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Abstract— Multi-agent systems and especially unmanned ve-
hicles, are a crucial part of the solution to a lot of real
world problems, making essential the improvement of task
allocation techniques. In this review, we present the main
techniques used for task allocation algorithms, categorising
them based on the techniques used, focusing mainly on recent
works. We also analyse these methods, focusing mainly on their
complexity, optimality and scalability. We also refer to common
communication schemes used in task allocation methods, as
well as to the role of uncertainty in task allocation. Finally, we
compare them based on the above criteria, trying to find gaps
in the literature and to propose the most promising ones.
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I. INTRODUCTION

It is common knowledge that most of the systems found

in nature, are complex distributed systems. Such systems

mainly need to communicate and cooperate in order to

achieve a common goal, such as improving the perfor-

mance of each individual inside a group, aiming to achieve

optimal overall performance [1]. Therefore, being inspired

from nature, the same principles are used in many complex

engineered systems. Especially the last fifteen years, a lot of

research efforts have been focused on multi-agent systems

that can perform better a lot of tasks that a single agent

sometimes was unable to perform. The agent can be a phys-

ical entity such as UAVs, UGVs or UUVs, generally types

of robots, but even computer resources such as processors,

or a computer program [2].

There are a lot of reasons why the scientific community

has focused their attention to MAS. Some tasks, especially

the distributed ones, may not be able to be performed by

a single agent due to their complexity and prerequisites.

Moreover, the existence of multiple agents improves the

performance and credibility of the executed tasks, since more

agents can cooperate to accomplish faster the same task and

the system is more robust to agents’ losses or malfunctions.

Also, the cost might be reduced, since many cheaper and

sometimes disposable agents can be used instead of an

expensive one [3].

But, while using a multi-agent system for the fulfilment

of several tasks, the problem of division of labour arises,
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namely which task will be assigned to which agent, what

type of communication will the agents have and generally

how the behaviour of each agent will be defined in order to

have an optimal and robust performance [3], [4]. The answer

to all of these questions are the task allocation techniques.

Finding an optimal or near optimal solution to the problem

of task allocation in MAS is a quite difficult procedure

that has been proven to be NP hard in the general case

[5], [6]. Some of the main goals of task allocation, except

for achieving the overall optimal system performance, can

be the minimization of the execution time of the tasks,

the minimization of the time some agents stay inactive, to

maximize the number of the tasks completed on a specific

amount of time, to maximize the reliability of the task

allocation procedure, namely the successful completion of

the tasks, etc. [7]. Because the optimal overall performance

is a vague concept, that is difficult to be quantified and might

depend to the perception of each agent, the concept of utility

is used, namely an estimation of the value or cost of the task

allocation procedure to the system’s performance [4].

Task allocation on its first steps was static, but because

the real environments are dynamic environments, the field of

dynamic task allocation has become a big field of research

the last years. In dynamic task allocation the system can

deal with online changes in tasks or the environment, having

more robust performance [8]. The algorithms used can be

centralised or decentralised, depending on the communica-

tion structure of the agents and also homogeneous or het-

erogeneous agents could be used. In the first applications of

task allocation techniques, mainly homogeneous agents were

assumed, because of the smaller computational burden of the

corresponding algorithms. But, in real world applications,

frequently, heterogeneous agents are needed. For example,

in robotic systems different types of sensors might exist, or

different types of robots might needed for different tasks of

the same problem. Even though heterogeneity increases com-

putational cost, its necessity in many applications, has urged

researches to develop plenty of task allocation algorithms for

heterogeneous MAS [9], [10].

The main techniques used for solving the problem of

task allocation in MAS are auction (or market) based ap-

proaches, game theory based approaches, optimisation based

approaches (heuristic algorithms, metaheuristic algorithms

etc.), and machine learning techniques. Depending on the

technique used, an optimal, or almost always, an approximate

solution can be found and a different degree of scalability,

complexity and adaptability of the problem will exist. The

tasks or the applications of task allocation in MAS include

search and rescue missions (SAR) [11]–[14], military op-
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erations such as attack or surveillance [15]–[18], physical

disasters management [11], [12], [19]–[22] where unmanned

systems are mainly used, but also crowd-sourcing platforms

usage, cloud computing [23]–[28], smart grids, resources

allocation in manufacturing [29]–[32] and others.

II. DIFFERENT COMMUNICATION SCHEMES OF TASK

ALLOCATION TECHNIQUES

There are two main categories of algorithms for solving

task allocation problems, the centralised and the decen-

tralised algorithms.

A. Centralised task allocation

The centralised algorithms are a category of algorithms

that have been researched a lot in the past. The main

concept is that there is a central coordinator agent, that has

communication channels with all the other agents. This agent

manages the negotiations of agents, if existed and decides

about the tasks that have to be allocated to the other agents.

In these cases, most of the times, there is a global utility

function taken into consideration [14], [33], [3], [34].

Fig. 1. A centralised system, with agent A7 being the central coordinator

The advantages of these methods are that they use less sys-

tem resources and might have lower cost of implementation,

but they can be used on a small amount of agents, due to their

high computational costs and also they are not adjustable to

dynamic environments, therefore they are mainly used for

static task allocation. The fact that the tasks are allocated

centrally avoids conflicts on task assignments, therefore a

consensus stage is not needed and also an optimal solution

to the allocation problem can be found. They also lack in

robustness, since they are vulnerable to losses of agents and

especially the central agent, resulting to the deterioration of

the overall performance. Moreover, the fact that all the agents

communicate with the central one, limits their scalability

[17], [35].

B. Decentralised task allocation

The decentralised algorithms overcome some of the draw-

backs of the centralised algorithms, therefore they have

attracted the attention of researchers the last few years. In

this type of algorithms there is no central coordinator agent,

the agents have a local perception of the environment and

might negotiate with each other instead of a central agent.

As a result, the decision for the task allocation is taken

locally, in a distributed way. Every agent, also, might have

Fig. 2. A decentralised system

its own utility function and an overall utility function might

be approximated [14], [33], [3], [34].

The advantages of these methods are that they are robust

techniques, since agents’ failures have small impact to the

overall performance and that are also scalable, due to the

low level of communication between the agents. Moreover,

they have smaller computational cost than the centralised

methods making them ideal for large scale systems, even

with small communication bandwidth. The trade-off is that

they find a suboptimal (approximate) solution of the task

allocation problem and also a consensus algorithm might

be necessary, because the local task assignment can cause

conflicts between assigned tasks [17], [35].

III. DIFFERENT TYPES OF ALGORITHMS IN TASK

ALLOCATION OF MAS

There are a lot of techniques used for task allocation

in MAS. Below follows a categorisation of methods used,

presenting some main aspects of these methods (see Fig. 3).

A. Auction Based Algorithms

A very big category of algorithms used for task allocation

in MAS is the auction based algorithms. This type of

algorithms is based on economics and the agents use a

negotiation protocol to bid in an auction for tasks, based

on the local perception of the environment that they have.

This is the reason why sometimes these approaches are also

called market based. The agents bid according to the utility

or cost they calculate and their goal is to accomplish the

highest utility or the lowest cost for the task allocated. A

global objective function is optimised, based on the utility

functions of the agents. The auctioneer might be a central

agent or the auction might be done in a distributed way by

the agents of the system and the auctions, that might take

several rounds, can regard one or several tasks [10], [14],

[36], [37].

The auction based algorithms have a lot of advantages,

such as high solution efficiency, even though they find sub-

optimal solutions, since they use aspects of both centralised

and decentralised methods and robustness. They also are

scalable because they have moderate computational cost or

communication burden, as not fully centralised algorithms

and they are good for dynamic task allocation, since they

can add or remove new tasks from the auction procedure

[3].



Fig. 3. Task allocation techniques categories

a) CBBA based algorithms: The consensus based bun-

dle algorithm (CBBA) is a decentralised algorithm that

provides solutions, independent of inconsistencies to the

agents’ situational awareness, to multi-objective optimization

problems, having as cost function the utility each agent

perceives for performing bundles of tasks. In the first stage

the algorithm uses auctions with greedy heuristics to select

the tasks and on the second stage the algorithm applies

a consensus based procedure to unravel any overlapping

tasks that have occurred. The algorithm is proved to provide

suboptimal solutions for the single robot single task task

allocation problem (see [4] for a complete taxonomy) and is

highly scalable making it suitable for dynamic task allocation

applications, since it has polynomial time bidding [38] [39].

The recent approaches found include improvements of the

PI (performance impact) algorithm, like PI-MaxAss [14] and

[35]. Moreover, other techniques are improvements of the

CBBA algorithm, like modified CCBBA [38], G-CBBA [40]

and [41].

b) CNP based techniques: The Contract Net Protocol

(CNP) developed by Smith [42] was the first negotiation

platform used in task allocation problems and constitutes

the base for numerous task allocation algorithms. It is a

standardised protocol, that can allocate the tasks to the most

appropriate agents and at the same time it is capable of task

reassignment where needed [43]. On the other side, CNP has

the message congestion problem, incommoding sometimes

the negotiation procedure between the agents. Unlike other

approaches, such as pheromone based approaches, CNP

depends considerably to the communication by messages

between agents and the computational cost of these messages

can be very high, deteriorating the communication efficiency

and the systems performance [44].

Some recent CNP based approaches include [45], [46],

[11], [27], [44]. Moreover, an auction based approach that

does not belong to the aforementioned categories is the

(FMC TA) [47].

B. Game theory based

In game theory based approaches, the agents are assumed

to be players that take specific actions and the task allocation

scheme is the strategy that they should follow. The reward

that the players take, depending on their actions, at the end

of the game is called the payoff. When the players have

chosen the best strategy, then they will not wish to change

their strategy, because this is the best outcome they could

accomplish, reaching a condition called Nash equilibrium

[48].

Games can be divided into two main categories, the

cooperative and the non-cooperative games. In the coopera-

tive games the agents are cooperating or forming coalitions

before taking their specific actions, affecting their general

strategy and utilities. One example of cooperative games

is the coalition formation game. In non cooperative games,

agents choose their actions and their strategy individually,

meaning that agents are selfish and want to reach the high-

est payoff. Some examples include Bayesian games, non-

cooperative differential games, sub-modular games, etc. [49].

Some recent game theory based approaches include [50],

[20], [51], [52], [53], [54], [55].

C. Optimisation based techniques

Optimisation is the field of applied mathematics aiming to

find a solution to a specific problem, from a set of possible

solutions, minimising the cost or maximising the profit,

of a certain cost or objective function. This cost function

which is optimised according to some constraints, determines

the aim of the system. There are a lot of optimisation

techniques that can be either deterministic or stochastic [3],

[56]. Deterministic methods do not consider randomness,

meaning that the path to the solution will be the same, if the

same starting point is used. Deterministic methods include

techniques such as graphical methods, graph based methods,

sequential programming, linear programming, mixed integer

linear programming (MILP), etc. Stochastic methods or

metaheuristics are methods that include a randomness to the

calculations. Metaheuristics include evolutionary algorithms,

swarm intelligence, simulated annealing, etc. Moreover,

heuristic algorithms are algorithms that are used to find fast

and quality solutions to difficult optimisation problems that a

deterministic method would have unbearable computational

cost. These methods provide approximate solutions though

[57].

a) Deterministic optimisation based: One optimisation

algorithm that is frequently used as the base for developing

new task allocation algorithms is the Hungarian algorithm

[58]. The Hungarian algorithm, treats the problem of task

allocation as a combinatorial optimisation problem, using

graph theory and solves the problem in polynomial time.

The algorithm computes an estimate of each agents utility,

thus maximising the overall utility. But this is computation-

ally expensive and sometimes of lower value when high

uncertainties are present to the system, therefore a lot of

improvements to the algorithm have been proposed [59].

Some recent approaches include [60], [61] and [62].

b) Metaheuristics: Metaheuristcs include several meth-

ods like swarm intelligence, genetic algorithms, simulated

annealing and others. Swarm intelligence has been widely

used in task allocation of MAS and is a category of biolog-

ically inspired algorithms, mainly from animals with social

behaviour, such as insect colonies, school of fish, flocks of



birds, etc. [63]. These animals demonstrate efficient division

of labour, due to the specialisation of the members of a

team, leading to colony efficiency [64]. Even though the

agents might be quite simple, they can accomplish complex

tasks as a whole due to their cooperation, leading to robust,

efficient and low cost solutions [65]. On the other side,

these algorithms some times assign unnecessary tasks to

the agents, cause conflicts and have slow global response

to environment variations [63]. Mainly the methods used are

divided between threshold based and probabilistic methods.

In the threshold based methods, such as response threshold

method [66], the agents decide their actions regarding the

tasks depending on the values that take some monitored

quantities and the value of the threshold. The threshold can

be fixed or variable and the agents might have only local or

global information about that quantity. In probabilistic meth-

ods, the agents change task randomly, based on probabilities

calculated with environmental observations or historic data.

Also, a stimulus might be used and a task might be chosen

when the stimulus is high for the specific task [67].

Some recent metaheuristic based methods for task allo-

cation include the modified distributed bees algorithm [63],

dynamic ant colony’s labor division [17], distributed immune

multi-agent algorithm [68], improved QPSO [69], Hierarchi-

cal Task Assignment and Path Finding method [70], Multi-

Objective Multi-Humanoid robots Task Allocation [71] and

other techniques like [72], [73], [15].

c) Heuristics: Recent heuristic based approaches in-

clude Lazy max-sum algorithm [19], average Hamiltonian

partition - multiple traveling salesperson algorithm [74],

One-To-Many Bipartite Matching [75], nearest-neighbor

based Clustering And Routing approach [76] and [77].

D. Learning based approaches

It is very difficult to predict the future disturbances that

an agent might have to deal with, especially where there are

not specific mathematical models that describe the behaviour

of the environment, which is dynamic for real applications.

Therefore, one solution is the agents to learn to confront

such disturbances, taking into consideration their past actions

and the actions of other agents, leading to higher system

efficiency [78], [79], [80].

A typically used machine learning technique is reinforce-

ment learning, where the agents use their experience to

learn how to act in different states of the environment.

The environment is, usually, formed as a Markov Decision

Process (MDP) and the agents optimize a cost or reward

function in order to learn from the environment. A frequently

used RL method is Q-learning, which is a model free RL

method and help the agents find optimal solutions in MDPs.

[78], [79]. RL has a lot of advantages, including handling

uncertainties in the environment, real time implementation

(for well trained networks) and dealing with different tasks

[16]. On the other side, especially in large scale complex

systems, most RL algorithms require high computational

power [81].

The learning based approaches found include the decen-

tralised self-organising map based approach in [82], the

stochastic reinforcement learning based algorithm in [12], the

graph based multi-agent reinforcement learning method [83],

a MARL with enhanced hill climbing search approach [84], a

Q-learning based fast task allocation algorithm [16], the Task

Allocation Process using Cooperative Deep Reinforcement

Learning strategy [79] and a MARL soft Q - learning based

method [85].

E. Hybrid approaches

Except for the above approaches for solving the problem

of task allocation there are also some other approaches that

combine some of the above methods and they are called

hybrid approaches.

In [86] an optimisation and an auction based approach are

combined, while in [87] a market based method is combined

with a game theory based one. Furthermore, [88], [89]

and [13] are a market based and metaheuristic combination

and [90] is a market based and learning combination. In

[91] an evolutionary algorithm with a greedy algorithm are

combined, while in [92] a game theoretic based approach is

combined with a learning algorithm.

IV. KEY FACTORS OF THE TASK ALLOCATION

PROCEDURE

Some basic criteria for the evaluation of the task allocation

procedure in MAS are the computational complexity of the

algorithms used, the optimality of the solutions and the

scalabilty of the approach used. Moreover, the capability of

the algorithms to handle uncertainties, as well as the effec-

tiveness of the communication procedure, play a significant

role to the overall system performance.

A. Complexity, optimality and scalability

The factors that affect the computational cost of task

allocation are the complexity of the algorithm used, the

frequency that these algorithms are used and also the compu-

tational cost of the communication method needed between

the agents (the bits of information that the agents need to

exchange for achieving successful task allocation) [93], [94].

Another key factor is the optimality of the solutions found.

When we refer to the optimality of the task allocation proce-

dure, we mean that the solution found has the highest overall

utility possible, constrained by the systems’ characteristics,

like noise, uncertainty and inaccuracy of the information

provided to the agents. The frequency that an algorithm is

executed in order to find dynamic and not static solutions as

well as the proportion of the tasks that can be reassigned,

affect the solution quality [4]. Moreover, as more and more

complex tasks and higher number of agents are employed to

the task allocation schemes, scalability of the algorithms is

crucial to their effectiveness.

a) CBBA based: The CBBA based approaches pre-

sented, that are improvements of the CBBA and PI algo-

rithms, demonstrate better efficiency and scalability than

the baseline CBBA method, but with the disadvantage of



TABLE I

COMPLEXITY OF SOME REPRESENTATIVE TASK ALLOCATION ALGORITHMS

Category Algorithm Complexity

CBBA
based

PI-MaxAss [14] Opn3
t

q

modified CCBBA algorithm [38] OpΘMImaxnt2
Imax p2Imax ` M2q ` nantImax2

Imax q

Game theory
based

Apollonius circle-based Active Pursuer Check (AAPC) [52] Opn2
aq

GRAPE [50] OpdGntn
2
aq

Metaheuristics MO-MHTA [71] OpntK ` 3nt
2 ` MaxpH2logL´2H,H2, Lqq

Heuristics

lazy max-sum [19] Opna lognaq

AHP-mTSP [74] Opna
2q

nCAR [76] Opna
3q

OTMaM [75] Opnantq

Hybrid
simplified MILP with iterative scheduling [86] Opn3

aq

CBBA based with Ant Colony System (ACS) and greedy [89] Opnt
3q

higher computational cost. Indicatively, the computational

complexity of the algorithm PI-MaxAss [14] is equivalent

to Opn3

t q, where nt is the number of tasks. Moreover

the complexity of the modified CCBBA algorithm [38] is

OpΘMImaxnt2
Imaxp2Imax `M2q`nantImax2

Imaxq, where

Θ is the maximum number of iterations needed before

convergence, Imax is the maximum number of sensors per

task, na is the number of agents, nt is the number of tasks

and M is the planning horizon.

b) CNP based: Generally the CNP based techniques

are very good in reallocating tasks, but are highly dependent

to the communication procedure between agents, causing

often high computational cost. Also another problem of CNP

is the observed message congestion. The improved CNP

algorithms presented, have higher efficiency and smaller

computational cost than baseline CNP. But, even though

there are some approaches that try to confront the message

congestion problem, e.g. [44], this is still an open field in

research.

c) Game theory based: The game theory approaches

presented, are more efficient than baseline approaches, with

better suboptimal (near optimal) solutions. Moreover, some

game theoretic algorithms have better efficiency than market

based approaches. As for the complexity, the Apollonius

circle-based Active Pursuer Check (AAPC) [52], has com-

plexity of Opn2

aq, where na is the number of pursuers. The

complexity of GRAPE algorithm, based on an anonymous

hedonic game [50], is bounded by OpdGntn
2

aq, even though

in most of the cases is much less, where dG is the graph

diameter of the network, nt is the number of tasks and na is

the number of agents. As for the communication complexity

of each agent it is Op|Ni|naq, where |Ni| is the number of

agents that the agent i communicates.

d) Heuristics: There are a lot of techniques for solving

DCOP problems. The techniques providing optimal solutions

usually have an exponential coordination burden and heuris-

tic based techniques have lower coordination cost, but pro-

vide suboptimal solutions. Some of the proposed techniques

demonstrated higher efficiency and smaller computational

cost than some genetic and market based approaches [19].

The lazy max-sum approach [19] has a message passing

complexity of Opna log naq, but if we consider all agents

to all tasks assignments, the complexity rise to Opnna

t q.

For the AHP-mTSP algorithm [74] (average Hamiltonian

partition, multiple traveling salesperson problem), which

finds suboptimal solutions, every iteration has complexity

of Opna
2q and an average run time of na

2.11nt
0.33, for

na agents and nt tasks. Moreover, the centralised heuristic

nearest-neighbour based Clustering And Routing (nCAR)

approach [76] has computational cost of Opna
3q, where na

is the number of agents. The OTMaM technique [75], which

is suitable for large scale systems, has a time complexity of

Opnantq, where na is the number of agents and nt is the

number of tasks.

e) Metaheuristics: The metaheuristics techniques are

low cost, robust and efficient, but sometimes can cause

conflicts between tasks, allocate unnecessary tasks to agents

and have slow response to environmental variations. The

presented algorithms have lower complexity and improved

scalability compared to baseline ones. But, some of them

where suboptimal or assumed no failures to the communi-

cation procedure. Moreover, some of the algorithms have

higher scalability and better performance than some greedy

and market based (e.g. CNP) approaches. For the MO-

MHTA algorithm [71] the overall worst-case complexity is

OpntK ` 3nt
2 ` MaxpH2logL´2H,H2, Lqq, where nt is

the number of tasks, H is the number of reference points on

the hyperplane, L is the number of the objectives and K is

the number of clusters created.

f) Learning based: The learning based approaches and

especially the reinforcement learning approaches, generally

have high efficiency, might be online implementable and

have good behaviour to environmental disturbances. We

noticed that a lot techniques have better performance than

baseline simulated annealing, hill climbing and greedy al-

gorithms. Moreover, it was noticed higher efficiency than

Frontier based and the Hungarian method. Even though

some methods had smaller computational cost than auction

based methods, the computational cost and the increase in

dimensionality was still a problem in other reinforcement

learning methods.



TABLE II

COMMUNICATION TYPE OF SOME REPRESENTATIVE TASK ALLOCATION ALGORITHMS

Category Algorithm Communication

CBBA
based

Extended PI [35] Mesh, row and hybrid (row–tree) communication schemes were used and had similar
performance for extended PI. The row communication scheme had the higher percentage
of problems solved with the best solution, followed by hybrid and mesh approaches.

PI-MaxAss [14] No communication cost assumed. The agents communicate once in every iteration

modified CCBBA [38] The number of algorithm iterations in order to achieve convergence is proportional to the
communication throughput (number of messages exchanged). In this allocation scheme it is
assumed that all agents can communicate with each other for achieving consensus and with
trivial communication cost. This is a simplification, since communication throughput cost in
decentralised market based task allocation algorithms can be high.

Cluster first strategy
CBBA [41]

Better solution quality with both mesh communication, row communication or circular
communication scheme. Higher convergence rate with mesh scheme, decreasing with limited
communication.

MDMA-CCM with
SAS [45]

Improved CNP communication scheme.

Other auction based FMC TA [47] Each agent to whom a task has been allocated, communicates with the other agents with
whom it shares the tasks.

Game theory based
GRAPE [50] Assumes strongly connected communication network.

MOCFF [51] A social network is used for the communication procedure. The agents communicate with
their neighbours (defined by a fixed range) and through them with all the other agents using
the same procedure.

Metaheuristics
DIMAA [68] The blackboard communication scheme is used, namely the location, target point and damage

information of each agent will be added to a shared file of the blackboard with other relevant
information. The agents communicate with neighbouring agents only.

HTAPF [95] The agents communicate with each other by using a probabilistic communication model
(broadcast communication), without re-broadcasting.

Learning Stochastic RL cellular
learning automata [12]

A hybrid communication method is used (explicit and implict).

Hybrid

Potential games
TVCBLL [92]

Each agent communicates with other agents inside a communication radius and receives
information about tasks inside this range, therefore chooses tasks only form this area.

MSMA [87] A social network is used for communication, where the agents communicate with their
neighbours (in a specific range) and through them with the rest agents. The structure of
the network changes, due to the agents’ movements

Auction based and
pheromone map [13]

The communication was based on the Pheromone Map Model, where agents set virtual
markers referring to mission and network states, that are ‘sensed’ from the other agents.
This approach reduces direct agent communication.

g) Hybrid: The use of Hybrid approaches is a very

good solution, since two techniques can be combined, ex-

ploiting their advantages and achieving higher efficiency or

smaller computational cost than baseline methods or than

using one method only. In [86], where a simplified MILP

program and an iterative scheduling algorithm with a multi-

agent bidding is used, the computational complexity of the

iterative scheduler is Opn3

aq, where na is the subset of agents.

Moreover, in the lower levels of this scheduler a GSTP

algorithm is used, increasing more the overall complexity.

In [89], where a CBBA based approach, is combined with

the Ant Colony System (ACS) algorithm and a greedy based

strategy is used for the inclusion phase of the CBBA, the

worst case computational complexity is Opnt
3q, where nt is

the number of survivors (tasks).

In table I a summary of the complexity of the afore-

mentioned algorithms is presented. As we can see most of

the methods have polynomial time complexity. The higher

computational cost have the CBBA based algorithms, as well

as some hybrid approaches. On the other side, the heuristic

based approaches and the game theory based have the less

complexity.

B. Communication

The communication between agents is a very important

factor for the performance of their coordination. The goal is

the agents to exchange important information regarding their

state, as well as the environment surrounding them, using

the smallest amount of bandwidth available and without

overloading the communication network [12]. The commu-

nication of the agents can be explicit or implicit. Explicit or

direct communication, is the exchange of messages between

the agents, using a communication network and dedicated

network protocols. Most of the existed coordination methods

use this type of communication. The implicit method refers

to getting information about the other agents of a multiagent

system through the environment, using sensors that the

agents are equipped with. Implicit communication is active if



TABLE III

COMPARISON OF THE MAIN TASK ALLOCATION METHODS

Algorithm category Efficiency Scalabilty DTA Computational cost

CBBA Based ‹ ‹ ‹ ‹‹ ‹‹ ‹ ‹ ‹‹

CNP Based ‹‹ ‹ ‹ ‹ ‹‹ ‹ ‹ ‹‹

Game Theory ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹‹

Deterministic Optimisation ‹ ‹ ‹‹ ‹ ‹‹ ‹ ‹ ‹‹

Heuristics ‹ ‹ ‹ ‹ ‹ ‹ ‹‹ ‹

Metaheuristics ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹

Learning ‹ ‹ ‹‹ ‹ ‹ ‹ ‹ ‹ ‹‹ ‹ ‹ ‹

the agents communicate using the information other agents

leave in the environment (biology inspired techniques) and

passive if the agents use their sensors to perceive the changes

happening to their environment [96].

The explicit communication style has generally higher

accuracy than the implicit case, with the disadvantage of

higher communication load, especially for larger scale sys-

tems. The implicit case, even though lacks in accuracy, has

better stability and is more fault tolerant. Therefore a mixture

of these methods is a very good idea for exploiting their

advantages, leading to better overall system performance

[96]. In table II are presented the communication techniques

of some characteristic algorithms for task allocation. As we

see, some frequently used techniques are the social network

technique, the blackboard scheme, the pheromone map and

generally graph based techniques.

C. Uncertainty

Task allocation techniques that take into consideration

uncertainty, are very useful for the implementation of highly

efficient and robust task allocation in real life applications.

Most of the techniques so far, especially the distributed

ones, that is more difficult, than the centralised ones, to

incorporate uncertainty, do simplifying assumptions about

the environment. Uncertainty can regard sensor inaccura-

cies, agents’ failures, environmental disturbances etc. [97]

[98]. According to previous research, reliability should be

taken into consideration a priory, because by neglecting the

possibility of failure, the performance decreases (suboptimal

performance) [99]. For example, in [100] the authors found

that the usage of the Asynchronous Consensus Based Bundle

Algorithm (ACBBA) in environments with uncertainty in

the communication procedure (realistic lossy network en-

vironment), creates inefficient task assignments, especially

for a large number of agents. Therefore the algorithms’

performance varies compared to the theoretically expected

performance.

In [99] is studied the problem of uncertainty (generally

failure of elements of the task allocation procedure) in multi-

agent systems, using a heuristic approach and non Marko-

vian states. Their conclusion is that making simplifying

assumptions such as Markovian states can lead to results

that are not a fair representation of the systems’ performance.

Moreover, they proved that in some categories of problems,

the usage of more sophisticated heuristics that describe better

the physical environment and the uncertainties occurring, led

to an increase in performance. In [97] the authors developed

an improved version of the performance impact (PI) algo-

rithm with improved robustness, by dealing with uncertain

environments. Three robust PI variants are proposed that use

Monte Carlo sampling to sample uncertain variables from

a Gaussian distribution. The proposed methods decrease the

failure rate under uncertainties and the number of unallocated

tasks, compared to baseline CBBA and PI, but increase the

computational complexity making them unreliable for time-

critical applications.

Therefore, incorporating uncertainty can be very useful

in a lot of applications leading to better performance. But

always there is the danger of the higher computational com-

plexity, therefore always there should be a balance between

efficiency, robustness and the convergence time, depending

on the computational power available and the specific needs

of every application.

V. CONCLUSION

In table III there is a summary of some main performance

characteristics of the main task allocation techniques, cate-

gorised in a scale from one (low value) to four (very high

value). We see that the CBBA and CNP based techniques

have generally high computational cost, making them in-

appropriate for large scale systems. Moreover deterministic

optimization techniques have also extremely high cost and

low scalability, making them unsuitable too for medium

to large scale systems, even though they have very good

efficiency. On the other side, heuristic and game theory ap-

proaches have very low cost, making them ideal for providing

fast solutions with moderate to good degree of efficiency.

These approaches can also be used in large scale systems,

since they have very good scalability. Metaheuristics and

learning approaches have moderate cost, good efficiency

and scalabity and can be used in medium scale and some

times in larger scale environments, depending on the specific

problem. Especially learning techniques are very good in

dynamic task allocation and dynamic environments.

As technology of MAS systems evolves and the com-

putational power is increasing every year, the need for



implementation of improved task allocation algorithms in

real environments is imperative. Such environments have

high uncertainties, complex tasks and might require real time

implementation of the algorithms used. Because of the adapt-

ability to such environments, RL methods are a promising

field of research in task allocation, that is widely researched

by the scientific community the last few years. Moreover,

game theory and metaheuristic approaches are also promising

for such systems. As noted in [101] the combination of

RL and game theory based techniques improves RL in the

multiagent case (MARL), therefore the combination of game

theory and RL based techniques is very promising for task

allocation methods as well.
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