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Abstract Reinforcement learning from expert demonstrations (RLED) is the
intersection of imitation learning with reinforcement learning that seeks to
take advantage of these two learning approaches. RLED uses demonstration
trajectories to improve sample efficiency in high-dimensional spaces. RLED is
a new promising approach to behavioral learning through demonstrations from
an expert teacher. RLED considers two possible knowledge sources to guide
the reinforcement learning process: prior knowledge and online knowledge.

This survey focuses on novel methods for model-free reinforcement learning
guided through demonstrations, commonly but not necessarily provided by
humans. The methods are analyzed and classified according to the impact
of the demonstrations. Challenges, applications, and promising approaches to
improve the discussed methods are also discussed.

Keywords: reinforcement learning, imitation learning, learning from demon-
strations, behavioral learning, demonstrations.

1 Introduction

One of the artificial intelligence’s most famous applications is AlphaGo [79], an
agent capable of playing Go professionally. It trains with a network of super-
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vised learning policies based on expert human demonstrations, and then rein-
forcement learning is used to fine-tune supervised learning policies. Similarly,
AlphaStar [92], an agent capable of playing StarCraft II with a Grandmaster
level, is initially trained using supervised learning with human demonstra-
tions and later enhanced using reinforcement learning. AlphaGo and AlphaS-
tar share something in common, the behavioral learning approach used from
human demonstrations, which dramatically affect agent performance.

The most common approach to behavioral learning is Imitation Learning
(IL). Generally, IL is more concerned with observations than with actions.
Learning from Demonstration (LfD) [2] [69] and Programming by Demonstra-
tion (PbD) [8] are other names of IL commonly used in the robotics field,
while IL is the name most widely used in the field of machine learning. These
three terms are used to describe the process of learning through the use of
demonstration. There is no real distinction in IL, LfD, and PbD.

IL began to be used in robotics manufacturing to program robot movements
[78][57]. Currently, IL has gained popularity using machine learning techniques
such as supervised learning, which achieves local generalization [7]. In IL, a
subject called an apprentice learns to mimic a teacher’s behavior in performing
a task, the teacher, who can be considered an expert, provides demonstrations
of the desired behavior by performing tasks. It is important to note that in
IL, the teacher’s behavior is supposed to be optimal, which is not entirely
accurate since the teacher, who can be a human, naturally makes mistakes and
could follow a lousy strategy in demonstrating a task. It is, therefore, more
accurate to assume the teacher’s behavior as suboptimal. Since the amount
of data provided by demonstrations is relatively small for today’s computing
capabilities, the most significant IL advantages are its practicality and sample
efficiency.

There are four different methods to perform demonstrations, according to
[2][44][69]:

– Teleoperation: in this method, the teacher operates the apprentice through
some input device, like a joystick or a haptic device.

– Kinesthetic teaching: in this method, the teacher manually moves the ap-
prentice’s body, which is useful when the apprentice has a body easy to
move for an average human.

– Sensors mounted on the teacher: in this method, the sensors are mounted
directly on the teacher’s execution platform.

– External observation: in this method, sensors are not mounted on the ap-
prentice’s body and the teacher’s execution platform. Artificial vision tech-
niques are applied here.

Another common approach to behavior learning is Reinforcement Learning
(RL) [85]. This approach, unlike IL, learns a behavior that achieves a global
generalization to solve a problem in the most optimal way through trial and
error, exploring and exploiting states and actions through a criterion that re-
wards or punishes an agent depending on the agent’s performance with respect
to the desired behavior. In general, this approach is not sample-efficient, as a
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large amount of data is required to learn an optimal control policy. This ap-
proach has become popular in recent years due to its excellent generalization
capabilities. The help of advances in deep learning and increased computa-
tional capacity has led to increasingly efficient RL algorithms. This approach
has shown to be a powerful tool in resolving more and more complex real-
world problems. The evolution of RL using deep learning techniques is called
Deep Reinforcement Learning (DRL). RL is a simple computational method
based on Dynamic Programming (DP) [5] [84]. With RL, a control policy is
obtained by progressively learning an optimal solution online, with partial or
no knowledge of the dynamic environment model [51].

Reinforcement Learning from Expert Demonstrations (RLED) is a new
approach to behavioral learning, which is the intersection between IL and RL.
RLED tries to benefit from both approaches’ advantages while trying to avoid
their disadvantages. RLED seeks to learn an optimal behavior, capable of
generalizing globally and also being sample-efficient. RLED is intended to be
a practical approach in real-world automatic control problems, mainly capable
of solving challenging problems that IL cannot solve and where RL alone would
take an unacceptable amount of time to solve.

The RLED approach uses demonstrations to improve sample efficiency
in high-dimensional spaces, helping when sparse rewards are used as reward
specification and with the possibility of safe exploration. The first to propose
an intersection of RL and IL was Schaal in [74], which shows how learning
from demonstrations is beneficial for the RL process.

RLED is similar to other approaches such as Inverse RL [63], where knowl-
edge is available through demonstrations of an expert teacher but differs in
that a reward function is not available. Instead, the reward function is in-
ferred from the demonstration trajectories. Another similar approach is Batch
RL [48], also known as Offline RL [50], where only prior knowledge is available,
and the RL agent does not have access to interactions with the environment.
The agent should use the limited source of prior knowledge to learn the best
policy it can.

There have been many impressive advances in RLED. With constant do-
main growth, a survey needs to organize and clearly define its shared ideas.
Therefore, this survey paper offers an overview of the most relevant novel meth-
ods for model-free Reinforcement Learning guided through expert demonstra-
tions, commonly but not necessarily from humans, where we assume knowledge
(leveraged by the demonstrator) is available. The contributions of this survey
paper are:

– The three general assumptions made by these particular kinds of algorithms
are established.

– Relevant RLED algorithms are analyzed and classified according to how
demonstrations are applied.

– Current applications, challenges, and a promising approach to improving
RLED algorithms are analyzed.
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2 Reinforcement Learning from Expert Demonstrations

RLED considers two possible knowledge sources to guide the RL process, 1)
prior knowledge, where demonstrations are provided before the RL process; 2)
online knowledge, where demonstrations are occasionally provided during the
RL process.

This type of knowledge complements the agent knowledge progressively
acquired by interacting with the environment. RLED needs three general as-
sumptions:

1. The agent has access to interactions with the environment.
2. Environment reward feedback is available.
3. At least one source of knowledge from demonstrations is available.

Fig. 1 Different sources of knowledge in RLED. These diagrams illustrate how different
knowledge sources interact with the agent and environment to guide the RL process. Dashed
line: Occasional interaction. In RLED with prior knowledge, the teacher provides a set of
demonstration trajectories (before the RL process) to be used by the agent as a source of
knowledge in the RL process. In RLED with online knowledge, the teacher occasionally
provides a demonstration trajectory (by taking control over the agent) to be used by the
agent as a source of knowledge in the RL process.

Similar to RL, RLED is formalized in the context of a Markov Decision
Process (MDP) [85], which is defined as a tupleM = 〈S,A,R, T, γ〉, where S is
the set of states, A is the set of admissible control actions, a reward function
R(s, a), a probabilistic transition function T (s′|s, a) for the stochastic case
or a deterministic transition function T (s, a) = s′ for the deterministic case,
and a discount rate γ ∈ [0, 1). In each state s ∈ S, the agent takes a control
action a ∈ A, then a reward R is received, and a next state s′ is reached in the
environment, which is determined by T . The objective is to find a control policy
π(a|s) for the stochastic case or a control policy π(s) = a for the deterministic
case, that maximizes the discounted cumulative reward defined by

G =

∞
∑

t=0

γtR(st, at)
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then, the optimization problem to be solved can be written as

π∗ = argmax
π

Eπ[G|π].

Knowledge from demonstrations is leveraged by an expert demonstrator
policy πd (not necessarily optimal) to guide the learning process. When fol-
lowing πd, for a demonstrated state sd ∈ S is demonstrated a control action
ad ∈ A. Depending on the algorithm, the demonstration set contains at least
one trajectory, which is conformed of a temporal sequence of demonstrated
states ζd = {sdt }, can also be conformed of a temporal sequence of demon-
strated state-action pairs, ζd = {(sdt , a

d
t )}, a temporal sequence of demon-

strated state-action-reward tuple ζd = {(sdt , a
d
t , r

d
t )}, or a temporal sequence

of demonstrated state-action-reward-next state tuple ζd = {(sdt , a
d
t , r

d
t , s

d
t+1)},

where t index time.
We can assume that the teacher is an expert subject as he needs to have

relevant knowledge about the task or at least some experience in resolving the
task. It is important to emphasize that although we can consider the teacher an
expert subject, it does not mean that the provided demonstrations trajectories
follow an optimal control policy. Instead, in many cases, mainly where humans
provide the demonstration is more natural to assume that the demonstrations
follow a sub-optimal control policy. This is due to natural human reasons like
occasional mistakes, small tremor movements, and coordination issues.

The expected value in the state s following the control policy π is known
as state-value function and is defined as

V π(s) = Eπ[G|s] (1)

in the same way, the expected value of taking a control action a in the state
s following the control policy π is known as the action-value function and is
defined as

Qπ(s, a) = Eπ[G|s, a] (2)

then, the optimal values are given by V ∗(s) = maxπ V
π(s) and Q∗(s, a) =

maxπ Q
π(s, a). The advantage is defined as

Aπ(s, a) = Qπ(s, a)− V π(s).

A fundamental property of the equations (1) and (2) is that they satisfy partic-
ular recursive relations [85] that allow expressing them as Bellman equations
[5] by following

V π(s) = Eπ [R(st, at) + γV π(st+1)]

Qπ(s, a) = Eπ [R(st, at) + γQπ(st+1, at+1)] .

There are three base approaches to solve the RL part of the RLED prob-
lems, value-based methods, policy-based methods, and actor-critic methods.
We briefly mention these three approaches.
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– Value-based methods estimate a value-function. Their simplicity and ease
of implementation distinguish these methods, so they are, in general, the
most popular approach. RLED value-based methods extend the most popu-
lar methods, such as Q-Learning [97], SARSA[72], Deep Q-Networks (DQN)
[61], Double DQN (DDQN) [90], Prioritized Dueling Double Deep Q-Networks
(PDD DQN) [75], and Dueling Network Architectures for Deep Reinforce-
ment Learning [94].

– Policy-based methods directly estimate the control policy. These methods
are useful with continuous or very large action spaces and allow learn-
ing stochastic control policies. RLED policy-based take as base popular
methods, which include, Natural Policy Optimization (NPG) [38], Trust
Region Policy Optimization (TRPO) [76] and Proximal Policy Optimiza-
tion (PPO) [77].

– Actor-critic methods are a combination of value-based and policy-based
methods, where ”actor” refers to learning the control policy, while ”critic”
refers to learning the value function. Some RLED actor-critic use as base
method one of the most popular methods today, Deep DPG (DDPG) [54],
which combines the ideas of DPG [80] and DQN. Another method used as
a base in RLED actor-critic is Asynchronous advantage actor-critic (A3C)
[60].

We classify the different RLED methods based on how the algorithms use
the demonstration trajectories for learning the control policy. The discussed
RLED methods are listed in Table 1.

Table 1 RLED methods classified by how demonstrations are used.
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2.1 RLED with prior knowledge

In RLED methods from prior knowledge, the teacher provides a set of demon-
stration trajectories previous to the reinforcement learning process. These
demonstration trajectories are stored to help the agent at the learning process
to acquire a similar teacher’s behavior.

There are different ways to use prior knowledge. We classified the most
relevant methods by how prior demonstrations are used in: biased exploration,
extended optimization criterion, episode initialization, and reasoning.

In the first classification, biased exploration, the main concern in these
methods is how to obtain a control policy able to follow the best parts of
the teacher’s behavior. Therefore, the RL agent is encouraged to explicitly
explore and evaluate the states and actions in the demonstration trajectories.
This way, the agent learns when it is better to follow states and actions from
the demonstration trajectories or find a better choice.

In the second classification, extended optimization criterion, the optimiza-
tion problem is complemented with different terms to encourage the agent
to have a similar teacher’s behavior with better performance, leading to an
implicit exploration and evaluation of the demonstrated states and actions.
The immediate idea to extend the optimization criterion could be to add a
pure IL loss to force the agent to follow the teacher’s behavior. Nevertheless,
this kind of technique based on a pure IL loss can potentially over-fit and
lack generalization, as mentioned by Lakshminarayanan, Ozair, and Bengio in
[47]. Furthermore, the expert’s knowledge must be persistent throughout the
control policy’s learning and not just be a starting point. We subdivide this
second classification into three categories: with pre-training phase, without
pre-training phase, and distributed. Methods with the pre-training phase di-
vide the learning process into two phases: the pre-training and the fine-tuning
phases. In the pre-training phase, only demonstration trajectories are used for
learning, while in the fine-tuning phase, the demonstration trajectories and the
interactions with the environment are used. Methods without the pre-training
phase use the demonstration trajectories along the learning process to keep
the agent’s control policy close to the teacher’s behavior. Methods in the cat-
egory of distributed give the possibility to use distributed RL. Some of these
methods are an extension of the category with pre-training phase and without
pre-training phase. Another thing to consider in the extended optimization
criterion classification is the importance of the trade-off between RL and the
additional terms. The correct balance between RL random exploration and ex-
plore demonstrations leads to better results searching for an optimal control
policy, even when sub-optimal demonstrations are provided [53].

Episode initialization is the third classification, where the main idea is to
use the demonstration trajectories as a starting point in the learning process
episodes. The episode is initialized from a specific demonstrated state near a
state with high reward and consecutively initialized in further episodes from
a more distant demonstrated state. This way, the typical RL process runs as
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usual with high possibilities to reach the high reward state without explicit
bias of exploration or an extended optimization criterion.

The fourth classification, reasoning, is about a completely different idea,
mainly related to how humans approach tasks by causal reasoning. In this
method, the task is decomposed to identify relationships between cause and
its effects.

2.1.1 Biased exploration

Taylor, Suay, and Chernova in [88] propose Human-Agent Transfer (HAT), a
three-step method.

1. The agent records the demonstrations of all the state and action transitions.
2. From the recordings and through a decision tree learning method, a sum-

marized control policy is obtained in the form of a list of rules.
3. Rules are transferred to an RL agent to improve further and outperform

the summarized control policy.

Three methods are proposed to transfer the summarized control policy to
an RL agent, Value Bonus, Extra Action (both initially proposed in [87]), and
Probabilistic Policy Reuse. Value Bonus assigns a Q-value to the summarized
policy’s actions, forcing the RL agent to execute these actions for a number
of episodes. Extra Action gives the RL agent the option to decide between
taking a pseudo-action (the summarized control policy actions) or taking a
random action. The RL agent learns through exploration when to follow the
summarized control policy and when to take a different control action. Proba-
bilistic Policy Reuse is similar to ǫ-greedy [83] as it assigns a probability ψ of
taking the actions of the summarized control policy, a probability ǫ of taking a
random control action, and a probability 1−ψ− ǫ of taking the greedy action.

Confidence-HAT (CHAT) by Wang and Taylor [95] extends HAT, modi-
fying its second and third steps. In the second step, three confidence-aware
classifiers are proposed to be trained from the recorded demotions, Gaussian
Process HAT (GPHAT)

Ci(x) = exp (−((x− µi)
⊤Σ−1

i (x− µi))− (ln 2π|Σi| − 2 lnP (ωi)),

where x is a state vector, Σi is the covariance matrix of class i, µi is the
mean of data of class i, and P (ωi) is a typical Gaussian model with ωi as the
predicted label; Neural Network HAT (NNHAT)

Ci(x) =
1

∑

i exp(θ
⊤
i x)











exp(θ⊤1 x)
exp(θ⊤2 x)

...
exp(θ⊤i x)











,

where θi is the neural network weight vector corresponding to the i-th out-
put of a ”softmax” layer; and Decision Tree HAT (DTHAT), which uses each
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leaf node’s accuracy as an estimate of confidence. In the third step, Proba-
bilistic Policy Reuse is used to transfer the summarized control policy to an
RL agent, and a restriction is added to execute the actions suggested by the
demonstrations when the confidence is above a confidence threshold.

Dynamic Reuse of Prior (DRoP) [96] is another extension of HAT. DRoP
adds an online confidence measure using a temporal difference model to ana-
lyze the performance in every source action for a given state, with the update
rule

C(s)←− (1− F (η))× C(s) + F (η)× [H(R) + γ × C(s′)],

where η is the update parameter, F (η) and H(R) depend on the type of
confidence to update, as there are two types, confidence prior knowledge CP (s)
and confidence Q knowledge CQ(s). CP (s) can be updated in two different
ways, in one way F (η) = η×P and H(R) = R, and in the other way F (η) = η

and H(R) = R
Rmax

× P . If CQ(s) is being updated F (η) = η and H(R) = R,
where P is a neural network or a Gaussian model similar to CHAT, and Rmax is
the absolute maximum reward value. The source actions are then selected using
a probability distribution to be greedy with respect to the confidence measure,
by taking actions with higher confidence between the demonstration and the
RL agent experience, and by interacting with the environment following hard
decision

AS = argmax [{CQ(s), CP (s)}] .

Alternatively, a soft decision to allow exploration of actions with lower confi-
dence by following

AS =

{

P1 = tanh (RCQ(s))+1
tanh (RCP (s))+tanh (RCQ(s))+2

P2 = tanh (RCP (s))+1
tanh (RCP (s))+tanh (RCQ(s))+2

where P1 is the Q knowledge, P2 is the prior knowledge. CHAT and DRoP
were extended to a multi-agent framework in [4].

Different from HAT and its extensions, Brys et al. in [10] proposed an ap-
proach through reward reshaping, which introduces a function to complement
the base reward function, this defines a new reward function

RF (s, a, s
′, a′) = R(s, a) + F (s, a, s′, a′)

that stimulates the exploration of the RL agent towards the states and actions
of the demonstrations. F (s, a, s′, a′) is defined by

F (s, a, s′, a′) = γφ(s′, a′)− φ(s, a),

where the potential function φ : S → R models the distribution of the states
and actions of the demonstrations using a non-normalized multi-variate Gaus-
sian defined by

φ(s, a) = max
sd,ad

exp

(

−
1

2
(s− sd)⊤Σ−1(s− sd)

)

.
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The potential function φ(s, a) is high when an action ad has been demonstrated
for a state sd near the current state s, and on the other hand, it is low when
there is no action demonstrated near the current state s. This idea was also
applied to IRL in [81]. Li, Brys, and Kudenko [52] extended the idea of reward
reshaping through potential function for RLED by proposing an introspective
RL agent. The introspective RL agent records its state-action decisions and
experience during training in a priority queue and estimates a Monte Carlo
q-value q̂(sd, ad) to calculate a potential function

φ(s, a) = ρmax
sd,ad

exp

(

−
1

2
(s− sd)⊤Σ−1(s− sd)

)

q̂(sd, ad),

where ρ is a scaling factor to control the strength of the biased exploration. If
the RL agent finds a state-action with a higher action-value than the lowest
action-value in the queue, the lowest is replaced by the higher. The introspec-
tive RL agent does not necessarily need optimal demonstrations, but using the
prior knowledge from demonstrations gradually improves the training process.
With a more general idea of prior knowledge from multiple experts, Gimel-
farg, Sanner, and Lee [22] used a Bayesian framework to be applied in Reward
Shaping compatible with [10].

2.1.2 Extended optimization criterion with pre-training phase

Perhaps one of the most outstanding works in RLED is presented by Hester et
al. in [33], where Deep Q-learning from Demonstrations (DQfD) is proposed,
which combines PDD DQN with IL. DQfD begins with a pre-training phase of
the control policy, where the RL agent acts as a supervised learning algorithm.
During the pre-training phase, only the data of the demonstrations stored in
the replay buffer are available, and there is no interaction with the environ-
ment. The agent samples mini-batches from the replay buffer to update the
network weights by following the optimization criterion

J(Q) = JDQ(Q) + λ1Jn(Q) + λ2JE(Q) + λ3JL2(Q),

where λ is a weight parameter, JDQ(Q) is a 1-step double Q-learning loss
function, Jn(Q) is an n-step double Q-learning loss function, JL2(Q) is an L2
regularization loss function, and JE(Q) is a supervised large margin classifi-
cation loss function defined by

JE(Q) = max
a

[Q(s, a) + l(ad, a)]−Q(s, ad),

where l(ad, a) is a marginal function that is 0 when a = ad and positive oth-
erwise. After the pre-training phase, the RL agent begins to interact with
the environment, stores its experiences in the same replay buffer containing
the demonstrations, and progressively updates the network’s weights to out-
perform over unseen states and actions. Due to the supervised large margin
classification loss, the RL agent tends to overfit the demonstration trajectory’s
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action-values, which are always higher than any other control action encoun-
tered by the agent, making it impossible for the RL agent to improve upon
the demonstrations.

DDPG from Demonstrations (DDPGfD) [91] by Vecerik et al. extends
DDPG to benefit from the demonstrations. DDPGfD, like DQfD, divides learn-
ing into two phases, the pre-training phase, where the agent stores the demon-
stration’s trajectories in a replay buffer to learn in a supervised manner, and
the fine-tuning phase, where the agent learns by interacting with the environ-
ment. DDPGfD extends DDPG to make use of prioritized experience replay to
sample transitions across the demonstrations and the agent data generated by
interacting with the environment. It uses a 1-step J1(θ

Q) and an n-step Jn(θ
Q)

return losses to update the critic function to help spread the sparse rewards,
it learns multiple times per environment step, and it uses an L2 regularization
loss on the actor Ja

L2(θ
π) and on the critic Jc

L2(θ
Q) to stabilize learning. The

actor and critic loss functions are

Jcritic(θ
Q) = J1(θ

Q) + λ1Jn(θ
Q) + λ2J

c
L2(θ

Q)

Jactor(θ
π) = −JA(θ

π) + λ2J
a
L2(θ

π),

where JA(θ
π) is the DDPG actor Q-loss. Unlike DQfD, which can only be

applied in domains with discrete action spaces, the major contribution of
DDPGfD is to be applicable in domains with continuous action spaces.

Similar to DDPGfD, Cycle-of-Learning (CoL) [23] proposed by Goecks et
al. is based on DDPG. It combines a behavior cloning loss JBC(θ

π), the DDPG
actor Q-loss JA(θ

π), a 1-step loss J1(θ
Q), and an L2 loss for the actor Ja

L2(θ
π)

and for the critic Jc
L2(θ

Q) in a single loss function to update the critic and
the actor. It takes advantage of expert demonstrations stored in an expert’s
buffer. The behavior cloning loss is

JBC(θ
π) =

1

2
(πθ(s)− a

d)2.

The complete loss function is

J(θQ, θπ) = λ1JBC(θ
π) + λ2JA(θ

π) + λ3J1(θ
Q) + λ4J

c
L2(θ

Q) + λ5J
a
L2(θ

π).

Before interacting with the environment, both the actor and the critic networks
are updated in the pre-training phase. Once the pre-training phase ends, the
agent starts interacting with the environment and stores its experiences in a
separate buffer; when the expert’s buffer is full, the fine-tuning phase takes a
fixed ratio of 25% expert’s buffer samples and 75% agent’s buffer samples. Col
can be applied for continuous action spaces.

In [68], a method called Demonstration Augmented Policy Gradient (DAPG)
is proposed, incorporating a pre-training phase based on IL and a fine-tuning
phase based on policy gradient. In the pre-training phase, a parameterized
policy πθ imitates the demonstration’s behavior, which corresponds to the
following maximum-likelihood optimization problem

max
θ

∑

(sd,ad)∈ζd

lnπθ(a
d|sd).
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This provides the RL agent with a good initialization and greatly reduces the
sample complexity. The RL fine-tuning phase extends the NPG gradient to
optimize πθ by following

∇θJ =
∑

(s,a)∈ζπ

∇θ lnπθ(a|s)A
π(s, a) +

∑

(sd,ad)∈ζd

∇θ lnπθ(a
d|sd)w(s, a),

where ζπ is the trajectory obtained by following policy π, and w(s, a) is the
weighting function

w(s, a) = λ0λ
k
1 max
(s′,a′π)

Aπ(s′, a′)

where λ0 and λ1 are hyper-parameters, and k is the iteration counter.
Cruz, Du, and Taylor in [15] used a multiclass-classification deep neural

network trained from human demonstrations in the pre-training phase; the
neural network implicitly learns the underlying features by only using the
cross-entropy loss function. The network uses raw images of the domain as
input, and it has a single output for each valid action. The learned weights
and biases from the classification model are used to initialize a DQN or an
A3C agent.

Gao et al. propose Normalized Actor-Critic (NAC) [19], where, unlike pre-
vious methods in this category, it does not use a supervised loss function in
the pre-training phase; therefore, it gives greater robustness to imperfect or
noisy demonstrations. First, the action-value function is parameterized by θ,
then the state-value and the policy are parameterized by the action-value

VQ(s) = α log
∑

a

exp

(

Qθ(s, a)

α

)

πQ(a|s) = exp

(

Qθ(s, a)− VQ(s)

α

)

.

NAC extends soft policy gradient formulation from Soft Q-Learning [30] to
obtain a gradient of the action-value function that reduces the action-values
of the actions not included in the demonstration trajectories. The gradients
for the actor and the critic are

∇θJPG(θ) = Es,a∼πQ

[

(∇θQθ(s, a)−∇θVQ(s))(Qθ(s, a)− Q̂(s, a))
]

∇θJV = Es

[

∇θ

1

2
(VQ(s)− V̂ (s))2,

]

where Q̂(s, a) and V̂ (s) are estimates calculated by

Q̂ = R(s, a) + γVQ(s
′)

V̂ (s) = Ea∼πQ
[R(s, a) + γVQ(s

′)] + αH(πQ(·|s)).

H is an entropy term, and α is a parameter to control the entropy term’s rel-
ative importance and the reward. The pre-training phase uses only the demon-
stration trajectories, and the fine-tuning phase uses only the interactions with
the environment. By avoiding supervised loss, NAC avoids overfitting on the
demonstration trajectories.
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2.1.3 Extended optimization criterion without pre-training phase

Lakshminarayanan, Ozair, and Bengio in [47] propose a simple but practical
method that incorporates expert demonstrations to DQN by adding a weighted
IL loss function to the original DQN loss function

J = JDQN + βJimitation,

where the imitation loss is

Jimitation = E(sd,ad)∈Bd log
exp (τ−1QDQN (sd, ad))

∑

a∈A exp (τ−1QDQN (s, a))

and Bd ∈ ζd is a random mini-batch of size τ . This imitation loss function en-
sures a high action-value when an action has been demonstrated in a particular
state and a low action-value for all other not demonstrated actions.

A more advanced method by Nair et al. [62] proposes a method based on
DDPG to overcome exploration. The method extends the original DDPG loss
function JA(θπ) with a standard behavior cloning loss and adds a filter so that
the IL loss is only applied to the states where the critic determines that the
demonstrated actions are better than the actor’s actions. The behavior cloning
loss is

JBC(θπ) =
∑

(sd,ad)∈Bd

||πθ(s
d)− ad||21Q(sd,ad)>Q(sd,π(sd)),

where Bd is a minibatch, and the complete loss function for the actor is

J(θπ) = λ1JA(θπ)− λ2JBC(θπ).

Unlike DQfD, this method finds better control actions than those proposed by
the demonstrations; in this algorithm, a random reset to demonstration states
is incorporated to start a learning episode from a demonstration state.

Direct Policy Iteration with Demonstrations (DPID) [11] based on Di-
rect Policy Iteration (DPI) [49]. DPID consists of constructing a cost-sensitive
training set BRL from a given sample distribution ρ over the set of states S and
integrating it into the set of demonstration trajectories ζd, where the demon-
strated states sd are drawn from a distribution µ over S. The loss functions
are

ĴDPI(ρ̂, π) =
1

|BRL|

∑

(s,a)∈BRL

[

max
a

Q̂(s, a)− Q̂(s, π(s))
]

Je(µ̂, π) =
1

|ζd|

∑

(sd,ad)∈ζd

I(ad 6= π(sd)),

where Q̂(sj , a) =
1
M

∑M

j=1Rj(sj , a) is an action-value estimate using M roll-
outs. The complete loss function is

J(ρ̂, µ̂, π) = ĴDPI(ρ̂, π) + λJe(µ̂, π).
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The loss classification function is minimized with respect to π. DPID works
for specific policies with small state and action spaces.

Policy Optimization from Demonstration (POfD) by Kang, Jie, and Feng
[39] extends policy gradient methods to guide RL agent’s exploration near the
demonstrated policy. POfD introduces a practical algorithm based on Jensen-
Shannon Divergence that resembles a Generative Adversarial Network (GAN)
[24]. The POfD algorithm minimizes the difference measure between the pa-
rameterized policy πθ and the expert policy πd. The new criterion to optimize
is then redefined based on occupancy measures to exploit the demonstrations
better and facilitate the new criterion’s optimization. This loss function is
formulated as

JM (θπ) = DJS [ρπθ
(s, a)||ρπd

(s, a)]

by optimizing the lower bound of the Jensen-Shannon Divergence, the above
loss function is

JM (θπ) = sup
D∈(0,1)

Eπθ
[log(D(s, a))] + Eπd

[log(1−D(s, a))] ,

where D(s, a) = 1
1+exp (−U(s,a)) , and U(s, a) is an arbitrary function. The

complete loss function is

J(θπ) = −JV A(θπ)− λ1Hπθ
(θπ) + JM (θπ),

where JV A(θπ) = Eπθ
[G|πθ] is the vanilla objective, and Hπθ

is a causal en-
tropy term for regularization. POfD is a general method compatible with con-
ventional policy gradient methods such as TRPO, PPO, and NPG.

Jing et al. propose Soft expert guidance from demonstrations [36] is based
on a control policy constrained optimization. The optimization criterion is
subject to a bounded tolerance factor such that the control policy πθk always
stays within an area closer to the demonstration policy πd. The constraint lim-
its the exploration region near the demonstration trajectories (not necessarily
perfect) under a threshold. The optimization problem is

θk+1 = argmaxθ Eπθk
[G|πθk ]

s.t.D
[

ρπθk
(s, a)||ρπd

(s, a)
]

≤ αk

D
[

πθk(a|s)||πθk+1
(a|s)

]

≤ δ

where D is the divergence, ρπ(s, a) = π(a|s)
∑∞

t=0 γ
tP (st = s|π) is an occu-

pancy measure, αk and δ are the tolerance factors that control the discrepancy
constraints. The above optimization problem is then approximately solved by
linearizing around πθk at each optimization step. The RL agent only updates
the control policy when the constraint is not satisfied.
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2.1.4 Distributed setup

Ape-X DQfD [66] combines DQfD with Ape-X DQN [34] to run on a dis-
tributed setup. Ape-X DQfD removes the pre-training phase and proposes
a new transformed Bellman operator to define the temporal difference loss
function

JTD(θQk , (pi)i = 1N , θk − 1Q)

=
∑N

i=1 piL
(

Qθk(si, ai)− h
(

R(si, ai) + γmaxa′∈A h
−1(Qθk−1

(s′i, a
′))

))

where h(z) = sign(z)(
√

|z|+ 1−1)+ ǫz with ǫ = 10−2, L(·) is the Huber loss,
which is typically applied in DQN and p1, ..., pN are normalized priorities. To
stabilize learning is used a temporary consistency loss function

JTC(θ
Q
k , (pi)

N
i=1, θ

Q
k−1) =

N
∑

i=1

piL(Qθk(s
′
i, a

′
i)−Qθk−1

(s′i, a
′
i)),

and a max-margin loss function for IL

JIM (θQk , (pi)
N
i=1, θ

Q
k−1) =

N
∑

i=1

piei

(

max
a

[

Qθk(si, a) + λδa 6=ad

]

−Qθk(si, a
d)
)

,

where λ ∈ R is the margin. δa 6=ad is equal to one if a 6= ad and zero if not,
ei is part of the sampled trajectories, and it is equal to one if the transition
is part of the best expert episode and it is equal to zero if not. The complete
loss function is

J = JTD(θQk , (pi)
N
i=1, θ

Q
k−1) + JTC(θ

Q
k , (pi)

N
i=1, θ

Q
k−1) + JIM (θQk , (pi)

N
i=1, θ

Q
k−1).

Ape-X DQfD uses a fixed ratio of 75% of agent transitions and 25% of expert
transitions to learn.

Expert Augmented ACKTR (EA-ACKTR) [21] is another distributed method,
which is based on the Actor-Critic using Kronecker-Factored Trust Region
(ACKTR) algorithm [99]. EA-ACKTR adds a new term to the original ACKTR
loss function JA2C to consider expert demonstration trajectories stored in an
expert replay buffer, separated from the different actors’ interactions with the
environment. The new loss function is

JEA(θπ) =
λe

|Bd|

∑

(sd,ad)∈Bd

A(sd, ad) log πθ(a
d|sd),

where Bd is a mini-batch of demonstrated state-action pairs. The complete
loss is

J(θπ) = JA2C(θπ) + JEA(θπ).

Gulcehre et al. combined Recurrent Replay Distributed DQN (R2D2) [40]
with demonstrations in [27], their R2D2 from Demonstrations (R2D3) method.
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R2D3 has several actors running independent copies on the behavior; the ac-
tor’s interactions with the environment are stored into a shared actor buffer,
where they are globally prioritized using a mixture of max and mean of the
TD-error. The demonstrations are stored in a separate buffer and also pri-
oritized. The buffer priorities are updated with a learner process sampling
batches from both buffers simultaneously and applying a fixed stochastic ratio
to control the proportion of demonstrations and actor experiences from the
environment. Also, the actors periodically request the latest network weights
from the learner to update their behavior.

Yeo, Oh, and Lee sped up the DQfD and EA-ACKTR training process
using dual replay buffer management and frame skipping, with their Dy-
namic Frame Skipping-Experience Replay (DFS-ER) and Frame Skipping-
Experience Replay (FS-ER) [101][100]. FS-ER and DFS-ER use dual replay
buffers, where the demonstration trajectories are stored in a human replay
buffer, and the agent interactions with the environment are stored in an actor
buffer; each buffer has an independent sampling policy. FS-ER uses an online
frame skipping scheme to take advantage of the hole demonstration trajectory,
while DFS-ER uses a dynamic frame skipping scheme to manage data from
repeated actions on the demonstration trajectories.

2.1.5 Episode initialization

Salisman and Chen in [73] and in parallel Resnick et al. in [70] propose to use
the states of a single demonstration as a starting point for each episode in the
RL process. Learning starts with an episode initialization from the state of
the demonstration trajectory closest to the positive reward. Then, each next
learning episode is initialized from a state of the demonstration trajectory more
distant from the positive reward. This backward initialization makes it easy to
solve a task with a very sparse reward since the agent in each learning episode
faces an easy exploration problem with a very high probability of finding a
positive reward.

The discussed method by Nair et al. [62] can also be considered as an
episode initialization method, as it incorporates a random reset to demonstra-
tion states that allows starting a learning episode from a random state of a
demonstration trajectory.

2.1.6 Reasoning

Torrey introduces a new idea to RLED called Reasoning from Demonstration
(RfD) [89]. RfD is based on how humans reason and acquire knowledge from
task demonstrations. Given a demonstration, the RfD agent decomposes the
task as follows:

– Object and events: the set of objects present in a particular state s, each
object with an observed position, velocity, and a region the object occupies
in the environment. The event is the set of object interactions observed in
the state transition from s to s′.
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– Environment: it consists of a state space, action space, and an unknown
probability distribution over state transitions.

– Task: it is defined over the environment with four subsets of state spaces
to choose from: the begin, the end, the success feedback, and the failure
feedback.

– Objectives: these are desirable object interactions that contribute to task
success.

– Anti-objectives: these are undesirable object interactions to be avoided as
they contribute to task failure.

RfD develops a theory, a map, and a set of policies during the training
process. The theory is a set of cause-effect hypotheses with simple assumptions,
where causes implicate effects, object interactions are potential causes, and
environment feedback of success or failure are potential effects. The map is a
graph of environment regions and how they are connected. The policy then
evaluates the actions with respect to a possible event. RfD can deal with low-
quality imperfect demonstrations.

2.2 RLED with online Knowledge

In RLED methods with online knowledge, the agent interacts with the teacher
by querying what behavior to follow upon observing states. When querying,
the teacher takes control over the agent for a few consecutive steps. The online
demonstrated trajectories are stored as other RLED methods and used by the
agent to improve its performance. After the querying period, the agents take
control back, and the RL process continues until the next query. The main
concern of RLED from online knowledge is when to ask for a demonstration,
as the teacher’s time can be considered more valuable than the agent’s time.

2.2.1 Query for demonstration

Subramanian, Isbell Jr., and Thomaz proposed Exploration from Demonstra-
tion (EfD) in [82], which guides the agent’s exploration through the more
relevant statistical measures of the learning algorithm to help it identify influ-
ential regions. It is based on Q-Learning with function approximation, where
Qθ(s, a) = φ(s, a)T θ. Influence is computed as a combination of Leverage and
Discrepancy measures. Leverage is a measure of how far a specific observation
is from the convex hull of known observations. Leverage is calculated with

H = X(XTX)−1XT ,

where X is a matrix of independent variables of size n × k, with n number
of observations and k number of features, X is populated with the state-
action features φ(s, a). The diagonal elements hii of the matrix H represent
the leverages, which describe each dependent variable value’s influence on the
fitted value from observation i. The discrepancy is a measure of how much
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an observation contributes towards model error. For the observation i, the
discrepancy Ei is calculated as

Ei =
δi

√

MSE(i)(1− hii)
,

where MSE(i) is the mean squared error for the model based on all obser-
vations excluding sample i, and it is calculated with the mean squared error
MSE

MSE(i) =
(n− p)MSE −

e2i
(1−hii)

n− p− 1
,

where MSE is the mean squared error, n is the number of samples, p the
number of independent variables, and δi is the TD error for sample i. For every
MDP transition, the Leverage and Discrepancy are calculated and compared
against a threshold. If the influence exceeds the threshold, an influential state
is identified as influential, and a demonstration is queried as it needs more
exploration in influential states.

Active Reinforcement Learning with Demonstrations (ARLD) is a frame-
work proposed by Chen et al. in [12] and based on DQN. ARLD first estimates
the uncertainty in current states, and then it compares the uncertainty in the
current state. . If the current state uncertainty exceeds the current state’s esti-
mation, the agent queries the teacher for a demonstration, which will be used
along with a supervised loss and the usual DQN loss to improve the agent’s per-
formance. They proposed two query methods based on Q-values uncertainty
estimation: diverge and variance. The first proposed method to estimate the
uncertainty is the divergence of bootstrapped DQN, which is based on boot-
strapped DQN [64], where a value function head Qk

θ(s, a) is built from k ∈ N

bootstrapped estimates of the Q-value and trained against its target network
Qk

θ−(s, a). To measure the divergence, they use the Jensen-Shannon diver-
gence between the bootstrapped heads and use softmax normalized Q-values
to obtain a policy distribution for each value function head Qk

θ(s, a),

πk
θ (a|s) =

expQk
θ(s, a)

∑

a′ expQk
θ(s, a

′)
.

To estimate the Jensen-Shannon divergence between policy distributions of
each value function head

UD = DJS(π
1
θ , π

2
θ , ..., π

k
θ ).

The second proposed method to estimate the uncertainty, the predictive vari-
ance of noisy DQN, is based on noisy networks [18] [65]. Noisy networks are
neural networks whose weights and biases are perturbed by a parametric func-
tion of noise. In this case, noisy networks are used as an exploratory policy
to estimate the uncertainty using its predictive variance. The noisy network
output layer is

Qθ(s, a) = waφ(s) + ba,
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where φ(s) is the input to the last layer, wa and ba are the variables correspond-
ing to the action a, where wa ∼ N(µwa , diag((σwa)2)) and ba ∼ N(µba , (σba)2)
with µwa , σwa , µba and σba the mean and noise level parameters of wa and
ba respectively. By deriving the variance of the last equation, the predictive
variance is

Var [Q(s, a)] = φ(s)Tdiag((σwa)2)φ(s) + (σba)2.

The uncertainty can be calculated with the variance of the action with the
largest Q-value:

UV = Var
[

Q
(

s, argmax
a

Q(s, a)
)]

.

When the agent finds states with high uncertainty, the RL process stops, and
the agent query for a demonstration trajectory. This way, the agent avoids
catastrophic actions and provides the data as demonstration trajectories to
accelerate the RL process.

Rigter, Lacerda, and Hawes proposed an algorithm of minimal human ef-
fort by switching control between a human and the agent in [71]. The control
is handled by the human when the agent performance is poor, and then the
human-in-the-loop provides a demonstration trajectory. The agent must de-
cide whether to ask for a demonstration or to use an already learned control
policy, as they assume a cost for the human providing a demonstration. The
selection of who handles control is formulated as a contextual Multi-Armed
Bandit (MAB), where a continuous correlated beta process estimates MAB
probabilities. For the kth episode, a control policy πk ∈ Π is chosen, where
Π = {πh, πa,i, ..., πa,n}. The control policy may be a human following policy
πh or a control policy πa,i learned by using DDPG from the online demon-
strations and interactions with the environment. The selection of the control
policy follows

πk = arg min
πi∈Π

R̂h(sk,0, πi),

where sk,0 is the initial state for the k
th episode, and the cost function R̂h(sk,0, πi)

for using the control policy πi is defined as:

R̂h(sk,0, πi) =

{

(1− p̂(sk,0, πi)− ασ̂(sk,0, πi)))Rf +Rd −→ πi = πh
(1− p̂(sk,0, πi)− ασ̂(sk,0, πi)))Rf −→ πi 6= πh

,

where Rf and Rd are the cost of human time required to recover from a
failure state and the cost of human time invested per online demonstration
trajectory provided, p̂(sk,0, πi) and σ̂(sk,0, πi) are the probability estimate and
the standard deviation estimate of success for the control policy at the kth

episode, and α is the contextual MAB exploration and exploitation factor.
The proposed reward is analogous to an upper confidence bound algorithm,
which helps to determine when the teacher should take control upon the agent,
this way this method minimizes the cost of bothering the human teacher by
estimating the performance of each control policy and then only asking for
demonstrations when it is needed.
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3 Applications of RLED

Video games are typically used to evaluate RL algorithms. Nevertheless, some
video games represent a real challenge because of their complexity. An effort
to solve this challenging video game has been made through demonstrations,
like the Atari Grand Challenge dataset [46], a large and diverse dataset of
human Atari 2600 demonstrations. The dataset consists of five challenging
games with almost 45 hours of gameplay: Video Pinball, Q*bert, Space In-
vaders, Ms. Pacman, and Montezuma’s Revenge. Similar to the Atari Grand
Challenge dataset, the Minecraft demonstrations dataset (MineRL) [29] is a
large-scale, simulator paired dataset of human demonstrations with 60 million
automatically annotated state-action pairs and over 500 hours of recorded hu-
man demonstrations to be used along with the Minecraft simulator Malmo
[37]. MineRL includes six tasks with various research challenges, including
open-world multi-agent interactions, long-term planning, vision, control, nav-
igation, and subtask hierarchies. Recently the MineRL dataset and Malmo
have encouraged the development of RLED algorithms in the Machine Learn-
ing community by running the MineRL Competition on Sample Efficient Re-
inforcement Learning using Human Priors [28][59].

Two challenging Atari games, Montezuma’s Revenge and Pitfall, were suc-
cessfully solved with superhuman performance and exceeded human expert
performance. The two video games were solved using the episode initializa-
tion Backplay method as part of their proposed algorithm Go-explore [17].
Other RLED methods like Ape-X DQfD and EA-ACKTR also tried to solve
Montezuma’s Revenge with poor performance, as they only cleared the first
stage.

A classical application of RL, robotics, is an area where RLED has shown
to help in real-world tasks. In [91], DDPGfD is successfully applied in four
simulated robot insertion tasks: classic peg-in-hole, hard-drive insertion into a
computer chassis, two-pronged deformable plastic clip insertion into a housing,
and a cable insertion. The robotic hand is a Sawyer with 7 degrees of freedom.
One of the simulated tasks, the hard-drive insertion, is tested using a physi-
cal version of the same robot. For the physical insertion task, demonstration
trajectories were provided by using kinesthetic teaching. For the simulated
insertion tasks, demonstration trajectories were provided by an agent running
a hard-coded joint space P-controller to match the simulated robot’s joint
positions with the actual robot’s joint position.

Similarly, DQfD is adapted to solve a robotic precision insertion problem
in [98]. Insertion is divided into two phases; pose alignment and peg-in-hole
insertion. The robot system consists of a 3 degree of freedom manipulator, a 4
degree of freedom adjustable platform, 3 microscopic cameras, and a high pre-
cision force sensor. Demonstrations are collected by a human doing kinesthetic
teaching.

Two different dexterous multi-fingered robotic hands are used to show the
potential of DAPG in [103]. A ROBEL 3-fingered manipulator hand [1] with 9
degrees of freedom and a 4-fingered Allegro hand with 16 degrees of freedom.
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Both robotic hands performed three different tasks on rigid and deformable
objects: valve rotation, box flipping, and door opening. With a small num-
ber of kinesthetic demonstrations provided by a human, the RL process is
dramatically accelerated.

Ophthalmic microsurgery is a commonly performed surgical procedure,
where deep anterior lamellar keratoplasty (DALK) is a novel procedure of
partial thickness corneal transplantation. DALK is particularly promising but
challenging to perform due to this technique requires the microsurgeon to
have very high precision. The surgeon inserts a needle to separate with air the
stroma and epithelium from the Descemet’s membrane and endothelium. In
[42], an RLED approach based on DDPGfD is used for ex vivo autonomous
robotic DALK needle insertion, where experienced corneal surgeons provide
demonstration trajectories.

In Natural Language Processing (NLP), a task-oriented Conversational AI
based on DQfD is presented by [26], aiming to simulate a dialog to help users
achieve booking flights or hotels. The environment is built upon a novel dia-
log system framework with large state and action spaces. The booking task’s
nature is a sparse reward, as the agent only receives a positive or negative re-
ward (depending on the user goal) at the end of the dialog. These settings are
compatible with an RLED approach, and therefore, DQfD is used to success-
fully improve the dialog policy, commonly a hand-written rule-based policy.
The same Conversational AI is later improved in [25] to work under weak and
cheap expert demonstrations.

In Finance, a dynamic pricing framework is proposed by [55] for e-commerce
platforms. The dynamic pricing problem is solved with RLED using the real
E-commerce platform; therefore, the RL process should not start with a poor
performance to avoid capital loss. DQfD and DDPGfD are applied for discrete
and continuous pricing to optimize the long-term revenue and avoid capital
loss. Demonstration trajectories are provided by previous control policies eval-
uating historical sales data. The RLED strategy successfully outperforms the
common manual markdown pricing strategy.

In financial security investment, the quantitative trading strategies are
based on automated tools using mathematical models. In [56], they propose an
adaptive trading framework for the quantitative trading problem. The agent
uses the ideas of two RLED methods, the pre-training strategy from DDPGfD
and the behavior cloning loss from Overcoming Exploration. The Recurrent
Deterministic Policy Gradient [32] is used as the base algorithm. A typical
quantitative trading strategy is used to provide the Demonstration trajecto-
ries. This method outperforms the most widely used methods in quantitative
trading.

In Urbanism, a traffic signal control is designed by adapting the DQfD
losses into the Advantage Actor-Critic (A2C) algorithm. An effective con-
troller [14] that adjusts timing plans according to traffic dynamics provides the
demonstration trajectories. With this extended version of A2C from demon-
strations, the learned policy can outperform the teacher control policy.
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4 Challenges

We would like to emphasize the addressed challenges by RLED in real-world
implementations while mentioning the remaining challenges for this approach
that can be addressed in the future through more advanced forms of guidance
methods (not necessarily human-guided). These challenges of real-world RL
applications are presented in almost all systems to a certain degree. Differ-
ent works survey the challenges for real-world applications in RL [43][45][3]
[16][104], while many others tackle these challenges separately.

4.1 Addressed RLED’s challenges

The discussed RLED methods present a feasible way to implement RL in
real-world systems by addressing essential RL challenges.

4.1.1 Sample efficiency

Sample efficiency is the amount of data needed to learn a good control policy.
Standard DRL methods require lots of data from exploration, which is not
sample-efficient. On the other hand, IL methods with data from demonstra-
tions require a considerably smaller amount of data than RL, which is, more
sample-efficient. RLED methods improve RL sample efficiency using data from
demonstrations. The provided demonstration trajectories should cover a sig-
nificant amount of relevant states, state-actions pairs, state-action-reward tu-
ples, or state-action-reward-next state tuples (depending on the algorithm) to
have a considerable impact on the RL process. A small set containing relevant
demonstration trajectories is enough to accelerate the learning process in most
cases.

4.1.2 Dimensionality

When the dimension of a particular space is considerably large, it is commonly
known as ”the curse of dimensionality” [6]. Powell [67] identifies three different
spaces affected by the curse of dimensionality, the state space, the action space,
and the outcome space. Common RL agents require large amounts of data
acquired by exploration to learn a good control policy with high dimensionality.
Dimensionality is then directly connected with the sample efficiency. RLED
methods take advantage of the ability of standard RL methods to learn in
high-dimensional spaces.

4.1.3 Safety

Safety refers to the process of learning a policy that maximizes the expected
reward and ensures consistent system performance while safety constraints



Model-Free Reinforcement Learning from Expert Demonstrations: A Survey 23

are respected [20] to avoid risk states that can be dangerous for the system,
humans, or surroundings.

Providing knowledge as demonstrations guides the RL process in the de-
sired behavior, while excessive exploration is avoided. This excessive explo-
ration is usual in standard RL methods, leading to exploring dangerous states
and actions. Although RLED methods need some exploration, different strate-
gies are used by the discussed methods in section 2 to improve the RL safety
exploration indirectly. These strategies are: implicit and explicit biased explo-
ration, which is prevalent in RLED methods with prior knowledge, interrupt-
ing the RL process to query for demonstrations, which is prevalent in RLED
methods with online knowledge.

4.1.4 Reward specification

Sutton and Barto stated in [83] that RL applications’ success strongly depends
on how well the reward signal frames the application’s designer’s goal and how
well the signal assesses progress in reaching that goal. In practice, it can be
a complicated task to define a useful reward function. The most common is
establishing a dense reward function using hand-coded functions, such as the
Cartesian distance, which helps guide the RL agent to a control policy with
smooth behavior, but this can potentially lead to unwanted behavior. A more
natural approach is to express the reward as a sparse reward function, where
a positive reward is assigned once the agent reaches a target state, leaving
many states with reward zero. The use of demonstrations in RLED facilitates
implementing a sparse reward specification by learning relevant states and
actions that can successfully lead towards a target state.

4.2 Remaining RLED’s challenges

Altough RLED presents a promising approach to behavioral learning, there
is still room for theoretical and practical improvements. Relevant remaining
challenges for the RLED approach are closely related to the robustness of the
agent when facing different real-world situations. We consider it essential, and
of the tremendous impact, the development of RLED methods can deal with
or even take advantage of these situations to learn sufficiently robust control
policies. The remaining challenges we consider are related to the environment
and the structure of demonstration trajectories.

4.2.1 System delays

System delays are generally detrimental to the RL process, and they are
present in multiple stages of real-world implementation processes. Three dif-
ferent types of delay are recognized in MDPs [41]:

1. Observation delay, when the state information is not instantly available.
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2. Control delay, when the control action is not reflected immediately.
3. Reward delay, when the reward for taking a control action is not immedi-

ately obtained.

If a delay is bigger than one time-step, this violates the Markov property,
and therefore MDP should be redefined. Delayed environments are specific
types of MDP, with an augmented state space and delayed dynamics. The
approach to solve delayed MDP has been studied under the assumption of
constant delays [93][58], which is unrealistic in real-world scenarios. Although
recent work shows a strong performance under constant and random delays
[9], it is unclear how delays impact RLED performance or how demonstration
trajectories can be used to improve current methods for delayed environments.

4.2.2 Observability

Another common challenge in real-world systems is partial observability, which
refers to potentially important information about the state not directly ob-
servable. In the same way as a delayed environment, partial observability is
formulated as a specific type of MDP. The dimensionality of the unobserved
state-space makes it a complex problem. In the current literature, many algo-
rithms have been proposed to handle partial observable MDPs, such as convo-
lutional layers [61] or recurrent layers [31]. Nevertheless, the RLED capacity
to handle partial observability has not been fully explored. Another option to
explore is how RLED algorithms can be used to design effective exploration
strategies in partial observable MDPs.

4.2.3 Detrimental demonstrations

Harmful demonstrations are likely to occur in real-world scenarios, where an
RLED agent could be implemented and trained by any user. Users naturally
or even maliciously could provide different types of demonstration trajecto-
ries presenting, dangerous behaviors to the environment, confusing behaviors
showing very different solutions for the same task (probably from different
teachers), and useless behaviors containing no relevant data. It is unclear
what might cause these types of detrimental demonstrations in the methods
discussed and, more importantly, whether detrimental demonstrations can be
used to learn a good control policy.

4.2.4 Accelerating RL process with demonstrations

By adding demonstration trajectories to the RL process, one additional hyper-
parameter could be considered, the amount of relevant data needed to accel-
erate the learning process and obtain the desired behavior. It is not clear how
much relevant data a single demonstration should contain, and given this,
how many demonstration trajectories should be provided. It certainly would
be beneficial to know how much we can accelerate the RL process with a set
of demonstrations containing a certain amount of relevant data.
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Approach
Assumptions

Objectives
R EI PK OK

RL X X - -

To find a policy that maximizes

the reward by interacting

with the environment.

RLED with

prior knowledge
X X X -

To find a policy that maximizes

the reward by interacting

with the environment and

evaluating prior demonstrations.

Inverse RL - X X -

To find a policy that maximizes

an inferred reward from

demonstrations by interacting

with the environment.

Batch RL X - X -

To find a policy that maximizes

the reward by evaluating prior

knowledge

RLED with

online knowledge
X X - X

To find a policy that maximizes

the reward by interacting

with the environment and

evaluating online knowledge.

Human evaluative

feedback RL
- X - X

To find a policy that maximally

complies with human scalar feedback

by interacting with the environment

Human

preferences RL
- X - X

To find a policy that maximally

complies with human preferences by

interacting with the environment

Human

attention RL
- X - X

To find a policy that maximally

follows an attention human map

by interacting with the environment

Hierarchical

imitation RL
- X X X

To find a high-level policy that

achieves high-level goals when

the high and low policies run

together by following demonstrations,

querying the human for the

correct goals and actions y interacting

with the envirionment

Preferences + IL - X X X

To find a policy that maximally

complies with human preferences

and demonstrations by

interacting with the environment

Table 2 Comparisions of RLED and other RL approaches. R: Available environment re-
ward; EI: Available online interactions with the environment; PK: Available previous knowl-
edge; OK: Available online knowledge.

4.3 Other forms of human guidance methods

Human-guided RL is not only limited to approaches like IRL, Batch RL, or
RLED. Other approaches can provide information to guide the RL process, as
mentioned by Taylor [86]. Other forms of human in the loop can be used as
guidance for RL, where the knowledge is available through a human in the on-
line learning process, which can be seen as feedback. This kind of guidance is
beneficial when the task is hard to execute by a human. Therefore, demonstra-
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tions might not provide a decent knowledge source, yet humans can provide
helpful feedback regarding the performance and guide the agent’s learning pro-
cess. Zhang et al. [102] consider other human guidance approaches, different
from knowledge acquired by demonstrations. These other human guidance ap-
proaches include human evaluative feedback, human preferences, hierarchical
imitation, human attention, and state sequences without actions.

Combining multiple sources of knowledge is a promising approach that
could help train sufficiently robust RL algorithms. Ibarz et al. [35] propose a
method to train a reward model; first, the agent learns from demonstrations
using the pre-training phase of DQfD, later, using human preferences [13] and
demonstrations. Unlike the common RLED approach, it is assumed that the
reward is not available. Instead, it is assumed that a human in the loop is
available who has an intention for the agent’s task. The human in the loop
communicates its intention for the agent’s task through demonstrations and
preferences that will be used to infer a reward function. This approach guides
the RL agent when an explicit reward (sparse or dense) is not available.

5 Conclusions

Reinforcement Learning is an area that is growing at an ever-increasing rate
with more innovative ideas and approaches. However, there is still much room
for improvement to take artificial intelligence to the next level. This article
summarizes the most relevant methods of RLED, which is a promising ap-
proach to behavioral learning through demonstrations from an expert teacher.
Also, we review the general assumptions that mainly identify this approach
and propose a classification for this set of methods.

RLED is an area with many open research opportunities, as real-world
challenges remain. Some RLED methods are sufficiently general in the use of
demonstration trajectories and have a high potential to be adapted to other
approaches and increasingly improved. However, it is not yet clear and has not
been fully explored under what circumstances it is possible to adapt different
RLED methods to other approaches.

In the future, more advanced RLED methods may emerge that can face
more complex and challenging environments (under situations such as delays,
noise, or partial observations) with sufficient robustness. New ideas will gener-
ate novel and exciting classifications in the RLED approach, thus changing the
use of demonstrations and the base methods. An exciting branch to investigate
would be how an RL agent can benefit from using demonstrations that could
be considered detrimental at first sight. Another possible branch could involve
combining knowledge from different sources, not just from demonstrations,
to more easily train control policies to describe a sufficiently robust desired
behavior.
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