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Abstract  

The different deposition periods in sedimentary geological environment have made the build-up 
and estimation of soil organic matter ambiguous to study. Soil organic matter has received global 
attention in the ambience of international policy regarding environmental health and safety. This 
research was to understand the inter-relationship between soil organic matter and bulk density, 
saturated hydraulic conductivity (Ksat), total, air-filled and capillary porosities for organic matter 
estimation, via different multiple linear regression functions (i.e., leap backward, leap forward, 
leapseq and lmStepAIC), in soils developed over the sedimentary geological environment. Eight 
mapping units were obtained in Ishibori, Agoi Ibami and Mfamosing via digital elevation model. 
Two pits were sited within each mapping unit, and 53 soil samples were used for the study. In soils 
over shale–limestone–sandstone, two pits were sited, six in alluvium, four in sandstone–limestone 
and four in limestone. Overall correlation between SOM with Ksat (r = 0.626) and BD (r = − 0.588) 
was significant (p < 0.001). The strongest correlation was obtained for SOM with BD (r = − 0.783) 
and Ksat (r = 0.790) in soils over limestone. In contrast, soils over shale–limestone and sandstone 
geological environment gave the weakest relationship (r < 0.6). Linear regression gave a similar 
prediction output. The best performing was leapbackward (RMSE = 11.50%, R2 = 0.58, MAE = 
8.48 %), which produced a smaller error when compared with leap forward, leapseq and 
lmStepAIC functions in organic matter estimation. Therefore, we recommend applying leapback 
linear regression when estimating soil organic variation with physical soil properties for solving 
soil–environmental issues towards sustainable crop production in southeast Nigeria.  
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1. Introduction

Soil organic matter (SOM) is an essential component of the soil. It is pivotal for 

maintaining multiple soil-derived ecosystem services, such as the production of food and materials 

for shelter, fuel and clothing, the maintenance of biodiversity, and critically mitigating effects of 

global climate change (Li et al. 2017). In addition, it positively impacts soil fertility. It contains an 

unknown number of compounds derived from living and non-living organic substances, varying 

from easily decomposable simple organic materials to complex recalcitrant compounds and 

organisms (Kogel-Knabner 2002).  

Besides sequestering or acting as a source or sink of atmospheric carbon, SOM storage in 

arable soils influences soil physical, chemical and biological properties (Saint-Laurent et al. 2017; 

Blanco-Canqui et al. 2013). These properties are exposed to more risks in cultivated soils. Land 

degradation occurs globally due to poor land management strategies, such as inappropriate land 

uses like bush burning, continuous cultivation and tillage (Blanco-Canqui et al. 2013). This results 

in a decline in SOM and concurrent impacts on soil physical parameterssuch as porosity, increased 

bulk density (BD) (Tisdall and Oades 1982) and reduced infiltration (Li et al. 2007) as they are 

functions of SOM (Jiao et al. 2020). Organic matter reduces soil BD and increases the porosity of 

compacted soil layers (Boni et al. 1994; Bonini and Alves, 2010), while its mineralization may 

lead to increased BD (Oliveira et al. 2018). In addition, researchers in Northern Karakoram (Ali 

et al. 2017) and Nepal (Ghimire et al. 2018) identified negative correlations between organic C 

and BD. In contrast and surprisingly, Lei et al. (2019) reported positive correlations between soil 

organic carbon (SOC) and BD in subsurface soils, while Masri and Ryan (2006) reported 

decreasing hydraulic conductivity with reduced SOM.  

Several factors have been reported to affect the build-up of SOM. They include topography 

(Cardinael et al. 2017), climate (Munoz-Rojas et al. 2017), soil type (Zhao et al. 2016), soil depth, 

land use (Kafle, 2019), texture (Lei et al. 2019), soil microorganisms (Komarov et al. 2017) and 

soil pH (Zhou et al. 2020). When wholly considered, these factors make studies related to SOC 

complex and make its measurement and inter-relationship with other soil properties difficult. 

However, SOM is important in soil studies and maybe a sole indicator of fertile and healthy soil. 

There have been several studies on the horizontal spatial distribution of SOM using various 

mathematical models as influenced by topography, vegetation and land use (Takata et al. 2007; 

Liu et al. 2015). Applying different machine learning (ML) in predicting soil properties is recent 

in soil science and precision agriculture (for example, random forest, support vector machine, 
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artificial neural network and others) (John et al. 2020). Multiple linear regression (MLR) has been 

applied in modeling and predicting SOC via environmental variables and soil nutrient indicators 

(John et al. 2020), arsenic estimation via XRF and ICP-OES data (Kebonye et al. 2020), and the 

mapping of soils of Minas Gerais, Brazil via XRF data using the stepwise multiple linear regression 

techniques (Silva et al. 2017). However, the stepwise variable selection is automatic and has many 

statistical problems that could worsen if the covariates are collinear. Therefore, this study attempts 

to reduce covariates collinearity. Currently, no published studies compare the different stepwise 

linear regression functions in the modeling of SOM under diverse sedimentary geological 

environments; hence, this research introduces a new approach in explaining the variability of SOM 

in soils over the different sedimentary geological environments. We hypothesize that SOM will 

vary in its inter-relationship with soil physical properties in different sedimentary geological 

environments, and subsequently, SOM can be predicted by soil physical properties. Consequently, 

this research studied the inter-relationships between SOM and BD, saturated hydraulic 

conductivity (Ksat) and porosity, and applied various multiple linear regression functions to 

predict SOM accumulation via some selected soil physical properties dominating the different 

geological environments. 

2. Materials and methods 

2.1 Location and land use, geology, and climate of the study area 

The study sites were located in Ishibori area (679 ha) of Ogoja  (06o39′17'' N,  08o47′51'' 

E), Agoi Ibami (280 ha) in Yakurr  (05o43′27"N,  08o10′37.2" E) and Mfamosing (2202 ha) in 

Akamkpa (05°04′41.8''N, 08° 27′49.8''E), all in the Cross River State of Nigeria. The Ogoja area 

is covered by the southern guinea savannah and cultivated to oil palm, teak and paddy rice, while 

the Yakurr and Akamkpa areas are covered by tropical rainforest. Common crops in the Yakurr 

and Akamkpa areas are oil palm, cassava and plantain.  

Basement Complexes and Sedimentary Basins dominate the geology of Cross River State 

(Ekwueme 1987). The Sedimentary Basins, containing sediment fill of Cretaceous to Tertiary ages, 

dominate the Niger Delta region (Fatoye and Gideon 2013), with alluvium found in the low lying 

coastal areas. The limestone of the Cretaceous and Tertiary ages is often intercalated with shale, 

siltstone, and fine-grained sandstone (Ofem et al. 2020a).  

Cross River State has a humid tropical climate, which varies from the southern guinea 

savannah in the Ogoja area to the tropical rainforest of Yakurr and Akamkpa. Consequently, 

rainfall fluctuates from 1251–3348 mm/year in the Ogoja area to 1760–2684 mm/year and 2109–

3771 mm/year in Yakurr and Akamkpa, respectively (Sambo et al. 2016). Temperature varies from 

23 to 34 °C in the Ogoja area and 23 to 32 °C in Yakurr and Akamkpa areas (Sambo et al. 2016). 
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Yakurr and Akamkpa have similar climates and vegetation and often experience slight temperature 

variation. 

2.2 Field and laboratory procedures 

Digital elevation models (DEM) of the study locations were acquired from USGS Explorer 

SRTM 1 arc-second Global at a resolution of 30 m. The DEM was employed to generate slope 

maps in ArcGIS (ESRI, US) environment. The elevation ranges created in the slope maps were 

used to delineate slope transition (Ofem et al. 2020a). Each of the eight slope transitions (IH1, IH2, 

AI1, AI2, AI3, MF1, MF2, MF3) represented a soil mapping unit (MU). Two soil pits were 

randomly sited in each MU and dug to represent the soils (2 m by 1.5 m by X m). Where X m 

represents variable depth to the water table or consolidated rock layer, this gave rise to sixteen pits 

in total, two in shale–limestone–sandstone (SLM) (IH1P1, IH1P2), six in alluvium (IH2P1, IH2P2, 

AI3P1, AI3P2, MF3P1, MF3P2), four in sandstone–limestone (AI1P1, AI1P2, MF1P2, MF2P2) 

and four in limestone (AI2P1, AI2P2, MF1P1, MF2P1). Thereby, a total of 53 soil samples were 

collected from pedogenic horizons and subjected to laboratory analyses. In addition, undisturbed 

core soil samples were vertically collected from pedogenic horizons for the determination of 

saturated hydraulic conductivity (Ksat), total porosity (Total_P), airfilled porosity (Air_P) and 

capillary porosity (CAP_P). Ksat was determined by the direct application of Darcy's equation to 

a saturated soil column of uniform cross-sectional area (SSS, 2014), such that: ���� =
����(�����)

(Equation 1) 

where V = volume of water that flows through the sample of cross-sectional area (A) in time (t); 

(H2-H1) = Hydraulic head difference; L = Length of sample.  

Core soil samples were then drained at 60 cm of tension to determine Total_P, Air_P, and 

CAP_P. Total porosity, Air_P, and CAP_P were determined by dividing the volume of water in 

the soil at saturation, the volume of water drained at 60 cm of tension, and the volume of water 

retained at 60 cm of tension by the volume of the cylinder (Obi 2000).  

Soil for organic carbon determination was air dried under room temperature in the 

laboratory at 29–30 °C for three days, ground with a wooden pestle to break peds and passed 

through a 2 mm sieve. Soil organic carbon (Walkley–Black modified acid-dichromate) was 

determined using standard procedures outlined in Soil Survey Staff (SSS 2014). SOM was 

calculated from SOC by multiplying by a factor of 1.72 to obtain SOM. Soil samples were analyzed 

in the Department of Soil Science, University of Nigeria, Nsukka. The field study was carried out 

between December 2018 and February 2019. 
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2.3 Correlation matrix 

A simple correlation analysis was performed with categorical data (e.g., geological 

environment). This analysis explained the intra- and inter-relationships between the SOM and the 

selected physical properties and how the individual geological environment contribute to the 

relationship between SOM and the physical properties. The output of the correlation was 

reconfirmed through the application of a Principal Component Analysis (PCA). 

2.4 Principal components analysis

PCA enabled the grouping of the selected soil properties into the different geological 

environments. It enabled the extraction of principal factors accounting for the sources of variation 

in the data (Belkhiri and Narany 2015) and to identify the geological material influencing SOM 

and other properties. Such litho-material would require further assessment as they may help 

explain certain SOM variability relating to the selected soil properties within the area.  

2.5  Modeling Approach of SOM 

Four (n = 4) stepwise multiple linear regression (MLR) functions were applied in this study. 

The forward, backward, both direction, and the regsubsets are available in the leap function. This 

study presented four functions available in R software for stepwise linear regression in estimating 

SOM using six predictors (BD, Ksat, Total_P, Air_P, CAP, geological material). The stepwise 

regression applied leaps and stepAIC functions available in R's leaps and MASS packages. The 

leaps package in R is composed of "leapBackward", which fits a linear regression with backward 

selection, and "leapForward", with fittings for linear regression with forward selection. The 

"leapSeq" fits a linear regression with stepwise selection, while in stepAIC (also referred to as 

direction), we applied the "lmStepAIC" (James et al. 2014). The approach was adopted to 

exhaustively establish that the intended selected model is suitable for SOM prediction in the soils 

overlying sedimentary geological environment in the region. The simple linear model used to 

predict SOM (%) via the selected soil properties is expressed as, thus: ��� (%) = �� +  ∑ �������� + ∈� (2)

where β0 is the y-intercept and or bias in the field of machine learning (Hastie et al. 2008). The Xj

represents the predictor variable, while βj is the slope coefficient of the predictor. An error term is 

also included and is denoted by ∊j. 

2.6  Model Accuracy and Assessment 

The entire data were subjected to modeling. Mean absolute error (MAE), and root mean 

square error (RMSE), and coefficient of determination (R2) were adopted as criteria in evaluating 
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the models' performance. In the case of MAE and RMSE, a lower value is preferred. For R2, values 

closer to 1 (Li et al. 2016). 

2.7  Statistical Analysis 

The R software performed all statistical analyses and model computations (R Core Team 2019). 

3 Results and discussion 

The summary of descriptive statistics for the soils, grouped by the geological environment, 

is presented in Table 1. At the same time, the results of the interaction between SOM and physical 

properties are shown in Fig. 1. 

Table 1: Summary of descriptive statistics for the soils studied  

Statistics SOC SOM BD Ksat Total P Air_P CAP_P
g/kg g/cm3 cm/h %

Shale-limestone and sandstone intercalation (SLM) (IH1P1, IH1P2)
Mean 9.86 16.94 1.57 34.99 51.41 8.97 42.41
Std 13.59 23.39 0.08 42.12 7.23 6.7 4.15
SE 5.14 8.84 0.031 15.92 2.73 2.53 1.57
Min 1.37 2.36 1.45 0.61 44.4 2.3 35
Max 40.3 69.32 1.66 106.28 65 21 47.8
CV 1.38 1.38 0.05 1.2 0.14 0.75 0.1

Alluvium (IH2P1, IH2P2, AI3P1, AI3P2, MF3P1, MF3P2)
Mean 18.12 31.16 1.19 49.55 57.76 6.63 51.13
Std 23.24 39.98 0.32 85.44 10.01 5.67 10.49
SE 5.81 9.99 0.08 21.36 2.5 1.42 2.62
Min 1.03 1.77 0.53 0.49 45.1 2 38.1
Max 86.64 149.02 1.63 256.54 80.2 23.9 76.5
CV 1.28 1.28 0.27 1.72 0.17 0.86 0.21

Sandstone-limestone (SS) (AI1P1, AI1P2, MF1P2, MF2P2)
Mean 7.01 12.06 1.43 43.67 48.8 4.71 45.07
Std 6.17 10.61 0.17 39.27 6.32 2.56 8.23
SE 1.54 2.65 0.043 9.82 1.58 0.64 2.06
Min 1.72 2.96 0.99 1.22 40.5 2.3 34.6
Max 21.96 37.77 1.66 126.67 63.4 11.3 60.7
CV 0.88 0.88 0.12 0.9 0.13 0.54 0.18

Limestone (LS) (AI2P1, AI2P2, MF1P1, MF2P1)
Mean 7.72 13.28 1.35 16.67 49.56 5.3 44.13
Std 11.73 20.17 0.19 20.19 7.2 5.54 7.06
SE 3.13 5.39 0.051 5.4 1.92 1.48 1.89
Min 0.69 1.19 0.9 0.49 37.1 0.9 31.6
Max 46.34 79.7 1.6 75.52 62.2 23.5 59
CV 1.52 1.52 0.14 1.21 0.15 1.05 0.16

SOC: soil organic carbon, SOM: soil organic matter, BD: bulk density, Ksat: Saturated hydraulic conductivity, total P: total 
porosity, Air_P: Air-filled porosity, Cap_P: capillary porosity, IH1, IH2, AI1, AI2, AI3, MF1, MF2, MF3: soil mapping units 

3.1  Inter‑relationships Between SOM and BD, Ksat and Porosity in the Sedimentary  
       Geological Environment 
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3.1.1  Soil Organic Matter Versus Bulk Density

SOM correlated moderately and negatively with BD (r = − 0.588, p < 0.01) (Fig. 1) in the 

studied soils and indicated an increase in SOM with decreasing BD values. The highest mean value 

of SOM and the lowest mean value of BD were obtained in soils over alluvium (Table 1) and 

further revealed that poorly drained alluvial soils are better accumulators of SOM. High SOM 

values are most likely to result in low BD values. Similar positive relationships were reported by 

Tisdall and Oades (1982) and Rawls et al. (2005) and contradict findings by Oliveira et al. (2018) 

that BD is unaffected by green manure. Others argue that organic matter does affect BD (Heuscher 

et al. 2005). An increase in organic matter oxidation rate is most likely to increase soil BD; for 

instance, poorly drained soils rich in accumulated organic matter have low BD compared to well-

drained soils located in the upland. Conversely, an increase in green manure or SOM reduces BD 

(Boni et al. 1994; Parihar et al. 2016). However, this negative relationship was strongest in soils 

over limestone with higher r values (> 0.70); especially those with Vertic properties as reported in 

Ofem et al. (2020a), and alluvium (r = 0.578), which had Loamic and Humic properties in the 

WRB system (Ofem et al. 2020a), and weakest in soils over SLM lithology.  

3.1.2  Soil Organic Matter Versus Saturated Hydraulic Conductivity 

Soil organic matter correlated moderately and positively with Ksat (r = 0.626) (p < 0.001) 

in the studied soils. Greater SOM results in higher Ksat because soil aggregate formation is linked 

to organic matter content (Beare et al. 1994). The presence of a considerable amount of organic 

matter ensures good aggregate and soil structural formation. This facilitates the movement of water 

through the soil. The highest value of SOM in soils over alluvium, which coincides with the highest 

value of Ksat, may further affirm their correlation. The soils over alluvium have either Aquic or 

Gleyic properties (Ofem et al. 2020a) expresses poorly drained soil conditions. Such conditions 

tend to encourage SOM deposition. Similar results have been reported, such that increased Ksat 

was obtained through an increase in dairy manure application (Jiao et al. 2006; Eghball, 2002), 

and SOM in the Mediterranean region (Masri and Ryan 2006). However, the relationship is not 

always a straight positive correlation for any soil (Nemes et al. 2005). This indicates that SOM is 

most likely to increase if soil conditions that favor increased Ksat are created. Masri and Ryan 

(2006) recommended a legume rotation for improved Ksat. Generally, significant amounts of 

readily decomposed organic matter and enhanced nutrient release from such materials may 

improve physical soil conditions (Sanchez et al. 1989). A high positive correlation (r > 0.70) was 

obtained between Ksat and SOM for soils over alluvium and LS, indicating greater certainty for 
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the relationship than soils over SLM lithology. According to Saxton and Rawls (2006) and Yao 

et al. (2015), SOM is an important predictor of Ksat but strongly influenced by vegetations in the 

subtropics (Hao et al. 2019). For instance, irrespective of lithology, a higher mean value of 

16.9 g/kg for SOM was obtained in the well-drained soils of the southern guinea savannah area 

compared to 12.06 and 13.28 g/kg obtained in the tropical rainforest. This variation may be 

connected to the huge accumulation of litter in the oil palm and teak plantations. 

Fig. 1: Correlation of SOM with bulk density, saturated hydraulic conductivity and porosity 

Gleyic properties (Ofem et al., 2020a) which expresses poorly drained soil conditions. Such 

conditions tend to encourage SOM deposition. Similar results have been reported, such that 

increased Ksat was obtained through an increase in diary manure application (Jiao et al., 2006, 

Eghball, 2002), and SOM in the Mediterranean region (Masri and Ryan, 2006). However, the 

relationship is not always a straight positive correlation for any soil (Nemes et al., 2005). This 
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indicates that SOM is most likely to increase if soil conditions that favour increased Ksat are 

created. Masri and Ryan (2006) recommended a legume rotation for improved Ksat. Generally, 

significant amounts of readily decomposed organic matter and enhanced nutrient release from such 

materials may improve soil physical conditions (Sanchez et al., 1989). High positive correlation 

(r>0.70) was obtained between Ksat and SOM for soils over alluvium and LS, indicating greater 

certainty for the relationship compared to soils over SLM lithology. According to Saxton and 

Rawls (2006), and Yao et al. (2015), SOM is an important predictor of Ksat, but strongly 

influenced by vegetations in the subtropics (Hao et al., 2019). For instance, irrespective of 

lithology, higher mean value of 16.9 g/kg for SOM was obtained in the well-drained soils of the 

southern guinea savannah area compared to 12.06 and 13.28 g/kg obtained in the tropical 

rainforest. This variation may be connected to the huge accumulation of litter in the oil palm and 

teak plantations. 

3.1.3  Soil Organic Matter and Porosity

The correlation of SOM versus Total_P resulted in a moderate positive correlation (r = 

0.44) (p < 0.01) in the studied soils and implies increased SOM with an increase in Total_P, but 

with moderate certainty in the positive relationship between SOM and Total_P within sedimentary 

formations. Tisdall and Oades (1982). Nemes et al. (2005) obtained similar relationships as 

reported in this study. Boni et al. (1994), Whalen and Chang (2002), and Alves and Suzuki (2004) 

reported an increase in Total_P by the use of green manure, dairy manure and successional cover 

crops. Similarly, Li et al. (2007) opinionated that a decrease in SOM will decrease porosity, 

reduced water and air storage. In soils over SS, the relationship was weak and positive. Soils over 

SS are high in the sand (Souza et al. 2019; Ofem et al. 2020b) and most likely to be well drained 

and more porous with a good supply of oxygen, and thus will most likely facilitate oxidation of 

organic matter (Bohn et al. 2001). This results in a high decomposition rate and low SOM 

accumulation.   

Soil organic matter was very weakly correlated with Air_P. This may suggest the indirect 

involvement of Air_P in soil organic matter decay in the humid tropical region of southeast 

Nigeria. On the other hand, CAP_P was positively moderately correlated (p < 0.01) with SOM (r 

= 0.41) in the studied soils. Total_P and CAP_P are highly correlated (r = 0.80), with each also 

positively correlated with SOM and both having the highest values in soils over alluvium. Soils 

over alluvium, therefore, exert a similar influence on SOM, Total_P and CAP_P. This implies that 

SOM increases with an increase in soil wetness conditions. 
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3.2  Principal Component Analysis 

Principal Component Analysis (PCA) (Tables 2 and 3; Fig. 2) revealed that PC1 explained 

54% of the variability in the dataset, while PC2 explained 22% of the variance between soils of 

diverse geological environments. PC1 was presented by the contribution of SOM, BD, Kstat, Total 

P, and CAP_P, while PC2 was described by the contribution of Ksat, Air_P and CAP_P to their 

loadings (Table 3). The points outside the ellipses are outliers of each of the geological 

environments. All the soil properties were significantly influenced by SOM (p < 0.01, 0.001) under 

alluvial deposits except Air_P. Similarly, BD (r = − 0.783), Ksat, Total_P and Cap_P (r > 0.54) 

were affected by SOM under LS. SOM was reportedly positively inter-related with Ksat and 

inversely with BD in soils formed over SS, while SOM had no influence on the properties for soils 

over SLM. The PCA result reconfirmed the correlation matrix output (Fig. 1). 

Table 2. Principal component contributions 

Importance of components PC1 PC2 

Standard deviation 1.802 1.155 
Proportion of variance 0.541 0.223 
Cumulative proportion 0.541 0.764 

Table 3. Principal components correlation with  variables 

PC1 PC2 

SOM 0.4091* 0.1613 
BD -0.5119* 0.1312 
Ksat 0.3486 0.4455* 

Total_P 0.4872* 0.0134 
Air_P 0.0485 0.7559* 

CAP_P 0.4569* -0.4321* 

NB: * Contribution to each PC 

3.3  SOM Prediction 

Presented in Table 4 is the result of the four stepwise linear regression models for SOM 

prediction. Leapforward yield (RMSE = 12.51%, R2 = 0.53, MAE = 8.68%), Leapbackward gave 

(RMSE = 11.50%, R2 = 0.58, MAE = 8.48%), leapseq yielded (RMSE = 12.51%, R2 = 0.53, MAE 

= 8.68%) and lmStepAIC function produced (RMSE = 13.24%, R2 = 0.54, MAE = 9.56%). The 

results revealed that the best performing function for SOM prediction is the leapbackward function 

since it produced the lowest error with a high coefficient of determination value. However, all the 

model functions were within the acceptable prediction range (R2 ≥ 0.50–0.75) as proposed by Li 
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et al. (2016). These results suggest that prediction of SOM may vary depending on the 

method/functions adopted. The backward elimination (leapbackward) likewise, the rest functions 

procedure identified the best model as having BD** and Ksat***, respectively. 

Figure 2. Principal component analysis of the variables grouped by lithologies 

N/B: Bulk density (BD); saturated hydraulic conductivity (Ksat); total (Total_P); air-filled (Air_P); capillary 
porosities (Cap_P). 

According to Sakin (2012), BD is closely related to SOC by storing large amounts of SOM. 

Compacted soil may contain more SOM, as it will occupy less space and more SOM per volume 

of soil, and the SOM in compacted soil is essentially "locked away". In contrast, soils that are not 

compacted have more contact with the air in the soil pores and so can be mineralized more 

efficiently and used as plant nutrients or leached. This relationship has been reported to aid the 

estimation of BD from SOM and vice versa (Perie and Ouimet, 2008). The study by Adams (1973) 

revealed that SOM had a dominant effect on both bulk and actual densities of soil in podzolic soil's 

organic and eluvial horizons.  

Similarly, as shown in the correlation matrix, Ksat gave a higher correlation with SOM 

than BD; this was captured in all the four linear regression functions used in this study. The 

regression result confirms that an increase in SOM in the soil will result in a proportional increase 
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in Ksat. This is because Ksat describes the capability of the bulk soil to transmit water when 

subjected to a hydraulic gradient. This is expressed by the volume of water flowing per unit area 

of bulk soil per unit time (Kosugi et al. 2002). Also, the result in this study is similar to the report 

of Ankenbauer and Loheide (2017). They reported an R2 = 0.625 in predicting SOM via 

volumetric water content at saturation in the meadow of the Sierra Nevada.   

Generally, organic matter has been reported to significantly influence soil water retention 

and BD (Rawls et al. 2003; Olness and Archer, 2005; Saxton and Rawls, 2006). In contrast, other 

studies have reported that SOM is not necessary to estimate soil water retention properties 

accurately (Zhuang et al. 2001). However, in a dissimilar geological environment like this study, 

where the soils are predominantly similar in texture (Ofem et al. 2020a) and SOM content from 

12.06 to 31.6 g/kg, SOM can easily be estimated via BD and Kstat. This is because SOM exerts a 

substantial control on surface water retention and BD variability. 

Table 4  Prediction of soil organic matter (SOM) via various stepwise linear functions

p = 0.001 '***'; 0.01 '**', Bold gave a good model fit 

4  Conclusions

Soil organic matter is most likely to increase when favorable conditions for increased Ksat 

and porosity except Air_P, which did not influence SOM. Irrespective of geological material, BD 

decreases when SOM increases. The Ksat of soils over limestone (LS) and alluvium and BD of 

soils over LS had the strongest relationships with SOM with r > 0.70. However, air-filled (Air_P) 

porosity had no significant association with SOM and is most likely to have little effect on its 

decomposition in sedimentary geological environments. Farmers must put in place measures to 

regulate soil moisture (mulching and drainage), particularly in the sedimentary geological 

environment, which affects SOM. PC1 and PC2 contributed 74.38% of the total variance in the 

dataset of soils over diverse geological environments. The grouping pattern in the PCA explained 

that alluvial deposits influence most soil characteristics in this present study.  

All the selected stepwise linear regression functions in the R environment performed the 

same as they fell within acceptable prediction criteria (R2 = 0.50–0.75). However, the best 

LM Functions RMSE R2 MAE 

% 

Equations Variable of 

importance 

LeapForward 12.51 0.53 8.68 SOM=38.2–23.6xBD + 0.13xKsat BD**,  Ksat*** 

LeapBackward 11.50 0.58 8.48 SOM=38.2–23.6xBD + 

0.13xKsat 

BD**,  Ksat***

LeapSeq 12.51 0.53 8.68 SOM=38.2–23.6xBD + 0.13xKsat BD**,  Ksat***

LmStepAIC 13.24 0.54 9.56 SOM=38.2–23.6xBD + 0.13xKsat BD**,  Ksat***
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performing model function was leapbackward, which produced a smaller error when compared 

with others. The models selected BD and Ksat as the most important variables to explain the SOM 

variability in diverse sedimentary geology. The reason behind this result could not be presented at 

the time of this study; however, it could be interesting to access these functions with more variables 

and large sample densities. Therefore, we propose an increase in sample density per lithological 

make-up and the incorporation of soil properties known in works of literature to be influenced by 

SOM. This is to verify the performance of the leapbackward function over other functions, 

including the conventional lmStepAIC algorithm. 
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