significant changes to structure of the partitions examined. 
There remain unanswered questions regarding the content of the BootFS disk image 
found in the kernel partition and the structure of entries within the Slice Allocation 
Table in the FVM. Questions also remain regarding the content of the blobs found 
within the BlobFS filesystem and their usefulness to forensic examiners. This 
research has also highlighted the potential difficulties posed to forensic 
investigations due to the usage of zxcrypt. Building on the material generated by this 
research and its companion piece, further exploration of the Fuchsia operating 
system, such as the system services, should be possible.  
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